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1 Introduction

After the euphoria for the discovery of the Higgs particle [1, 2], the LHC program brought

us into a new era for particle physics, initiating the exploration of unprecedentedly high

energies. Extensions of the Standard Model (SM) that challenge our current understanding

of elementary particles and interactions will be put to the test, in particular addressing

questions about the fundamental nature of the Higgs itself, as either an elementary particle

or a composite state emerging from a new strongly-coupled theory. It is hence important

to study the mass spectra of controllable strongly-coupled systems with non-QCD-like dy-

namics, to guide our intuition about what to expect on general grounds for realistic models.

An especially interesting open question in the context of quantum field theories at

strong coupling is whether classes of field theories that exhibit large hierarchies between
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different, dynamically generated, physical scales (possibly because of approximate scale

invariance, such as in walking theories [3–5]), exhibit also the presence of one parametrically

light scalar composite state in the mass spectrum, the dilaton. The identification of the

dilaton with the Higgs particle would provide a plausible explanation for the current lack

of evidence of new physics up to multi-TeV scales, more than one order of magnitude above

the mass of the Higgs particle.

Gauge/gravity dualities [6–9] offer a valuable opportunity to explore non-trivial dynam-

ical features of certain classes of field theories at strong coupling, by providing a reformu-

lation in terms of equivalent (dual) weakly-coupled gravity theories in higher dimensional

space. A fully algorithmic procedure allows to compute the spectrum of gauge-invariant

fluctuations of a five-dimensional sigma-model coupled to gravity [10–14]. These are inter-

preted as a subset of the glueballs of the dual field theory. Their existence is expected on

general grounds in large classes of different theories, and their properties capture important

information about the underlying dynamics. For example, it has been suggested that the

ratio of the masses of the lightest spin-0 and spin-2 particles might highlight the existence

of large mass hierarchies in some strongly coupled systems [15].

Special attention has been devoted in the literature to models in which the supergravity

dual is related to the conifold and its deformations [16–27]. Among these, two classes stand

out, in which a dimension-2 operator [28–31] and/or a dimension-6 operator [32–40] develop

a vacuum expectation value (VEV) (see also [41, 42]). We refer to the former as baryonic

branch solutions, for reasons to be explained in the body of the paper, and to the latter as

walking solutions, for reasons explained elsewhere [32], with little bearing in the context of

this paper. There exist also explicit constructions of models in which multi-scale dynamics

is induced by smearing flavor branes in conifold backgrounds [43, 44].

In the case of the dimension-6 operator, evidence that a parametrically light scalar

state emerges in the mass spectrum has been uncovered in [33, 36, 38]. Yet, the presence

of a mild singularity in the 10-dimensional geometry of such backgrounds obscures its

field-theory interpretation.

In this paper, we compute the spectrum of spin-0 and spin-2 states in the boundary

theory defined by the five-dimensional sigma-model consisting of eight scalars coupled to

gravity obtained from constraining the truncation of the PT ansatz. The limitations of

this approach are explained in the body of the paper. We focus on the large class of

backgrounds that lifts to the whole baryonic branch of the KS system [28] — as well as its

extrema corresponding to the CVMN [23, 24] and KS [22] solutions. In the literature of

conifold backgrounds, some important features have been discussed for example in [29, 45–

48], but the full detailed gravity calculations at strong (field theory) coupling exist only

for the KS solution [11, 12, 49–55] and the CVMN solution [11, 12].

The paper is organized as follows. In section 2 and appendix A we summarize field-

theory and supergravity results that are known in the literature, and that allow us to set

up the stage for our study. In particular, we fix the notation used later. In section 3,

supplemented by appendix B, C and D, we present in detail the IR and UV expansions of

the supergravity backgrounds and of their fluctuations, that are used in the more technical

part of the paper. In section 4 we present our results for the spectra of spin-0 and spin-2
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states, supplemented in appendix E by the study of the scalar spectrum for the CVMN

and KS solutions within the extended sigma-model of this paper. In section 5 we discuss

the field theory interpretation of our results. We conclude with a discussion of the results

and a list of open questions in section 6.

2 Summary of known results

In this section we summarize a set of results that are known from the literature, and that

we use in the body of the paper, in the original part of this study. We refer to the literature

for more complete results and discussions.

2.1 Five-dimensional formalism

All the supergravity solutions we consider are described by the Papadopoulos-Tseytlin

ansatz (PT) [17], a subtruncation of the consistent truncation of type-IIB supergravity on

T 1,1 [18, 19], where T 1,1 is the base of the conifold [16]. The five-dimensional dynamics is

described by a sigma-model coupled to gravity, with field content consisting of eight scalar

fields Φa = (g̃, p, x, φ, a, b, h1, h2). The full lift to 10 dimensions can be found elsewhere

(see for instance [37], from which we borrow the notation, and references therein), and does

not play any role in this paper.

With the conventions of [11, 14], the action is∫
d5x
√−g5

{
R

4
− 1

2
Gabg

MN∂MΦa∂NΦb − V (Φa)

}
, (2.1)

where R is the Ricci scalar, Gab = Gab(Φ
a) is the sigma-model metric, gMN = gMN (xM ) is

the five-dimensional metric, and where the indexes a, b = 1 · · · 8 are sigma-model indexes,

while M,N = 0, 1, 2, 3, 5 are space-time indexes. The sigma-model kinetic terms are

Gab∂MΦa∂NΦb =
1

2
∂M g̃∂N g̃ + ∂Mx∂Nx + 6∂Mp∂Np (2.2)

+
1

4
∂Mφ∂Nφ+

1

2
e−2g̃∂Ma∂Na+

1

2
N2eφ−2x∂Mb∂Nb

+
e−φ−2x

e2g̃ + 2a2 + e−2g̃(1− a2)2
[

1

2
(e2g̃ + 2a2 + e−2g̃(1 + a2)2)∂Mh2∂Nh2

+(1 + 2e−2g̃a2)∂Mh1∂Nh1 + 2a(e−2g̃(a2 + 1) + 1)∂Mh1∂Nh2

]
,

while the potential is

V (Φa) = −1

2
e2p−2x(eg̃ + (1 + a2)e−g) +

1

8
e−4p−4x(e2g̃ + (a2 − 1)2e−2g̃ + 2a2)

+
1

4
a2e−2g̃+8p +

1

8
N2eφ−2x+8p

[
e2g̃ + e−2g̃(a2 − 2ab+ 1)2 + 2(a− b)2

]
+

1

4
e−φ−2x+8ph22 +

1

8
e8p−4x(M + 2N(h1 + bh2))

2 . (2.3)

The free parameters M and N are related to the fluxes of the F5 and F3 Ramond-Ramond

fields respectively [17], and in turn to the size of the gauge groups of the dual theory.
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Note that M can be eliminated, for N 6= 0, by a shift in h1, and N arbitrarily rescaled by

appropriate rescalings of h1 and h2, together with a shift of φ. This is an artifact of that

we consider only the leading term in the large-N expansion. In the following, we perform

this rescaling (shift), so that it effectively puts M = 0 and N = Nc/4 = 1/4 in eqs. (2.2)

and (2.3).

The action defined in eqs. (2.1), (2.2), and (2.3) has been obtained in [11] by replacing

in a more general action a non-linear constraint (see eq. (3.11) in [11]) that effectively

removes an extra scalar χ from the sigma model. The constraint can be derived by varying

the action of the consistent truncation on T 1,1 in [18, 19] with respect to one of the vectors,

or directly from type-IIB supergravity, but cannot be captured by the dynamics of the

sigma-model in five dimensions without extending its field content. This implies that

one has to exercise some caution in using the 8-scalar sigma model of eq. (2.1): it is not

necessarily the case that by solving its equations of motion one can automatically construct

a solution in type-IIB supergravity. Along the baryonic branch of KS, a complete treatment

of the spin-0 spectrum would require to also turn on fluctuations of the additional fields

appearing in [18, 19].

In order to find the background solutions of interest, one imposes the general ansatz:

ds25 = e2A(r)dx21,3 + dr2 , (2.4)

Φa = Φ̄a(r) , (2.5)

in which the background functions depend explicitly on the radial coordinate r, but not on

the four-dimensional coordinates xµ. What results is a set of coupled ordinary differential

equations, the solution of which determines the background functions for the metric and

the scalar fields in five dimensions. We will focus on solutions that have an end-of-space

at finite r → ro and are well defined for all r > ro.

Once the background is fixed, the spectrum of the dual theory is calculated with the

following procedure. As a first step, one allows for small fluctuations of all the scalars

Φa(xµ, r) = Φ̄a(r) + ϕa(xµ, r), as well as the metric by making use of the ADM for-

malism [56, 57], and linearizes the resulting second-order equations for the fluctuating

fields. These are conveniently rewritten in terms of gauge-invariant combinations fol-

lowing [11, 13]. Having decomposed the five-dimensional metric in its four-dimensional

components, and Fourier-tranformed in the four Minkowski directions, the transverse and

traceless part eµν of the metric fluctuations must obey[
∂2r + 4∂rA∂r + e−2Am2

]
eµν = 0 , (2.6)

where m2 = −qµqνηµν , in terms of the four-dimensional momentum qµ. The dynamical

components of the gauge-invariant combinations of the scalars, resulting from the mixing

between the sigma-model fluctuations ϕa and the scalar component h of the metric, are

denoted [11, 13]

aa(qµ, r) ≡ ϕa(qµ, r)− ∂rΦ̄
a

6∂rA
h(qµ, r) , (2.7)
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with a the sigma-model index, and they obey:

0 =
[
D2
r + 4∂rADr + e−2Am2

]
aa (2.8)

−
[
V a
|c −Rabcd∂rΦ̄b∂rΦ̄

d +
4(∂rΦ̄

aV b + V a∂rΦ̄
b)Gbc

3∂rA
+

16V ∂rΦ̄
a∂rΦ̄

bGbc
9(∂rA)2

]
ac .

The notation is explained in detail in [14]: Dr is the background covariant derivative,

Va ≡ ∂V/∂Φa, Rabcd is the Riemann curvature tensor with respect to the sigma-model

metric, and V a
|b ≡ Db(G

acVc), with Db the sigma-model covariant derivative.

As a second step, one introduces two unphysical cutoff scales rI,U , by assuming the

radial direction r of the geometry be bounded as in ro < rI < r < rU < ∞. One imposes

the boundary conditions for the tensors (i = I, U)

∂re
µ
ν

∣∣∣
r=ri

= 0 , (2.9)

and for the scalars [14]

2e2A∂rΦ̄
a

3m2∂rA

[
∂rΦ̄

bDr −
4V ∂rΦ̄

b

3∂rA
− V b

]
ab + aa

∣∣∣
ri

= 0 . (2.10)

These boundary conditions were derived in [14] by requiring that the variational problem be

well defined. More precisely, one has to add to the five-dimensional action two boundary-

localized four-dimensional contributions, the structure of which is fixed by consistency

requirements up to a choice of quadratic terms for the sigma-model fields. Taking these

boundary-localized mass terms to infinity leads to the boundary conditions ϕa|ri = 0,

which rewritten in terms of the gauge invariant variable aa is equivalent to eq. (2.10). As

one might expect, adding infinite mass terms localized at the boundaries assures that the

least divergent modes of the fluctuations are selected. Indeed, we will show explicitly in

section 3 that this procedure is equivalent, in the present context and after taking rI → ro
and rU → +∞, to requiring regularity and normalisability, according to the standard

prescription of gauge/gravity dualities. It also ensures the absence of accidental (fine-tuned)

cancellations in the calculation of the mass spectrum (see discussion in section 5.2 of [58]).

