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and where certain quartic terms are not present, the scalar potential is invariant under
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Higgs fields develop aligned vacuum expectation values, this symmetry will break to an

O(3) subgroup, which in general is further broken by loop corrections involving the gauge

bosons. Assuming such corrections are small, the physical properties of the Higgs sector will

approximately organize into representations of SO(3). If the vacuum expectation values

of the Higgs fields are aligned in the direction of the C even fields, the mass spectra of

the charged and C odd sectors will be degenerate. Moreover, if the Higgs fields develop a

pair of non-aligned vacuum expectation values, so that the charge conjugation symmetry is

spontaneously broken (but not the U(1) electromagnetic gauge invariance), a pair of light

charged pseudo-Goldstone bosons will appear.
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1 Introduction

Future discoveries at the LHC may reveal a sector of scalar particles that is much richer than

that of the Standard Model (SM). Some of the scalars may be responsible for generating

the masses of fermions and the electroweak bosons [1–4], whereas others may be responsible

for the dark matter [5–11]. Another interesting aspect of these theories is that CP violation

is naturally accommodated, including its spontaneous breaking [12].

It is natural to classify such scalars according to their properties under the SU(2)

associated with the electroweak sector of the Standard Model. In order to be compatible

with electroweak precision data, one usually considers only SU(2) doublets and singlets.

Even these representations are severely constrained by the data [13, 13–17].

Going beyond one or two doublets [18–20], one immediately has to face models having

a large number of parameters. The structure of such potentials has been studied in [21].

Different doublets could be distinguished via their couplings to fermion fields. This

idea is exploited in the so-called Model II version of the two-Higgs-doublet model (2HDM)

[18], where one doublet couples to up-type fermions, and the other couples to down-type

fermions. Another version of this idea is the one considered in ref. [10], where each fermion

or each family has its own Higgs field.

We shall here consider instead the case when the different doublets can not be dis-

tinguished (since we are not considering couplings to the fermions). An introduction of

– 1 –



J
H
E
P
0
7
(
2
0
1
1
)
0
2
0

Yukawa couplings would naturally have broken the symmetry among the different dou-

blets [22, 23]. Thus, we shall here study the symmetries of models with N doublets — it

turns out that by setting a certain SO(4)-violating parameter λ(3) to zero and assuming

vacuum alignment, the spectrum simplifies considerably. In particular, a certain “custo-

dial” SO(3) symmetry [24, 25] leads to a degeneracy between the mass matrix of the C

odd (or equivalently, CP odd) and the charged Higgs bosons.

This possibility of a symmetry group of the scalar polynomial which is larger than

required by gauge invariance was pointed out by Weinberg [26, 27] many years ago. In the

theories considered the extra symmetry was assumed to be a symmetry of any quartic (i.e.

renormalizable) potential of the scalar sector.

The Standard Model with its single Higgs doublet is an example of a theory were the

most general scalar potential has an extra O(4) symmetry not contained in the SU(2)×U(1)

gauge symmetry. An extension of the SM with an extra Higgs doublet (as for instance

required if we want to introduce supersymmetry) or more, and with C symmetry, also

has a quadratic potential which is automatically O(4) symmetric. This is sufficient to

enforce O(4) mass relations up to perturbative corrections in the parameter g′. (Hence

these corrections involve the gauge bosons Z and γ.) For the quartic potential, the extra

O(4) symmetry is broken by the parameter(s) λ(3), cf. eq. (2.8). Standard renormalizability

instructs us to include into the Lagrangian, all terms allowed by the SU(2)×U(1) symmetry,

hence it may be inconsistent to leave out terms proportional to λ(3). The presence of

such parameters will in general lead to an order λ(3) tree-level breaking of the additional

symmetry. This is in principle not different from having the symmetry broken by loop

corrections. It becomes in any case a question of the magnitude of the perturbation.

We present a detailed classification of the possible terms in the potential, discussing

charge conjugation and how the familiar custodial O(4) symmetry of the SM potential gen-

eralizes to an O(4) (or, more generally, O(2k)) symmetry for certain terms of the potential

in the NHDM. The maximal O(2k) symmetric potential turns out to be a more constrained

potential than the maximal charge-invariant one. The kinetic terms are in general sub-

ject to an independent classification, depending on the U(1) hypercharge coupling g′. We

identify, in certain situations, a charged pair whose mass vanishes with g′.

The paper is organized as follows. In section 2 we discuss the general potential and

classify the corresponding Lagrangian, including the kinetic terms. In section 3 we dis-

cuss spontaneous symmetry breakdown, and in section 4 we conclude. A couple of more

matematical discussions are delegated to appendices.

2 The NHDM potential and Lagrangian

We define the N -Higgs-doublet model, abbreviated NHDM, to be a system of N two-com-

ponent complex scalar fields Φ1,Φ2, . . . ,ΦN , each with the same transformation property

under SU(2)L×U(1)Y as the Higgs field of the Standard Model, and with dynamics defined

by the Lagrangian density

L(x) =
∑

m

[DµΦm(x)]†[DµΦm(x)] − V (Φ1,Φ2, . . . ,ΦN ), (2.1)
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where V (Φ1,Φ2, . . . ,ΦN ) is a potential that — in its most general form — is given by (2.5)

below. The covariant derivative Dµ is defined as

Dµ = ∂µ + igTiW
µ
i + ig′Y Bµ, (2.2)

where W µ
i and Bµ are the SU(2)L and U(1)Y gauge fields, respectively, and Ti = 1

2σi

are the generators of SU(2) with σ1, σ2, σ3 the Pauli matrices. Thus, our Higgs fields are

labeled by two indices: The row index running from 1 to N is often written out explicitly as

above, and an often hidden group index acted on by the gauge group. The latter are acted

on by the matrices Ti in (2.2) (whose indices are also hidden). When written explicitly we

shall use Greek letters from the beginning of the alphabet.

To write the most general gauge-invariant potential in a renormalizable NHDM in a

compact way, we introduce a set of linearly independent1 hermitian operators invariant

under local SU(2)L × U(1)Y transformations (this is a generalization of the approach for

the 2HDM in [28]):

Âm = Φ†
mΦm,

B̂mn =
1

2
(Φ†

mΦn + Φ†
nΦm) = Re(Φ†

mΦn) ≡ B̂a, (2.3)

Ĉmn = − i
2(Φ†

mΦn − Φ†
nΦm) = Im(Φ†

mΦn) ≡ Ĉa.

Due to (anti-)symmetry under interchange of m and n we may impose the restriction that

1 ≤ m < n ≤ N , and introduce indices a, b, . . . labeling such pairs. An explicit invertible

encoding is

1 ≤ a = a(m,n) = m +
1

2
(n − 2)(n − 1) ≤ 1

2
N(N − 1) ≡ N . (2.4)

We let m(a), n(a) denote the inverse of this encoding. We will use the summation conven-

tion that repeated indices from the beginning of the alphabet are summed from 1 to N ,

and repeated indices from the middle of the alphabet are summed from 1 to N . The most

general potential in the NHDM thus becomes a linear combination of all different quadratic

and quartic factors in the Φm (and Φ†
m) which can be formed from Âm, B̂a and Ĉa:

2

Vg(Φ1, . . . ,ΦN ) = µ(1)
m Âm + µ(2)

a B̂a + µ(3)
a Ĉa + λ(1)

mnÂmÂn + λ
(2)
ab B̂aB̂b

+ λ
(3)
ab ĈaĈb + λ(4)

maÂmB̂a + λ(5)
maÂmĈa + λ

(6)
ab B̂aĈb, (2.5)

where the “g” in Vg denotes “general”. To avoid double counting we introduce the restric-

tion m ≤ n in the term involving λ
(1)
mn, and the restriction a ≤ b in the terms involving λ

(2)
ab ,

λ
(3)
ab and λ

(6)
ab . We will not consider terms of degree higher than four, because these would

destroy the renormalizability of the model [30]. From the hermiticity of the potential Vg

1There are no linear relations between the operators in (2.3). However, they are algebraically dependent

when N ≥ 3, being restricted by (N − 2)2 polynomial equations of 8’th order in the fields.
2Since

“
Φ†

kσjΦℓ

”`
Φ†

mσjΦn

´
= −

“
Φ†

kΦℓ

”`
Φ†

mΦn

´
+ 2

“
Φ†

kΦn

” `
Φ†

mΦℓ

´
, other quartic invariants may

be expressed by those chosen.
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all parameters µ and λ in the expansion (2.5) must be real. Thus the number of free real

parameters in (2.5) is

Ntot = N + 2N +
1

2
N(N + 1) + N (N + 1) + 2NN + N 2 =

1

2
N2(N2 + 3), (2.6)

which for N = 1 gives us the 2 parameters of the Standard Model (µ2 and λ). N = 2 gives

us the usual 14 parameters for the 2HDM. There are 54 parameters for N = 3 and 152

parameters for N = 4.

