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1 Introduction

In the original formulation of modern models with extra dimensions [1, 2], the Standard

Model fields were supposed to be located on a brane. However, very soon the idea of theories

with universal extra dimensions, in which all fields can propagate in extra dimensions,

was proposed [3]. In this case the fields posses their own towers of Kaluza-Klein modes,

representing the physical degrees of freedom of the four-dimensional effective theory; the

zero modes are supposed to be the Standard Model fields. By now, there exist many papers

describing different scenarios with universal extra dimensions and their phenomenological

consequences.

In order to perform the Kaluza-Klein decomposition consistently in a particular case,

it would be well to have a detailed procedure of Kaluza-Klein decomposition in the general

cases, at least for frequently used background metrics. Such procedures for the scalar and

gauge fields are rather obvious and universal and can be found in the literature. As for

fermion fields, in the simplest case of one flat compact extra dimension all the key ingredi-

ents, which are necessary to perform the Kaluza-Klein decomposition in a mathematically

consistent way are also known and were presented, for example, in [4]. In the model with

infinite flat extra dimension, admitting localization of the massive fermion zero mode via

the Rubakov-Shaposhnikov mechanism [5], the corresponding decomposition was discussed

in detail in [6]. However, I have failed to find such an analysis in the general case for

another widely used branch of five-dimensional brane world models — models with com-

pact extra dimension and non-factorizable metric of the Randall-Sundrum type [2] (warped

brane world models) in the case when the zero mode is supposed to have a nonzero mass

(for example, generated via the Higgs mechanism). Usually, in this case the perturbation

theory is used to describe the effective four-dimensional theory, treating the interaction

with the Higgs field as a correction.

In the present paper an attempt is made to find a consistent method for performing the

Kaluza-Klein decomposition of fermion fields, living in the bulk of five-dimensional warped

brane world models with non-factorizable metric of the standard form, in a rather model-

independent way. The term providing the zero mode fermion mass (which can originate,

for example, from the interaction with the Higgs field) is not supposed to be a perturbation

and is taken into account from the very beginning.

In the previous paper on this subject [7] it was shown that in the general case there

may exist pathologies in the fermion sector of warped five-dimensional brane-world models.

The more detailed analysis, which will be presented below, shows that the Kaluza-Klein

decomposition for fermions can be performed consistently only for several five-dimensional

fermion field Lagrangians, some of which admit a localization of the zero mode, but demand

special choices of the mass generating term (i.e., the form of the Higgs field profile in

the extra dimension) or the localizing term, whereas the other admit any form of the

mass generating term, but forbid a localization of the zero mode (for the smooth mass

generating and localizing terms these five-dimensional Lagrangians reproduce those found

earlier in [7]). All these cases provide second-order differential equations of motion for

the components of the fermion fields (or of their linear combinations) in the whole five-
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dimensional space-time or in the whole five-dimensional space-time except the fixed points

of the orbifold (where the branes are located). An interesting observation is that the

procedures of Kaluza-Klein decomposition, which will be presented in detail below, differ

considerably for different cases. As for the general case, I have failed to find an obvious way

to perform the Kaluza-Klein decomposition, even for particular choices of the parameters,

because of the appearance of fourth-order differential equations of motion for the fields. The

latter seems impossible to circumvent, at least by the standard diagonalization procedures.

Moreover, since higher-derivative theories are known to contain pathologies (this issue will

be discussed in the text), one may expect the appearance of analogous pathologies in the

case under consideration too.

A special choice of the five-dimensional Lagrangian was examined with relation to a

possibility to reproduce the ordinary four-dimensional Standard Model by the zero Kaluza-

Klein modes (of the fermion, gauge and Higgs fields) most closely regardless of the value of

the five-dimensional energy scale and without taking into account the higher Kaluza-Klein

modes. As a particular background, the Randall-Sundrum model [2] was considered. It

was shown that for appropriate values of the parameters of the model deviations from the

Standard Model appear only in the coupling constants of the Higgs boson to fermions and

in the Higgs boson self-coupling constants, the corresponding corrections are presented in

an explicit form.

The paper is organized as follows. In section 2 we demonstrate a simple introduc-

tory example of the consistent Kaluza-Klein decomposition procedure for the model with

flat compact extra dimension. In section 3 we examine the general case of five-dimensional

warped brane world models and find the five-dimensional Lagrangians for which the Kaluza-

Klein decomposition can be performed in a mathematically consistent way. We also discuss

the problems, which can arise in the general case. In section 4 the Kaluza-Klein decomposi-

tion is performed in general for three different cases, for which this can be done analytically

in a mathematically consistent way. In section 5 a model, based on the Randall-Sundrum

background metric, is considered as a possible candidate that allows one to reproduce the

Standard Model by the zero mode sector with a minimal possible set of restrictions coming

from the effective theory composed of these zero modes. And finally, in section 6 we briefly

discuss the obtained results. Auxiliary calculations are collected in the appendices.

2 Flat five-dimensional space-time

As a simple introductory example let us take a flat five-dimensional space-time with the

coordinates xM = {xµ, z}, M = 0, 1, 2, 3, 5. The compact extra dimension is supposed

to form the orbifold S1/Z2, which can be represented as the circle with the coordinate

−L ≤ z ≤ L and the points −z and z identified. In what follows, we will use the notation

x for the coordinates xµ.

It is well known that there is no chirality in five-dimensional space-time. Thus, in order

to obtain a nonzero mass term for the zero Kaluza-Klein fermion mode, it is necessary to

take two five-dimensional spinor fields (see, for example, [4, 8, 9]) satisfying the orbifold
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symmetry conditions

Ψ1(x,−z) = γ5Ψ1(x, z), (2.1)

Ψ2(x,−z) = −γ5Ψ2(x, z). (2.2)

Thus, as an example we consider a model with the action of the form

S =

∫
d4xdz

(
iΨ̄1ΓM∂MΨ1 + iΨ̄2ΓM∂MΨ2 −M

(
Ψ̄1Ψ2 + Ψ̄2Ψ1

))
, (2.3)

where Γµ = γµ, Γ5 = iγ5, M > 0. From here and below we will use the chiral representation

of the gamma matrices

γ0 =

(
0 I

I 0

)
, γi =

(
0 σi

−σi 0

)
, (2.4)

in which γ5 is diagonal and has the form

γ5 =

(
I 0

0 −I

)
. (2.5)

The orbifold symmetry conditions (2.1), (2.2), the geometric structure of the extra

dimension and the form of action (2.3) suggest the standard Fourier decomposition for

the five-dimensional fermion fields Ψ1 and Ψ2, i.e., these fields can be decomposed into

Kaluza-Klein modes as (see [4])

Ψ1(x, z) =
1√
2L
ψL(x) +

1√
L

∞∑
n=1

(
cos
(πn
L
z
)
ψnL(x)− sin

(πn
L
z
)
ψ̂nR(x)

)
, (2.6)

Ψ2(x, z) =
1√
2L
ψR(x) +

1√
L

∞∑
n=1

(
cos
(πn
L
z
)
ψnR(x) + sin

(πn
L
z
)
ψ̂nL(x)

)
, (2.7)

where ψL(x) = γ5ψL(x), ψR(x) = −γ5ψR(x), ψnL(x) = γ5ψnL(x), ψnR(x) = −γ5ψnR(x),

ψ̂nL(x) = γ5ψ̂nL(x), ψ̂nR(x) = −γ5ψ̂nR(x). Note that the components of the five-dimensional

fields (2.6) and (2.7) satisfy the five-dimensional equations

�Ψ1 −Ψ′′1 +M2Ψ1 = 0, �Ψ2 −Ψ′′2 +M2Ψ2 = 0 (2.8)

with

�ψL,R +M2ψL,R = 0, �ψnL,R +m2
nψ

n
L,R = 0, �ψ̂nL,R +m2

nψ̂
n
L,R = 0, (2.9)

where mn =
√

π2n2

L2 +M2. Equations (2.8) follow directly from the five-dimensional Dirac

equations, originating from (2.3). In fact, it is equations (2.8) that suggest the correct

separation of variables, determine the form of the wave functions in (2.6), (2.7), define

the mass spectrum and guarantee that (2.6) and (2.7) indeed describe the complete set

of possible physical degrees of freedom of the theory. It is clear that in other models the

equations analogous to (2.8) may have different form, leading to wave functions different

from the components of the Fourier series.
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Substituting (2.6) and (2.7) into (2.3) and integrating over the coordinate z of the

extra dimension, we arrive at

Seff =

∫
d4x

(
iψ̄γµ∂µψ −Mψ̄ψ +

∞∑
n=1

(
iψ̄nγµ∂µψ

n

+i
¯̂
ψnγµ∂µψ̂

n − πn

L
(

¯̂
ψnψn + ψ̄nψ̂n)−M(ψ̄nψn − ¯̂

ψnψ̂n)
))

(2.10)

with

ψ(x) = ψL(x) + ψR(x), (2.11)

ψn(x) = ψnL(x) + ψnR(x), (2.12)

ψ̂n(x) = ψ̂nL(x) + ψ̂nR(x). (2.13)

We see that the mass matrix is non-diagonal [4]. In order to bring it to the diagonal form,

we use the transformations [10]

ψn(x) = ψn1 (x) cos(θn) + ψn2 (x) sin(θn), (2.14)

ψ̂n(x) = ψn1 (x) sin(θn)− ψn2 (x) cos(θn) (2.15)

where n ≥ 1 and

tan(2θn) =
πn

ML
(2.16)

and obtain

Seff =

∫
d4x

(
iψ̄γµ∂µψ −Mψ̄ψ

+

∞∑
n=1

(
iψ̄n1 γ

µ∂µψ
n
1 + iψ̄n2 γ

µ∂µψ
n
2 −mn(ψ̄n1ψ

n
1 − ψ̄n2ψn2 )

))
, (2.17)

where mn =
√

π2n2

L2 +M2. We see that the mass terms of the fields ψn2 have the uncon-

ventional sign. But with the help of the standard redefinition ψn2 → γ5ψn2 , we can bring

action (2.17) to the standard form

Seff =

∫
d4x

(
iψ̄γµ∂µψ −Mψ̄ψ +

∞∑
n=1

2∑
i=1

(
iψ̄ni γ

µ∂µψ
n
i −mnψ̄

n
i ψ

n
i

))
. (2.18)

This four-dimensional effective action describes the Dirac fermion with mass M , which

is the lowest Kaluza-Klein mode, and a pair of two Dirac fermions with the same four-

dimensional mass mn at each Kaluza-Klein level with n ≥ 1.

We see that the Kaluza-Klein decomposition in this case is not complicated. However,

it is so mainly because in the case under consideration we can use the Fourier decomposition

for the fields from the very beginning. It is not so in the general case, for which the

Fourier decomposition clearly does not provide the appropriate set of eigenfunctions and

eigenvalues, especially in the curved background of brane world models. This problem will

be discussed in the next sections.

– 5 –



J
H
E
P
0
6
(
2
0
1
6
)
1
6
5

3 Warped five-dimensional space-time

3.1 Equations of motion

Again, let us take a five-dimensional space-time with the compact extra dimension forming

the orbifold S1/Z2 with the coordinate −L ≤ z ≤ L and the points −z and z identified.

Let us consider the following form of the background metric, which is standard in five-

dimensional brane world models:

ds2 = e2σ(z)ηµνdx
µdxν − dz2, (3.1)

where σ(−z) = σ(z). We do not specify the explicit form of the solution for σ(z).

As an example, we consider a model with the action of the general form

S =

∫
d4xdz

√
g
(
EMN iΨ̄1ΓN∇MΨ1 + EMN iΨ̄2ΓN∇MΨ2

−F (z)
(
Ψ̄1Ψ1 − Ψ̄2Ψ2

)
−G(z)

(
Ψ̄2Ψ1 + Ψ̄1Ψ2

))
, (3.2)

where M,N = 0, 1, 2, 3, 5, Γµ = γµ, Γ5 = iγ5, ∇M is the covariant derivative containing

the spin connection, EMN is the vielbein. The fields are also supposed to satisfy the orbifold

symmetry conditions

Ψ1(x,−z) = γ5Ψ1(x, z), (3.3)

Ψ2(x,−z) = −γ5Ψ2(x, z), (3.4)

the functions F (z) and G(z) are such that F (−z) = −F (z) and G(−z) = G(z). Again,

due to the absence of chirality in five-dimensional space-time, we have to take two five-

dimensional spinor fields Ψ1 and Ψ2 [4, 8, 9].

As we will see below, the function F (z) is responsible for the localization of the zero

Kaluza-Klein mode, whereas the function G(z) provides its nonzero mass. Contrary to

the case of the previous section, here the background metric depends on the coordinate

of the extra dimension z, so we also assume that the function G(z) (which, of course, can

be connected with the vacuum solution of some five-dimensional Higgs-like field) can also

depend on the coordinate of the extra dimension.