The cutoffs have no physical meaning, but are necessary as regulators, for two technical

reasons: the backgrounds of interest can be found only by solving the differential equations

numerically, and furthermore the five-dimensional solutions of interest (but not the 10-

dimensional lifts) are singular both in the IR (small r) and in the UV (large r), and it is

hence necessary to perform the calculations with finite regulators.

As a final step, one studies numerically the spectrum by scanning over m2 in discrete

steps. For each value of m2 one independently evolves the solutions of the bulk equations

having imposed the IR and UV boundary conditions, and one tests whether the two match

(including their first derivatives) at some intermediate value of r. Importantly, one must

repeat the calculations by varying the UV cutoff rU (and IR cutoff rI) towards larger

(smaller) values. This process is morally equivalent to the standard study of finite spacing

and finite volume systematic effects in lattice gauge theories.
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If the extrapolation of the numerical output from finite cutoff can be done, so that

what results is a spectrum that is independent of the position of the (unphysical) cutoffs,

then this is interpreted as the spectrum of tensor and scalar bound states in the dual

field theory. Otherwise, one has to conclude that the physical cutoffs must be kept in

place and are an essential part of the dynamics of the full theory. This may happen

because of a bad singularity in the IR of the geometry, such as is the case for the GPPZ

model [59, 60].1 Similar problems emerge in backgrounds that are badly behaved in the

UV (see for instance in [36] the discussion of the spectrum of wrapped-D5 backgrounds

with constant-dilaton asymptotic behavior). Unremovable cutoff dependences emerge also

in some lattice gauge theories, for example in the presence of bulk phase transitions. In

all these cases, one cannot trust the calculations to represent the dynamics of a continuum

four-dimensional field theory. We anticipate here the fact that a smooth behavior appears

for the backgrounds discussed in the present paper, so that both regulators can be removed,

and the results we will present later admit a trustable field-theory interpretation.

In the specific case at hand, it is convenient to perform the change of variable

dr = 2e−4pdρ , (2.11)

hence rewriting of the equations for the tensorial fluctuations as[
∂2ρ + [4∂ρA− ∂ρ log(∂ρr)] ∂ρ + (∂ρr)

2e−2Am2
]
eµν = 0 . (2.12)

For practical purposes, we also rewrite the bulk equations for the scalars as [13]:[
δab∂

2
ρ + Sab∂ρ + T ab + (∂ρr)

2e−2Am2δab

]
ab = 0 , (2.13)

where the matrices Sab and T ab are defined by

Sab = 2Gabc∂ρΦ̄c + [4∂ρA− ∂ρ log(∂ρr)] δ
a
b , (2.14)

T ab = ∂bGacd∂ρΦ̄c∂ρΦ̄
d

−(∂ρr)
2

[ (
4(V a∂ρΦ̄

c + V c∂ρΦ̄
a)

3∂ρA
+

16V ∂ρΦ̄
a∂ρΦ̄

c

9(∂ρA)2

)
Gcb + ∂bV

a

]
.

From now on, we adopt the convention that F ′ ≡ ∂F/∂ρ for any F , and we write all

background functions and fluctuations in the variable ρ.

2.2 Background solutions

The general form of the solutions of interest can be written via an algebraic process in-

volving two functions of the radial coordinates P (ρ) and Q(ρ), a few hyperbolic functions,

1While the calculation of the spectrum in [61] for the 1-scalar truncated system is convergent, see for

instance [62] for a calculation of the spectrum of the truncation to two scalars with non-trivial bulk profile,

in the limit in which the mass deformation is large. In this case, the spectrum contains a state the mass of

which depends on the IR cutoff in such a way that the cutoff cannot be removed.
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and the integration constants κ2, φo and A0. We report them here explicitly:

g̃(ρ) =
1

2
log

(
P (ρ)2 −Q(ρ)2

(P (ρ) coth(2ρ)−Q(ρ))2

)
, (2.15)

p(ρ) = −φo
6
− 1

24
log

(
ĥ(ρ)4P ′(ρ)3

(
P (ρ)2 −Q(ρ)2

)
sinh2(2ρ)

131072

)
, (2.16)

x(ρ) =
φo
2

+
1

8
log

(
ĥ(ρ)4 sinh2(2ρ)

(
P (ρ)2 −Q(ρ)2

)3
8192P ′(ρ)

)
, (2.17)

φ(ρ) = φo −
1

4
log

(
P ′(ρ)

(
P (ρ)2 −Q(ρ)2

)
8 sinh2(2ρ)

)
, (2.18)

a(ρ) =
P (ρ)csch(2ρ)

P (ρ) coth(2ρ)−Q(ρ)
, (2.19)

b(ρ) =
2ρ

sinh(2ρ)
, (2.20)

h1(ρ) =
κ2e

2φo cosh(2ρ)Q(ρ)√
2
√
P ′(ρ) (P (ρ)2 −Q(ρ)2)

, (2.21)

h2(ρ) = − κ2e
2φoQ(ρ)√

2
√
P ′(ρ) (P (ρ)2 −Q(ρ)2)

, (2.22)

A(ρ) = A0 +
2φo
3

+
1

6
log

(
1

16
ĥ(ρ) sinh2(2ρ)

(
P (ρ)2 −Q(ρ)2

))
, (2.23)

where ĥ(ρ) = 1−κ22e2φ(ρ). Here, we have chosen an integration constant in such a way that

the space ends at ρ = 0. Furthermore, integration constant A0 has no physical meaning,

as it can be reabsorbed into a rescaling of the field theory coordinates xµ.

The functions Q and P are obtained by solving the first-order (BPS) equations of

type-IIB supergravity [25]. The function Q is given by

Q(ρ) = 2ρ coth(2ρ)− 1 , (2.24)

where we have fixed an integration constant so as to avoid a bad IR singularity, while the

function P obeys the following non-linear second-order master equation [25]:

P ′′ + P ′
(
P ′ +Q′

P ′ −Q′ +
P ′ −Q′
P ′ +Q′

− 4 coth(2ρ)

)
= 0 , (2.25)

the generic solution of which depends on two additional integration constants.

We find it useful to remind the reader about what is known for all interesting solutions

P . We focus on solutions for which P and P ′ are both smooth and monotonically non-

decreasing for all ρ ≥ 0. Locally (for ρ >∼ 1) the only acceptable solutions are given by the

following three possibilities (for a more general and precise discussion, see for instance [63]):

a) constant P ' P0,

b) linear P ' 2ρ,

c) exponential P ∼ e4ρ/3.

– 7 –
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Figure 1. Six examples of solutions to the master equation representative of all the classes discussed

in section 2. In green the function P = 2ρ, the CVMN solution. In black (short dashing) a solution

that has the CVMN behavior for ρ > ρ∗ ' 4, but has P ∼ P0 for ρ < ρ∗. In red (long dashing)

a solution that has the CVMN behavior for ρ < ρ̄ ' 9, but behaves as P ∝ e4ρ/3 for ρ > ρ̄. In

blue (dotted) a solution that has P ' P0 for ρ < ρ∗ ' 8, behaves as P ' 2ρ for ρ∗ < ρ < ρ̄ ' 14,

and then behaves as P ∝ e4ρ/3 for ρ > ρ̄. In orange a solution for which P � 2ρ for all ρ, such

that P ' P0 for ρ < ρ∗ ' 6 and P ∝ e4ρ/3 for ρ > ρ∗. In pink (dot-dashed) a solution that has

P ∝ e4ρ/3 obtained with κ1 = 6 in eq. (2.28).

Furthermore, for all ρ > 0 one finds that it is necessary to impose the constraint P (ρ) ≥ 2ρ.

Various examples of admissible solutions of the master equation, illustrating all possible

qualitative behaviors, are shown in figure 1.

In this paper, we perform most of our calculations by making use of solutions P that

asymptotically grow exponentially for large ρ. We hence report here the UV expansion of

such solutions:

P = 3c+e
4ρ/3 +

4

3c+

(
ρ2 − ρ+

13

16

)
e−4ρ/3 −

(
8c+ρ+

c−
192c2+

)
e−8ρ/3

+
1

c3+

(
2063

1536
+

103

32
ρ+

1

4
ρ2 +

4

3
ρ2
)
e−4ρ

+ e−16ρ/3

(
+

5815c− − 435456c3+
1728000c4+

+
ρ
(
1177344c3+ − 1410c−

)
259200c4+

+
ρ2
(
45c− − 152064c3+

)
19440c4+

+
32ρ3

9c+

)
(2.26)

+ e−20ρ/3
(

1

32

(
−27c2− + 2698210

93312c5+
− 32c+

)
+

1

48
ρ

(
−4c−

3c2+
− 7457

324c5+

)
+

1

72

(
60305

432c5+
− 1536c+

)
ρ2 − 7495ρ3

5832c5+
+

145ρ4

243c5+
− 80ρ5

243c5+
− 64ρ6

729c5+

)
+ O(e−8ρ) ,

where c+ and c− are two integration constants. We will restrict our attention to back-

grounds that are completely smooth (in 10 dimensions), which requires forbidding the

– 8 –
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behavior a) for P (ρ). In turn, this means that the constant c− is fixed by the requirement

of regularity in the IR, and only c+ is free.

We observe that φo → φo + δφo corresponds to a shift under which the 5-dimensional

action remains the same up to an overall multiplicative factor that could be reabsorbed

into the definition of the 5-dimensional Planck scale. Therefore, without loss of generality,

we fix the asymptotic value of the 10-dimensional dilaton to be φ∞ = 0 for all backgrounds

we consider, except for the CVMN one (for which φ grows linearly in the UV). By using

the large-ρ behavior of P from eq. (2.26), it follows that we fix

φo ≡
1

4
(log(18) + 3 log c+) . (2.27)

With all of this in place, the range of admissible values for κ2 is now 0 ≤ κ2 ≤ 1 in

order to ensure that the background scalars be real. We fix κ2 = 1 in the following, unless

explicitly stated otherwise, and in this way the UV asymptotics of the background functions

reproduces the KS ones.

We consider solutions of the master equation (2.25) that in the IR take the form [25]:

P = κ1ρ +
4κ1
15

(
1− 4

κ21

)
ρ3 + · · · , (2.28)

where κ1 ≥ 2 is an integration constant. By varying κ1 one obtains for example the

solutions in pink, red and green in figure 1. For κ1 = 2 one recovers the CVMN solution.

As long as κ1 is close to 2, there exists a range 0 < ρ <∼ ρ̄ along which P is approximately

linear, before the exponential behavior takes over at large ρ > ρ̄. Approximately, we find

that ρ̄ ' 1− 1
2 log(κ1 − 2). The baryonic branch solutions in [28] are obtained by choosing

κ1 > 2 (and setting κ2 = 1). Conversely, the KS solution can be reproduced by a limiting

procedure that is equivalent to taking κ1 → +∞.