This counting does not take into account the fact that we may make SU(N) row

transformations on the fields Φm to eliminate some terms in (2.5). One possible choice

is to transform the quadratic terms into a diagonal form, i.e. so that µ
(2)
a = µ

(3)
a = 0.

This in general leaves a matrix of N −1 independent diagonal phase transformations (such

that the determinant is unity). We may for instance use it to transform all λ
(5)
1a with

n(a) = m(a) + 1 to zero. This reduces the number of parameters by N2 − 1, i.e. to

N ′
tot = 1

2

(
N4 + N2 + 2

)
, yielding 11 parameters for N = 2 (in agreement with Davidson

and Haber [19]), 46 parameters for N = 3, and 137 parameters for N = 4.

2.1 The most general C-invariant NHDM-potential

The charge conjugation operator C is a linear operator, multiplicative in the fields, which

leaves complex constants unaltered, but maps fields onto their hermitian conjugate trans-

posed; C(zΦm) = zΦ†T
m , where z is a complex number.3 Then C(Ĉa) = −Ĉa, in con-

trast to C(Âm) = Âm, and C(B̂a) = B̂a. We obtain a C-invariant potential by leaving

out all terms which are odd in Ĉa, i.e., terms involving µ
(3)
a , λ

(5)
ma, and λ

(6)
ab . There are

N + NN + N 2 = 1
4N(N − 1)(N2 + N + 2) such terms, leaving

NC =
1

4
N(N3 + 5N + 2) (2.7)

free parameters for the general renormalizable C-invariant potential,

VC(Φ1, . . . ,ΦN ) = µ(1)
m Âm + µ(2)

a B̂a + λ(1)
mnÂmÂn + λ

(2)
ab B̂aB̂b

+ λ
(3)
ab ĈaĈb + λ(4)

maÂmB̂a. (2.8)

For N = 1 we get the usual 2 parameters of the standard model, the Higgs potential

of which is automatically C-invariant. For N = 2 we get the usual (see e.g., [28]) 10

parameters. For N = 3 we get 33 parameters, and for N = 4 we get 86 parameters.

This counting does not take into account that we may make O(N) transformations on

the row of fields Φm to eliminate some terms in (2.8). A natural choice is to transform

the quadratic terms to diagonal form, i.e. so that µ
(2)
a = 0. This reduces the number of

parameters by 1
2N(N − 1), i.e. to N ′

C = 1
4N(N3 + 3N + 4). This gives 9 parameters for

N = 2 (in agreement with [20]), 30 parameters for N = 3, and 80 parameters for N = 4.

The difference Nphases = N ′
tot − N ′

C = 1
4N2(N2 − 1) + 1 − N counts the number of

genuine C-violating parameters in Vg (in agreement with Branco et al. [29]).

3This definition assumes that we for some reasons have decided on a decomposition of all fields into their

real and imaginary parts. It is not invariant under complex transformations of the fields, see e.g. [29].
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2.2 Symmetries of Â, B̂, Ĉ and Ĉ2

For generality we here consider k (rather than 2)-component fields, i.e. with SU(k)×U(1)

as gauge group. To make it simpler to explore all possible symmetries we express the field

Φm in terms of its independent real (hermitian) components, Φm = Ψm + iΘm. Define

2k × 2k matrices

I =

(
Ik 0k

0k Ik

)

, J =

(
0k Ik

−Ik 0k

)

, (2.9)

where the subscript k indicates the linear dimension of the submatrix involved. The com-

plex scalar product between two fields Φm and Φn, invariant under unitary (U(k)) trans-

formations, can be expressed in terms of two real bilinear forms4

Re(Φ†
mΦn) = B̂mn =

(
ΨT

m,ΘT
m

)
I
(

Ψn

Θn

)
= ΨT

mΨn + ΘT
mΘn, (2.10a)

Im(Φ†
mΦn) = Ĉmn =

(
ΨT

m,ΘT
m

)
J
(

Ψn

Θn

)
= ΨT

mΘn − ΘT
mΨn. (2.10b)

The first is the Euclidean dot product between 2k-component real vectors, the second is

the Poisson bracket (symplectic form) of the same quantities viewed as coordinates and

momenta of 2k-dimensional phase space. The quantities in (2.10) are individually invariant

under transformation groups larger than U(k). The first form B̂ (with Â as a special case)

is invariant under the O(2k) group of real orthogonal transformations,

(
Ψn

Θn

)
→ O

(
Ψn

Θn

)
, OT O = I, (2.11)

the second form Ĉ is invariant under the Sp(k,R) group of real symplectic transformations,

(
Ψn

Θn

)
→ S

(
Ψn

Θn

)
, STJS = J . (2.12)

In this formulation the charge conjugation operator C discussed above can be represented

as a particular O(2k) transformation when acting on the fields Ψn and Θn

C =

(
Ik 0k

0k −Ik

)
. (2.13)

Considering infinitesimal transformations, O = I + ǫL + O(ǫ2), S = I + ǫM + O(ǫ2), the

conditions (2.11) and (2.12) become

LTI + IL = 02k, MTJ + JM = 02k. (2.14)

4〈Φm, Φn〉 = Φ∗
m · Φn = bBmn + i bCmn.
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Thus L must be a 2k× 2k antisymmetric real matrix; there is a set (Lie algebra) so(2k) of

2k2 − k linearly independent such matrices. Writing out the condition for M in terms of

k × k submatrices we find that it must have the form

M =

(
A B

C −AT

)
, B = BT , C = CT . (2.15)

There is a set sp(k) of k2 + k(k + 1) = 2k2 + k linearly independent such matrices. The

infinitesimal transformations of the original U(k) are the intersection of the sets so(2k)

and sp(k). I.e., the matrices of the form
„

A B

−B A

«

, with A = −AT and BT = B. There are

1
2k(k − 1) + 1

2k(k + 1) = k2 such linearly independent matrices.

The symmetries of Ĉ2. The form Ĉ2 (or more precisely ĈmnĈm′n′) has a bigger sym-

metry group than the form Ĉ. Still, we will see that such operators (forms) will violate

the full O(4) symmetry we can assign the rest of the Lagrangian. In analogy with (2.12),

Ĉ2 symmetries are given by

(
Ψn

Θn

)

→ S

(
Ψn

Θn

)

, STJS = ±J , (2.16)

which can be collected in a set

P (k, R) = {S ∈ GL2k(R)|STJS = ±J}, (2.17)

which we in appendix A show is a Lie group.

The component

P−(k, R) = {S ∈ GL2k(R)|STJ S = −J}, (2.18)

consists of matrices with determinant

det(P−(k, R)) = (−1)k, (2.19)

as shown in appendix A. The group P (k, R) = Sp(k, R) ∪ P−(k, R) will have the same Lie

algebra as Sp(k, R), since the new component P−(k, R) is not connected with the identity.

This is manifested by the equation corresponding to eq. (2.14),

J + ǫ(MTJ + JM) = ±J (2.20)

not having any solution for the case of a −J on the right side, see appendix A for a proof.

The most general O(2k)-symmetric potential. We can conclude that the most gen-

eral O(2k)-invariant potential can be written

VO(2k)(Φ1, . . . ,ΦN ) = µ(1)
m Âm + µ(2)

a B̂a + λ(1)
mnÂmÂn

+ λ
(2)
ab B̂aB̂b + λ(4)

maÂmB̂a, (2.21)

– 6 –



J
H
E
P
0
7
(
2
0
1
1
)
0
2
0

since we have seen that operators not containing any factor Ĉ are O(2k)-invariant. We

obtain an O(2k)-invariant potential by leaving out terms proportional to λ
(3)
ab from the C

invariant potential VC (2.8). The number of terms in VO(2k) is then NO(2k) = NC −N 2 =
1
4N(N3 + 5N + 2) − 1

4N2(N − 1)2, giving

NO(2k) =
1

2
N(N + 1)2 (2.22)

free parameters for the general renormalizable O(2k)-invariant potential VO(2k). For N = 1

we get the usual 2 parameters of the standard model, the Higgs potential being automat-

ically O(2k)-invariant. For N = 2 we get the usual 9 parameters, one parameter less

than for the C-invariant potential. For N = 3 we get 24 parameters, and for N = 4 we

get 50 parameters.