For the case of metric (3.1), action (3.2) can be rewritten in the form (see, for exam-

ple, [9, 11] for the explicit form of the vielbein and spin connections)

S =

∫
d4xdze4σ

(
e−σiΨ̄1γ

µ∂µΨ1 − Ψ̄1γ
5
(
∂5 + 2σ′

)
Ψ1

+e−σiΨ̄2γ
µ∂µΨ2 − Ψ̄2γ

5
(
∂5 + 2σ′

)
Ψ2

−F (z)
(
Ψ̄1Ψ1 − Ψ̄2Ψ2

)
−G(z)

(
Ψ̄2Ψ1 + Ψ̄1Ψ2

))
. (3.5)

The equations of motion for the fields Ψ1 and Ψ2 take the form

e−σiγµ∂µΨ1 − γ5
(
∂5 + 2σ′

)
Ψ1 − FΨ1 −GΨ2 = 0, (3.6)

e−σiγµ∂µΨ2 − γ5
(
∂5 + 2σ′

)
Ψ2 + FΨ2 −GΨ1 = 0. (3.7)
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It is clear the if G(z) ≡ 0, then there always exists the solution

Ψ1 = Cf exp

− z∫
0

F (y)dy − 2σ(z)

ψL(x), iγµ∂µψL = 0, γ5ψL = ψL, (3.8)

Ψ2 = Cf exp

− z∫
0

F (y)dy − 2σ(z)

ψR(x), iγµ∂µψR = 0, γ5ψR = −ψR, (3.9)

where Cf is a normalization constant. This solution describes two massless four-dimen-

sional chiral fermions, clearly indicating that the term with G(z) 6≡ 0 indeed provides a

mass of the zero mode four-component fermion.

From (3.6) and (3.7) it is not difficult to obtain the second-order differential equations

for the components of the fields Ψ1 and Ψ2:

−e−2σ�Ψ1 + Ψ′′1 + 5σ′Ψ′1 + (6σ′
2

+ 2σ′′)Ψ1 − (G2 + F 2 − e−σ(eσF )′γ5)Ψ1

+e−σ(eσG)′γ5Ψ2 = 0, (3.10)

−e−2σ�Ψ2 + Ψ′′2 + 5σ′Ψ′2 + (6σ′
2

+ 2σ′′)Ψ2 − (G2 + F 2 + e−σ(eσF )′γ5)Ψ2

+e−σ(eσG)′γ5Ψ1 = 0. (3.11)

These equations are not supposed to be used for G(z) ∼ δ(z), this case will be considered

separately in section 4.

An important remark is in order here. In the case of an ordinary free four-dimensional

fermion, satisfying the Dirac equation, each component of the fermion field satisfies the

second-order Klein-Gordon differential equation. Of course, not all the components of this

field are independent: one can choose, for example, ψL as an independent part of the field,

satisfying the Klein-Gordon equation, whereas ψR can be expressed through ψL with the

help of the initial Dirac equation. Since in our case the fields Ψ1 and Ψ2 interact only

with the background metric and with the “fields” G(z) and F (z), which correspond to

the vacuum configuration, Ψ1 and Ψ2 should be considered as free fields as well. In this

case one can try to choose, say, Ψ1 (or some linear combination of the fields Ψ1 and Ψ2)

as an independent field and express Ψ2 through Ψ1 with the help of equation (3.6) (or

with the help of some combination of equations (3.6) and (3.7) for the linear combination

of the fields) in full analogy with the four-dimensional case. One may expect that in a

consistent theory the equations of motion for the components of the fields Ψ1 and Ψ2 (or of

their linear combinations) should not contain any pathologies, otherwise such pathologies

would probably arise in the resulting effective theory. So, we expect that the corresponding

equations of motion should be five-dimensional second-order differential equations, which

contain the derivatives in the four-dimensional coordinates only in the form � = ηµν∂µ∂ν
and provide a correct mass spectrum for the Kaluza-Klein modes. Moreover, as will be

shown in section 4, such second-order equations of motion indeed allow one to perform the

Kaluza-Klein decomposition consistently. However, such equations can be obtained not in

all cases.

– 7 –
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3.2 Decoupling the equations of motion

We see that equations (3.10), (3.11) remain coupled, whereas equations for each component

of the fields Ψ1 and Ψ2 separately can be obtained only for the special choice

G(z) ≡Me−σ(z), (3.12)

where M is a constant, which provides (eσG)′ ≡ 0. In this case we get for (3.10) and (3.11)

−e−2σ(�Ψ1+M2Ψ1)+Ψ′′1 +5σ′Ψ′1+(6σ′
2
+2σ′′)Ψ1−(F 2−e−σ(eσF )′γ5)Ψ1 = 0, (3.13)

−e−2σ(�Ψ2+M2Ψ2)+Ψ′′2 +5σ′Ψ′2+(6σ′
2
+2σ′′)Ψ2−(F 2+e−σ(eσF )′γ5)Ψ2 = 0. (3.14)

From these equations it is easy to get the solution for the lowest mode, which takes the form

Ψ1 =Cf exp

− z∫
0

F (y)dy−2σ(z)

ψL(x), iγµ∂µψL−MψR=0, γ5ψL=ψL, (3.15)

Ψ2 =Cf exp

− z∫
0

F (y)dy−2σ(z)

ψR(x), iγµ∂µψR−MψL=0, γ5ψR=−ψR, (3.16)

where again Cf is a normalization constant. The fields ψL and ψR are localized in the

vicinity of the same point in the extra dimension because they have the same wave function;

taken together they make up a four-dimensional Dirac fermion with mass M . It is not

difficult to show that solution (3.15) and (3.16) indeed stands for the lowest mode, see the

proof in [7].

What can we learn from equations (3.15), (3.16)? First, it is the term with the five-

dimensional mass M that provides the mass of the zero Kaluza-Klein mode. Second, the

wave functions of the left and right component of the field ψ are exactly the same. The latter

means that, depending on the form of the function F (z), the whole zero mode (composed

of the left and right two-component spinors) can be localized at any point of the orbifold

(see, for example, [5, 8, 12]). Very often in brane world models the function F (z) is taken

in the form F (z) = Q sign(z), where the value of the constant Q defines at which brane

the fermion zero mode is localized and what is the width of its wave function [8, 13–15].

We will not perform the complete Kaluza-Klein decomposition here (the special

case (3.12) will be discussed in detail in section 4) and proceed to the more general case

(eσG)′ 6≡ 0.

In order to decouple equations (3.10) and (3.11) for (eσG)′ 6≡ 0, it is convenient first to

consider the left-handed parts of the spinor fields ΨL
1 = γ5ΨL

1 , ΨL
2 = γ5ΨL

2 . Following [7],

equations (3.10) and (3.11) for ΨL
1 and ΨL

2 can be rewritten in the operator form as(
L̂ 0

0 L̂

)(
ΨL

1

ΨL
2

)
+ Λ̂L

(
ΨL

1

ΨL
2

)
= 0, (3.17)

where the operator L̂ is defined as

L̂ = −e−2σ�+ ∂2
5 + 5σ′∂5 + 6σ′

2
+ 2σ′′ −G2 − F 2 (3.18)

– 8 –
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and the matrix Λ̂L contains only the functions depending on the coordinate z and looks like

Λ̂L =

(
e−σ(eσF )′ e−σ(eσG)′

e−σ(eσG)′ −e−σ(eσF )′

)
. (3.19)

The form of equation (3.17) implies that the decoupling of the equations of motion for

the components of the fermion fields is equivalent to the diagonalization of the matrix Λ̂L.

This matrix is symmetric, so it can be diagonalized in the standard way with the help of

a rotation matrix

R̂ =

(
cos Θ − sin Θ

sin Θ cos Θ

)
, R̂T Λ̂LR̂ = diag(λ1, λ2). (3.20)

The rotation angle can be easily found by the standard procedure and takes the form

cot(2Θ) =
(eσF )′

(eσG)′
. (3.21)

It is clear that in the general case the rotation angle Θ depends on the coordinate of

the extra dimension z. On the other hand, the rotation angle Θ should not depend on the

coordinate of the extra dimension, otherwise the rotation matrix R̂ would not pass through

the operator L̂, which contains derivatives in z. The obvious exception is

F (z) ≡ 0, (3.22)

i.e., we turn off the localization mechanism.1 In this case we get

Θ =
π

4
. (3.23)

An analogous reasoning can be applied to ΨR
1 and ΨR

2 using the corresponding matrix Λ̂R.

In fact, Θ = π
4 corresponds to the combinations Ψ1 + Ψ2 and Ψ1−Ψ2 of the fields Ψ1, Ψ2.

Indeed, for F (z) ≡ 0 we can simply add and subtract equations (3.10) and (3.11) to get

independent second-order differential equations for the components of the combinations

Ψ1 + Ψ2 and Ψ1 −Ψ2.

It seems that there are no other possibilities to diagonalize the matrix Λ̂L (and, corre-

spondingly, the analogous matrix Λ̂R) using one and the same Θ in the whole space-time

except if G(z) ≡ Me−σ(z) or F (z) ≡ 0 [7] (recall the symmetry properties of F (z) and

G(z)). However, if we consider generalized functions (like sign(z) or δ(z)), there is still a

possibility to find other cases for which the matrices Λ̂L,R can be diagonalized. Indeed,

the case F (z) ≡ 0 allows one to get independent second-order differential equations for the

1In principle, one can consider a more general form of the “localizing term”, i.e., F1(z)Ψ̄1Ψ1+F2(z)Ψ̄2Ψ2

with F1,2(−z) = −F1,2(z) instead of F (z)
(
Ψ̄1Ψ1 − Ψ̄2Ψ2

)
in (3.2). In this case one can obtain F1(z) ≡ F2(z)

instead of (3.22) [7]. However, in the case G(z) ≡ 0 the zero-mode massless fields ψL and ψR, which are

supposed to make up a four-dimensional Dirac fermion for G(z) 6≡ 0, appear to have different wave functions

in the extra dimension and, for some choices of F1(z) ≡ F2(z), to be localized at the opposite points of

the extra dimension, which looks rather unnatural. So, I use the standard choice F2(z) ≡ −F1(z) [8, 9, 12]

from the very beginning.
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whole extra dimension. But when one considers generalized functions, it is possible to get

second-order differential equations of motion everywhere except the points z = 0, z = L of

the extra dimension or even everywhere except a single point of the extra dimension. Note

that generalized functions should not be considered as approximations of some continuous

and differentiable functions, they should be taken as pure generalized functions in their

mathematical sense. Namely, there are the following possibilities:

G(z) ≡ γ sign(z)F (z) +Me−σ, any F (z); (3.24)

F (z) ≡ γ sign(z)e−σ, any G(z); (3.25)

G(z) ≡ K1 δ(z) +K2 δ(z − L) +Me−σ, any F (z); (3.26)

where γ, K1 and K2 are constants. For example, for F (z) ∼ sign(z) in (3.24) and with

M = 0 we get G(z) ∼ const. In the first case (3.24) one can diagonalize the matrices

Λ̂L,R in the regions −L < z < 0 and 0 < z < L separately, then match the corresponding

solutions at the points z = 0 and z = L using the boundary conditions following from

equations (3.6), (3.7). In the second case (3.25) one can use the second-order differential

equations for the combinations Ψ1 + Ψ2 and Ψ1 − Ψ2 in the regions −L < z < 0 and

0 < z < L, then also match the corresponding solutions at the points z = 0 and z = L

using the boundary conditions following from equations (3.6), (3.7). And in the third

case (3.26) one can use equations (3.13), (3.14) everywhere except the points z = 0, z = L

(or only except the point z = L if K1 = 0) and then use the matching conditions at z = 0,

z = L (or only at the point z = L if K1 = 0) following from (3.6), (3.7).

All the special cases, presented above, will be discussed in more detail in section 4,

including the consistent procedures of the Kaluza-Klein decomposition for some of them.

Now let us turn to examining the most general case, for which the second-order equations

of motion can not be obtained, at least in a simple way.

3.3 The general case: higher derivatives

To examine in more detail the general case, in which the functions F (z) and G(z) do not

satisfy the conditions (3.12), (3.22) or (3.24)–(3.26), let us again, for simplicity, consider

the left parts ΨL
1 , ΨL

2 of the spinor fields and represent equations (3.10) and (3.11) as

L̂ΨL
1 + e−σ(eσF )′ΨL

1 + e−σ(eσG)′ΨL
2 = 0, (3.27)

L̂ΨL
2 − e−σ(eσF )′ΨL

2 + e−σ(eσG)′ΨL
1 = 0, (3.28)

where the operator L̂ is defined by (3.18). If the appropriate diagonalization of the matrices

Λ̂L,R in (3.19) is impossible, then the only obvious way is to obtain separate equations for

the fields ΨL
1 , ΨL

2 . For example, equation for ΨL
1 takes the form(

L̂− e−σ(eσF )′
) L̂+ e−σ(eσF )′

e−σ(eσG)′
ΨL

1 − e−σ(eσG)′ΨL
1 = 0. (3.29)

For ΨL
2 we can get(

L̂+ e−σ(eσF )′
) L̂− e−σ(eσF )′

e−σ(eσG)′
ΨL

2 − e−σ(eσG)′ΨL
2 = 0. (3.30)
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Analogous equations can be obtained for ΨR
1 , ΨR

2 . Thus, we get fourth-order differential

equations of motion (recall that the operator L̂ contains second derivatives). I have failed

to solve these equations even for particular cases, however, in the general case such equa-

tions describe more degrees of freedom than the second-order differential equations (for

example, in some cases one may expect the appearance of two “lowest” modes with close

but different four-dimensional masses) and, in principle, may contain serious pathologies.

To demonstrate the appearance of such pathologies explicitly, let us consider a simple

four-dimensional model.