For illustration purposes we show some comparisons of the CVMN solutions — for

which the dilaton grows linearly in the UV — to the baryonic branch and KS ones in

figure 2. To do so, we adjust φo for the CVMN solution to match the background that has

the smallest c+ (largest ρ̄). Only the appearance of x, p and φ is (somewhat artificially)

affected, facilitating the comparison of the CVMN solution to the baryonic branch one.

2.3 The baryonic branch

We summarize in this section some known field-theory and supergravity notions about the

baryonic branch solutions that are important to understand and interpret our results in

the subsequent sections of the paper.

The four-dimensional field theory dual to the supergravity solutions in the PT ansatz

is described for example in [47]. It consists of a N = 1 supersymmetric quiver gauge

theory with two gauge groups and a set of bifundamental matter fields realizing a global

SU(2) × SU(2) symmetry. The gauge group is SU(kN) × SU((k + 1)N), with N and k

positive integers. The running of the gauge couplings towards the IR undergoes the duality

cascade [22, 64], namely the dynamics can be described in terms of a chain of effective field

theories (Seiberg dualities) with sequentially smaller gauge group SU(kN)×SU((k+1)N)→
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Figure 2. All the background functions for several examples of backgrounds: in blue we exhibit

the KS solution, in black (dashing) several examples of baryonic branch solutions with different

values of κ1 (and hence ρ̄), and in red the CVMN solution. See the main text for clarifications

about the choices of integration constants adopted. Notice that in the bottom left panel all curves

for A are on top of each other. To make visible the small differences, we show in the bottom-right

panel the difference A−AKS , on a much smaller scale.
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Figure 3. Illustrative depiction of the RG flows of the field theories discussed in the paper: the KS

solution (blue, continuous line), the CVMN solution (red, long-dashed line), and a few examples of

the baryonic branch solutions for different values of q (black, short-dashed line).

SU(kN)× SU((k − 1)N)→ SU((k − 2)N)× SU((k − 1)N)→ · · · . Ultimately, one reaches

the stage of the cascade at which the gauge group is SU(2N) × SU(N), at which point

one can discuss the meson and baryon operators and their effective superpotential, which

takes into account the dynamically generated scale Λ [47]. The theory confines and the

(dimension-3) gaugino condensate forms. The vacuum structure is non-trivial, as several

inequivalent vacua are allowed.

To better understand the vacuum structure requires looking carefully at the symmetries

of the system. Besides the aforementioned ones, there is a U(1)B corresponding to baryon

number, which is exact, and spontaneously broken by the VEVs of the baryon operators.

There is a U(1)R, anomalously broken to Z2N and spontaneously broken to Z2 by the

gaugino condensate. And finally there is an additional exact discrete Z2 that is related

to the exchange of the two global SU(2) symmetry groups, and that characterizes the KS

limit of the baryonic branch.

The moduli space of the theory contains, in particular, a baryonic branch: the operator

U defined by eq. (4.2) in [47] may develop a VEV [28, 29, 47], causing an imbalance in

the two baryon condensates and breaking the Z2 symmetry of the KS system. The U(1)B
baryon symmetry is exact and spontaneously broken along the whole baryonic branch, but

U also triggers the higgsing of the gauge symmetry SU(qN)× SU((q + 1)N)→ SU(N) for

some value of k = q. At this point, the infinite chain of Seiberg dualities stops, and the

gauge bosons in the coset acquire a mass and decouple from the dynamics. The scale of

the condensate U is controlled not only by the dynamical scale Λ of the theory but also

the parameter q along the infinite moduli space. Furthermore, at the perturbative level,

it can be shown that the non-vanishing fields carrying baryon number assume VEVs that

reproduce the algebra of SU(2) [29, 47]. For finite q the spectrum of massive modes due to
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higgsing on the baryonic branch deconstructs a 2-sphere, in the sense that subsets of the

massive modes span a finite set of finite-dimensional representations of SU(2) (see also the

explicit calculations in [29], and the analogy with [45, 46]).

The general picture one expects in QFT terms, presented in the cartoon in figure 3,

is hence of a theory that admits an infinite number of possible dynamical realizations,

because of the 1-parameter moduli space. In the far-UV, all of them are undergoing an

infinite number of Seiberg dualities, until at some special value of k = q the Higgsing makes

the cascade stop. In the dual theory, this is represented by the departure of the background

from resembling the KS solution (P ∝ e4/3ρ, κ2 = 1), and rather resembling the CVMN

one (P ∼ 2ρ). In the deep IR the theory confines, and the gaugino condensate appears

at scale Λ. When q = 0, the dual gravity picture is provided by the KS solution. In the

limit in which q → +∞ the dual is described by the CVMN solution [23, 24]: in this case

the representations of SU(2) are infinite-dimensional, and the dual gravity description is

obtained by wrapping a stack of D5 branes on a 2-sphere in the internal geometry and

then taking the strong-coupling limit. The baryonic branch solutions in [28] interpolate

between the KS and CVMN solutions, for finite q.

This dynamical behavior at finite points q along the baryonic branch results in a low-

energy description of the theory characterized by two distinct, parametrically separated,

physical scales: besides the scale Λ, controlling the mass gap in the theory, a second

scale controlled by q appears, related to the mass of the heaviest mode coming from the

deconstruction of the 2-sphere. In practical terms, this mechanism results in a natural way

to produce a large hierarchy of scales, in which the number of KK modes included in the

deconstruction of the sphere plays the role of a tunable parameter q.

One expects the mass spectrum of individual modes to be characterized by three

distinct energy intervals. At low energies below Λ, the best description of the system is in

terms of a four-dimensional effective field theory containing only a few discrete, light bound

states. At intermediate energies, over a range controlled by q, one expects the densely-

packed spectrum of bound states resulting from the deconstruction of a six-dimensional

theory on a 2-sphere. At further higher energies one expects to recover the typical structure

of bound states of the KS case, the supergravity dual of a four-dimensional theory. Notice

that the latter is not the Regge behavior, as the masses of the bound states will scale

as M2
j ∝ j2, where j is the excitation number, as opposed to M2

j ∝ j as is expected in

string theory: what one is computing here are the supergravity excitations of the lightest

stringy modes that are retained in supergravity, and hence only a subset of the glueballs

are captured.

In supergravity, the baryonic branch is characterized by the non-vanishing of the back-

ground field dual to the dimension-2 operator U , that is represented by the combination

v2 ≡ a2 + e2g̃ − 1 =
2Q

P coth(2ρ)−Q . (2.29)

In order to recover the KS system, one has to set v2 = 0. The vanishing of v2 is related to

the very existence of a further subtruncation of the five-dimensional PT system to the KS

one, that admits only seven scalar fields: the resulting constraint amounts to the presence
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of a Z2 symmetry (as anticipated) that in the underlying 10-dimensional geometry relates

to the exchange of the two S2 within T 1,1. This symmetry is broken along the baryonic

branch, a fact that will play a crucial role later in the paper (see also [48] for useful

discussions on this point).

It is now time to the make transparent the meaning of κ2, starting by noticing that

v2 does not depend upon it. This part of the discussion draws heavily on the arguments

outlined in [29, 30, 37]. From the expression of v2 one sees that along the solutions in

eq. (2.28) for ρ < ρ̄ it is unsuppressed, but the exponential growth of P for ρ > ρ̄ forces it

to switch off at large scales.

For generic values of 0 ≤ κ2 < 1, the asymptotic behavior in the UV of the supergravity

solutions does not admit a simple field theory interpretation, and yields to the kind of

pathologies one expects by extrapolating to high energies the behavior of a (UV-incomplete,

dual) effective field theory. For example neither the probe-string prescription for computing

the expectation value of the Wilson loop in the dual field theory [65, 66], nor the calculation

of the spectrum of fluctuations of the background to obtain the glueballs can be perfomed,

unless one has a finite, physical cutoff in the far UV of the theory [36]. Indeed, the analysis

of the operators near the Klebanov-Witten fixed point [67–70] shows that in these solutions

there is a dimension-8 operator, the coupling of which is non-trivial, and that makes the

field theory UV-incomplete. The dynamical origin of this fact resides in the observation

that in the presence of a VEV for U one can integrate out massive degrees of freedom: the

wrapped-D5 solutions with this asymptotic behavior provide the dual of the resulting EFT.

By dialing κ2 = 1 one removes the dimension-8 operator from the field theory, and replaces

it by reinstating the heavy gauge bosons of the quiver. The baryonic branch solutions

in [28] are hence obtained by looking at solutions for P of the form of eq. (2.28), and

setting κ2 = 1 in such a way as to smoothen the UV behavior of the theory to reproduce

the duality cascade for ρ > ρ̄ [30, 37].

The first purpose of this paper is to compute the mass spectrum of tensor modes on

the baryonic branch. We will explicitly check that in the two appropriate limits our results

reproduce the known ones for the KS and CVMN case. Namely, in the KS case it is known

that the spectrum is discrete, and has been studied in detail [12, 49–55], while in the CVMN

case the spectrum has no discrete (bound) states, but exhibits a mass gap, beyond which a

continuum appears [11]. The latter is a manifestation of the fact that at energies far above

the confinement scale the field theory described by the CVMN system is six dimensional,

as is apparent in gravity from the fact that the internal S2 is blowing up towards the UV.

While it is known that the spectrum computed perturbatively reproduces the features of a

sphere [45, 46], we want to show that this holds true also non-perturbatively. In particular,

we expect the spectrum of the generic baryonic branch solution to exhibit a mass gap at low

energies, followed by a region with high density of states at intermediate energy, followed

again at high energies by the discrete spectrum of bound states typical of the supergravity

dual description of a confined gauge theory in four dimensions.

The spectrum of scalar states on a generic point on the baryonic branch has not been

computed so far in the literature, and as of now it remains an open problem. Our second

purpose is to perform this calculation (with the caveats discussed earlier) in the 8-scalar
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sigma model corresponding to the constrained PT ansatz, and to see to which extent such

calculation captures the qualitative features expected from field theory arguments. In

particular, we want to check that the spectrum interpolates between the known KS and

CVMN cases, we want to assess whether we see evidence of the emergence of dimensional

deconstruction and, last but not least, we want to understand whether the position along

the moduli space of dual field theory is associated with an anomalously light scalar state

that can be interpreted as a pseudo-dilaton.

3 Asymptotic expansions

The nature of the differential equations controlling the system is such that it is not prac-

tically possible to solve them numerically at arbitrarily large (small) values of the radial

direction ρ. In order to address this technical limitation, we supplement our treatment by

making use of the asymptotic expansions of both background and fluctuating fields that

enter the dynamical system, in a process that is reminiscent of what in the lattice litera-

ture is commonly referred to as improvement [71–75]. For this purpose, in this section and

in the related appendix B, C and D, we provide the reader with the explicit form of the

expansions for the relevant quantities and discuss their salient features.