This counting does again not take into account that we may make O(N) transforma-

tions on the row of fields Φm to eliminate some terms in (2.21). We may transform the

quadratic terms to diagonal form, so that µ
(2)
a = 0. This reduces the number of parameters

by 1
2N(N − 1), i.e. to N ′

O(2k) = 1
2N(N2 + N + 2). This gives 8 parameters for N = 2, 21

parameters for N = 3, and 44 parameters for N = 4.

2.3 Symmetries of the NHDM potential

Since the NHDM-potential Vg is constructed from the invariants (2.3) the symmetries of

the latter are reflected in the symmetries of the former, but in a manner depending on

details of the construction:

1. If Vg depends only on the Âm’s, i.e. if only the parameters µ
(1)
m and λ

(1)
mn are nonzero,

then the symmetry group of Vg is at least5
⊗N

m=1 O(2k), since we can make indepen-

dent transformations on each Φm.

2. If Vg depends only on the Âm’s and the B̂a’s, i.e. for a C-invariant theory (2.8), where

in addition the parameters λ
(3)
ab = 0, then the symmetry group of Vg is at least O(2k).

It may contain several such factors if some of the parameters µ
(2)
a and λ

(2)
ab vanish.

To analyze this we partition the Φm’s into sets: If a parameter µ
(2)
a is nonzero, then

the fields Φm(a) and Φn(a) belong to the same set, with m(a) and n(a) denoting that

m and n are contained in a. If a parameter λ
(2)
ab is nonzero, then the fields Φm(a) and

Φn(a) belong to the same set, and the fields Φm(b) and Φn(b) belong to the same set.

With this partitioning into a maximal number of sets we may make one independent

O(2k) transformation for each set.

3. If Vg depends only on the Ĉa’s, i.e. with only the parameters µ
(3)
a and λ

(3)
ab being

nonzero, then the symmetry group of Vg is at least Sp(k, R). If we (in the same manner

as above) can partition the fields into several sets, then we may make independent

Sp(k, R) transformations on fields belonging to different sets. However, since the

5It could possibly be larger, since there might be additional row symmetries transforming fields

Φm with different m into each other; such symmetries would require special relations among the

parameters µ
(1)
m and λ

(1)
mn.
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additional symmetries in this case fail to be symmetries of even the zero’th order

kinetic term (2.30), their significance is uncertain.

4. With all parameters arbitrary the symmetry group of Vg is just the original SU(k)×
U(1) gauge symmetry.

In this work we will pay special attention to the second scenario, with k = 2.

2.4 Symmetries of the kinetic terms

We now turn to the (global) symmetries of the kinetic terms of the Lagrangian,

K =

N∑

n=1

[(∂µ + Gµ)Φn(x)]†[(∂µ + Gµ)Φn(x)], (2.23)

with

Gµ = igTiW
µ
i + ig′Y Bµ. (2.24)

Let Ki denote the terms of the i’th order in the gauge fields.

Consider the transformation of the kinetic terms linear in the gauge fields, K1, under

the map ρ defined in appendix B. We can then write6

K1 =

N∑

n=1

∂µ(Φn)†kGµ(Φn)k + (Φn)†kG
µ†∂µ(Φn)k

=
N∑

n=1

ρ(∂µ(Φn)†k)ρ(Gµ)ρ((Φn)k) + ρ((Φn)†k)ρ(Gµ†)ρ(∂µ(Φn)k)

=

N∑

n=1

∂µΦT
nTµΦn + ΦT

n (−T µ)∂µΦn (2.25)

where the subscript k in (Φn)k indicates this is the usual complex Higgs k-plet (in the case

k = 2 the usual complex Higgs doublet), while Φn is the 2k dimensional real vector

Φn =

(
Ψn

Θn

)
, (2.26)

where (Φn)k = Ψn + iΘn, and where we also use eqs. (B.2), (B.3) and (B.6).

In eq. (2.25) we have applied the transformation ρ on the gauge terms Gµ defined

in eq. (2.24),

ρ (Gµ) = T µ, ρ (Gµ†) = −T µ, (2.27)

where T then reads

T µ =

(
gW µ

I −gW µ
R − g′ Y Bµ

gW µ
R + g′Y Bµ gW µ

I

)

, (2.28)

6Disregarding so-called Schwinger terms — here terms proportional to i[∂µφ(x), φ(x)] for a scalar field

φ — or, alternatively, reasoning classically.
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with W µ
R =

∑′
i W

µ
i T s

i , summed over the set of real symmetric generators T s
i of SU(k), and

W µ
I = i

∑′
i W

µ
i T a

i , summed over the set of imaginary antisymmetric generators T a
i . For

k = 2 the two sets are respectively
{

1
2σ1, 1

2σ3
}

and
{

1
2σ2
}
.

Finally, we consider the kinetic terms quadratic in the gauge fields,

K2 =

N∑

n=1

(Φn)†kG
µ†Gµ(Φn)k

=

N∑

n=1

ρ((Φn)†k)ρ(Gµ†)ρ(Gµ)ρ((Φn)k)

= −
N∑

n=1

ΦT
nT 2Φn. (2.29)

The symmetries of K0. When we first ignore couplings to the gauge fields the remain-

ing terms can be written

K0 =

N∑

n=1

k∑

α=1

(∂µΨnα ∂µΨnα + ∂µΘnα ∂µΘnα) , (2.30)

where the group index α labels the k components of Φn = Ψn +iΘn. This term is invariant

under rotation of all components {Ψnα,Θnα} into each other. I.e., the symmetry group

of K0 is O(2kN). The connected part of this group is SO(2kN), whose generators are all

real antisymmetric matrices, Lmn,αβ = −Lnm,βα (i.e. LT = −L, where transposition refers

to both sets of indices).

The symmetries of K0 and K1. Next, consider the terms linear in the gauge fields

again, cf. eq. (2.25),

K1 =
N∑

n=1

(
(
∂µ

(
ΨT

n ,ΘT
n

))
T
(

Ψn

Θn

)
−
(
ΨT

n ,ΘT
n

)
T µ∂µ

(
Ψn

Θn

))
, (2.31)

with T given in eq. (2.28).

Consider now an infinitesimal transformation δΦm,α = Lmn,αβ Φn,β, and T denoting

the 2k × 2k antisymmetric matrix in equation (2.28) (in group indices α, β — in addition

it is proportional to the N × N unit matrix in row indices). The requirement that this is

an infinitesimal symmetry transformation for K1 is that LT T + T L = 0. Or, when we

restrict L to be antisymmetric so that it also is an infinitesimal symmetry transformation

for K0,

Lmn,αβ Tβγ − Tαβ Lmn,βγ = 0. (2.32)

In order to determine the allowed structure of L, we expand these matrices into terms of

definite symmetries (L(s) symmetric, and L(a) antisymmetric) in the mn indices:

Lmn,αβ =
∑(

SαβL(a)
mn + AαβL(s)

mn

)
, (2.33)
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with S (symmetric) and A (antisymmetric) restricted by the constraint (2.32). The sum

runs over all possible combinations of allowed matrices.7 We next note that the antisym-

metric matrices T can be expanded in the set

T̂ = {T a
i I, T s

i J , J } =

{(
T a

i 0k

0k T a
i

)

,

(
0k T s

i

−T s
i 0k

)

,

(
0k 1k

−1k 0k

)}

. (2.34)

By substituting (2.33) into (2.32) we are led to search for the set of 2k×2k real matrices S

and A which commute with T for arbitrary values of the fields W µ
i and Bµ. It is sufficient

to verify that this property holds for all elements of the set T̂ . Let

X =

(
X11 X12

X21 X22

)
, X = S, or X = A. (2.35)

Requiring commutativity [see eqs. (2.32) and (2.33)] with the three types of matrices in T̂
we obtain the conditions

XjkT
a
i = T a

i Xjk, (2.36a)

X11T
s
i = T s

i X22, X22T
s
i = T s

i X11, X12T
s
i = −T s

i X21, X21T
s
i = −T s

i X12, (2.36b)

X11 = X22, X12 = −X21. (2.36c)

Using (2.36c) we find that X11 and X12 must commute with all matrices T a
i , T s

i (assumed

to form an irreducible representation). By Schur’s lemma they must then be proportional

to the k×k unit matrix, so that S ∝ I and A ∝ J . Thus, the Lie algebra of the symmetry

group of K0 and K1 consists of elements of the form

Lmn = I L(a)
mn + J L(s)

mn. (2.37)

This is the Lie algebra of U(N) written in real variables.