Indeed, let us take a four-dimensional scalar field theory with the action

S4 =

∫
d4x

( α

M2
(�φ)2 + ∂µφ∂

µφ−M2φ2
)
, (3.31)

where α is a dimensionless parameter. If α = 0, we have the standard theory describing

the scalar field of mass M , possessing the Klein-Gordon equation of motion. But if α 6= 0,

the equation of motion for the scalar field is the fourth-order differential equation

α

M2
�2φ−�φ−M2φ = 0, (3.32)

describing two scalar degrees of freedom with masses defined by

m2
1,2 = M2−1±

√
1 + 4α

2α
. (3.33)

Suppose that |α| � 1. In this case

m2
1 ≈M2 − αM2, m2

2 ≈ −
M2

α
. (3.34)

We see that for α > 0 the second root describes a tachyonic mode, indicating the existence

of a classical instability. It should be noted that for |α| � 1 the first root can be obtained

perturbatively in α, whereas it is not so for the second root. A much more detailed analysis

of the inapplicability of the perturbation theory for examining the fourth-order differential

equations can be found in a nice review [16]. Of course, in the simple example (3.31) the

“pathological” term α
M2 (�φ)2 was introduced “by hands”, whereas equation (3.29) with

higher derivatives arises in a different way. However, from the mathematical point of view

both equations are of the same kind.

Analogous pathologies may arise in the case of fourth-order equations (3.29) and (3.30),

even if the term with the function G(z) looks like a perturbation. The appearance of the

fourth-order equations of motion for the general form of F (z) and G(z) is a nonperturbative

effect, so one can also expect an increase of the number of physical degrees of freedom, as

well as the appearance of pathologies such as tachyons (one can also recall that at least

in the scalar field theory higher derivative theories suffer from ghosts; see [16] for details).

In this connection, it is hard to believe that the perturbation analysis, which is often used

to examine fermion sector in brane world models, can adequately describe the theory in

the general case, taking into account that it leads to equations of motion which are even

more complicated than simple equation (3.32) (see also a discussion of this problem in [7]).
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Indeed, the perturbation theory can provide solutions for some of the physical degrees of

freedom of the theory, exactly as it happens with the first root in (3.34), which can be

obtained perturbatively. However, the rest of the possible physical degrees of freedom may

appear to be lost when one uses perturbation theory in such nontrivial cases.

Of course, there can be some non-obvious ways to solve such fourth-order equation of

motion or even to avoid them (for example, by taking some nonstandard combination of the

five-dimensional fields such as pL,R1 (z)ΨL,R
1 (x, z)+pL,R2 (z)ΨL,R

2 (x, z), where pL,R1 (z), pL,R2 (z)

are some functions), but I have failed to find such possibilities. Thus, the general case with

(eσG)′ 6≡ 0 and F (z) 6≡ 0, naively leading to equations of form (3.29) and (3.30), should be

carefully and thoroughly examined before considering its phenomenological consequences.

An important remark is in order here. Equations (3.29) and (3.30) are still fourth-

order differential equations even for F (z) ≡ 0, whereas it was shown above that the system

of equations (3.10) and (3.11) can be decoupled for F (z) ≡ 0, leading to the second-order

equations of motion for the combinations Ψ1 +Ψ2 and Ψ1−Ψ2 of the fields. This would-be

contradiction can be easily resolved. Indeed, for F (z) ≡ 0 equations (3.29) and (3.30) take

the form

L̂
L̂

e−σ(eσG)′
ΨL

1,2 − e−σ(eσG)′ΨL
1,2 = 0. (3.35)

Let us define the operator

B̂ =
L̂

e−σ(eσG)′
. (3.36)

Using this definition, equation (3.35) can be rewritten as

(B̂ − 1)(B̂ + 1)ΨL
1,2 = 0. (3.37)

The operators B̂ − 1 and B̂ + 1 commute, which means that solutions to equation (3.37)

are just the linear combinations of solutions to the second-order differential equations

(B̂ − 1)ΨL
a = 0 and (B̂ + 1)ΨL

b = 0. The latter equations are nothing but the equations

for the combinations Ψ1 + Ψ2 and Ψ1 − Ψ2, which appear when one adds and subtracts

equations (3.10) and (3.11) with F (z) ≡ 0. As we will see in the next section, in fact both

equations lead to the same wave functions of the Kaluza-Klein modes.

Of course, a fully analogous procedures can be made for the cases (3.24), (3.25), but

now not in the whole space-time, but only in the regions 0 < z < L and −L < z < 0

separately.

An analogous reduction exists in the simple four-dimensional example (3.31) too. For

α = −1
4 we get from (3.33) only one root

m2 = 2M2, (3.38)

equation of motion for the scalar field takes the form

(�+ 2M2)2φ = 0. (3.39)

This degenerate case does not contain pathologies like tachyons. As will be shown below,

the “degenerate” case F ≡ 0, described by (3.37), also does not provide extra degrees of

freedom or pathologies.
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4 Kaluza-Klein decomposition

Bearing in mind the results, presented in the previous section, we are ready to perform

the Kaluza-Klein decomposition. As we will see below, a consistent decomposition indeed

demands second-order differential equations for the fields (or for their linear combinations).

Unfortunately, the cases (3.24), (3.25) appear to be rather complicated and seem not

allowing to perform all the calculations analytically in the general case. For example, in

the particular case with σ(z) = −k|z|, F (z) ≡ Q sign(z) and M = 0 in (3.24) the mass

spectrum appears to be defined by the determinant of a special 4×4 matrix, whereas some

coefficients in the wave functions of the modes are defined by eigenvectors of this matrix.

The mass spectrum was examined numerically for different choices of the constants Q,

γ, providing the normal spectra without tachyons or other pathologies. However, the

necessity for numerical calculations makes the whole analysis very complicated. So, below

I will consider only those cases, which admit analytical treatment in the general case and

are of particular interest. They are:

1. G(z) ≡Me−σ(z); any F (z).

2. F (z) ≡ 0; any G(z).

3. G(z) ≡ K δ(z − L); any F (z).

As we will see below, all these cases demand a considerably different treatment.

4.1 G(z) ≡ Me−σ(z), any F (z)

In metric (3.1) and with equation (3.12), action (3.2) takes the form2

S =

∫
d4xdze4σ

(
e−σiΨ̄1γ

µ∂µΨ1 − Ψ̄1γ
5
(
∂5 + 2σ′

)
Ψ1

+ e−σiΨ̄2γ
µ∂µΨ2 − Ψ̄2γ

5
(
∂5 + 2σ′

)
Ψ2

− F (z)
(
Ψ̄1Ψ1 − Ψ̄2Ψ2

)
−Me−σ

(
Ψ̄2Ψ1 + Ψ̄1Ψ2

))
, (4.1)

where M > 0. The second-order equations of motion for the components of the fields Ψ1

and Ψ2 take the form (3.13), (3.14).

It is convenient to represent the five-dimensional fields as [6]

Ψ1 =
∞∑
n=0

(
fn(z)ψnL(x) +

f̃n(z)

Dn
ψ̂nR(x)

)
(4.2)

Ψ2 =

∞∑
n=0

(
fn(z)ψnR(x)− f̃n(z)

Dn
ψ̂nL(x)

)
, (4.3)

2The fermion action exactly of form (4.1) (but in other notations) was considered in [9] for examining

discrete symmetries in brane world models.
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where the constants Dn are introduced for convenience and will be defined later. According

to the orbifold symmetry conditions (3.3), (3.4) for the fields Ψ1 and Ψ2, the functions fn(z)

and f̃n(z) satisfy the symmetry conditions

fn(−z) = fn(z), f̃n(−z) = −f̃n(z). (4.4)

Substituting the decomposition into equations (3.13), (3.14), we get the following equations

for the wave functions fn(z), f̃n(z):

e−2σ(m2
n −M2)fn + f ′′n + 5σ′f ′n + (6σ′

2
+ 2σ′′)fn − (F 2 − σ′F − F ′)fn = 0, (4.5)

e−2σ(m2
n −M2)f̃n + f̃ ′′n + 5σ′f̃ ′n + (6σ′

2
+ 2σ′′)f̃n − (F 2 + σ′F + F ′)f̃n = 0. (4.6)

Since all the coefficients in (4.5) and (4.6) are all even in z and real, we can always find

real solutions to these equations satisfying (4.4).

At this stage it is unclear why we use the same eigenvalues mn in equations (4.5)

and (4.6) — the equations are different, so one can expect that in the general case they

can provide different sets of eigenvalues. However, it is easy to show that whenever equa-

tions (4.5), (4.6) hold, the following system of equations also holds (see appendix A):

f ′n + (2σ′ + F )fn = (mn +M)e−σf̃n, (4.7)

f̃ ′n + (2σ′ − F )f̃n = −(mn −M)e−σfn, (4.8)

where, without loss of generality, we take mn ≥ 0.3 It means that the eigenfunctions of

equations (4.5), (4.6) are indeed connected and provide the same set of eigenvalues. For

example, given a symmetric solution fn(z) to equation (4.5), using (4.7) we can always

find the corresponding antisymmetric solution f̃n(z) to equation (4.6). As for the zero

mode, equations (4.7), (4.8) indeed provide m0 = M , f0(z) = Ce−
∫ z
0 F (y)dy and f̃0(z) = 0,

resulting in (3.15), (3.16). One can check that the solution for the zero mode f0(z) satisfies

the initial equation (4.5) with m0 = M . In fact, for the zero mode we can simply use

the equations

f ′0 + (2σ′ + F )f0 = 0, f̃0 ≡ 0 (4.9)

with m0 = M from the very beginning.

With the help of (4.5) and (4.6) it is possible to show that the orthogonality conditions

L∫
−L

e3σfnfkdz = 0,

L∫
−L

e3σf̃nf̃kdz = 0, n 6= k. (4.10)

are fulfilled, whereas
L∫
−L

e3σfnf̃kdz = 0 for all n and k because of (4.4). It is convenient to

impose the normalization condition
L∫
−L

e3σf2
ndz = 1 and to define D2

n =
L∫
−L

e3σf̃2
ndz. The

3By changing M → −M or/and mn → −mn one can construct other systems of first-order equations,

satisfying (4.5) and (4.6), but for n 6= 0 these systems of equations can be easily brought back to the

form (4.7), (4.8), thus not providing any additional solutions.
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latter results in D2
n = mn−M

mn+M (the value of Dn can be obtained by integrating the product

of equation (4.7) and f̃n by parts and using equation (4.8)).

Substituting decomposition (4.2), (4.3) into action (4.1), taking into account (4.7), (4.8)

(these equations are necessary to transform the terms with the function F (z) and with the

derivative in the coordinate of the extra dimension in (4.1) into the “mass term” form)

and then integrating over the coordinate of the extra dimension, we get the effective four-

dimensional action

Seff =

∫
d4x

(
iψ̄γµ∂µψ −Mψ̄ψ +

∞∑
n=1

(
iψ̄nγ

µ∂µψn + i
¯̂
ψnγ

µ∂µψ̂n

−M(ψ̄nψn − ¯̂
ψnψ̂n)−

√
m2
n −M2

(
ψ̄nψ̂n +

¯̂
ψnψn

)))
, (4.11)

where ψ = ψ0
L + ψ0

R and ψn = ψnL + ψnR, ψ̂n = ψ̂nL + ψ̂nR for n ≥ 1. All the calculations are

straightforward, though rather bulky, and we do not present them here. To diagonalize the

mass matrix, we will use the rotation [6, 10]

ψn(x) = ψ1,n(x) cos(θn) + ψ2,n(x) sin(θn), (4.12)

ψ̂n(x) = ψ1,n(x) sin(θn)− ψ2,n(x) cos(θn) (4.13)

for n ≥ 1, where tan(2θn) =

√
m2
n−M2

M , which is fully analogous to (2.14), (2.15). We obtain

Seff =

∫
d4x

(
iψ̄γµ∂µψ −Mψ̄ψ (4.14)

+

∞∑
n=1

(
iψ̄1,nγ

µ∂µψ1,n + iψ̄2,nγ
µ∂µψ2,n −mnψ̄1,nψ1,n +mnψ̄2,nψ2,n

))
.

The last step is to make the redefinition ψ2,n → γ5ψ2,n in order to get the conventional

sign of the mass term of the four-dimensional fermion ψ2,n. Finally, we get

Seff =

∫
d4x

(
iψ̄γµ∂µψ −Mψ̄ψ +

∞∑
n=1

2∑
i=1

(
iψ̄i,nγ

µ∂µψi,n −mnψ̄i,nψi,n
))

. (4.15)

We see that a consistent Kaluza-Klein decomposition of fermion fields is not so simple

as the Kaluza-Klein decomposition for scalar or gauge fields. It is necessary to point

out that:

1. Two steps are important for correctly performing the Kaluza-Klein decomposition

in the general case (i.e., for any form of F (z)). First, the second-order differential

equations (3.13), (3.14) (and, consequently, equations for the eigenvalues and eigen-

functions (4.5), (4.6)) suggest the appropriate separation of variables (4.2), (4.3) for

the fields Ψ1, Ψ2 and provide the complete set of possible physical degrees of freedom

of the theory. These equations also allow one to check the absence of possible patholo-

gies (exactly in the same way as the Klein-Gordon equation for each component of

the ordinary four-dimensional field guarantees that the theory is pathologically-free).
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Second, the system of first-order differential equations (4.7), (4.8), which follows

from (4.5), (4.6), allows one to get rid of the terms with the function F (z) and with

the derivative in the coordinate of the extra dimension in (4.1) and to obtain the

four-dimensional effective action in a consistent way.