We start with the background functions. In the UV, we find it convenient to introduce

a new radial coordinate z ≡ e−
2
3
ρ. We list in appendix B the explicit expansion of the

solutions at large ρ. Several things are worth highlighting. First of all, the warp factor

does not behave as in asymptotically AdS space with A ∼ 1
z , but exhibits a logarithmic

correction. This is the effect of the duality cascade: the RG flow towards the UV follows

closely a line of fixed points describing Klebanov-Witten CFTs [20], but strictly speaking

the theory is not UV complete, as the imbalance between the two gauge groups cannot be

removed (see [64] for a pedagogical and clear explanation).

Yet, one sees that the background is close enough to AdS that one can infer the

dimensionality of several operators by looking at the expansions of the corresponding scalars

in the background. We recall that the studies in [67–70] conclude that g̃ is associated with

a dimension-2 operator, φ and h1 with two dimension-4 operators, a with a dimension-

3 operator, b and h2 are the result of mixing between a dimension-3 and a dimension-7

operator, and finally x and p are related to mixing between a dimension-6 and a dimension-8

operator. Notice the appearance of log(z) terms in the expansion.

By expanding the backgrounds on the baryonic branch (with κ2 = 1) near the end-of-

space in the IR, one finds the expressions in appendix B. Several of them are singular, yet,

by comparing with the expression for the metric in the 10-dimensional language (see for

instance [37]), one can be convinced that the 10-dimensional metric is smooth.

3.1 Expansions of the fluctuations

In the UV, a general spin-0 fluctuation a(m, z) can be written as a linear combination of 16

independent solutions. We make a specific choice for such solutions that defines a basis for

the vector space of all possible solutions to the homogeneous second-order linear equations

obeyed by the fluctuations. We split them into two groups denoted a
(UV)a
i and ã

(UV)a
i ,
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with i = 1 , · · · , 8 (not to be confused with the sigma-model index a = 1 , · · · , 8), and we

report their detailed structure in appendix C. The general fluctuation is of the form:

aa(ρ) = cia
(UV)a
i (ρ) + c̃iã

(UV)a
i (ρ) . (3.1)

Out of (the dominant) ã
(UV)a
i , there is one each that starts at orders z−4, z−3, and z−2,

two each that start at orders z0 and z1, and finally one that starts at order z2 (we ignore

the log(z) terms in this rough classification). Out of the subdominant a
(UV)a
i , one starts

at order z2, two each at orders z3 and z4, and finally one each at orders z6, z7, and z8.

These powers reflect the dimensionality of the operators in the dual field theory [67–70].

Imposing the eight boundary conditions in eq. (2.10) at ρ = ρU , the coefficients ci and

c̃i become dependent on ρU . In the limit of ρU →∞, we write the coefficients as a power

expansion in the form

ci = c0i + c1i zU + . . . , (3.2)

c̃i = c̃0i + c̃1i zU + . . . , (3.3)

where zU = e−2ρU/3. We then expand the boundary conditions in powers of zU , to obtain

eight constraint equations for c0i and c̃0i . Our choice of linearly independent solutions in

eq. (3.1) is adapted to yield

lim
zU→0

c̃ai (zU ) = 0 . (3.4)

The conclusion of this analysis is that the ρU → +∞ limit of our boundary conditions is

equivalent to imposing that in the UV

aa(ρ) = cia
(UV)a
i (ρ), (3.5)

with arbitrary (real) constants ci. This shows explicitly tha our procedure is equivalent to

the conventional wisdom about gauge/gravity dualities, effectively suppressing the dom-

inant fluctuations (interpreted in terms of couplings in the dual field theory) in respect

to the subdominant ones (interpreted as fluctuations of the vacuum value of the field-

theory operators).

In the IR, we perform the same exercise. We write a general spin-0 fluctuation as

aa(ρ) = dia
(IR)a
i (ρ) + d̃iã

(IR)a
i (ρ) , (3.6)

and we report the explicit form of a
(IR)a
i and ã

(IR)a
i in appendix D.

Out of ã
(IR)
i , there is one each that starts at orders ρ−3 and ρ−2, there are five that

start at order ρ−1, and one that starts at order ρ0. Out of a
(IR)
i , there are three that start

at order ρ0, one that starts at order ρ, and four that start at order ρ2.

Similar to the case of the UV, we expand the coefficients as

di = d0i + d1i ρI + . . . , (3.7)

d̃i = d̃0i + d̃1i ρI + . . . , (3.8)
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we impose the boundary conditions in eq. (2.10), and we take the limit ρI → 0. This

process leads to 8 constraint equations for the coefficients, implying that d̃i = 0, and that

aa(ρ) = dia
(IR)a
i (ρ), (3.9)

with arbitrary constants di. The analysis of the divergences alone would have left an

ambiguity in the choice of what fluctuations to suppress. This exercise is equivalent to the

standard process of imposing regularity (when this is a well defined concept) in the IR on

the fluctuations, with the practical advantage that the boundary conditions automatically

select the least divergent fluctuations, as they contain the information about the metric

and the kinetic terms in the action.

4 Mass spectrum

As is clear from the asymptotic expansions, the numerical study we perform involves large

exponential hierarchies between dominant and subdominant contributions to the solutions

of the differential equations, both for the background and for the fluctuations, in the

presence of non-trivial mixing between the eight scalars. This presents a challenge for

the numerical implementation of the procedure to compute the spectrum, in particular it

limits our practical ability to reach high enough UV cutoff ρU . We start this section by

explaining in detail the systematic process we employ to address this technical problem,

before presenting and discussing the results.

We construct the background solutions by setting up the boundary conditions for P

in the IR, according to eq. (2.28), and solving eq. (2.25) numerically. For convenience,

we introduce the variable α, defined in terms of the parameter κ1 (appearing in the IR

expansion of P ) as

κ1 ≡ 2 + e−α . (4.1)

We evolve the solutions up to a scale ρm in the radial direction, beyond which we use the

UV expansion of the background functions, by fixing the value of the integration constants

such as c+. In order to do so, we must require that ρm > ρ̄, as the UV expansion is valid

only when P ∼ e 4
3
ρ.

The scale ρ̄, above which P starts to grow exponentially, can be roughly estimated by

asking at which value of ρ the UV expansion of P starts to break down, i.e. it becomes the

same order as the linear behaviour P ' 2ρ. Hence, for c+ < 1
2e , we identify ρ̄ as the larger

of the two solutions to the equation 3c+e
4ρ/3 = 2ρ. For c+ = 1

2e , this equation has a single

solution given by ρ̄ = 3
4 , while for c+ > 1

2e there are no solutions. We fix ρ̄ = 3
4 also in the

latter case, ensuring continuity of ρ̄ as a function of c+. We found that defining ρ̄ in this

way to be convenient for the numerics (although note that it is different from the estimate

mentioned in section 2.2).

We replace the use of eq. (2.10) by making use of eq. (3.5) and eq. (3.9). Hence, we

solve the bulk equations for the fluctuations of the scalars subject to the boundary con-

ditions obtained from the asymptotic expansions (and their derivatives), for eight linearly
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independent choices of the functions aa controlled by the ci coefficients and eight deter-

mined by the di coefficients. We impose the boundary conditions at finite values of ρI and

ρU , with the physical results recovered for ρI → 0 and ρU → +∞. Had we used eq. (2.10),

one would expect that the results of the numerics be affected by spurious unphysical cor-

rections in the IR and UV. The use of the asymptotic expansion reduces the size of these

effects significantly, and results in much faster convergence of the spectrum as ρI → 0

and ρU → +∞. Hence, our results are close to the physical ones, with negligibly small

spurious effects, in spite of the fact that we will not be able to set the boundary conditions

at very small (large) values of the radial direction in the IR (UV). This process is indeed

very similar to the improvement procedure that is common place in the lattice literature

in order to remove finite-size effects [71–75].

We evolve the scalar fluctuations numerically from the IR and UV, respectively, having

imposed the boundary conditions deduced from eq. (3.5) and eq. (3.9), and match them by

computing the so-called midpoint determinant [12] at an intermediate value of ρ = ρmid <

ρ̄ < ρm. More precisely, one forms the 16 × 16 matrix

M(ρ) =

(
a(IR)(ρ) a(UV)(ρ)

∂ρa
(IR)(ρ) ∂ρa

(UV)(ρ)

)
, (4.2)

where a(IR) (a(UV)) is an 8× 8 matrix obtained by lining up next to each other the column

vectors corresponding to eight linearly independent solutions that satisfy the boundary

conditions in the IR (UV). When detM = 0, there exists a linear combination of the

solutions evolved from the IR that can be written as a linear combination of those evolved

from the UV, and hence eq. (2.8) can be solved while satisfying both the IR and UV

boundary conditions.

For ρI < ρ < ρmid we use of the numerical solutions for the background in eq. (2.13).

The fluctuations are evolved from the UV in two steps. In the region ρm ≤ ρ ≤ ρU ,

we make use of the UV expansion of the background functions in order to expand Sab,

T ab, and e−2A−8p appearing in the equations of motion for the scalar fluctuations.2 For

ρmid ≤ ρ < ρm, the equations of motion are obtained from the numerical solution of P ,

after joining smoothly the fluctuations at ρm.

For the tensorial fluctuations, the behavior of the spectrum is much less complicated

and affected by smaller boundary effects, hence we use directly the boundary conditions

at finite cutoff, without making use of the asymptotic expansions of the fluctuations. In

the numerical study, we use ρI = 10−3, ρmid = 2ρ̄/3, ρm = ρ̄ + 5, and ρU = ρ̄ + 10. We

have performed the necessary tests to confirm that indeed this ensures that the results of

the computation have converged.

Before proceeding to discuss the spectra of the baryonic branch solutions, in the next

subsections, we report here some important results for the KS and CVMN backgrounds.

We performed the calculation of the spectra with the full sigma-model with eight scalars,

rather than within the truncations discussed in the literature (for example in [11, 12]).

2We here use the UV expansion of P to order z14.
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Figure 4. Mass spectrum m of tensor modes for different baryonic branch solutions constructed

by changing α. The normalization is discussed in the main text. By way of comparison, we show

also the KS spectrum (in blue, far left) and the CVMN spectrum (in red, far right). Notice that

the latter has a threshold above which a continuum appears (shaded region).

The very existence of the sub-truncations means that the additional states we find are not

affected by mixing with the rest of the spectrum.

For the CVMN solution, we show explicitly the UV expansion of the fluctuations in

appendix E. The interesting fact that emerges is that because of the asymptotics, the

2-point correlation functions for the tensors contain factors of
√

1−m2/X2, where X

depends on the integration constants in the background. As a consequence, the spectrum

has a continuum cut opening up at m = X. The spectrum of tensors does not have any

bound states, but only a continuum for m > X. The scalar spectrum is more complicated,

and admits infinitely many bound states. The asymptotic expansion shows the appearance

of terms depending on
√

1−m2/X2,
√

4−m2/X2, and
√

9−m2/X2. Hence, besides the

discrete spectrum, there are also three thresholds for three distinct continuum parts of the

spectrum, at m = X, m = 2X and m = 3X. Notice that the second of these thresholds is

not found in the truncation to six scalars of the sigma-model, while only the first threshold

remains in the truncation to three scalars.

For the KS solution, the fact that we use the eight scalar truncation implies that there

is one additional tower of states. We verified explicitly that our results agree with [12],

except for the presence of this additional tower of states in the scalar part of the spectrum

(see appendix E).