The symmetries of K0 and K1 in the limit g′
→ 0. A more interesting situation

arises if we remove J from the set T̂ , as would apply to the limit g′ → 0. Then we still find

that X11 + X22 and X12 −X21 must commute with all matrices T a
i , T s

i , and hence must be

proportional to the unit matrix. Further, X11 − X22 and X12 + X21 must commute with

all T a
i , but anticommute with all T s

i . For k = 2, i.e. for the gauge group SU(2)L × U(1)Y
in the limit g′ → 0, we find that nonzero solutions of (2.32),

X11 − X22 ∝ ε ≡ i σ2, X12 + X21 ∝ ε, (2.38)

are possible [see eqs. (2.33) and (2.35)]. This means that the possible antisymmetric ma-

trices A may be any linear combination of matrices from the set

G =

{(
0 ε

ε 0

)

,

(
ε 0

0 −ε

)

, J
}

, (2.39)

7Without the restriction (2.32) there would be 1
2
k(2k+1)N(N −1)+ 1

2
k(2k−1)N(N +1) = kN(2kN −1)

independent terms, equal to the number of generators of SO(2kN).
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where the 2 × 2 matrix ε was defined in eq. (2.38). The set G is a basis of generators for

SU(2). Thus, the Lie algebra of symmetry generators for K0 and K1 in this case consists

of elements of the form

Lmn = I L(a)
mn +

∑

A∈G

AL(s)
mn, (2.40)

allowing all possible symmetric N × N matrices L(s) for each A. There are 1
2N(N − 1) +

3
2N(N +1) = 2N2 +N independent terms, equal to the number of generators of the N ×N

quaternionic symplectic group Sp(N). The generators (2.40) generate Sp(N), where the

elements of G act as the quaternions i, j and k.

The above results were again found under the assumption that the fields W µ
i are

arbitrary, and kept constant under the transformation. Combined SU(k) transformations

of the W µ
i and the Φm fields still remain a symmetry. This symmetry is enlarged to

SU(k) × Sp(N) as g′ → 0. (In the case g′ 6= 0 it is SU(k) × U(N).) In the case k = 2

and g′ → 0 the custodial SO(4) symmetry8 is contained in SU(2)× Sp(N) in the following

way: SO(4) ∼= SU(2)L × SU(2)R ⊆ SU(2)L × Sp(N).9 (More presicely, SO(4) ∼= (SU(2)L ×
SU(2)R)/Z2 [45].) The group SU(2)R ⊆ Sp(N) is generated (through exponentiation) by

choosing L(a) = 0N×N and each L(s) ∝ IN×N in eq. (2.40). The generators of SO(4) are

hence the 3 generators in G plus the 3 generators of the SU(2)L gauge group (written in

real form). Finally, the U(1)Y hypercharge symmetry group is contained in SU(2)R [25].

In the more general case of an SU(k) × Sp(N) symmetry of K0 and K1 in the limit

g′ → 0 there is, in the same manner as above, a “custodial” SU(k) × SU(2)R symmetry,

which also will contain SU(2) × SU(2)R ∼= SO(4) subgroups.

The symmetries of K2. Next, consider the terms quadratic in the gauge fields

cf. eq. (2.29),

K2 = −
N∑

n=1

(
ΨT

n ,ΘT
n

)
T 2

(
Ψn

Θn

)

. (2.41)

As in the symmetry analysis of K1 we want to find all matrices X such that XT 2 = T 2X.

All matrices X which commute with T̂ will fulfill this criterion (since T 2 can be expanded

in a set which consists of products of all possible pairs of matrices from T̂ ). Therefore, the

symmetries of K1 are also symmetries of K2.

3 Spontaneous symmetry breakdown

In this section we return to the case of k = 2, i.e. with SU(2)L ×U(1)Y as the gauge group

and a row of N Higgs doublets Φm. Note however that many of our considerations have

straightforward generalizations to k > 2.

As for the Standard Model, the potential Vg of equation (2.5), or VC of equation (2.8),

may acquire its minimum at nonzero values of the scalar fields, 〈Φ〉0 = Φ(0), where Φ

(without a lower index) refers to the whole set of fields Φm. This point, Φ(0), will belong

8The custodial SO(4) symmetry cannot be extended to an O(4) symmetry, see chapter 4 of [43].
9We are grateful to H. Haber, J. P. Silva and P. Ferreira for pointing out a mistake at this point in a

previous manuscript.
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to one or more manifolds of equivalent minima related by the symmetries of the potential.

One may use these symmetries to transform Φ(0) to a particular form. A possible one is to

require for Φ
(0)
1 that only its lowest real component is nonzero. This can always be achieved

by an SU(2)L × U(1)Y gauge transformation. Next, the upper component of Φ
(0)
2 can be

made real by the remaining U(1) gauge transformation which keeps Φ
(0)
1 unchanged. Then

one has no gauge freedom left to change Φ
(0)
n for n ≥ 3. However, it was shown by Barroso

et al. [31] that a sequence of unitary row transformations can shift the vacuum expectation

values to the first two fields of the row only,10 for instance (when written in complex form)

Φ
(0)
1 =

(
0

v1

)

, Φ
(0)
2 =

(
u2

v2e
iδ

)

, Φ(0)
n = 0 for n ≥ 3, (3.1)

with v1, u2, v2 and δ real. The special case u2 = δ = 0 is usually referred to as vacuum

alignment, in which case we may also transform v2 to zero by an orthogonal row trans-

formation involving only Φ1 and Φ2. This is known as the Higgs basis [32–36]. However,

for other purposes it may be more convenient to adopt a “democratic” basis in which the

lower component of all (or most) fields Φm have a nonzero real expectation value. It is

related to the Higgs basis by an orthogonal row transformation which preserves the form

of C and U(1) electromagnetic gauge transformations (the latter preserving the definition

of electric charge).

Assume now the case of vacuum alignment and a potential VO(4) which is O(4) invari-

ant. Then the existence of the vacuum expectation values Φ(0) will break the (explicit)

symmetry down to O(3), with the consequence that the Higgs boson particle spectra and

other physical properties will organize themselves into multiplets of O(3) (broken by per-

turbative corrections in g′). The number of broken symmetry generators is 3 whether we

consider the symmetry broken from U(2) to U(1) or from O(4) to O(3); this leads to the

existence of 3 Higgs ghosts and no extra (pseudo-) Goldstone bosons.11

3.1 Mass-squared matrices

To make these statements slightly more explicit, as needed for calculation of the zero’th

order (in g and g′) particle masses, we expand the potential around Φ(0) to second order.

There are no first order terms since we are expanding around a minimum. The matrix of

second derivatives is the mass-squared matrix M2
mnαβ . It is restricted by symmetries to have

10One may collect the quantities Φ
(0)
mα (α = 1, 2) into two N-component complex vectors Φ̃(1) and Φ̃(2).

By a U(N) row transformation one may first rotate Φ̃
(1)
m so that only the component Φ̃

(1)
1 is nonzero, with

Φ̃
(1)
1 real. There is a group of U(N − 1) transformations preserving this condition; this may be used to

transform Φ̃
(2)
m so that only the components Φ̃

(2)
1 , Φ̃

(2)
2 are nonzero, with Φ̃

(2)
2 real. One cannot do better

due to the existence of four real U(N) invariant parameters in ||Φ̃(1)||, ||Φ̃(2)||, and Φ̃(1)† Φ̃(2). But there

remains a U(N−2) group of transformations preserving this condition which can be used for other purposes.

For an SU(k) × U(1) gauge group one may generalize this procedure to k vectors Φ̃(j), j = 1 . . . k.
11This remains true for general values of k ≥ 2; a set of aligned vacuum expectation values will break

U(k) to U(k − 1) and O(2k) to O(2k − 1). The number of broken generators is 2k − 1 in both cases. The

situation is different if we have two broken real directions, as in equation (3.1) with u2 = 0 but δ 6= 0.