2. At each Kaluza-Klein level with n ≥ 1 we have two modes with the same four-

dimensional mass, exactly as in the flat case [4] presented in section 2.

3. The wave function of the zero mode has the same form for any value of the mass M ,

including the case M = 0, see equations (3.15) and (3.16).

4. For the flat case with F (z) ≡ 0 the wave functions fn and f̃n can be easily obtained

from (4.7) and (4.8). In this case (4.2) and (4.3) fully coincide with (2.6) and (2.7).

Now let us proceed to the case F (z) ≡ 0, (eσG)′ 6≡ 0, which appears to be more

complicated.

4.2 F (z) ≡ 0, any G(z)

4.2.1 The decomposition

In metric (3.1) and for F (z) ≡ 0, action (3.2) takes the form

S =

∫
d4xdze4σ

(
e−σiΨ̄1γ

µ∂µΨ1 − Ψ̄1γ
5
(
∂5 + 2σ′

)
Ψ1 (4.16)

+ e−σiΨ̄2γ
µ∂µΨ2 − Ψ̄2γ

5
(
∂5 + 2σ′

)
Ψ2 −G(z)

(
Ψ̄2Ψ1 + Ψ̄1Ψ2

))
,

where G(−z) = G(z) according to the orbifold symmetry conditions and we suppose that

G(z) ≥ 0 for any z. Recall that the condition (eσG)′ ≡ 0 is not supposed to fulfill.

From the very beginning it is convenient to use the combinations

ΨA =
1√
2

(Ψ1 + Ψ2) , (4.17)

ΨB =
1√
2

(Ψ1 −Ψ2) . (4.18)

With these notations equations of motion, following from (3.10), (3.11) with F (z) ≡ 0, can

be rewritten as

−e−2σ�ΨA + Ψ′′A + 5σ′Ψ′A + (6σ′
2

+ 2σ′′)ΨA −G2ΨA + (G′ + σ′G)γ5ΨA = 0, (4.19)

−e−2σ�ΨB + Ψ′′B + 5σ′Ψ′B + (6σ′
2

+ 2σ′′)ΨB −G2ΨB − (G′ + σ′G)γ5ΨB = 0. (4.20)

Solutions to these equations, corresponding to a four-dimensional mass m, can be repre-

sented as

ΨA = f(z)ψAL (x) + f(−z)ψAR(x), (4.21)

ΨB = f(z)ψBR (x) + f(−z)ψBL (x). (4.22)
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Indeed, the equation for the function f(z), corresponding to the four-dimensional mass m,

takes the form

e−2σm2f(z) + f ′′(z) + 5σ′f ′(z) + (6σ′
2

+ 2σ′′)f(z)− (G2 − σ′G−G′)f(z) = 0, (4.23)

whereas it is clear that, due to the symmetry properties of G(z), the function f(−z) satisfies

the equation

e−2σm2f(−z)+f ′′(−z)+5σ′f ′(−z)+(6σ′
2
+2σ′′)f(−z)−(G2+σ′G+G′)f(−z) = 0. (4.24)

According to the general theory [17], the solutions to equation (4.23) (and to equation (4.24)

too) make up an orthonormal set of eigenfunctions fn(z), the lowest eigenvalue m0 being

simple. Moreover, it is not difficult to show that m2
n ≥ 0 for (4.23) (see appendix B). The

sets of eigenvalues of equations (4.23) and (4.24) obviously coincide. The coefficients in

equations (4.23) and (4.24) are real, so we can consider only real solutions for f(z).

Equations (4.23) and (4.24) look similar to equations (4.5) and (4.6) (up to the change

F (z) → G(z)), however, they correspond to different systems: first, the symmetry prop-

erties of the functions F (z) and G(z) are different; and second, equations (4.5) and (4.6)

correspond to the fields Ψ1, Ψ2 themselves, whereas equation (4.23) and (4.24) correspond

to the combinations Ψ1 + Ψ2, Ψ1 −Ψ2 of the initial fields.

Now let us discuss the auxiliary first-order equations, which will be necessary for

obtaining the four-dimensional effective action. One can show that any solution to equation

f ′(z) + 2σ′(z)f(z) +G(z)f(z) = me−σ(z)f(−z) (4.25)

or equation

f ′(z) + 2σ′(z)f(z) +G(z)f(z) = −me−σ(z)f(−z) (4.26)

satisfy equation (4.23),4 the proof is fully analogous to the one presented in appendix A.

Please pay attention to the argument −z in the r.h.s. terms of equations (4.25) and (4.26).

Equation (4.26) can not be brought to the form (4.25) by a simple redefinition of the

function f(z), so in principle we should take both equations. Let us define solutions to

equation (4.25) with eigenvalue mn,1 > 0 as fn,1(z), n ≥ 1; solutions to equation (4.26)

with eigenvalue mn,2 > 0 as fn,2(z), n ≥ 1. For the zero mode we take only equation (4.25)

with the eigenvalue m0 and the eigenfunction f0(z). Indeed, the lowest eigenvalue is simple,

so we expect only one solution. Since for G(z) ≡Me−σ equation (4.25) gives m0 = M and

f0(z) ∼ e−2σ, this choice is justified.5

4For double eigenvalues the opposite is not correct — not any solutions to equation (4.23) satisfy

equation (4.25) or (4.26). For example, for σ(z) ≡ 0 and G(z) ≡ M the functions f(z) ∼ cos
(
πn
L
z
)
,

f(z) ∼ sin
(
πn
L
z
)
, n ≥ 1 are solutions to (4.23) with mn =

√
π2n2

L2 +M2, but not solutions to (4.25)

or (4.26) with σ(z) ≡ 0 and G(z) ≡ M . The corresponding orthogonal solutions are: f(z) ∼ cos
(
πn
L
z
)

+√
mn−M
mn+M

sin
(
πn
L
z
)

for (4.25) and f(z) ∼ cos
(
πn
L
z
)
−
√

mn+M
mn−M sin

(
πn
L
z
)

for (4.26).
5Equation f ′0(z) + 2σ′(z)f0(z) + G(z)f0(z) = −m0e

−σ(z)f0(−z) for the zero mode is not excluded in

principle. However, as we will see below, in the cases in which the perturbation theory can be used the

condition G(z) ≥ 0 and equation (4.25) also give m0 > 0, so below we will use equation (4.25) (i.e., equation

with +m0) for the zero mode.

– 17 –



J
H
E
P
0
6
(
2
0
1
6
)
1
6
5

Now let us recall that the initial five-dimensional fields are Ψ1, Ψ2 and they should

satisfy the orbifold symmetry conditions (3.3) and (3.4). Thus, using (4.21) and (4.22) we

arrive at the Kaluza-Klein decomposition

Ψ1 =
1√
2

(
f+,0(z)ψL(x)−f−,0(z)ψR(x)+

∞∑
n=1

2∑
k=1

(
f+,n,k(z)ψn,kL (x)−f−,n,k(z)ψn,kR (x)

))
,

(4.27)

Ψ2 =
1√
2

(
f+,0(z)ψR(x)+f−,0(z)ψL(x)+

∞∑
n=1

2∑
k=1

(
f+,n,k(z)ψn,kR (x)+f−,n,k(z)ψn,kL (x)

))
,

(4.28)

where f+,0(z) = f0(z) + f0(−z), f−,0(z) = f0(z) − f0(−z), f+,n,k(z) = fn,k(z) + fn,k(−z),

f−,n,k(z) = fn,k(z)− fn,k(−z). The Kaluza-Klein decomposition for the combinations ΨA,

ΨB now looks like

ΨA = f0(z)ψL(x)+f0(−z)ψR(x)+
∞∑
n=1

2∑
k=1

(
fn,k(z)ψn,kL (x)+fn,k(−z)ψn,kR (x)

)
, (4.29)

ΨB = −f0(z)ψR(x)+f0(−z)ψL(x)+

∞∑
n=1

2∑
k=1

(
−fn,k(z)ψn,kR (x)+fn,k(−z)ψn,kL (x)

)
, (4.30)

The corresponding first-order equations, which will be necessary for obtaining the

effective four-dimensional action, take the form:

f ′0(z) + 2σ′(z)f0(z) +G(z)f0(z) = m0e
−σ(z)f0(−z) (4.31)

for the zero mode and

f ′n,1(z) + 2σ′(z)fn,1(z) +G(z)fn,1(z) = mn,1e
−σ(z)fn,1(−z), (4.32)

f ′n,2(z) + 2σ′(z)fn,2(z) +G(z)fn,2(z) = −mn,2e
−σ(z)fn,2(−z) (4.33)

for the modes with n ≥ 1. Here m0 ≥ 0, mn,k > 0. Since solutions to equation (4.31), (4.32)

and (4.33) satisfy equation (4.23), it is clear that for the modes, corresponding to different

eigenvalues, the following orthogonality conditions hold:

L∫
−L

e3σfn,k(z)fj,l(z)dz =

L∫
−L

e3σfn,k(−z)fj,l(−z)dz = 0, mn,k 6= mj,l, (4.34)

L∫
−L

e3σf0(z)fn,k(z)dz =

L∫
−L

e3σf0(−z)fn,k(−z)dz = 0, n ≥ 1. (4.35)

Now we are ready to obtain the four-dimensional effective action for the physical

degrees of freedom of the theory. First, it is convenient to take the normalization conditions

L∫
−L

e3σf2
0 (z)dz =

L∫
−L

e3σf2
n,1(z)dz =

L∫
−L

e3σf2
n,2(z)dz =

1

2
. (4.36)
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Another useful step is to express action (4.16) through the combinations ΨA (4.17) and

ΨB (4.18) as

S =

∫
d4xdze4σ

(
e−σiΨ̄Aγ

µ∂µΨA − Ψ̄Aγ
5
(
∂5 + 2σ′

)
ΨA

+ e−σiΨ̄Bγ
µ∂µΨB − Ψ̄Bγ

5
(
∂5 + 2σ′

)
ΨB −G(z)

(
Ψ̄AΨA − Ψ̄BΨB

))
. (4.37)

Substituting the Kaluza-Klein decomposition (4.29) and (4.30) into (4.37), using equa-

tions (4.31), (4.32) and (4.33) to transform the terms with the function G(z) and with

the derivative in the coordinate of the extra dimension in (4.37) into the terms containing

m0 or mn,k, using the orthogonality conditions (4.34)–(4.35) and the normalization condi-

tions (4.36) when integrating over the coordinate of the extra dimension z, we arrive at

Seff =

∫
d4x

(
iψ̄γµ∂µψ −m0ψ̄ψ

+

∞∑
n=1

(
iψ̄n,1γ

µ∂µψn,1 + iψ̄n,2γ
µ∂µψn,2 −mn,1ψ̄n,1ψn,1 +mn,2ψ̄n,2ψn,2

))
, (4.38)

where ψ = ψL + ψR, ψn,1 = ψn,1L + ψn,1R , ψn,2 = ψn,2L + ψn,2R . The final step is to make the

redefinition ψn,2 → γ5ψn,2 in order to get the conventional sign of the mass terms of the

four-dimensional fermions ψn,2. Finally, we get

Seff =

∫
d4x

(
iψ̄γµ∂µψ −m0ψ̄ψ +

∞∑
n=1

2∑
k=1

(
iψ̄n,kγ

µ∂µψn,k −mn,kψ̄n,kψn,k
))
. (4.39)

It is necessary to point out that:

1. As in the previous case, the second-order differential equations (4.19), (4.20)

(and (4.23)) suggest the appropriate separation of variables (4.27), (4.28) for the

fields Ψ1, Ψ2, provide the complete set of the possible physical degrees of freedom

of the theory and allow one to check the absence of possible pathologies; whereas

first-order differential equations (4.31)–(4.33) allow one to get rid of the terms with

the function G(z) and with the derivative in the coordinate of the extra dimension

in (4.1) and to obtain the four-dimensional effective action in a consistent way.

2. The wave function of the zero mode and the value of the four-dimensional mass of

this mode now depend on the form of function G(z).

An important remark is in order here. One can expect that in the most cases all

the eigenvalues mn,k, n ≥ 1 are simple. Indeed, it was noted in [18] that in general the

double eigenvalues are not common, whereas the Fourier case is not typical. However,

the double eigenvalues are still possible, the simplest example with σ(z) ≡ 0, G(z) ≡ M

(the Fourier case) has already been discussed in section 2. Moreover, action (4.16) with

G(z) ≡ Me−σ and action (4.1) with F (z) ≡ 0 correspond to the same five-dimensional

Lagrangian, whereas the results of subsection 4.1 suggest that in this case there are two
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different four-dimensional modes of the same mass at each Kaluza-Klein level with n ≥ 1.

So, let us discuss this point in more detail.