4.1 Tensorial modes

We start the presentation of the physics results with the tensor modes, the physical spec-

trum of which is shown in figure 4. For each background (characterized by a different value

of κ1, or equivalently α) we compute the first fourteen values of the mass m. In order

to compare the results for different backgrounds, we normalize the individual spectra by

showing the ratio of the masses to the heaviest mass we found. Another way of saying this
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Figure 5. The mass spectrum m of scalar modes as a function of the parameter α characterizing

the position along the baryonic branch of KS. By way of comparison, we show also the KS (in

blue, far left) and CVMN limits (in red, far right), defined as in appendix E. Notice that the latter

has continuum thresholds (dashed lines), and that all calculations have been performed within the

eight-scalar sigma-model truncation (PT ansatz).

is that we always choose the integration constant A0 so that the mass of this state is equal

to 1. Note that this implies that the spacing between the heaviest states is the same as in

the KS case, thus ensuring that the dynamical scale Λ is kept fixed as α is varied.

The comparison shows several non-trivial features. Firstly, the solutions with smallest

values of α agree with the result of the spectrum of KS computed in the literature [12]. We

find a rough approximation, in this choice of normalization, to be mn ' 1
15(1 + n), with

n = 1 , 2 , · · · . For large values of α, only the first few lightest states become heavier, while
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the heavy masses maintain agreement with the KS case. The resulting distortion of the

spectrum shows the appearance of an anomalously dense number of closely-spaced mass

eigenvalues, for m2 over a finite range that grows with α.

These results are in qualitative agreement with what is expected on the baryonic

branch: while at high energy the gravity background and the dual field theory are almost

indistinguishable from the KS case, the lowest states have the closely packed qualitative

behavior expected from deconstruction. In our numerical study, we limited our exploration

to α < 25, but extrapolating the current results will eventually show a larger and larger

number of such densely packed states, until one ultimately would recover the continuum

spectrum of the CVMN case above the threshold.

The field theory interpretation of the baryonic branch perturbative spectrum, as we

recalled earlier, shows that the number of states is controlled by the parameter q, describing

the SU(qN) × SU((q + 1)N) → SU(N) coset. Figure 4 shows that α is related to q in a

non-perturbative calculation, as by considering solutions with large α yields a spectrum

that contains an increasing number of densely packed mass eigenstates.

4.2 Scalar modes

For the scalars, we use the same normalization of the mass spectrum as obtained from the

tensor modes, in such a way that the two plots in figure 4 and figure 5 can be compared

directly. Because there are eight sigma-model scalars, the spectrum consist of several towers

of states, that when superimposed make it visually more difficult to recognize the regular

patterns emerging. For small values of α, we checked explicitly that our results reproduce

those of the KS case (see [12] and appendix E).

For large values of α, the spectrum shows the same type of deformation we observed

for the tensor modes. At asymptotically large m2, the spectrum maintains its agreement

with the KS case, but the lightest modes are shifted to larger values of m2. By looking at

the largest values of α we were able to study in figure 5, one sees the emergence of three

separate values of m (thresholds) at which the discrete spectrum becomes dense. One also

notices that the lightest such threshold agrees numerically with the tensor one, while the

other two are approximately 2 and 3 times heavier. This was expected on the basis of the

considerations we made about the CVMN spectrum: three distinct thresholds appear in

connection with the asymptotic expansion of the two-point functions.

There is an additional element emerging, again expected: contrary to the tensor case,

not all the discrete states we find are going to merge into the continuum thresholds in the

α→ +∞ limit, because the scalar spectrum of the CVMN solution does not consist only of

continuum cuts, but also includes a discrete, infinite set of bound states that appear below

the first threshold. This is well known and established in the literature on the CVMN

spectrum [11]. For example, we checked explicitly that, for the largest available values of

α, the second to fourth lightest states match with the first to third lightest states cited for

the CVMN case in [11].

The most interesting thing is that there is an additional state in the spectrum in

figure 5 that cannot be identified with any of the mass eigenstates of neither the KS nor

the CVMN system. This is the lightest mode in the spectrum. In the small-α case, it is
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approximately degenerate with one of the KS mass eigenvalues, but is not listed in [11],

indicating that it must have its origin in the presence of one additional sigma-model scalar

in the truncation we use for the baryonic branch solutions. Therefore, for α → −∞ the

eigenstate it corresponds to is mostly a combination of fluctuations of g̃ and a. Moving

towards larger values of α, this state becomes parametrically lighter than the rest of the

spectrum. We expect this state to become exactly massless in the CVMN limit, in the

sense that the ratio of its mass to that of any of the other states vanishes for α→ +∞.

The presence of this parametrically light scalar is the main result of this paper. As we

will discuss, it opens great opportunities in the context of field theory, model building and

phenomenology, but its existence also opens a few additional questions. We will summarize

and discuss these points in the next sections.

We close this subsection with a set of technical remarks. It is tempting to ask what is

the general form of the eigenstate describing the light scalar, both in terms of sigma-model

and gravity components, and of the ρ-dependence of the associated wave-function. This

is a numerically challenging question. In eq. (2.7), the gauge-invariant combinations of

the scalar fluctuations are written in terms of the fluctuations ϕa of the individual sigma-

model scalars and of the scalar component h of the fluctuations of the metric. The mixing

is controlled by the value of the derivative of the sigma-model fields in the background.

For generic α and ρ, none of the background scalars is constant, and hence all the scalar

fluctuations mix with h, which in turn means that all the aa mix with one another.

Although one might expect the analysis to become simplified in the strict α → ∞
limit given by the CVMN background, there are a number of subtleties that arise. On

the baryonic branch, the boundary conditions for the fluctuations are set up in the far-UV

at ρU � ρ̄, and in the evolution towards the IR, non-trivial mixing occurs leading to a

very particular set of modes being turned on as one enters the region ρ <∼ ρ̄ (where the

solution is approximated by the CVMN one). In other words, the α → ∞ limit needs to

be taken with caution and with special regard to the form of the boundary conditions for

the fluctuations in the UV. Indeed, the fact that for ρ > ρ̄ the behavior of the background

changes is what makes this light state physical (normalizable, in the familiar jargon of

gravity dualities), which it would not be otherwise. This is a crucial, technical observation:

the reason why the state is retained in the spectrum is related to the fact that the UV

asymptotic behavior of all the backgrounds we consider is dual to the duality cascade.

5 “Who ordered that?”

The emergence, from a technically convoluted calculation such as the one performed and

presented here, of such a striking result as the presence of one parametrically light particle

in the otherwise massive and complicated mass spectrum, strongly suggests the existence

of an elegant and simple symmetry-based argument to explain it. We outline the argu-

ment that lead us to believe that the symmetry reason behind this result is the sponta-

neous breaking of scale invariance, and hence to the interpretation of the light scalar as a

(pseudo-)dilaton. But we also critically discuss the current limitations of such argument,
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and a set of additional (highly non-trivial) calculations that would be worth pursuing in

the future in order to put this interpretation on rigorous and firm grounds.

The clear and well established part of the argument has to do with the internal, abelian

global symmetries of the system. The spontaneous breaking of U(1)B leads to the presence

of a Goldstone boson, as was anticipated in [48], at a time when the baryonic branch solution

was not known explicitly. This (pseudo-scalar) state is exactly massless, and hence cannot

be the light scalar state discussed in this paper, nor its scalar superpartner. The authors

of [48] also discuss the fact that along the baryonic branch the supersymmetric partner

of such Goldstone boson should be massless as well, although they hint at a potential

normalizability problem.

The anomalous U(1)R breaks to Z2N , and the gaugino condensate further breaks it

spontaneously to a Z2. The presence of the anomaly has a very important role in the

whole construction of the field theory and its gravity dual, as it is the distinctive feature

that makes the KS system so interesting in the context of gauge/gravity dualities. Because

the field theory has N = 1 supersymmetry, the U(1)R symmetry is bundled together

(by the supersymmetry algebra) with dilatation symmetry. Indeed, in the (anomaly-free)

SU(M)× SU(M) case the field theory is the Klebanov-Witten [20] CFT, the gravity dual

of which has the geometry of AdS5 × T 1,1. The presence of the anomaly ensures that the

gauge theory is not a CFT, and indeed the two gauge couplings run [64]. But in the present

case there appears to be a sense in which the anomaly is small. If one has a large VEV

breaking spontaneously scale invariance, and a small explicit symmetry breaking effect,

one expects a light scalar particle in the spectrum, the dilaton, and we want to interpret

the light scalar that emerged from the calculation performed here as such a state.

The non-trivial part of this line of thought requires giving a rigorous meaning to the

qualifier small as used in the previous paragraph in the statement that there is a large

VEV and a small anomaly. And in principle one needs to clarify what is the interplay

between the non-linear realization of both the U(1)B and Z2N symmetries, the associ-

ated (pseudo-)Goldstone modes, and their supersymmetric partners, in order to genuinely

understand in what sense the light scalar particle we found is to be interpreted as a dilaton.

In the presence of a classical moduli space, namely when a given field theory admits a

set of non-trivial, inequivalent vacua, it is not surprising to find evidence of a massless mode

corresponding to excitations of the vacuum along the corresponding flat directions. When

the presence of an anomaly lifts the degeneracy of vacua in the moduli space, this should

result in the massless mode acquiring a mass. This effect persists in the large-N limit: the

very fact that the study of the gravity dual is interpreted in terms of a supersymmetric

field theory in which the couplings run means that both scale invariance and the U(1)R
are explicitly broken.

In this paper, when presenting the results for the spectrum, we have been careful to

normalise the masses so that the heavy states agree. All gravity backgrounds correspond to

field theories that have the same dynamically generated scale Λ. If this were the end of the

story, there would be no actual sense in which one could give any meaning to statements

about the anomaly being small, or any condensates being large. As happens for example

in SYM (and in the KS case), for which we can make use of perturbative arguments to
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guide us: all the physical scales are controlled by the scale anomaly (beta functions). The

scale of explicit breaking of scale invariance in SYM is determined by the beta function via

dimensional transmutation, and is the dynamical scale of the theory Λ. The condensates,

that introduce spontaneous breaking of scale invariance, are themselves controlled by the

same Λ. As a consequence, all the masses of the bound states are controlled by the one and

only scale in the problem, that arises from the beta function via dimensional transmutation,

and there is no sense in which a parametrically light dilaton exists.

In the theory we are discussing here, there is an element of novelty. As in SYM, we

can still associate the confinement scale Λ with the scale of explicit symmetry breaking

originating from the non-trivial beta functions of the theory (barring the subtleties related

to the cascade of Seiberg dualities). And we still have a limiting case in which the only

non-trivial condensate is the gaugino condensate O(Λ3): the KS solution, in which no

light scalar state appears in the spectrum. But when we move away from the origin of

the baryonic branch, we are introducing an additional, non-trivial condensate, the VEV

U , that introduces a new, non-trivial scale controlled by q, determining the dimension of

the coset in the gauge theory [29], and hence the mass of the heaviest states that decouple

because of the Higgs phenomenon.