Cf. section 3.3.
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a block diagonal form in the group indices α, β. We use coordinates where Φm = Ψm+iΘm

is expressed in terms of four real fields,

Φm = Ψm + iΘm =

(
φm1 + iφm2

vm + ηm + iφm3

)

, Φ(0)
m =

(
0

vm

)

. (3.2)

It is now convenient to represent these on real form as

Φm =

(
Ψm

Θm

)
=





φm1

vm + ηm

φm2

φm3




. (3.3)

We have the expansion

V (Φ(0) + ∆Φ) = 〈V 〉0 +
1

2

〈
∂2V

∂Φmρ ∂Φnσ

〉

0

∆Φmρ∆Φnσ + O(∆Φ3), (3.4)

where Φmρ denotes one of the four possibilities φm1, ηm, φm2, φm3, and the subscript 0

indicates that a quantity is evaluated at Φ = Φ(0). Now a set of generators for SO(4)12 is

J1 =





0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0




, J2 =





0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0




, J3 =





0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0




,

J4 =





0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0




, J5 =





0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0




, J6 =





0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0




, (3.5)

where J1, J2, J3 will transform the vacuum expectation value Φ(0), while J4, J5, J6 leave it

unchanged, cf. eq. (3.3). In terms of these, the broken generators of the SU(2) × U(1)Y
gauge group, written in real form by the transformation ρ defined in (B.1), are

i

2
σ1 → 1

2
(J2 + J5),

i

2
σ2 → 1

2
(J1 + J4),

i

2
(1 − σ3) → J3, (3.6)

and the unbroken U(1) (electromagnetic gauge) generator is

i

2
(1 + σ3) → J6. (3.7)

If now V is invariant under

∆φm1 → −∆φm1, ∆ηm → ∆ηm, ∆φm2 → −∆φm2, ∆φm3 → ∆φm3,

there can be no terms in (3.4) mixing the sets {∆φ1,∆φ2} and {∆ηm,∆φm3}. If V in

addition is invariant under

∆φm1 → ∆φm2, ∆ηm → ∆ηm, ∆φm2 → −∆φm1, ∆φm3 → ∆φm3,

12Equivalently O(4): SO(4) and O(4) have the same Lie algebra and hence the same generators.
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there can be no terms in (3.4) mixing ∆φm1 and ∆φm2, and we must have

〈
∂2V

∂φm1 ∂φn1

〉

0

=

〈
∂2V

∂φm2 ∂φn2

〉

0

≡ M2
ch,mn. (3.8)

We refer to this as the charged mass-squared matrix. The transformations considered

generate a Z4 subgroup of the U(1) gauge group generated by J6, assumed to be a symmetry

of V . We have formulated it this way as a reminder that invariance under discrete subgroups

may be sufficient to impose useful restrictions on the mass matrices.

If V is invariant under C transformations,

∆ηm → ∆ηm, ∆φm3 → −∆φm3, (3.9)

(irrespective of how we define C to operate on the charged sector, e.g. ∆φm1 → ∆φm1,

∆φm2 → −∆φm2) there can be no terms in (3.4) mixing ∆ηm and ∆φm3. Thus the neutral

mass-squared matrix decomposes into two more blocks, a C even and a C odd one,

M2
C+,mn =

〈
∂2V

∂ηm ∂ηn

〉

0

, M2
C−,mn =

〈
∂2V

∂φm3 ∂φn3

〉

0

. (3.10)

If V in addition is invariant under the transformations

∆φm1 → ∆φm1, ∆ηm → ∆ηm, ∆φm2 → −∆φm3, ∆φm3 → ∆φm2, (3.11)

which generate a Z4 subgroup of the SO(2) symmetry group generated by J4, we obtain

the relation

M2
C−,mn = M2

ch,mn. (3.12)

This explicitly demonstrates mass degeneracy between the charged and the C odd sec-

tors [37]. Especially, if the potential is O(4)-invariant (2.21), that is, we have a C-invariant

theory where also the parameters λ
(3)
ab = 0 [the latter implies (3.11)],13 the above sym-

metry criteria for mass degeneracy are valid. Moreover, since the renormalization is not

changed when the Higgs fields acquire a vacuum expectation value [38–42], we do not get

any mass renormalization counterterms from the quartic operators. So even though O(4)-

violating quartic terms proportional to λ
(3)
ab cannot alone be prohibited by any discrete

symmetry imposed on the NHDM Lagrangian [43], they will not show up as counterterms

when renormalizing the masses. Hence, the mass degeneration (3.12) will only be broken

by loop corrections involving gauge bosons, since we get an exact SO(3) symmetry when

g′ = 0. With g′ 6= 0 and hence with an approximate SO(3) symmetry, the mass differences

of the charged and CP -odd sectors will be of order O(g′4) ∝ O(e4).

On the other hand, the SO(3) symmetry between CP -odd and charged sectors could

also be broken by counterterms of the type λ
(3)
ab Ĉ2, even though these terms are set to zero

in the original potential, if we are considering scattering processes and not mass relations.

13For supersymmetric theories we typically have λ
(3)
ab 6= 0.
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3.2 The Higgs ghosts

Let ∆Φ be chosen so that Φ(0)+ǫ∆Φ+O(ǫ2) is a family of minima related by the symmetry

of the potential V ,
∂

∂Φmα
V (Φ(0) + ǫ∆Φ) = 0, (3.13)

to first order in ǫ. By differentiating this relation with respect to ǫ and then setting ǫ = 0

we find 〈
∂2V

∂Φmα ∂Φnβ

〉

0

∆Φnβ = 0, (3.14)

which reflects the fact that the matrix M2
mnαβ has zero eigenvalues with corresponding

eigenvectors ∆Φnβ. We may take the latter to be ∆Φ(i) ∝ JiΦ
(0) for i = 1, 2, 3. Normalized,

∆Φ(1)
m = (vm, 0, 0, 0)T /a, ∆Φ(2)

m = (0, 0, vm, 0)T /a, ∆Φ(3)
m = (0, 0, 0, vm)T /a, (3.15)

with a2 =
∑

m v2
m. The massless excitations in these directions correspond to a triplet

of Higgs ghosts. There will be N − 1 additional SO(3) triplets of excitations in directions

orthogonal to the ghosts. They correspond to physical particles. There will also be N

SO(3) singlets, transforming evenly under C, corresponding to physical particles. In the

case of N = 2, the triplet is (H+, H−, A), whereas the singlets are h and H [18].

3.3 Non-aligned vacuum expectation values

We have assumed vacuum alignment in much of the previous discussions of this section.

The phenomenologically most realistic deviation from this case is that we have a situation

with two (real) broken directions, as in (3.1) with u2 = 0 but δ 6= 0. This corresponds

to a situation which preserves the U(1) electromagnetic gauge symmetry, generated by

J6. Its corresponding definition of electric charge is preserved, but the C symmetry (or,

here equivalently,14 CP symmetry) is spontaneously broken. In this situation, assuming

14For the Lagrangian (2.1), spontaneous C and CP violation (SCV and SCPV) are equivalent: By

definition [44], CP (C) is broken spontaneously if (1) There is a transformation that can be physically

interpreted as CP (C) and which keeps the Lagrangian invariant and (2) There is no transformation that

can be physically interpreted as CP (C) which keeps both the Lagrangian and the vacuum invariant.

(SCV ⇒ SCPV). Assume C is spontaneously broken, and implement P by the spatial reflection

PΦn(t, r)P† = Φn(t,−r). (3.16)

Hence condition (1) of SCPV is satisfied. Next, assume condition (2) for SCPV is not satisfied. Then there

is a CP transformation

(CP)Φn(t, r)(CP)† = U
CP
mn Φ† T

n (t,−r), (3.17)

which leaves both the Lagrangian and the vacuum unaltered. But then the C transformation given by

CΦn(t, r)C† = U
C
mnΦ† T

n (t, r),

with UC
mn = UCP

mn will infer that condition (2) of SCV does not hold, since the spatial reflection (3.16) does

not change the vacuum nor the physics of the Lagrangian. This is a contradiction, and hence also condition

(2) of SCPV must hold.

(SCPV ⇒ SCV). Conversely, if CP is spontaneously broken and condition (1) hence is satisfied by

(CP)Φn(t, r)(CP)† = U
CP
mn Φ† T

n (t,−r),
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the potential only has the SU(2) × U(1) gauge symmetry, the three SU(2) generators

are spontaneously broken, and we hence only get three Higgs ghosts and no (pseudo-)

Goldstone bosons.

When we only have an SU(2)×U(1) symmetry in the potential, operators of the type Ĉ

are present in the quadratic or in the quartic part of the potential. Two of the excitations

of the charged mass squared matrix are still massless, corresponding to the usual charged

Higgs ghosts.15

In the case of non-aligned VEVs (or operators Ĉ present in the quadratic part of the

potential) the C even and odd excitations generally mix to give a 2N × 2N mass squared

matrix for the neutral particles. Here one of the excitations will be massless, corresponding

to a neutral Higgs ghost.

On the other hand, assume that V is invariant under O(4) transformations. Then there

are no operators of the type Ĉ present in the potential. The explicit O(4) symmetry is now

broken down to O(2) ≃ U(1), so that 5 generators are broken. As before, 3 of these will

generate excitations which correspond to the Higgs ghosts; the remaining 2 will correspond

to nearly massless charged pseudo-Goldstone16 bosons (massless to zero’th order in g′).