Indeed, equations (4.7), (4.8) and (4.31)–(4.33) for the wave functions have a com-

pletely different form, though in fact both systems of equations correspond to the same

five-dimensional action. The difference in the diagonalization of the four-dimensional ef-

fective actions (4.11) and (4.38) is also obvious: in the first case there exists a nonzero

rotation angle θn, depending on the number of Kaluza-Klein level n, whereas no rotation

is necessary in the second case. However, in both cases for the zero mode we get m0 = M ,

f0(z) ∼ e−2σ. This indication implies that in the case F (z) ≡ 0, G(z) ≡Me−σ the Kaluza-

Klein decomposition can be performed in two different ways, both of them have already

been presented in section 4. Of course, both ways lead to the same four-dimensional effec-

tive theory: for G(z) ≡ Me−σ and for n ≥ 1 solutions to equations (4.32), (4.33) can be

expressed trough solutions to equations (4.7), (4.8) as

fn,1(z) ∼ fn(z)− f̃n(z), (4.40)

fn,2(z) ∼ fn(z) +
f̃n(z)

D2
n

, (4.41)

where Dn =
√

mn−M
mn+M (see subsection 4.1). One can check that (4.40) satisfies (4.32),

whereas (4.41) satisfies (4.33). So, in the case G(z) ≡ Me−σ equations (4.32), (4.33)

indeed provide two different solutions with mn,1 = mn,2. One can check that the orthogo-

nality condition
L∫
−L

e3σfn,1(z)fn,2(z)dz = 0 (4.42)

holds for (4.40), (4.41), so one can perform the Kaluza-Klein decomposition exactly in the

same way as for the case with simple eigenvalues mn,k, leading to (4.39) with mn,1 = mn,2.

For G(z) 6≡ 0 which is slightly different from Me−σ (even if M = 0) the degeneracy

appears to be removed, leading to modes with different, but close values of the four-

dimensional mass.

There also arises the question, whether it is possible to find for the case (eσG)′ 6≡ 0,

F (z) ≡ 0 a system of the first-order equations, playing the role of (4.31), (4.32) and (4.33),

such that for G(z) ≡ Me−σ it would lead directly to the system of equations (4.7), (4.8)

with F (z) ≡ 0. I have failed to find such a system of equations. A possible explanation of

this fact is the following: since it seems that there is no such system of first-order differential

equations for the general case (recall fourth-order differential equations (3.29), (3.30)), it

looks as if the cases F (z) 6≡ 0, G(z) ≡ Me−σ and F (z) ≡ 0, (eσG)′ 6≡ 0 correspond to

completely different branches of the theory, demanding a different treatment. So, even at

the “intersection point”, corresponding to F (z) ≡ 0, G(z) ≡Me−σ, the first-order systems

of differential equations formally do not coincide, though can be connected.

4.2.2 Perturbation theory

Equations (4.31), (4.32) and (4.33) allows one to examine consistently the case in which

the term with G(z) in (4.16) can be considered as a perturbation. Here we will do it for
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the case of the zero mode only, because there exists an exact analytical solution for the

zero mode wave function for G(z) ≡ 0 regardless of the explicit form of σ(z).

Let us represent f0(z) as

f0(z) = C0e
−2σ (1 + g+(z) + g−(z)) , (4.43)

where C0 is a normalization constant, g+(−z) = g+(z), g−(−z) = −g−(z). It is clear that

g+(z) ≡ 0, g−(z) ≡ 0, m0 = 0 for G(z) ≡ 0. Substituting (4.43) into (4.31), combining

the terms possessing the same symmetry (−z ↔ z) properties and of the same orders in

perturbations, we get

g′−(z) = m0e
−σ −G(z), (4.44)

g′+(z) = −
(
G(z) +m0e

−σ) g−(z). (4.45)

From these equations it follows that in the leading order in the perturbation

m0 =

 L∫
−L

e−σdz

−1 L∫
−L

G(z)dz =

 L∫
0

e−σdz

−1 L∫
0

G(z)dz. (4.46)

Of course, formulas (4.44), (4.45) and (4.46) can be obtained directly from (4.23), though

in this case their derivation appears to be more bulky. The condition

|g+(z) + g−(z)| � 1

should be fulfilled for any z.

If αG � 1 is a small parameter characterising the function G(z) (more precisely,

characterising the ratio of the energy scale corresponding to G(z) and the five-dimensional

energy scale ∼ 1
L), then m0 ∼ αG, g−(z) ∼ αG, g+(z) ∼ α2

G. An explicit solution to

equations (4.44), (4.45) such that g+(−z) = g+(z), g−(−z) = −g−(z) looks like

g−(z) =

z∫
0

(
m0e

−σ(y) −G(y)
)
dy, (4.47)

g+(z) = −
z∫

0

(
G(y) +m0e

−σ(y)
) y∫

0

(
m0e

−σ(t) −G(t)
)
dt

 dy + J, (4.48)

where m0 is defined by (4.46). It is convenient to choose the constant of integration J such

that the relation
L∫
−L

(
2g+(z) + g2

−(z)
)
dz = 0 (4.49)

holds. In this case the normalization constant C0 =

(
2

L∫
−L

e−σdz

)− 1
2

(up to and including

the corrections of the order of α2
G). As expected, in the case G(z) ≡Me−σ equations (4.46)–

(4.48) with (4.49) give g+(z) ≡ 0, g−(z) ≡ 0.
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An analogous procedure can be made for other Kaluza-Klein modes, but for these

modes one needs the explicit form of the metric to perform the calculations (i.e., to get the

unperturbed solutions to equations (4.32), (4.33) with G(z) ≡ 0).

An important comment is in order here. Usually the perturbation analysis is performed

using the unperturbed wave functions of fermions, i.e., the mass term is taken into account

by substituting the unperturbed wave functions into the term∫
d4xdze4σG(z)

(
Ψ̄2Ψ1 + Ψ̄1Ψ2

)
(4.50)

of the five-dimensional action and then integrating over z. In this case for the mass of the

zero mode we obtain

m0 =

L∫
−L

dze4σG(z)2
(
C0e

−2σ
)2

=

 L∫
−L

e−σdz

−1 L∫
−L

G(z)dz. (4.51)

This result coincides with (4.46). However, the chiral structure of the zero mode is not

taken into account in such an analysis. Indeed, for the five-dimensional fields (with only

the zero mode retained) we get in this case from (4.27) and (4.28)

Ψ1 =
√

2C0e
−2σψL(x), (4.52)

Ψ2 =
√

2C0e
−2σψR(x), (4.53)

whereas the use of the consistent perturbation analysis reveals

Ψ1 =
√

2C0e
−2σ
(

(1 + g+(z))ψL(x)− g−(z)ψR(x)
)
, (4.54)

Ψ2 =
√

2C0e
−2σ
(

(1 + g+(z))ψR(x) + g−(z)ψL(x)
)
. (4.55)

In principle, the contribution of the extra terms in (4.54), (4.55) is of the order of αG ∼
m0L � 1, whereas the corrections in the effective theory caused by these extra terms

are expected to be of the order of α2
G and can be neglected in many cases. However, an

analogous modification of the gauge boson wave functions leads to severe restrictions on

the size of the extra dimension in the Randall-Sundrum model [19, 20], so one can think

that the modification of the fermion wave functions may also lead to analogous effects (this

point was also briefly discussed in [7]), especially in the case of heavy fermions.

4.2.3 Higgs field on the brane

Here we briefly discuss the scenario, in which the Higgs field is supposed to be located

exactly on the brane (a detailed analysis of this scenario will be presented in the next

subsection). This case can be reproduced by considering the function G(z) to be, for

example, G(z) ∼ δ(z − L). Of course, if the delta-function is supposed to be only an

approximation of some function, which has a very narrow but nonzero profile in the vicinity

of z = L, one can simply apply the results presented above to this case. Here we consider the

case, in which G(z) is proportional to the exact delta-function in the mathematical sense.
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Let us take equations (3.6), (3.7) with F (z) ≡ 0, G(z) ≡ Kδ(z − L), where K > 0

is a dimensionless constant (in a particular model this constant should be identified with

the vacuum expectation value of the Higgs field on the brane made dimensionless by an

appropriate five-dimensional energy scale parameter). According to the form of these

equations, the terms with delta-functions can be compensated only by the terms with

derivative ∂5. But this can happen only if the fields Ψ1 and Ψ2 are discontinuous at z = L.

Although it looks rather unnatural, we will show that this discontinuity is not a problem

from the mathematical point of view.

To examine this case, let us consider the flat background metric σ(z) ≡ 0 (just for

simplicity: it allows one to obtain the wave function explicitly) and retain only the zero

Kaluza-Klein mode. Then the solution to equation (4.31) with σ(z) ≡ 0 and G(z) ≡
Kδ(z − L) is (up to a normalization constant)

f0(z) = cos(m0z) + sin(m0z), tan(m0L) =
K

2
. (4.56)

In the derivation of this solution, the term sin(m0z)δ(z − L) was handled as

sin(m0z) δ(z − L) = − sin(m0L) sign(z − L) δ(z − L)

= −1

2
sin(m0L) sign(z − L)

d

dz
sign(z − L) (4.57)

= −1

4
sin(m0L)

d

dz
sign2(z − L) = 0,

where we have used the regularization sign2(z − L) = 1. We see that f0(z) is indeed

discontinuous at z = L.

Now, from (4.27) and (4.28) we get for the zero mode (again up to a normalization

constant)

Ψzero
1 = cos(m0z)ψL(x)− sin(m0z)ψR(x), (4.58)

Ψzero
2 = cos(m0z)ψR(x) + sin(m0z)ψL(x). (4.59)

Substituting this representation into the equations of motion (3.6), (3.7) with σ(z) ≡ 0,

F (z) ≡ 0, G(z) ≡ Kδ(z − L), we obtain

iγµ∂µψL −m0ψR = 0, iγµ∂µψR −m0ψL = 0, (4.60)

where m0 is defined by (4.56), describing the standard four-dimensional Dirac fermion of

mass m0. Note that although equation (4.31) is connected with equation (4.23), which does

not imply the use of delta-functions, equation (4.31) with G(z) ≡ Kδ(z − L) provides a

correct solution to equations of motion (3.6), (3.7). This happens because one can use any

smooth approximation for the delta-function, for example, the Gaussian profile, without

breaking the structure of equations of motion. This fact is the main motivation to briefly

discuss the case G(z) ≡ Kδ(z − L) before its detailed analysis in the next subsection.

For K � 1, in the leading order in K we get

f0(z) ≈ 1 +
K

2

z

L
, m0 ≈

K

2L
. (4.61)

– 23 –



J
H
E
P
0
6
(
2
0
1
6
)
1
6
5

We see that the correction to the unperturbed wave function appears to be
∣∣K

2
z
L

∣∣ ≤ K
2 � 1.

Note that formulas (4.46) and (4.51) also give m0 ≈ K
2L .

As for the “normal” case, in which the mass generating term has a very narrow, but

nonzero profile, in such a case the function f0(z) would vary very rapidly in the vicinity

of z = L, but of course it would be continuous at z = L. Thus, the discontinuity of f0(z)

in the present case can be considered simply as an approximation of such rapidly varying

but continuous functions.

4.3 G(z) ≡ K δ(z − L), any F (z)

Now we consider the third case with the action of the form

S =

∫
d4xdze4σ

(
e−σiΨ̄1γ

µ∂µΨ1 − Ψ̄1γ
5
(
∂5 + 2σ′

)
Ψ1 + e−σiΨ̄2γ

µ∂µΨ2 (4.62)

− Ψ̄2γ
5
(
∂5 + 2σ′

)
Ψ2 − F (z)

(
Ψ̄1Ψ1 − Ψ̄2Ψ2

)
−K δ(z − L)

(
Ψ̄2Ψ1 + Ψ̄1Ψ2

))
,

where K > 0 is a constant. It describes the Higgs field located exactly on the brane,

but contrary to the case discussed at the end of the previous subsection, here F (z) 6≡ 0.

Without loss of generality we take this brane to be the one at z = L.

It is clear that everywhere except the point z = L the following five-dimensional

equations hold:

−e−2σ�Ψ1 + Ψ′′1 + 5σ′Ψ′1 + (6σ′
2

+ 2σ′′)Ψ1 − (F 2 − e−σ(eσF )′γ5)Ψ1 = 0, (4.63)

−e−2σ�Ψ2 + Ψ′′2 + 5σ′Ψ′2 + (6σ′
2

+ 2σ′′)Ψ2 − (F 2 + e−σ(eσF )′γ5)Ψ2 = 0. (4.64)

These equations are not coupled and suggest the decomposition (for simplicity, we keep

only a single mode)

Ψ1 = fψL(x) + f̃(z)ψR(x) (4.65)

Ψ2 = fψ̂R(x)− f̃(z)ψ̂L(x). (4.66)

According to the symmetry conditions, the functions f(−z) = f(z) and f̃(−z) = −f̃(z)

are supposed to satisfy the equations

e−2σm2f + f ′′ + 5σ′f ′ + (6σ′
2

+ 2σ′′)f − (F 2 − σ′F − F ′)f = 0, (4.67)

e−2σm2f̃ + f̃ ′′ + 5σ′f̃ ′ + (6σ′
2

+ 2σ′′)f̃ − (F 2 + σ′F + F ′)f̃ = 0, (4.68)

where �ψL,R + m2ψL,R = 0 and �ψ̂L,R + m2ψ̂L,R = 0. Note that here m is not an

eigenvalue, but just a parameter, and the functions f(z) and f̃(z) are not eigenfunctions

— equations (4.67) and (4.68) do not hold at z = L. So f(z) and f̃(z) are just solutions

to equations (4.67) and (4.68) with some parameter m which is not defined yet.