In this sense, U plays the role of a tunable VEV, that breaks spontaneously scale

invariance at a scale that can be made parametrically large in comparison to the scale

of explicit breaking Λ. The mass gap of the theory is controlled by Λ, and hence all

the masses of the particles in the system are going to be proportional to Λ. Yet, the

pseudo-Goldstone boson associated with dilatations (the dilaton) must have a mass further

suppressed by some power of the ratio between explicit and spontaneous breaking. We

hence expect m2
0 ∝

(
1
q

)γ
Λ2. The fact that there are two scales is also evident from the

emergence of deconstruction: the spectrum of heavy states does not consist of just bunches

of equally spaced massive modes, but rather the first few states show that their separation

is parametrically small compared to the overall scale Λ.

There are a set of questions that this argument, based upon our current knowledge

of the dynamics of the system, cannot easily answer. First of all, the emergence of the

deconstructed spectrum at large values of ρ̄, and the fact that the number of such states

grows with ρ̄, clearly indicate that q and ρ̄ are monotonically-increasing functions of one

another. But we do not know what the precise relation is.

Secondly, there appears to be a further complication, due to the fact that the VEV of

U breaks spontaneously four different symmetries: the baryon U(1)B, the gauge symmetry

SU(qN)×SU((q+ 1)N), as well as scale invariance and the Z2. Furthermore, the theory is

supersymmetric, and hence one expects the spectrum to organize itself in supersymmetric

multiplets. As a result, there must exist non-trivial relations between the Goldstone boson

associated with the U(1)B symmetry, the dilaton, their superpartners, and the towers of

pseudo-scalar and scalar states that, together with the massive (higgsed) gauge bosons,

form massive N = 1 supermultiplets. For example, it would be nice to know whether

a pseudo-scalar partner of the scalar identified in this paper exists as well, and whether

its mass is also suppressed moving far from the origin of the baryonic branch, a problem
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that we leave for the future. The study of the light fermionic states might also be worth

pursuing, extending the line of enquiry in [76].

In this paper, we studied a special truncation of the gravity dual in which all pseudo-

scalar and vector states have been removed, and proceeded by brute force to study the

spectrum of scalar and tensor fluctations in the resulting sigma model. The results we

obtained are certainly aligned with the discussion presented in this section. But in order to

elucidate, by the same brute force process, the precise relation between the breaking of scale

invariance and the internal (global and gauged) symmetries of the system, one would need

to extend this study to a more general truncation of type-IIB supergravity that includes

the pseudo-scalar and vectorial fields in five dimensions, such as the one in [18, 19], hence

also resolving the technical problem with the non-linear constraint discussed in section 2.1.

Doing so is quite non-trivial: not only is the scalar manifold in [18, 19] significantly more

complicated, but the presence of vectors requires to generalize our whole procedure for

treating the fluctuations, to include in the formalism the effect of gauge invariance not

only in the sense of gravity, but also of the internal gauge symmetries of such extended

manifold, as is clear from the fact that the non-trivial vacuum structure will result in the

higgsing of part of the pseudo-scalars into the massive vector bosons. We leave this task

for a future dedicated study.

6 Conclusions and outlook

In the context of gauge/gravity dualities, we performed the calculation of the mass spec-

trum of excitations around the backgrounds along the baryonic branch of the KS system,

by exploiting the truncation to five dimensions corresponding to the PT ansatz, by imple-

menting the gauge-invariant formalism of [11] for treating the fluctuations of a sigma-model

coupled to gravity, and by imposing the boundary conditions of [14]. We focused our at-

tention on the spin-2 sector of the system and on the spin-0 excitations corresponding to

the eight sigma-model scalars retained in the truncation.

Firstly, we obtained a set of non-trivial, original but expected results. The baryonic

branch spectra interpolate between the known spectra of the KS and CVMN systems,

with the additional feature that at finite points along the baryonic branch the spectrum

shows evidence of the (non-perturbative) emergence of the deconstruction of the internal

manifold, hence confirming earlier studies based on extrapolating perturbative arguments.

The results show explicitly that the parameter q is related to the gravity scale ρ̄ that

separates the regime over which the backgrounds are approximated by the CVMN solution

(for ρ < ρ̄) and the KS one (for ρ > ρ̄), confirming what was anticipated in [37].

We also obtained a remarkable, new and unexpected result. The scalar spectrum

contains one state the mass of which is parametrically suppressed compared to all others,

when moving away from the origin of the baryonic branch. This state is expected to become

massless and completely decouple from the dynamics in the limit in which one recovers the

CVMN background.

We interpret this state as a dilaton, the pseudo-Goldstone boson associated with the

spontaneous breaking of scale invariance. We summarized the arguments that lead us to
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this identification, as well as the additional calculations that are required in order to clearly

disentangle in the spectrum the Goldstone boson associated with the spontaneous breaking

of U(1)B, the dilaton, and the massive states resulting from the Higgsing of the internal

gauge symmetries of the system.

This is an example in which the study of the relevant regular backgrounds in the

gravity dual supports the existence in the field theory of a non-trivial spectrum exhibiting

a parametrically light dilaton, that originates from multi-scale dynamics. The potential

implications for phenomenology and model-building in the context of extensions of the

standard model are highlighted elsewhere [77]. Among the many opportunities opened by

this study, it would be interesting to know whether this model can be used to build semi-

realistic, calculable models for electroweak symmetry breaking, and whether the results of

the model could be generalized to other backgrounds, possibly non-supersymmetric.
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A The KS and CVMN solutions

We report here the form of all the background functions in the KS and CVMN solutions,

as useful comparison with the baryonic branch solutions.

The background functions in the KS case are given by the following.

g̃(ρ) = log(tanh(2ρ)), (A.1)

p(ρ) =
1

6
log

(
3(sinh(4ρ)− 4ρ)

4 sinh2(2ρ)

)
− x(ρ)

3
, (A.2)

x(ρ) =
1

3
log(sinh(4ρ)− 4ρ) (A.3)

+
1

2
log

(∫ ∞
ρ

(2ρ coth(2ρ)− 1) 3
√

sinh(4ρ)− 4ρ

8 sinh2(2ρ)

)
,

φ(ρ) = 0, (A.4)

a(ρ) =
1

cosh(2ρ)
, (A.5)

b(ρ) =
2ρ

sinh(2ρ)
, (A.6)

h1(ρ) =
1

4
coth(2ρ)(2ρ coth(2ρ)− 1), (A.7)

h2(ρ) =
1− 2ρ coth(2ρ)

4 sinh(2ρ)
, (A.8)

A(ρ) =
1

3
log (sinh(2ρ)) +

x(ρ)

3
. (A.9)
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As a side remark, we notice that, within the subtruncation that yields the KS solution,

a whole one-parameter family of (mildly singular3) solutions, besides those discussed in

this paper, can be obtained from the general expression in eq. (2.26), by holding fixed the

combination c̃− = c−
c3+

, and by taking the limit c+ →∞. By doing so one obtains the dual

of the KS field theory deformed by a dim-6 VEV controlled by the parameter f0 in [37, 38],

with f0 = − c̃−
384 . f0 = 0 corresponds to the KS background.

The CVMN background is obtained by putting κ2 = 0 and P (ρ) = 2ρ. In this case,

the solution has a linear dilaton, and hence one cannot choose φo according to what we

did for all other solutions, but rather we must keep it explicit. This leads to

g̃(ρ) =
1

2
log
(
4ρ2 − (1− 2ρ coth(2ρ))2

)
, (A.10)

p(ρ) = −φo
6

+
1

24
log

(
− 32768

8ρ2 − 4ρ sinh(4ρ) + cosh(4ρ)− 1

)
, (A.11)

x(ρ) =
φo
2

+
1

8
log

(
sinh2(2ρ)

(
4ρ2 − (1− 2ρ coth(2ρ))2

)3
16384

)
, (A.12)

φ(ρ) = φo −
1

4
log

(
1

4

(
4ρ2 − (1− 2ρ coth(2ρ))2

)
csch2(2ρ)

)
, (A.13)

a(ρ) = b(ρ) =
2ρ

sinh(2ρ)
, (A.14)

h1(ρ) = h2(ρ) = 0, (A.15)

A(ρ) =
1

6
log

(
1

32

(
−8ρ2 + 4ρ sinh(4ρ)− cosh(4ρ) + 1

))
. (A.16)

B Asymptotic expansions of the backgrounds

The general baryonic-branch solution in the UV can be written as an expansion for small

z in the following manner.

g̃ = −z
2(3 log(z) + 1)

3c+
+
z6
(
−648c3+ + 9 log(z)(24 log(z)(log(z) + 1) + 17) + 35

)
324c3+

(B.1)

−z
8
(
3 log(z)

(
−2304c3+ log(z)− 768c3+ + c−

)
− 1152c3+ + c−

)
1728c4+

+O(z10),

p =

(
1

24
log

(
1

(12 log(z) + 1)4

)
+ log(2)

)
(B.2)

+
z4(72 log(z)(12 log(z)(16 log(z) + 19) + 145) + 1223)

6912c2+(12 log(z) + 1)

+
z6
(
60 log(z)

(
3840c3+ log(z) + 832c3+ − 5c−

)
+ 7808c3+ − 45c−

)
48000c3+(12 log(z) + 1)

+O(z8),

x =
1

8

(
log
(
(12 log(z) + 1)4

)
+ log(81)− 28 log(2)

)
(B.3)

3In the sense that R, R2
µν both are finite but R2

µνστ diverges in the IR.
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+
z4(72 log(z)(12 log(z)(8 log(z) + 15) + 79)− 71)

2304c2+(12 log(z) + 1)

+
z6
(
60 log(z)

(
23040c3+ log(z) + 5952c3+ − 5c−

)
+ 12288c3+ + 5c−

)
24000c3+(12 log(z) + 1)

+O(z8),

φ =
z4(12 log(z) + 1)

48c2+
− z8(72 log(z)(12 log(z)(8 log(z) + 5) + 65) + 823)

55296c4+
(B.4)

+
z10
(
30 log(z)

(
5760c3+ log(z) + 6528c3+ + 5c−

)
+ 9216c3+ + 35c−

)
432000c5+

+
z12
(
12 log(z)

(
144 log(z)

(
48 log2(z) + 2 log(z) + 57

)
− 143

)
− 5869

)
331776c6+

+O(z14),

a = 2z3 − z5(6 log(z) + 2)

3c+
+

2z7(3 log(z) + 1)2

9c2+
(B.5)

+
1

6
z9
(

3 log(z)

c3+
+

1

c3+
− 12

)
+O(z11),

b = −6z3 log(z)− 6z9 log(z)− 6z15 log(z)− 6z21 log(z)− 6z27 log(z) +O(z33), (B.6)

h1 =
1

4
(−3 log(z)− 1)− z4((3 log(z) + 1)(12 log(z) + 1))

96c2+
+ z6

(
−3 log(z)− 1

2

)
(B.7)

+
z8(3 log(z) + 1)(216 log(z)(4 log(z)(8 log(z) + 1) + 19) + 799)

110592c4+
+O(z10),

h2 =
1

2
z3(3 log(z) + 1) +

z7(3 log(z) + 1)(12 log(z) + 1)