To analyze the situation we again write Φ = Φ(0) + Φ′ in terms of real fields,

Φm = Φ(0)
m + (φm1, ηm, φm2, χm)T with Φ(0)

m = (0, vm, 0, wm)T .

J4 and J5 are now also broken by the vacuum expectation values. Acting with the broken

generators on Φ(0) one finds five eigenvectors of the mass matrix with zero eigenvalues,

we can re-implement the matrix UC as UCP above, and re-implement P as the trivial transformation (3.16),

and hence condition (1) of SCV is satisfied. Assume condition (2) of SCV does not hold. Then we, in a

similar manner as for the case (SCV⇒SCPV), can let UCP = UC and define P as in (3.16), and hence

SCPV does not hold either, which is a contradiction. Hence condition (2) of SCV is satisfied.
15The relation between the complex and real formulations of the charged mass squared matrix is given

by the map ρ of appendix B: Let M2
c denote the N × N complex mass squared matrix, and let M2

r be the

corresponding 2N × 2N real matrix. They are related by

φ
−T

M
2
c φ

+ = (φ1 φ2)ρ(M2
c )

 
φ1

φ2

!
,

as can be seen from eq. (B.6). Then ρ(M2
c ) = M2

r . The matrix M2
c is Hermitian, and hence has only

real eigenvalues. It then follows from the definition of ρ that λ is an eigenvalue of M2
c if and only if λ

is an eigenvalue of M2
r . Moreover, if v is an eigenvector of M2

c , (Re v, Im v)T and (Im v,−Re v)T will be

eigenvectors of M2
r with the same eigenvalue λ. Hence oppositely charged particles will have the same mass,

although terms φ1m and φ2n mix by the presence of operators bCmn in the quadratic part of the potential

or by complex (i.e. non-aligned) VEVs, and hence violate C. (This mass degeneration is a consequence

of the remaining U(1) ∼= SO(2) hypercharge symmetry, i.e. that the generator J6 is unbroken.) The

identification (3.8) assumed that φ1m and φ2n did not mix, i.e. that Im(M2
c ) = 0, cf. (B.1).

16Pseudo-Goldstone bosons stem from broken generators of the extra O(4) symmetry of the potential,

while Higgs ghosts by definition are generated by the broken generators of the gauge symmetry (which of

course is a symmetry of the whole Lagrangian). The pseudo-Goldstone bosons acquire small masses from

radiative corrections, and are hence not massless to all orders of perturbation theory, like true Goldstone

bosons. True Goldstone bosons are, in contrast, generated by the spontaneous breaking of a symmetry of

a total Lagrangian, not only a potential.
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∆Φ(i) ∝ JiΦ
(0). After normalization

∆Φ(1)
m = (vm, 0, 0, 0)T /a,

∆Φ(2)
m = (0, 0,−vm, 0)T /a,

∆Φ(3)
m = (0, wm, 0,−vm)T /

√
a2 + b2, (3.18)

∆Φ(4)
m = (0, 0, wm, 0)T /b,

∆Φ(5)
m = (wm, 0, 0, 0)T /b,

where a2 =
∑

m v2
m and b2 =

∑
m w2

m. We see that all eigenvectors except ∆Φ
(3)
m are in the

charged sector, hence the two pseudo-Goldstone bosons (i.e. light Higgs bosons) mentioned

above will be charged, as claimed. The eigenvectors in (3.18) are normalized, but they are

not necessarily orthogonal to each other. Their nonvanishing inner products are
(
∆Φ(1),∆Φ(5)

)
= −

(
∆Φ(2),∆Φ(4)

)
=

1

ab

∑

m

vmwm ≡ cos ϑ.

Here | sin ϑ| > 0, since the vacuum expectation values by assumption are non-aligned.

Thus, the orthonormalized eigenvectors corresponding to the Higgs ghosts can be written

H(1)
m =

1√
a2 + b2

(vm, 0, wm, 0)T =
a√

a2 + b2
∆Φ(1)

m +
b√

a2 + b2
∆Φ(4)

m ,

H(2)
m =

1√
a2 + b2

(wm, 0,−vm, 0)T =
a√

a2 + b2
∆Φ(2)

m +
b√

a2 + b2
∆Φ(5)

m , (3.19)

H(3)
m =

1√
a2 + b2

(0, wm, 0,−vm)T = ∆Φ(3)
m ,

where H
(i)
m ∝ GiΦ

(0), Gi denoting the SU(2) generators as given by the map (3.6). The

two eigenvectors corresponding to the Goldstone modes are orthogonal to those above,

G(1) =
1

sinϑ
√

a2 + b2

[
a
(
∆Φ(4) + cos ϑ ∆Φ(2)

)
− b

(
∆Φ(1) − cos ϑ ∆Φ(5)

)]
,

G(2) =
1

sinϑ
√

a2 + b2

[
−a
(
∆Φ(5) − cos ϑ ∆Φ(1)

)
+ b

(
∆Φ(2) + cos ϑ ∆Φ(4)

)]
. (3.20)

They have been orthonormalized. We note that the normalization constant becomes infinite

in the limit of aligned vacuum expectation values, sin ϑ → 0. We recall that the set{
H(1),H(2),H(3), G(1), G(2)

}
are just numerical eigenvectors of the mass-squared matrix.

The corresponding zero mode fields are the quantum fields obtained by projecting Φ′ on

these eigenvectors,

ΦH(i)

mα =
(
H(i),Φ′

)
H(i)

mα, ΦG(j)

mα =
(
G(j),Φ′

)
G(j)

mα for i = 1, 2, 3 and j = 1, 2. (3.21)

The field ΦH(3)
is the neutral Higgs ghost field, while the fields ΦH(1)

and ΦH(2)
form the

charged Higgs ghost field, and the fields G(1) and G(2) together form charged Goldstone

boson fields.

If the vacuum expectation values broke the symmetry in even more directions, as

in (3.1) with both u2 6= 0 and δ 6= 0, the situation would be different: All 6 generators of

SO(4) would be broken, 4 of them corresponding to the 4 broken generators of the U(2)

gauge group. Thus, there would be 2 pseudo-Goldstone bosons also in this case.
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4 Concluding remarks

We have analyzed the additional (approximate) symmetries which may arise in multi-Higgs-

doublet models, due to the fact that the scalar potential may have more symmetries than

required by the imposed gauge invariance. Moreover, for the kinetic terms we found that

the symmetry group is SU(k) × U(N). In the limit g′ → 0 the symmetry group of the

kinetic terms is enhanced to SU(k) × Sp(N), which has an SU(k) × SU(2) subgroup. In

the case k = 2 the latter is the SU(2)L × SU(2)R ∼= SO(4) custodial symmetry. The most

general C invariant Higgs potential (2.8) has the same SO(4) symmetry, only broken by the

presence of the operator Ĉ2, that is, terms proportional to λ
(3)
ab . In the case where λ

(3)
ab is set

to zero, we have an exact mass degeneration (3.12) (assuming vacuum alignment) between

charged and C odd sectors in the limit g′ → 0. When there is no vacuum alignment, but

rather two broken (real) directions with the electromagnetic generator left unbroken, a pair

of light, charged Higgs bosons emerge (cf. section 3.3).

The introduction of Yukawa couplings could further constrain the theory. With N

doublets, one could imagine “simplified” models analogous to Model I and Model II for the

2HDM, where only one doublet couples to all fermions, or where some doublets couple to

up-type quarks, with others coupling to down-type fermions. Furthermore, with three or

more doublets, one could arrange to let each fermion generation couple to its own doublet.

If n doublets are without any Yukawa couplings, for example due to a discrete Z2

symmetry,

Φi → −Φi, i = 1, . . . , n (4.1)

then such a sector would provide a dark matter candidate [8]. Indeed, with n > 1, there

would be a whole “family” of states in this “inert” sector, some of which would carry

electric charge. Those would therefore be observable.