Analogously to the previous cases, it is possible to show that whenever equations (4.67),

(4.68) hold, the following system of equations also holds:

f ′(z) + (2σ′ + F )f(z) = me−σf̃(z), (4.69)

f̃ ′(z) + (2σ′ − F )f̃(z) = −me−σf(z), (4.70)

– 24 –



J
H
E
P
0
6
(
2
0
1
6
)
1
6
5

again everywhere except the point z = L. Substituting (4.65), (4.66) into equations (3.6),

(3.7) with G(z) ≡ Kδ(z − L) and using (4.69), (4.70), we get everywhere except z = L

iγµ∂µψL −mψR = 0, iγµ∂µψR −mψL = 0, (4.71)

iγµ∂µψ̂L −mψ̂R = 0, iγµ∂µψ̂R −mψ̂L = 0, (4.72)

which are the standard four-dimensional Dirac equations. At the point z = L equa-

tions (3.6) and (3.7) give

ψ̂R(x) = − lim
ε→+0

2f̃(L− ε)
Kf(L)

ψR(x), (4.73)

ψ̂L(x) = − lim
ε→+0

Kf(L)

2f̃(L− ε)
ψL(x) (4.74)

for any x. In derivation of (4.73) and (4.74), we have used the regularization f̃(z)δ(z−L) ∼
sign(z − L)δ(z − L) = 0 (see (4.57)). Note that in order to support the existence of the

delta-function in (4.62), the function f̃(z) should be discontinuous at z = L. Finally,

substituting (4.73) and (4.74) into (4.72), we can find that (4.71) and (4.72) are consistent

if the condition

lim
ε→+0

K2f2(L)

4f̃2(L− ε)
= 1 (4.75)

holds. This condition defines the allowed values of m, i.e., the mass spectrum of the theory.

From the calculations presented above it is not clear what are the possible values of m2,

i.e., can m2 be negative or not. Contrary to the previous cases, where the nonnegativity of

m2
n follows from the structure of the corresponding second-order differential equations, here

we do not have such an equation in the whole extra dimension. However, it can be shown

explicitly that the values m2 < 0 are impossible in the model at hand, see appendix C.

Finally, let us derive the effective four-dimensional action of this theory. From (4.75)

it follows that the mass spectrum is defined by

lim
ε→+0

Kf(L)

2f̃(L− ε)
= −βi, i = 1, 2 (4.76)

where

β1 = 1, β2 = −1. (4.77)

Numerical calculations for the case σ(z) ≡ 0, F (z) ∼ sign(z) confirm that there may be

solutions to equations (4.76) in both cases (these numerical calculations are not presented

here in order not to overload the text, but they are simple and can be easily reproduced).

Let us label the solutions to equation (4.76) as mn,i and suppose that all the masses are

different (i.e., we do not have degenerate modes, this assumption is also supported by the

numerical calculations for the case σ(z) ≡ 0, F (z) ∼ sign(z)). The complete decomposition
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of the five-dimensional fields has the form

Ψ1 = f0(z)ψL(x)+f̃0(z)ψR(x)+

∞∑
n=1

2∑
i=1

(
fn,i(z)ψn,iL (x)+f̃n,i(z)ψn,iR (x)

)
, (4.78)

Ψ2 = β0

(
f0(z)ψR(x)−f̃0(z)ψL(x)

)
+

∞∑
n=1

2∑
i=1

βi

(
fn,i(z)ψn,iR (x)−f̃n,i(z)ψn,iL (x)

)
, (4.79)

where we have used (4.73), (4.74) and (4.76), the lowest zero mode is isolated for conve-

nience. Here the modes with i = 1 are defined by (4.76) with β1 = 1, whereas the modes

with i = 2 are defined by (4.76) with β2 = −1. As for the zero mode, we do not specify

the value of β0 here — in principle, it can be equal either to +1 or to −1.

With (4.76), it is possible to show that the following orthogonality conditions hold:

L∫
−L

e3σ
(
fn,i(z)fk,i(z) + f̃n,i(z)f̃k,i(z)

)
dz = 0, n 6= k, i = 1, 2, (4.80)

L∫
−L

e3σ
(
fn,1(z)fk,2(z)− f̃n,1(z)f̃k,2(z)

)
dz = 0, (4.81)

see the detailed derivation in appendix D. It is clear that the zero mode can be easily

incorporated into these orthogonality conditions (depending on the value of β0, it should

be added to the solutions with i = 1 or i = 2). We see that contrary to the case discussed

in subsection 4.1, where the functions, analogous to fn,i(z), fk,j(z) and f̃n,i(z), f̃k,j(z),

were orthogonal independently, here only the combinations of all four functions give the

orthogonality conditions. This happens because here we do not have second-order differ-

ential equations valid for all z, which usually provide the orthogonality conditions of the

standard form.

The last useful step is to find the equation instead of equation (4.70), which is valid

in the whole extra dimension. Indeed, equation for the mass spectrum (4.76) relates the

values of fn(L) and f̃n(L), so we can use it to supply (4.70) by an extra term in order to

obtain the systems of equations

f ′0 + (2σ′ + F )f0 = m0e
−σf̃0, (4.82)

f̃ ′0 + (2σ′ − F )f̃0 −
K

β0
f0 δ(z − L) = −m0e

−σf0 (4.83)

and

f ′n,i + (2σ′ + F )fn,i = mn,ie
−σf̃n,i, (4.84)

f̃ ′n,i + (2σ′ − F )f̃n,i −
K

βi
fn,i δ(z − L) = −mn,ie

−σfn,i, (4.85)

which are valid for any z. Here m0 ≥ 0, mn,i > 0. An interesting observation is that for

F (z) ≡ 0 we can define the functions

f̂n,1(z) = fn,1(z)− f̃n,1(z), f̂n,2(z) = fn,2(z) + f̃n,2(z),
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which satisfy the equations

f̂ ′n,1(z) + 2σ′(z)f̂n,1(z) +K δ(z − L)f̂n,1(z) = mn,1e
−σ(z)f̂n,1(−z), (4.86)

f̂ ′n,2(z) + 2σ′(z)f̂n,2(z) +K δ(z − L)f̂n,2(z) = −mn,2e
−σ(z)f̂n,2(−z), (4.87)

where we have used the symmetry properties of the functions fn,i(z), f̃n,i(z), equa-

tions (4.84), (4.85) and the regularization f̃(z)δ(z − L) = 0 in the derivation. These

equations coincide with equations (4.32), (4.33) with G(z) ≡ K δ(z−L). This implies that

most probably β0 = β1 = 1, at least in the physically reasonable cases (it is also supported

by the numerical calculations for the case σ(z) ≡ 0, F (z) ∼ sign(z)).

Finally, substituting (4.78), (4.79) into five-dimensional action (4.62), using the orthog-

onality conditions (4.80), (4.81), equations (4.82)–(4.85) and the normalization conditions

L∫
−L

e3σ
(
f2

0 (z) + f̃2
0 (z)

)
dz = 1,

L∫
−L

e3σ
(
f2
n,i(z) + f̃2

n,i(z)
)
dz = 1, n ≥ 1, i = 1, 2,

(4.88)

we get6

Seff =

∫
d4x

(
iψ̄γµ∂µψ −m0ψ̄ψ +

∞∑
n=1

2∑
i=1

(
iψ̄n,iγ

µ∂µψn,i −mn,iψ̄n,iψn,i
))
, (4.89)

where ψ = ψ0
L + ψ0

R, ψn,i = ψn,iL + ψn,iR . It is necessary to point out that since we used the

regularization f̃(z)δ(z − L) ∼ sign(z − L)δ(z − L) = 0 in the equations of motion in order

to make them self-consistent, it should be used in the derivation of the effective action too,

i.e., the term f̃2(z) δ(z − L) should be handled as

f̃2(z) δ(z − L) = f̃(z)
(
f̃(z)δ(z − L)

)
∼ f̃(z)

(
sign(z − L)δ(z − L)

)
= f̃(z)× 0 = 0,

but not as

f̃2(z)δ(z − L) ∼ sign2(z − L)δ(z − L) = δ(z − L).

This point reflects the well-known fact that the algebra of generalized functions is not

associative.

It is necessary to point out that:

1. Contrary to the previous cases, there are no second-order differential equations for the

wave functions, which are valid for any z — the point z = L is excluded. However, it

becomes possible to construct the systems of first-order differential equations (4.82)–

(4.85), which are valid for any z. Note that these systems of equations are different

for different modes (they depend on βi).

2. The orthogonality conditions have a nonstandard form (4.80) and (4.81), which also

depends on the type of the modes (i = 1, i = 2 or mixed).

6For the calculations, it is convenient to use the unified formula for the or-

thogonality conditions (4.80), (4.81) and the normalization conditions (4.88):∫ L
−L e

3σ
(
fn,i(z)fk,j(z) + βiβj f̃n,i(z)f̃k,j(z)

)
dz =

∫ L
−L e

3σ
(
βiβjfn,i(z)fk,j(z) + f̃n,i(z)f̃k,j(z)

)
dz = δnkδij .
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3. Contrary to the case F (z) ≡ 0, here we can not replace the delta-function by its

smooth approximation, for example, by the Gaussian profile. Such a change will

break the structure of the equations of motion and will lead to fourth-order differential

equations, at least if F (z) is not fine-tuned as in (3.25). In fact, hereG(z) ≡ K δ(z−L)

serves as a source of nonstandard boundary conditions for the five-dimensional fields.

4.4 Small discussion

Let us briefly discuss the results presented above.

1. The general case. As was shown in section 3, this case naively contains rather patho-

logical behavior in the form of fourth-order differential equations of motion for the

components of the five-dimensional spinor fields. In principle, such equations of

motion indicate that there may (but not necessarily) appear tachyons or ghosts in

the effective theory. But even if such pathologies are absent for fermions in five-

dimensional brane world models, at the moment it is unclear how to perform the

Kaluza-Klein decomposition in this case (or even to isolate the lowest mode in a

mathematically consistent way) and what is the number of physical degrees of free-

dom at each Kaluza-Klein level. Indeed, in all the cases discussed in this section

the independent second-order equations of motion for the components of the five-

dimensional fields (or of their linear combinations) suggested the correct separation

of variables and provided the complete set of possible physical degrees of freedom of

the four-dimensional effective theory in a rather model-independent way (at least the

forms of σ(z), F (z) were not specified). It is not clear how to perform an analogous

analysis starting from the fourth-order equations (3.29), (3.30).

Due to the nonperturbative nature of the origin of the fourth-order differential equa-

tions of motion, it seems that the standard perturbation analysis does not describe

all the physical degrees of freedom, analogously to the much more simple cases

of four-dimensional scalar fields [16]. Anyway, this case calls for a detailed and

thorough analysis.

2. The case F (z) 6≡ 0, G(z) ≡ Me−σ does not contain any pathological behavior,

the consistent Kaluza-Klein decomposition can also be performed in this case. A

remarkable feature of this choice of the parameters is that the form of the zero mode

wave function does not depend on the value of the four-dimensional mass of this mode.

However, this case may contain some serious drawbacks. Indeed, the existence of

the functions σ(z) 6≡ 0, F (z) 6≡ 0 and G(z) ≡ Me−σ, whatever the origin of these

functions is, imply that the extra dimension is not uniform in z. Thus, one can

expect that the backreaction of the bulk fields on the background metric or possible

quantum corrections are also nonuniform in z, which may violate the fine-tuned

relation between the vacuum profile of the Higgs field and the form of the background

metric. Although the violation can be very small, the effect is nonperturbative, so it

will lead to the problems discussed in the previous item. Drawing an analogy with

the four-dimensional example (3.31), the case F (z) 6≡ 0, G(z) ≡ Me−σ is similar
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to the case α = 0 in (3.31): it gives the second-order equations of motion for the

components of the fields Ψ1 and Ψ2 from the very beginning, but deviations from

G(z) ≡Me−σ may, in principle, lead to pathologies similar to those with 0 < |α| � 1

in (3.31). This point should be taken into account when considering this case.

3. The case G(z) ≡ K δ(z−L), F (z) 6≡ 0 also admits a consistent Kaluza-Klein decom-

position and does not contain any pathologies. However, it leads to the discontinuous

wave functions of the modes. This discontinuity imply that such a wave function is

just an approximation for a continuous, but very rapidly varying in the vicinity of

z = L wave function, whereas the delta-function-like G(z) is an approximation of a

very narrow and peaked, but continuous profile of the Higgs field.7 However, any

modification of the delta-function (such as, for example, δ(z−L) → Gaussian profile

of G(z)) in this case leads to impossibility to diagonalize the matrices Λ̂L,R in (3.19)

and, consequently, to fourth-order equations of motion for the components of the

five-dimensional fermion fields. This situation is also similar in some sense to the

case α = 0 in (3.31).

The cases (3.24), (3.25) seem to possess the same problems. Though it looks as if

these cases allow for consistent Kaluza-Klein decompositions in principle, they are

highly fine-tuned. First, it is impossible to pass to smooth functions F (z) and G(z)

— the existence of sign(z) is necessary for the diagonalization of Λ̂L,R in (3.19).