48c2+
+

1

2
z9(9 log(z) + 1) (B.8)

−z
11((3 log(z) + 1)(216 log(z)(4 log(z)(8 log(z) + 1) + 19) + 799))

55296c4+
+O(z13),

A = − log(z) +
1

6
log

(
− 3

512
(12 log(z) + 1)

)
(B.9)

+
z4(72 log(z)(12 log(z)(8 log(z) + 11) + 71)− 95)

6912c2+(12 log(z) + 1)

+
z6
(
60 log(z)

(
23040c3+ log(z) + 1152c3+ − 5c−

)
− 11712c3+ + 5c−

)
72000c3+(12 log(z) + 1)

+O(z8)

We write explicitly the IR expansion (small ρ) of the baryonic branch solutions, as

well. We find it convenient to explicitly keep the dependence on ĥ(0), the value of ĥ at the

end of space in the IR, and on κ1 as defined in eq. (2.28).

g̃ = log(2ρ)− 4 (3 (κ1 − 2)κ1 + 2) ρ2

9κ21
(B.10)

+
8 (3κ1 (κ1 (21 (κ1 − 4)κ1 + 76) + 48)− 136) ρ4

405κ41

−128 (9κ1 (κ1 (3κ1 (κ1 (κ1 (155κ1 − 903) + 1540)− 40)− 3896)− 1296) + 23680) ρ6

382725κ61
+O(ρ8),
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p = −φo
6

+
1

24

(
− 4 log

(
ĥ(0)ρ

)
− 5 log (κ1) + 15 log(2)

)
(B.11)

−4
(
6ĥ(0)κ21 + ĥ(0)− 20

)
ρ2

135
(
κ21ĥ(0)

)
+

8
(
ĥ(0)

(
153ĥ(0)κ41 + 6

(
ĥ(0)− 350

)
κ21 − 92ĥ(0) + 560

)
+ 5600

)
ρ4

42525κ41ĥ(0)2
+O(ρ6),

x =
φo
2

+
1

8
log

(
κ51ĥ(0)4

2048

)
+ log(ρ) +

4
((

3κ21 + 8
)
ĥ(0)− 20

)
ρ2

45κ21ĥ(0)
− (B.12)(

8ĥ(0)
(
9ĥ(0)κ41 + 6

(
173ĥ(0)− 350

)
κ21 − 2896ĥ(0) + 560

)
+ 44800

)
ρ4

14175
(
κ41ĥ(0)2

) +O(ρ6),

φ = φo +
1

4
log

(
32

κ31

)
+

16ρ2

9κ21
− 32

(
15κ21 − 44

)
ρ4

405κ41
(B.13)

+
256
(
999κ41 − 6732κ21 + 13120

)
ρ6

382725κ61
−

1024
(
5832κ61 − 66573κ41 + 284720κ21 − 416240

)
ρ8

17222625κ81
+O(ρ10),

a = 1 +

(
8

3κ1
− 2

)
ρ2 +

2
(
κ1
(
κ1
(
75κ1 − 232

)
+ 160

)
+ 64

)
ρ4

45κ31
(B.14)

+
4
(
κ1
(
κ1
(
8640−7κ1

(
κ1
(
915κ1−4556

)
+6880

))
+17920

)
+4608

)
ρ6

4725κ51
+O(ρ8),

b = 1− 2ρ2

3
+

14ρ4

45
− 124ρ6

945
+

254ρ8

4725
(B.15)

−292ρ10

13365
+

5657908ρ12

638512875
− 65528ρ14

18243225
+O(ρ16),

h1 =
2
√

2ρe2φo

3κ
3/2
1

+
32
√

2
(
3κ21 + 10

)
ρ3e2φo

135κ
7/2
1

− 128ρ5
(√

2
(
9κ41 − 21κ21 − 196

)
e2φo

)
2835κ

11/2
1

(B.16)

+
1024

√
2
(
81κ61 − 837κ41 − 816κ21 + 12400

)
ρ7e2φo

382725κ
15/2
1

+O(ρ9),

h2 = −2ρ
(√

2e2φo
)

3κ
3/2
1

+
4
√

2
(
21κ21 − 80

)
ρ3e2φo

135κ
7/2
1

(B.17)

−4ρ5
(√

2
(
279κ41 − 2688κ21 + 6272

)
e2φo

)
2835κ

11/2
1

+
8
√

2
(
10287κ61 − 180144κ41 + 951168κ21 − 1587200

)
ρ7e2φo

382725κ
15/2
1

+O(ρ9),

A =
2 log(ρ)

3
+

1

6
log

(
1

4
κ21ĥ(0)

)
−
(
− 42ĥ(0)κ21 + 8ĥ(0) + 80

)
ρ2

135
(
κ21ĥ(0)

) (B.18)

−
(
4ĥ(0)

(
333ĥ(0)κ41−24

(
ĥ(0)+175

)
κ21+16

(
23ĥ(0) + 70

))
+44800

)
ρ4

42525
(
κ41ĥ(0)2

) +O(ρ6)
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C UV expansions of the fluctuations

As explained in the main body of the text, we write here a special basis for the scalar

fluctuations that solve the bulk equations for the baryonic branch solutions in the far UV

of the five-dimensional geometry. We order the fluctuations on the basis of their degree

of divergence, having imposed the boundary conditions in eq. (2.10). For the numerical

analysis we have computed the expansions of the fluctuations retaining all terms up to

order z8, but for presentation purposes we list here only the first few terms.

We start with the dominant fluctuations, that are suppressed by the UV boundary

conditions, and are listed in the following. All expressions are written in the same basis

Φa introduced in section 2.

ã
(UV)
1 = z−4



0

1
1
12
−log(z)
36

12 log(z)−1

0

0

0

9
1−12 log(z)

0



+ z−2



4(6 log(z)+5)
c+−12c+ log(z)

9
12832/3m2

− 9
6432/3m2

0

0

0

27
25632/3m2

0



+ z−1



0

0

0

0

72
12 log(z)−1
90

1−12 log(z) − 18

0
18(3 log(z)+2)
12 log(z)−1



+O(z0),

ã
(UV)
2 = z−3



0

0

0

0

0

1

0

1
4



+ z−1



0

0

0

0

− 3
12832/3m2

− 3
12832/3m2(3 log(z) + 1)

0

−3 32/3m2(6 log(z)−1)
1024



+



0

0

0

4

0

0

−1
2

0



+O(z),

ã
(UV)
3 = z−2



0

1
1
12
−log(z) −

3
2

36
12 log(z)−1 − 3

0

0

0

9
1−12 log(z) − 9

4

0



+



−16−3 log(z)(108 log(z)+143)
c+−12c+ log(z)

− 1
12832/3m2(1− 12 log(z))

− 3
25632/3m2(1− 36 log(z))

3
12832/3m2(36 log(z) + 13)

0

0

−3 32/3m2(72 log(z)(2 log(z)+3)−13)
2048

0



+O(z),
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ã
(UV)
4 =



0

1

−3

−6

0

0

3
2(3 log(z) + 1)

0



+ z2



0

−7 32/3m2(6 log(z)(12 log(z)−7)−1)
128(12 log(z)−1)

3 32/3m2(12 log(z)(24 log(z)−35)+5)
128(12 log(z)−1)

−27
6432/3m2(4 log(z) + 5)

0

0

−3 32/3m2(3 log(z)(48 log(z)(9 log(z)−8)−115)+22)
256(12 log(z)−1)

0



+O(z3),

ã
(UV)
5 =



0

1
1
12
−log(z)
36

12 log(z)−1

0

0

0

9
1−12 log(z) − 9

2

0



+ z2



22
c+−12c+ log(z)

−21 32/3m2(13−12 log(z))
768 log(z)−64

−9 32/3m2(6 log(z)−11)
96 log(z)−8
27
8 32/3m2

0

0

−9 32/3m2(48(14−9 log(z)) log(z)+31)
256(12 log(z)−1)

0



+O(z3),

ã
(UV)
6 = z



0

0

0

0

1

9
4

0

− 3
16



+z3



0

0

0

0

− (12 log(z)−1)(128−9 32/3c+m2(4 log(z)−13))
1536c+

(12 log(z)−1)(−32/3c+m2(3 log(z)(12 log(z)−83)+70)−160)
1536c+

0
480(4 log(z)+1)−32/3c+m2(9 log(z)(67−48(log(z)−6) log(z))−320)

6144c+



+O(z4),
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ã
(UV)
7 = z



0

0

0

0

1
12 − log(z)

1
16 −

3 log(z)
2

0

7
64



+z3



0

0

0

0
(12 log(z)−1)(512(3 log(z)+1)−32/3c+m2(12 log(z)(24 log(z)−61)+815))

18432c+
m2(12 log(z)−1)(12 log(z)(12 log(z)(12 log(z)−61)+1187)−5183)

49152 3√3

0

−m2(24 log(z)(144 log(z)(log(z)(6 log(z)−23)+24)+1663)−20657)
196608 3√3



+O(z4),

ã
(UV)
8 = z2



1
12 − log(z)

0

0

0

0

0

0

0



+z4



− 1
51232/3m2(144(log(z)− 2) log(z) + 215)

(12 log(z)−1)(16 log(z)+11)
576c+

36 log(z)(24 log(z)+37)+589
1728c+

1324 log(z)+507
576c+

0

0

−448 log2(z)+412 log(z)+41
512c+

0



+O(z5).

The fluctuations that are retained as physically relevant, and ultimately contribute to

the eigenstates associated with the spectrum, are the following.

a
(UV)
1 = z2



1

0

0

0

0

0

0

0



+ z4



− 3
12832/3m2(11− 12 log(z))

1−12 log(z)
36c+

−9 log(z)+14
18c+

−132 log(z)+107
72c+

0

0
75 log(z)+14

48c+

0



+ z5



0

0

0

0

2

0

0

0



+O(z6),
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a
(UV)
2 = z3



0

0

0

0

0

1

0

−1
4



+ z5



0

0

0

0

− 3
6432/3m2

− 3
51232/3m2(1− 24 log(z))

0

−3 32/3m2(24 log(z)+5)
2048



+ z6



0

13
6

3

0

0

0

−1
4

0



+O(z7),

a
(UV)
3 = z3



0

0

0

0

1

1
4 − 3 log(z)

0

3
16(4 log(z) + 1)



+z5



0

0

0

0

−3 log(z)+1
3c+

− 3
25632/3m2(23− 24 log(z))

−3 32/3m2(72 log(z)(4 log(z)−1)−191)
2048

0
9 32/3m2(96 log2(z)+8 log(z)−115)

8192



+O(z6),

a
(UV)
4 = z4



0

1
1
12
−log(z)
36

12 log(z)−1

48

0

0
108 log(z)
1−12 log(z)

0



+ z6



4(6 log(z)+5)
c+−12c+ log(z)

1
64032/3m2(216 log(z) + 331)

3
32032/3m2(72 log(z) + 203)

−3
832/3m2(1− 12 log(z))

0

0

−3 32/3m2(672 log(z)+83)
1280

0



+O(z7),

a
(UV)
5 = z4



0

1

−1

−3(4 log(z) + 3)

0

0

3
4(6 log(z) + 1)

0



+z6



48 log(z)−5
6c+

−m2(72 log(z)(30 log(z)−89)+5807)

12800 3√3

−3 32/3m2(16 log(z)(15 log(z)−2)+97)
6400

− 9
12832/3m2(4 log(z)− 3)(4 log(z) + 5)

0

0

−32/3m2(6(683−1260 log(z)) log(z)+817)
12800

0



+O(z7),
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a
(UV)
6 = z6



0

1
1
12
−log(z) + 45

2

36
12 log(z)−1 + 45

0

0

0

9
1−12 log(z) − 45

4

0



+ z8



−540 log2(z)+69 log(z)+20
c+−12c+ log(z)

−m2(803−1680 log(z))
768 3√3

−m2(37−795 log(z))
64 3√3

325
12832/3m2

0

0

−m2(6690 log(z)+281)

1024 3√3

0



+O(z9),

a
(UV)
7 = z7



0

0

0

0

1
3
25(15 log(z)− 4)

0
3

200(30 log(z) + 17)


+O(z9),

a
(UV)
8 = z8



0

−80 log(z)
3 + 1

1
12
−log(z) + 134

9

80 log(z) + 36
12 log(z)−1 + 106

3

100

0

0

−65 log(z) + 9
1−12 log(z) − 43

3

0


+O(z9).