A P (k, R), the symmetry group of Ĉ2

We will here show that the set

P (k, R) = {S ∈ GL2k(R)|STJS = ±J}, (A.1)

given in eq. (2.17) is a Lie group: The associative law and the existence of the identity

follow from GL2k(R) (the set of all invertible, real 2k× 2k matrices) being a group. Define

P−(k, R) = {S ∈ GL2k(R)|STJ S = −J}. (A.2)

The other component of P (k, R) (what we could call P+(k, R)) is Sp(k, R). Then, if

S− ∈ P− and S+ ∈ Sp(k, R), then we easily see by the definition that

S−S+, S+S− ∈ P−(k, R),

S+
1 S+

2 , S−
1 S−

2 ∈ Sp(k, R). (A.3)
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So the set P (k, R) is closed under group multiplication. This set also includes the inverse

of each element. We only have to show this for elements S ∈ X−, since we already know

Sp(k, R) is a Lie group. Let STJS = −J . Then

(ST )−1STJ SS−1 = (ST )−1(−J )S−1, (A.4)

and since we generally have that (AT )−1 = (A−1)T ,

−J = (S−1)TJS−1, (A.5)

so S−1 ∈ P− too (still, P− is not a group considered isolated, since it is not closed under

group multiplication, and does not include the identity).

We have now derived that P (k, R) is a group. To prove it is a Lie group, we must prove

that it is a (topologically) closed subset of GL2k(R): f(A) = ATJA is a continuous map,

the set {±J } is closed in GL2k(R), and hence P (k, R) = f−1[{±J }] is closed in GL2k(R).

The determinant of P −(k, R). We will now show that the determinant of the matrices

in the set P−(k, R), consisting of the real matrices with the property STJS = −J , is (−1)k:

First, we claim the set P−(k, R) is given by

P−(k, R) = Sp(k, R)C = C Sp(k, R), (A.6)

with C defined in eq. (2.13). This is so because if S′ ∈ P−(k, R), then S′C ∈ Sp(k, R) since

(S′C)TJ (S′C) = CT (−J )C = J , (A.7)

and then S′ = SC for S = S′C ∈ Sp(k, R), since C2 = I. Similarly with C Sp(k, R).

On the other hand, if S ∈ Sp(k, R), then

(SC)TJ (SC) = CTJC = −J , (A.8)

so then SC ∈ P−(k, R). Similarly, CS ∈ P−(k, R).

Now we can evaluate the determinant of an arbitrary element in S′ ∈ P−(k, R). Since

S′ = SC for an element S ∈ Sp(k, R),

det(S′) = det(S) det(C) = det(C), (A.9)

since all matrices in Sp(k, R) have determinant 1 [46]. The determinant of an n×n matrix

A can be written (sum over repeated indices)

det(A) = ǫi1,...,inA1,i1 · · ·An,in (A.10)

(the Leibniz formula). Then there is only one non-zero term in this sum for the matrix C,

so the determinant is given by (no sum over k)

det(C) = ǫ1,2,...,2kC1,1 C2,2 · · ·C2k, 2k = 1k(−1)k = (−1)k. (A.11)

Hence by eqs. (A.9) and (A.11), the matrices of P−(k, R) have determinant (−1)k.

– 19 –



J
H
E
P
0
7
(
2
0
1
1
)
0
2
0

Sp(k, R) and P −(k, R) are not connected. We want to show that Sp(k, R) and

P−(k, R) are two components of P (k, R), i.e. they are not connected. Connected means the

same as path connected for Lie groups. Assume that the two components are connected.

Then there has to be a continuous path between e.g. I ∈ Sp(k, R) and C ∈ P−(k, R). Let

X(t) be such a path, i.e. X(0) = I and X(1) = C, where X(t) is continuous. Consider

the supremum

t0 = sup{t |XT (t)JX(t) = +J }. (A.12)

We know that X(1)TJX(1) = −J . Moreover, consider the function

f(t) = det(XT (t)JX(t) + J ), (A.13)

which is continuous for continuous functions X(t), since the determinant, matrix addition,

multiplication and transposition are continuous. But f(t) is discontinuous for t = t0, since

there in any open interval containing t0 will be values t where f(t) = 0 and other values

where f(t) = det(2J ) = 22k, by definition of t0. Hence our assumption that X(t) is

continuous must be wrong, and hence the sets Sp(k, R) and P−(k, R) are not connected.

B The map ρ

We introduce a map ρ which lets us easily translate between real and complex formulations

of the kinetic terms we are studying. The map ρ preserves both matrix multiplication,

addition and the identity.17 We define ρ as a function from Mk(C), the set of all k × k

complex matrices, to M2k(R), the set of all 2k × 2k real matrices by

ρ(X) =

(
Re(X) −Im(X)

Im(X) Re(X)

)
. (B.1)

With U a Lie group, ρ is a Lie group isomorphism from U ⊂ Mk(C) to ρ[U ].

Now we want to show that the definition of ρ can be extended to vectors so that it

preserves products of complex vectors and matrices: Let v be a complex k × 1 vector, let

v = vR + ivI , with vR, vI real and define

ρ(v) ≡
(

Re(v)

Im(v)

)

=

(
vR

vI

)

, (B.2)

and

ρ(v†) ≡
(
Re(v†), −Im(v†)

)
=
(
vT
R, vT

I

)
. (B.3)

Moreover, let A be a complex k × k matrix and let A = (AR + iAI), with AR, AI

real, then

ρ(Av) = ρ(A)ρ(v), (B.4)

17ρ is an injective ring homomorphism [46]. On the other hand, the inclusion ρ[U(2)] ⊂ SO(4) shows that

ρ does not preserve the determinant, even though it is a ring (or group) isomorphism on its image.
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since ρ(Av) =
„

(Av)R

(Av)I

«

=

„

AR −AI

AI AR

« „

vR

vI

«

= ρ(A)ρ(v). Furthermore, let u, v be complex k×1

vectors, then

Re(u†Av) = ρ(u†)ρ(A)ρ(v), (B.5)

since Re(u†Av) = Re[(uT
R − iuT

I )(AR + iAI)(vR + ivI)] =
`

uT
R uT

I

´

„

AR −AI

AI AR

« „

vR

vI

«

=

ρ(u†)ρ(A)ρ(v). Then,

u†Av + v†A†u = ρ(u†)ρ(A)ρ(v) + ρ(v†)ρ(A†)ρ(u), (B.6)

since the left hand side of eq. (B.6) equals its real part.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons,

Phys. Rev. Lett. 13 (1964) 321 [SPIRES].

[2] P.W. Higgs, Broken symmetries and the masses of gauge bosons,

Phys. Rev. Lett. 13 (1964) 508 [SPIRES].

[3] G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless

particles, Phys. Rev. Lett. 13 (1964) 585 [SPIRES].

[4] P.W. Higgs, Spontaneous symmetry breakdown without massless bosons,

Phys. Rev. 145 (1966) 1156 [SPIRES].

[5] V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [SPIRES].

[6] D.E. Holz and A. Zee, Collisional dark matter and scalar phantoms,

Phys. Lett. B 517 (2001) 239 [hep-ph/0105284] [SPIRES].

[7] E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter,

Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [SPIRES].

[8] R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An

alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188]

[SPIRES].

[9] B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [SPIRES].

[10] R.A. Porto and A. Zee, The private Higgs, Phys. Lett. B 666 (2008) 491 [arXiv:0712.0448]

[SPIRES].

[11] B. Grzadkowski, O.M. Ogreid and P. Osland, Natural multi-Higgs model with dark matter

and CP-violation, Phys. Rev. D 80 (2009) 055013 [arXiv:0904.2173] [SPIRES].

[12] T.D. Lee, A theory of spontaneous T violation, Phys. Rev. D 8 (1973) 1226 [SPIRES].

[13] J.F. Gunion, Extended Higgs sectors, in the proceedings of the 10th International Conference

on Supersymmetry and Unification of Fundamental Interactions (SUSY02), Hamburg

Germany, 17-23 June 2002 [hep-ph/0212150] [SPIRES].

– 21 –

http://dx.doi.org/10.1103/PhysRevLett.13.321
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,13,321
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,13,508
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,13,585
http://dx.doi.org/10.1103/PhysRev.145.1156
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,145,1156
http://dx.doi.org/10.1016/0370-2693(85)90624-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B161,136
http://dx.doi.org/10.1016/S0370-2693(01)01033-4
http://arxiv.org/abs/hep-ph/0105284
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0105284
http://dx.doi.org/10.1103/PhysRevD.73.077301
http://arxiv.org/abs/hep-ph/0601225
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0601225
http://dx.doi.org/10.1103/PhysRevD.74.015007
http://arxiv.org/abs/hep-ph/0603188
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0603188
http://arxiv.org/abs/hep-ph/0605188
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605188
http://dx.doi.org/10.1016/j.physletb.2008.08.001
http://arxiv.org/abs/0712.0448
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.0448
http://dx.doi.org/10.1103/PhysRevD.80.055013
http://arxiv.org/abs/0904.2173
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.2173
http://dx.doi.org/10.1103/PhysRevD.8.1226
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D8,1226
http://arxiv.org/abs/hep-ph/0212150
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0212150


J
H
E
P
0
7
(
2
0
1
1
)
0
2
0

[14] A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the two-Higgs-doublet-model

parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [SPIRES].