For example, for F (z) ∼ sign(z) and with M = 0 the choice (3.24) leads to the

natural profile G(z) ≡ const. However, if we suppose that sign(z) is an idealization

for F (z) and, in analogy with the original Rubakov-Shaposhnikov mechanism [5],

replace sign(z) in F (z) by − tanh(C(z − L)) in the vicinity of z = L, where C is a

constant, we will either get the unnatural form G(z) ∼ sign(z) tanh(C(z−L)) for the

vacuum profile of the Higgs field or violate the fine-tuned relation (3.24), if we keep

G(z) ≡ const.

Second, as it was noted above, the backreaction of the bulk fields on the background

metric or possible quantum corrections to the Higgs field potential can be nonuniform

in z, which may modify σ(z) and the vacuum profile of the Higgs field (i.e., G(z))

keeping F (z) intact. The latter will violate the fine-tuned relations in (3.24), (3.25),

again leading to the fourth-order equations of motion. Drawing an analogy with

the four-dimensional example (3.31), the cases (3.24), (3.25) are similar to the case

α = −1
4 in (3.31).

4. Contrary to the previous cases, the choice F (z) ≡ 0 looks the most safe from this

point of view (of course, if some quantum correction do not induce a nonzero effective

correction to the zero value of F (z)). Indeed, the Kaluza-Klein decomposition can

be performed in a mathematically consistent way for any G(z) without the necessity

7In standard brane world models, the branes interact with gravitation as classical objects, so “infinitely

thin brane” as a classical object is an idealization. This implies that delta-functions or step functions should

also be considered as idealizations, whereas consistent theories should admit the replacements of generalized

functions by regular functions.
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for any fine-tuning. The chiral structure of the zero Kaluza-Klein mode for (eσG)′ 6≡
0 appears to be more complicated than the one in the case G(z) ≡ Me−σ. The

wave function of the zero mode now depends on the mass of this mode, but for

the physically reasonable cases these effects can be calculated perturbatively. Again

drawing an analogy with the four-dimensional example (3.31), the case F (z) ≡ 0 is

similar to the case α = −1
4 in (3.31), but now it stays in this “degenerate” point with

any G(z) .

5 Reproducing the Standard Model by the zero Kaluza-Klein modes in

the Randall-Sundrum background

It is clear that in the flat background, discussed in section 2 (i.e., in the simplest example

of a model with universal extra dimensions [3]), the zero mode sector of the theory exactly

reproduces the Standard Model. This happens because the wave functions of all the zero

modes are just constants in that case. But it is unclear whether such a possibility to exactly

reproduce the Standard Model by the zero mode sector exists in the warped case.

The motivation for this study is the following. In the previous sections it was shown

that there are several cases, for which the Kaluza-Klein decomposition for fermions can be

performed consistently and in the correct mathematical way, leading to different forms of

the wave function and chiral structure even of the zero Kaluza-Klein mode. However, it

is well known that in the general case the interaction of gauge fields with the Higgs field

results in a modification of the shapes of the zero mode gauge boson wave functions. The

latter results in a modification of the coupling constants, leading to severe restrictions on

the fundamental energy scale of five-dimensional theory [19, 20], and these restrictions come

mainly from the zero mode sector of the effective four-dimensional theory. So, there arises

a question: which set of parameters allows one to reproduce at least the electroweak sector

of the Standard Model by the zero Kaluza-Klein modes most closely without imposing

restrictions on the size of the extra dimension? Below we will examine this topic for the

case of the Randall-Sundrum background metric [2].

5.1 Setup

To start with, let us consider a five-dimensional action, describing fermion fields minimally

coupled to the SU(2)×U(1) gauge fields in the Randall-Sundrum background with σ(z) ≡
kL− k|z|, of the form

S=

∫
d4xdz

√
g

(
−ξ

2

4
F a,MNF aMN−

ξ2

4
BMNBMN+gMN (DMH)†DNH−V (H†H) (5.1)

+iEMN
¯̂
Ψ1ΓNDM Ψ̂1+iEMN Ψ̄2ΓNDMΨ2−

√
2Y5

[(
¯̂
Ψ1H

)
Ψ2+h.c.

])
−
∫
z=0

d4x
√
gind

(
+2kH†H

)
−
∫
z=L

d4x
√
gind

(
−2kH†H+Vbr(H

†H)
)
,

where the factor

ξ =
1√
2L
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is a constant, which is introduced for convenience and chosen so that the dimension of the

bulk gauge fields is mass (in this case the coupling constants g and g′ are dimensionless);

gind
µν is the induced metric on the branes;

V (H†H) = −3k2H†H, Vbr(H
†H) = λbr

(
H†H −

v2
br

2

)2

, (5.2)

where V (H†H) is the fine-tuned bulk scalar field potential [7] and Vbr(H
†H) with λbr > 0

is the scalar field potential on the brane which will provide a nonzero mass of the Higgs

boson (also take into account the fine-tuned terms ±2kH†H on the branes in (5.1));

F aMN = ∂MA
a
N − ∂NAaM + gεabcAbMA

c
N , (5.3)

BMN = ∂MBN − ∂NBM , (5.4)

DMH =

(
∂M − ig

τa

2
AaM − i

g′

2
BM

)
H (5.5)

and the fields satisfy the orbifold symmetry conditions Aaµ(x,−z) = Aaµ(x, z), Aa5(x,−z) =

−Aa5(x, z), Bµ(x,−z) = Bµ(x, z), B5(x,−z) = −B5(x, z), H(x,−z) = H(x, z). In what

follows, we will use the gauge Aa5(x, z) ≡ 0, B5(x, z) ≡ 0. We use the extra constant kL

in the Randall-Sundrum solution for σ(z) just for convenience, in order to have Galilean

coordinates on the brane at z = L and to refer the energy units to these coordinates [21, 22].

The SU(2) doublet, constructed from five-dimensional spinors, is denoted by

Ψ̂1 =

(
Ψν

Ψ1

)
,

¯̂
Ψ1 =

(
Ψ̄ν , Ψ̄1

)
(5.6)

and the five-dimensional SU(2) singlet is denoted by Ψ2. The covariant derivatives are

defined by

DM Ψ̂1 =

(
∇M − ig

τa

2
AaM + i

g′

2
BM

)
Ψ̂1, (5.7)

DMΨ2 =
(
∇M + ig′BM

)
Ψ2. (5.8)

It is clear that the first two lines of action (5.1) describe just the five-dimensional general-

ization of the electroweak sector of the Standard Model with one generation of leptons.

The remarkable feature of the scalar field potential in (5.1) is that it provides a special

form of the vacuum solution for the Higgs field. Indeed, the vacuum solution, breaking the

gauge group SU(2) × U(1) to U(1)em, leaving the Poincare invariance in four-dimensional

space-time intact and satisfying the corresponding equations of motion, takes the form

H0(z) ≡ 1√
2

(
0

vbre−σ

)
≡ 1√

2

(
0

vbrek|z|−kL

)
. (5.9)

The constant vbr in front of the term ek|z|−kL in (5.9) is fixed by the brane localized

potential Vbr(H
†H), see (5.2); in the absence of this potential there would be an arbitrary

constant instead of vbr. It will be shown below that, though the bulk Higgs field potential is

– 31 –



J
H
E
P
0
6
(
2
0
1
6
)
1
6
5

not bounded from below, the spectrum of Kaluza-Klein modes does not contain tachyons,

indicating that the vacuum solution is classically stable under small perturbations. All the

other fields are identically zero in the vacuum. The backreaction of the Higgs vacuum field

on the background metric is also neglected (its validity will be checked later).

The zero Kaluza-Klein modes of this theory are supposed to reproduce the Standard

Model fields, so below we will focus only on the zero modes of the theory and neglect

all the higher Kaluza-Klein modes of the gauge, fermion and Higgs fields. We set the

localization function F (z) ≡ 0 in order not to worry about possible small corrections (such

as backreaction of the fields on the background metric or quantum corrections), which could

lead to nonperturbative effects and possible pathologies, — as follows from the results of

section 4, in the case F (z) ≡ 0 such a violation of the fine-tuned relation between the

profile of the Higgs field and the form of the background metric may lead only to a small

modification of the chiral structure of fermions, as well as to a small modification of the

gauge boson wave functions.

5.2 Gauge boson and fermion zero modes

From the very beginning, with the help of transformations

Zµ =
1√

g2 + g′2

(
gA3

µ − g′Bµ
)
, Aµ =

1√
g2 + g′2

(
gBµ + g′A3

µ

)
, W±µ =

1√
2

(
A1
µ ∓ iA2

µ

)
,

(5.10)

it is convenient to pass to the physical degrees of freedom of the theory. It is not difficult to

show that the equations for the wave functions and the masses of the Kaluza-Klein modes

in the vacuum (5.9) are just [7]

−m2
W,nfW,n − ∂5(e2σ∂5fW,n) +

g2

4ξ2
v2
brfW,n = 0, (5.11)

−m2
Z,nfZ,n − ∂5(e2σ∂5fZ,n) +

g2 + g′2

4ξ2
v2
brfZ,n = 0, (5.12)

−m2
A,nfA,n − ∂5(e2σ∂5fA,n) = 0. (5.13)

Remarkably, for all the zero modes (from here and below we omit the superscript “0” for

the zero (n = 0) modes of the fields) the normalized wave functions are (recall the factor

ξ = 1√
2L

in (5.1))

fW (z) ≡ 1, fZ(z) ≡ 1, fA(z) ≡ 1, (5.14)

and

mW =
gv

2
, mZ =

√
g2 + g′2v

2
, mA = 0, (5.15)

where

v =
vbr
ξ

= vbr
√

2L (5.16)

must be identified with the vacuum expectation value of the Higgs field in the Standard

Model.
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Situation with the fermions is also very simple. Indeed, according to (3.15), (3.16)

with F (z) ≡ 0, the zero modes of the fermion fields can be represented as

Ψ̂1(x, z) = Ce−2σ(z)

(
νL(x)

ψL(x)

)
, Ψ2(x, z) = Ce−2σ(z)ψR(x), (5.17)

where 1
C2 =

L∫
−L

e−σdz is a normalization constant. We see that all the fermion zero modes

have the same wave function f(z) = Ce−2σ(z). According to (3.15), (3.16), (5.9) and (5.1),

the masses of the zero modes are

mψ = Y5vbr = Y v, (5.18)

mν = 0, (5.19)

where Y = Y5ξ = Y5√
2L

.

Substituting the solutions for the zero modes of the gauge and fermion fields into the

five-dimensional action and integrating over the coordinate of the extra dimension, we get

exactly the gauge boson and lepton sectors of the Standard Model. We do not present

here the calculations and the result, they are straightforward. This happens because the

overlap integrals, involving the wave functions of fermions and gauge bosons reduce to∫
e3σf2(z)dz = 1

(because of the fact that the wave functions of gauge bosons are just constants, whereas the

wave functions of all fermion fields are the same). An interesting observation is that the

terms describing the self-interaction of gauge bosons also appear to be exactly the same as

those in the Standard Model — again this happens due to the fact that the wave functions

of gauge bosons are just constants. It should also be noted that two more generations of

leptons, as well as quarks and gluons, can be added to the theory in a fully analogous way.

At this step we can make the observation that in the case under consideration there is

no modification of the gauge boson wave function due to the interaction with the vacuum

solution of the Higgs field. The constant wave functions of gauge bosons (5.14) ensure

the charge universality [21] and allow one not to worry about the problems caused by the

modification of the gauge boson wave functions and its effect on the precision electroweak

data, discussed in [19, 20]. Of course, the higher Kaluza-Klein modes still affect the four-

dimensional effective theory and their contribution puts constraints on the fundamental

parameters of the theory. The corresponding calculations are very complicated and should

take into account the contributions coming from the Kaluza-Klein modes of the gauge,

fermion and Higgs fields, including the nontrivial interactions between them. But this issue

lies beyond the scope of the present paper and such calculations will not be presented here.

Thus, it is possible to exactly reproduce the fermion and gauge boson sectors of the

Standard Model by the zero Kaluza-Klein modes in the five-dimensional warped brane

world model. Note that though we take the Randall-Sundrum background metric [2] as

the metric of the model under consideration, its explicit form has not been used for deriving
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the effective action for the gauge boson and fermion zero modes — it was obtained in a

model-independent way using the results of section 4.8 However, as we will see below, in

the Higgs sector there are some small deviations from the Standard Model already in the

case of the Randall-Sundrum background. Their calculation demands the explicit form of

the metric and wave functions of the fields. So, let us proceed to the Higgs field.

5.3 The Higgs field

First, let us check that the backreaction of the vacuum solution of the Higgs field on the

background metric can be neglected. To do it, we will simply compare the value of the

five-dimensional cosmological constant Λ = −24M3
5k

2 [2], where M5 is the five-dimensional

Planck mass, with the values of the bulk scalar field potential V (H†H) = −3k2H†H in the

vacuum (5.9). For simplicity, we also suppose that M5 ≈ k and thus |Λ| ≈ 24k5. Then,

we get

|V (H†H)|=3k2H†H=
3

2
k2e−2σv2

br ≤
3

2
k2v2

br=
3

2
k2 v

2

2L
=

3

4kL

v2

k2
k5 ≈ 1

32kL

v2

k2
|Λ|, (5.20)

where we have used (5.16). For v = 246GeV , k = 2TeV and kL = 35 we get

|V (H†H)| . 1.35× 10−5|Λ| � |Λ|. (5.21)

The latter shows that the Randall-Sundrum background metric remains intact with a good

accuracy under the influence of the vacuum solution of the Higgs field.