D IR expansions of the fluctuations

As for the UV expansion of the fluctuations on the baryonic branch, we report here the

special basis we employ for the IR expansions. The details on how this basis has been

constructed are in the main text. In the numerical study, we retained all expansions up to

O(ρ6), but we report only the first two terms of the expansion in this appendix.

The fluctuations that are suppressed by the IR boundary conditions, and hence dis-

carded in our analysis, are the following.

ã
(IR)
1 = ρ−3



−1
1
2

1

0

0

0

0

0


+ ρ−1



0

0

0

0

−−45 22/3ĥ(0)2κ31m
2e4φ0/3+96(κ1+2)(9κ1+2)ĥ(0)+1280

120κ1(3κ1−4)ĥ(0)
0

0

0


+O(ρ0),
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

0

0

0

0

0

0

−1

1



+ ρ−1



0

0

0

0

− 32
4κ1ĥ(0)−3κ21ĥ(0)

0

0

0



+O(ρ0),

ã
(IR)
3 = ρ−1



1

0

0

0

3κ1
3κ1−4

0

0

0



+



0

0

0

0

0

0
10
√
2
√
κ1ĥ(0)e2φ0

(3κ1−4)(ĥ(0)−3)

0



+O(ρ),

ã
(IR)
4 = ρ−1



0

1

0

0

18κ1
4−3κ1

0

0

0



+



0

0

0

0

0

0
6
√
2
√
κ1(3κ1−14)ĥ(0)e2φ0

(3κ1−4)(ĥ(0)−3)

0



+O(ρ),

ã
(IR)
5 = ρ−1



0

0

1

0

6κ1
4−3κ1

0

0

0



+



0

0

0

0

0

0
3
√
2(κ1−8)

√
κ1ĥ(0)e2φ0

(3κ1−4)(ĥ(0)−3)

0



+O(ρ),
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6 = ρ−1
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0

0

0

1

0

0

0

0


+



0

0

0

0

0

0
√
κ1ĥ(0)e2φ0√
2(3−ĥ(0))

0


+O(ρ),

ã
(IR)
7 = ρ−1



0

0

0

0

− 4
4κ1ĥ(0)−3κ21ĥ(0)

1

0

0


+



0

0

0

0

0

0

− 8
√
2(9κ1−17)e2φ0

3κ
3/2
1 (3κ1−4)(ĥ(0)−3)

0


+O(ρ),

ã
(IR)
8 =



0

0

0

0

0

0
6−(3κ21+2)ĥ(0)

2(ĥ(0)−3)

1



+ ρ



− ĥ(0)(9κ21(−5 22/3κ1ĥ(0)m2e4φ0/3−68)+2528)+5680

30κ21(ĥ(0)−3)ĥ(0)
(27κ21−8)ĥ(0)−340
15κ21(ĥ(0)−3)ĥ(0)

−9ĥ(0)(κ21(−5 22/3κ1ĥ(0)m2e4φ0/3−24)+256)+2080

60κ21(ĥ(0)−3)ĥ(0)

− ĥ(0)(448−9 22/3κ31ĥ(0)m
2e4φ0/3)+768

6κ21(ĥ(0)−3)ĥ(0)

0

− 16
ĥ(0)−3

0

0



+O(ρ2).

The subleading fluctuations, that effectively implement regularity in the deep-IR of

the geometry, are the following.

a
(IR)
1 =



1

0

1
2

0

0

0

0

0



+ ρ2



0

0

0

0
3ĥ(0)(−22/3ĥ(0)κ31m2e4φ0/3−512κ1+256)+2560

96(4−3κ1)κ1ĥ(0)
ĥ(0)2κ31m

2e4φ0/3

64 3√2
+ 8

3

0

0



+O(ρ3),
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(IR)
2 =



0

1

−3

0

0

0

0

0



+ ρ2



0

0

0

0
−7 22/3ĥ(0)2κ31m

2e4φ0/3−256ĥ(0)+1024

64κ1ĥ(0)−48κ21ĥ(0)

8− 5κ31ĥ(0)
2m2e4φ0/3

32 3√2

0

0



+O(ρ3),

a
(IR)
3 =



0

0

0

1

0

0

0

0



+ ρ2



0

0

0

0
3 22/3ĥ(0)2κ31m

2e4φ0/3+256ĥ(0)+512

384κ1ĥ(0)−288κ21ĥ(0)
4
3 −

κ31ĥ(0)
2m2e4φ0/3

64 3√2

0

0



+O(ρ3),

a
(IR)
4 = ρ



0

0

0

0

0

0

1

−1



+ ρ2



0

0

0

0

32
4κ1ĥ(0)−3κ21ĥ(0)

0

0

0



+O(ρ3),

a
(IR)
5 = ρ2



1

0

0

0

3κ1
3κ1−4

0

0

0



+ ρ3



0

0

0

0

0

0

− 16
√
2e2φ0

(12−9κ1)κ3/21

16
√
2e2φ0

(12−9κ1)κ3/21



+O(ρ4),
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6 = ρ2



0

1

0

0

12κ1
3κ1−4

−3
2κ

2
1ĥ(0)

0

0



+ ρ3



0

0

0

0

0

0
99κ1+(3κ1(κ1(3κ1−4)−23)−68)ĥ(0)+28

30(3κ1−4)
8(17ĥ(0)−7)+3κ1((3κ1(3κ1−4)+46)ĥ(0)−66)

60(3κ1−4)



+O(ρ4),

a
(IR)
7 = ρ2



0

0

1

0

3κ1
4−3κ1

3
4κ

2
1ĥ(0)

0

0



+ ρ3



0

0

0

0

0

0
68ĥ(0)+3κ1(((4−3κ1)κ1+3)ĥ(0)−13)−28

60(3κ1−4)
−9(κ1(3κ1−4)+2)ĥ(0)κ1+78κ1−136ĥ(0)+56

120(3κ1−4)



+O(ρ4),

a
(IR)
8 = ρ2



0

0

0

1

3κ1
8−6κ1

−3
8κ

2
1ĥ(0)

0

0



+ ρ3



0

0

0

0

0

0
4(37ĥ(0)−27)+3κ1(((4−3κ1)κ1−17)ĥ(0)+7)

120(3κ1−4)
−296ĥ(0)+3κ1((3(4−3κ1)κ1+34)ĥ(0)−14)+216

240(3κ1−4)



+O(ρ4).

E About the spectrum from the CVMN and KS solutions

In this appendix, we report some useful results about the spectrum of spin-0 states in

the CVMN and KS case. The spectrum has been computed before in the case of the

3-scalar sigma-model truncation of the CVMN system [11]. Here, for comparison with

the calculations performed along the baryonic branch, we consider general fluctuations

involving all the eight sigma-model scalars of the PT ansatz.

In the case of the CVMN solution, it turns out that the only thing we need to explain

is related to the UV-expansions of the fluctuations, which we report here. It is convenient
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8 scalars 7 scalars [12]

0.185 0.185

0.195

0.428 0.428

0.835 0.835

1.08

1.28 1.28

1.63 1.63

1.94 1.94

2.34 2.34

2.55

2.61 2.61

3.32 3.32

3.53 3.54

4.12 4.12

4.17 4.18

4.43 4.43

4.43 4.43

4.58

5.35 5.35

Table 1. The scalar spectrum m2 of the KS solution as calculated by us with the eight-scalar

sigma-model, compared to the seven-scalar sigma-model adopted in [12]. We normalize the values

of m2 so that they can be compared. The empty spaces correspond to states that are missing in

the case of seven scalars.

to perform a change of variables aa = Ba
bã
b, where

B =



0 −1 0 0 0 1 0 0

−1
6 0 0 1

2 0 0 0 0
1
2 −1

2 0 1
2 0 −1

2 0 0

1 1 0 1 0 1 0 0

0 0 1 0 −1 0 0 0

0 0 1 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


. (E.1)

In this basis, we obtain to leading order in e−2ρ/3 the following UV expansions for

the coefficients defined in eq. (2.14) that appear in the equation of motion for the scalar

fluctuations:

S̃ = B−1SB (E.2)

= diag

(
8ρ

4ρ− 1
,

8ρ

4ρ− 1
,
4− 8ρ

1− 4ρ
,

8ρ

4ρ− 1
,

4− 8ρ

1− 4ρ
,

8ρ

4ρ− 1
,

16(1− 2ρ)ρ

(4ρ− 1) (8ρ2 − 4ρ+ 1)
, 0

)
,

T̃ = B−1TB (E.3)

= diag

(
0,

8

4ρ− 1
− 2

ρ2
,

4

4ρ− 1
,− 8

(1− 4ρ)2
− 8,

4

1− 4ρ
− 8,−8,− 4

(1− 4ρ)2
− 4,−4

)
,
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while

4e−2A−8p =
e4φo/3

24/3
≡ 1

X2
. (E.4)

From these expressions it can be seen that to leading order the fluctuations behave as

ã1,2,3 ∼ e
(
−1±
√

1−m2/X2
)
ρ
, ã4,5,6 ∼ e

(
−1±
√

9−m2/X2
)
ρ
, ã7,8 ∼ e±

√
4−m2/X2 ρ, (E.5)

where the + (-) sign corresponds to dominant (subdominant) modes, and we have disre-

garded terms polynomial in ρ multiplying the exponentials. From these expressions one

can see that the 2-point functions will contain terms proportional to
√
`2 −m2/X2 for

` = 1, 2, 3.

For the KS background, our calculation differs from the literature by the fact that we

retained all eight sigma-model scalars, and hence we have one additional tower of states

compared to [12]. We show our results in table 1, where we compare to the results quoted

by [12], having normalized the states so that the comparison can be done.
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[25] C. Hoyos-Badajoz, C. Núñez and I. Papadimitriou, Comments on the string dual to N = 1

SQCD, Phys. Rev. D 78 (2008) 086005 [arXiv:0807.3039] [INSPIRE].
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