[15] W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, A precision constraint on

multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [SPIRES].

[16] W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, The oblique parameters in

multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [SPIRES].

[17] Gfitter collaboration, J. Haller, Fits of the electroweak standard model and beyond using

Gfitter, arXiv:0810.3664 [SPIRES].

[18] J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide,

Addison-Wesley, Reading U.K. (1990).

[19] S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model,

Phys. Rev. D 72 (2005) 035004 [Erratum-ibid. D 72 (2005) 099902] [hep-ph/0504050]

[SPIRES].

[20] A. Barroso, P.M. Ferreira and R. Santos, Neutral minima in two-Higgs doublet models,

Phys. Lett. B 652 (2007) 181 [hep-ph/0702098] [SPIRES].

[21] C.C. Nishi, The structure of potentials with N Higgs doublets,

Phys. Rev. D 76 (2007) 055013 [arXiv:0706.2685] [SPIRES].

[22] H.E. Haber and A. Pomarol, Constraints from global symmetries on radiative corrections to

the Higgs sector, Phys. Lett. B 302 (1993) 435 [hep-ph/9207267] [SPIRES].

[23] H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III:

The CP-conserving limit, custodial symmetry and the oblique parameters S, T, U,

Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] [SPIRES].

[24] P. Sikivie, L. Susskind, M.B. Voloshin and V.I. Zakharov, Isospin breaking in technicolor

models, Nucl. Phys. B 173 (1980) 189 [SPIRES].

[25] S. Willenbrock, Symmetries of the standard model, hep-ph/0410370 [SPIRES].

[26] S. Weinberg, Approximate symmetries and pseudoGoldstone bosons,

Phys. Rev. Lett. 29 (1972) 1698 [SPIRES].

[27] S. Weinberg, Perturbative calculations of symmetry breaking, Phys. Rev. D 7 (1973) 2887

[SPIRES].

[28] R.A. Diaz, Phenomenological analysis of the two Higgs doublet model, hep-ph/0212237

[SPIRES].

[29] G.C. Branco, M.N. Rebelo and J.I. Silva-Marcos, CP-odd invariants in models with several

Higgs doublets, Phys. Lett. B 614 (2005) 187 [hep-ph/0502118] [SPIRES].

[30] T. Cheng and L. Li, Gauge theory of elementary particle physics, Oxford University Press,

Cambridge U.S.A. (1988).

[31] A. Barroso, P.M. Ferreira, R. Santos and J.P. Silva, Stability of the normal vacuum in

multi-Higgs-doublet models, Phys. Rev. D 74 (2006) 085016 [hep-ph/0608282] [SPIRES].

[32] J.F. Donoghue and L.F. Li, Properties of charged Higgs bosons, Phys. Rev. D 19 (1979) 945

[SPIRES].

[33] H. Georgi and D.V. Nanopoulos, Suppression of flavor changing effects from neutral spinless

meson exchange in gauge theories, Phys. Lett. B 82 (1979) 95 [SPIRES].

– 22 –

http://dx.doi.org/10.1103/PhysRevD.76.095001
http://arxiv.org/abs/0706.2997
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0706.2997
http://dx.doi.org/10.1088/0954-3899/35/7/075001
http://arxiv.org/abs/0711.4022
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.4022
http://dx.doi.org/10.1016/j.nuclphysb.2008.04.019
http://arxiv.org/abs/0802.4353
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.4353
http://arxiv.org/abs/0810.3664
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.3664
http://dx.doi.org/10.1103/PhysRevD.72.035004
http://arxiv.org/abs/hep-ph/0504050
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0504050
http://dx.doi.org/10.1016/j.physletb.2007.07.010
http://arxiv.org/abs/hep-ph/0702098
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0702098
http://dx.doi.org/10.1103/PhysRevD.76.055013
http://arxiv.org/abs/0706.2685
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0706.2685
http://dx.doi.org/10.1016/0370-2693(93)90423-F
http://arxiv.org/abs/hep-ph/9207267
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9207267
http://dx.doi.org/10.1103/PhysRevD.83.055017
http://arxiv.org/abs/1011.6188
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1011.6188
http://dx.doi.org/10.1016/0550-3213(80)90214-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B173,189
http://arxiv.org/abs/hep-ph/0410370
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0410370
http://dx.doi.org/10.1103/PhysRevLett.29.1698
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,29,1698
http://dx.doi.org/10.1103/PhysRevD.7.2887
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D7,2887
http://arxiv.org/abs/hep-ph/0212237
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0212237
http://dx.doi.org/10.1016/j.physletb.2005.03.075
http://arxiv.org/abs/hep-ph/0502118
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0502118
http://dx.doi.org/10.1103/PhysRevD.74.085016
http://arxiv.org/abs/hep-ph/0608282
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0608282
http://dx.doi.org/10.1103/PhysRevD.19.945
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D19,945
http://dx.doi.org/10.1016/0370-2693(79)90433-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B82,95


J
H
E
P
0
7
(
2
0
1
1
)
0
2
0

[34] L. Lavoura and J.P. Silva, Fundamental CP-violating quantities in a SU(2) × U(1) model

with many Higgs doublets, Phys. Rev. D 50 (1994) 4619 [hep-ph/9404276] [SPIRES].

[35] L. Lavoura, Signatures of discrete symmetries in the scalar sector,

Phys. Rev. D 50 (1994) 7089 [hep-ph/9405307] [SPIRES].

[36] F.J. Botella and J.P. Silva, Jarlskog-like invariants for theories with scalars and fermions,

Phys. Rev. D 51 (1995) 3870 [hep-ph/9411288] [SPIRES].

[37] M.Aa. Solberg, Three-Higgs-doublet models, Master Thesis, University of Bergen, Bergen

Norway (2004).

[38] B.W. Lee, Renormalization of the σ-model, Nucl. Phys. B 9 (1969) 649 [SPIRES].

[39] J.-L. Gervais and B.W. Lee, Renormalization of the σ-model (II) Fermion fields and

regularization, Nucl. Phys. B 12 (1969) 627 [SPIRES].

[40] S. Weinberg, New approach to the renormalization group, Phys. Rev. D 8 (1973) 3497

[SPIRES].

[41] G. ’t Hooft, Dimensional regularization and the renormalization group,

Nucl. Phys. B 61 (1973) 455 [SPIRES].

[42] F. Cooper, B. Mihaila and J.F. Dawson, Renormalizing the Schwinger-Dyson equations in

the auxiliary field formulation of λφ4 field theory, Phys. Rev. D 70 (2004) 105008

[hep-ph/0407119] [SPIRES].

[43] M.Aa. Solberg, Dark matter candidates and their indirect detection, Ph.D. Thesis, NTNU,

Trondheim Norway (2010)

[http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11162]

[44] G.C. Branco, L. Lavoura and J.P. Silva, CP violation, Int. Ser. Monogr. Phys. 103 (1999) 1.

[45] J.F. Cornwell, Group theory in physics. Vol. 2 (Techniques of Physics, 7), Academic, London

U.K. (1984).

[46] A. Baker, Matrix groups, Springer, Berlin Germany (2002).

– 23 –

http://dx.doi.org/10.1103/PhysRevD.50.4619
http://arxiv.org/abs/hep-ph/9404276
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9404276
http://dx.doi.org/10.1103/PhysRevD.50.7089
http://arxiv.org/abs/hep-ph/9405307
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9405307
http://dx.doi.org/10.1103/PhysRevD.51.3870
http://arxiv.org/abs/hep-ph/9411288
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9411288
http://dx.doi.org/10.1016/0550-3213(69)90065-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B9,649
http://dx.doi.org/10.1016/0550-3213(69)90145-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B12,627
http://dx.doi.org/10.1103/PhysRevD.8.3497
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D8,3497
http://dx.doi.org/10.1016/0550-3213(73)90376-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B61,455
http://dx.doi.org/10.1103/PhysRevD.70.105008
http://arxiv.org/abs/hep-ph/0407119
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0407119
http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11162

	Introduction
	The NHDM potential and Lagrangian
	The most general C-invariant NHDM-potential
	Symmetries of A, B, C and C**2
	Symmetries of the NHDM potential
	Symmetries of the kinetic terms

	Spontaneous symmetry breakdown
	Mass-squared matrices
	The Higgs ghosts
	Non-aligned vacuum expectation values

	Concluding remarks
	P(k,R), the symmetry group of C**2
	The map rho