Now we represent the Higgs field H as

H(x, z) ≡ e−σ
(

ρ1(x, z) + iρ2(x, z)
1√
2

(vbr + χ(x, z)) + iρ3(x, z)

)
, (5.22)

where χ, ρ1, ρ2 and ρ3 are real fields. Substituting this representation into the equation of

motion, coming from (5.1), and retaining only the linear terms in the fields χ, ρ1, ρ2 and

ρ3, we get (
e2σχ′

)′ −�χ− 2λbrv
2
brδ(z − L)χ = 0, (5.23)(

e2σρ′i
)′ −�ρi = 0, i = 1, 2, 3. (5.24)

It is not difficult to show that the Kaluza-Klein masses of the fields χ, ρ1, ρ2 and ρ3 are

real (see appendix E), i.e., there are no tachyons in the spectra of the modes, though the

bulk scalar field potential in unbounded from below (5.2). Below we will focus only on the

zero modes.

First, it is clear that the solutions to equation (5.24), which are connected with the

zero mode wave functions of the fields ρi, i = 1, 2, 3, are just constants, whereas the masses

of these modes are mρi,0 = 0. Due to this fact, using the residual gauge transformations,

8It is interesting to note that analogous results can be obtained for the case F (z) 6≡ 0 (but, of course,

with G(z) ≡Me−σ) too, but, as it was noted above, such a case is not protected from the nonperturbative

effects discussed above.
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which are left after imposing the gauge Aa5(x, z) ≡ 0, B5(x, z) ≡ 0, we can set all the zero

modes of the fields ρi, i = 1, 2, 3 identically to zero. This can be done exactly in the same

way as in the four-dimensional Standard Model, so we will not discuss this issue in detail.

It should be noted that higher Kaluza-Klein modes of these fields can not be gauged out

and should be taken into account in the corresponding calculations.

Thus, the unitary gauge can be imposed on the zero mode sector of the Higgs field.

The equation for the reduced wave function of the zero mode fχ,0(z) = fh(z) of the field χ

(the entire wave function is e−σfh(z), see (5.22)) takes the form(
e2σf ′h(z)

)′
+m2

hfh(z)− 2λbrv
2
brδ(z − L)fh(z) = 0, (5.25)

where mh = mχ,0 is the mass of the zero mode. In what follows, we will consider the term

with λbr as a perturbation and represent fh(z) as

fh(z) =
1√
2L

(1 + gh(z)). (5.26)

For gh(z) in the leading order we obtain(
e2σg′h(z)

)′
+m2

h − 2λbrv
2
brδ(z − L) = 0. (5.27)

Integrating this equation over the coordinate of the extra dimension z, we obtain

m2
h =

2λbrv
2
br

2L
= 2λv2, (5.28)

where v is defined by (5.16) and

λ =
λbr
4L2

= λbrξ
4. (5.29)

Solving equation (5.27), we can get the properly normalized (up to and including the terms

∼ m2
h

k2
) approximate solution for fh(z), which has the form

fh(z) =
1√
2L

(1 + gh(z)) ≈ 1√
2L

(
1 +

m2
h

4k2

(
kL− 1 + e−2kL

kL
− (2k|z| − 1)e2k|z|−2kL

))
≈ 1√

2L

(
1 +

m2
h

4k2

(
kL− 1

kL
− (2k|z| − 1)e2k|z|−2kL

))
. (5.30)

It is clear that if λbr = 0 (i.e., if we turn off the brane scalar field potential), the mass of the

Higgs boson is equal to zero, whereas the wave function of the Higgs boson is proportional

to the vacuum profile of the Higgs field e−σ. Since for solution (5.30) the relation

L∫
−L

gh(z)dz = 0 (5.31)

holds, the normalization condition

L∫
−L

f2
h(z)dz = 1 (5.32)

is fulfilled up to and including the terms of the order of
m2
h

k2
.
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An important remark is in order here. The perturbation analysis and solution (5.30)

for the Higgs boson wave function make sense only if

|gh(z)| � 1.

It is not difficult to find that the maximum of |gh(z)| is attained at z = L, |gh(L)| ≈
17 (125GeV )2

k2
, where we have used kL = 35 and mh = 125GeV . We will restrict ourselves

to considering the values of the parameter k such that

k & 2TeV, (5.33)

for which

|gh(L)| . 0.066, (5.34)

which looks rather reasonable. For the smaller values of k one should obtain an exact

solution for the Higgs boson wave function.

Now we are ready to calculate the couplings of the zero mode of the Higgs field

χ0(x, z) = fh(z)h(x), (5.35)

in which the four-dimensional field h(x) can be identified with the Standard Model Higgs

boson. We will calculate all the couplings to gauge bosons and fermions up to and including

the terms of the order of
m2
h

k2
.

First, substituting (5.35) into the five-dimensional action of the Higgs field, integrating

over the coordinate of the extra dimension and using (5.25), (5.29) and (5.16), we get the

standard action resembling the one of the Standard Model Higgs boson∫
d4x

(
1

2
∂µh∂µh−

m2
h

2
h2 + (1 + δ3)λvh3 + (1 + δ4)

λ

4
h4

)
, (5.36)

where

δ3 =
(√

2Lfh(L)
)3
− 1, δ4 =

(√
2Lfh(L)

)4
− 1. (5.37)

For (5.28), (5.30) and with kL = 35 we have λv =
m2
h

2v , λ =
m2
h

2v2
and

δ3 ≈ 3gh(L) ≈ −
3m2

h

2k2

(
kL− 1 +

1

2kL

)
≈ −51

m2
h

k2
, (5.38)

δ4 ≈ 4gh(L) ≈ −
2m2

h

k2

(
kL− 1 +

1

2kL

)
≈ −68

m2
h

k2
. (5.39)

Although the brane scalar field potential with λbr (more precisely, the “mass” term which

comes from this potential) is considered here as a perturbation, the self-coupling constants

of the Higgs boson were calculated including the corrections of the order of
m2
h

k2
.

Now let us consider the interactions of the Higgs boson with the gauge bosons. In fact,

all the interaction terms, in addition to the structures inherent to the Standard Model

interaction terms, contain the overlap integrals of the form

L∫
−L

e4σe−2σf2
W,Z(z)(e−σvbr)(e

−σfh(z))dz (5.40)
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for hWW and hZZ interaction terms, and

L∫
−L

e4σe−2σf2
W,Z(z)(e−σfh(z))2(z)dz (5.41)

for hhWW and hhZZ interaction terms. The term e4σ comes from
√
g, whereas the

term e−2σ comes from gµν . Integral (5.41) is equal to unity regardless of the use of the

perturbation theory — with (5.14) it just comes to the normalization condition for the

Higgs boson wave function. As for integral (5.40), using equations (5.14), (5.26) and (5.31)

we get

L∫
−L

e4σe−2σf2
W,Z(z)(e−σvbr)(e

−σfh(z))dz = vbr

L∫
−L

fh(z)dz =
√

2Lvbr = v. (5.42)

Thus, the coupling constants of the Higgs boson to the gauge bosons appear to be the

same as in the Standard Model (recall that v should be identified with the Standard Model

Higgs field vacuum expectation value), at least up to and including the terms of the order

of
m2
h

k2
for hWW and hZZ interactions.

The last step is to consider the interaction of the Higgs boson with fermions. The

corresponding coupling constant to the field ψ takes the form

√
2Y5

L∫
−L

e4σ
(
Ce−2σ

)2( 1√
2
e−σfh(z)

)
dz =

Y5√
2L

L∫
−L

e−σC2 (1 + gh(z)) dz

= Y

1 +

 L∫
−L

e−σdz

−1 L∫
−L

e−σghdz

 = Y (1 + δψ) , (5.43)

where Y =
mψ
v is the Standard Model coupling constant. The integrals in (5.43) can be

easily evaluated, revealing

δψ ≈
m2
h

4k2

(
14− 6kL− 9

kL

9

)
≈ −5.45

m2
h

k2
(5.44)

for kL = 35, where we have dropped the terms ∼ e−kL and smaller terms.

5.4 Small discussion

In this section, an attempt was made to construct a five-dimensional theory in the Randall-

Sundrum background with all the fields living in the bulk, such that its zero mode sector

reproduces the Standard Model (namely, its electroweak and Higgs sectors) most closely.

The results presented above show that the fermion and gauge boson sectors of the Standard

Model can be exactly reproduced, including the interaction terms, by the zero Kaluza-Klein

modes of the corresponding five-dimensional fields. This became possible because of the

special choice of the fine-tuned bulk and brane potentials for the Higgs field, providing the
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necessary vacuum profile of the Higgs field. Although the analysis was performed using only

one generation of leptons, two more generations, as well as the quark and gluon sectors,

can be added to the theory (5.1) in an analogous way, leading to the same results.

The difference with the Standard Model arises in the interaction terms with the Higgs

boson. The coupling constants to the gauge bosons appear to be the same as in the

Standard Model (at least up to and including the terms of the order of
m2
h

k2
), but the

coupling constants to fermions and self-coupling of the Higgs boson differ from those in

the Standard Model. The relative deviations in these coupling constants can be encoded

in the dimensionless parameters δ3 and δ4 for the self-couplings of the Higgs boson (5.36)

and in the dimensionless parameter δψ for the couplings to fermions (5.43), such that

δ3 ≈ −51
m2
h

k2
, δ4 ≈ −68

m2
h

k2
, δψ ≈ −5.45

m2
h

k2
. (5.45)

For example, for k = 2TeV and mh = 125GeV we get

δ3 ≈ −0.2, δ4 ≈ −0.27, δψ ≈ −0.02. (5.46)

For the values of the parameter k < 2TeV one may expect that, in addition to the

deviations from the Standard Model in the self-couplings of the Higgs boson (5.36) and in

the Higgs boson couplings to fermions, there will arise analogous deviations in the coupling

constants of hWW and hZZ interactions. Indeed, the integral (5.40)

vbr

L∫
−L

fh(z)dz 6= v (5.47)

in the general case.

Of course, the higher Kaluza-Klein modes of the fields also affect the four-dimensional

effective theory and their contribution should be taken into account. However, as it was

noted above, such a complicated analysis lies beyond the scope of the present paper.

6 Conclusion and final remarks

In the present paper the Kaluza-Klein decomposition for the fermion fields living in the

bulk of five-dimensional brane world models with compact extra dimension is examined in

detail in a mathematically consistent way. The key feature of the analysis is the derivation

of systems of first-order differential equations for the wave functions of the Kaluza-Klein

modes of the fields, which allow one to obtain the four-dimensional effective action in a

model-independent way. An important point is that in order to properly use the systems

of first-order equations, it is necessary to have second-order differential equations for the

components of the five-dimensional fermion fields (or of their linear combinations), which

suggest the appropriate separation of variables and provide the complete set of possible

physical degrees of freedom of the four-dimensional effective theory. It is shown that

such second-order equations of motion can be obtained not in all the cases — for the

majority of five-dimensional fermion field Lagrangians, most of which are widely discussed
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in the literature for phenomenological reasons, the only obvious possibility is to get fourth-

order differential equations for the components of five-dimensional fermion fields. Since

these components of the five-dimensional spinors make up four-dimensional fermion fields,

whereas higher-derivative theories are known to contain pathologies [16], this makes an

obvious problem. More precisely, from this point of view the most of the cases, naively

admitting a localization of the fermion zero mode at one of the branes and a generation

of its mass, are disfavored. Of course, it is possible that there are some ways to solve the

problem and to avoid fourth-order differential equations of motion or to solve them, which

are not clear for me at the moment. However, I think that this problem should at least be

mentioned, whereas these “pathological” cases deserve careful and thorough examination.

For some of the cases, for which the second-order differential equations for the wave

functions can be obtained, the detailed Kaluza-Klein decomposition procedures, providing

all the physical degrees of freedom of the corresponding four-dimensional effective theories,

are presented and discussed in detail. It was found that the procedures of the Kaluza-Klein

decomposition are completely different for different cases.

Using the general results, obtained in the paper, a special fine-tuned case was consid-

ered in order to examine the possibility to reproduce the ordinary four-dimensional Stan-

dard Model, including all the interactions of the fields, by the zero Kaluza-Klein modes

most closely regardless of the size of the extra dimension (or, equivalently, the value of the

five-dimensional energy scale) and without taking into account the higher Kaluza-Klein

modes. As a particular background, the Randall-Sundrum solution for the metric was

considered. It was shown that, with a special choice of the bulk and brane Higgs field

potentials, it is possible to exactly reproduce the fermion and gauge boson sectors of the

Standard Model including the interactions between the fields. However, the deviations from

the Standard Model can not be fully avoided: the coupling constants of the Higgs boson to

fermions, the Higgs boson self-coupling constants and, when the perturbation theory can

not be used, the coupling constants of hWW and hZZ interactions differ from those of the

Standard Model. In the case, when the perturbation theory can be used (roughly speaking,

when the inverse anti-de Sitter radius k & 2TeV ), the deviations were calculated explicitly

and were shown to be proportional to the ratio (125GeV )2

k2
. However, one should bear in

mind that the proposed model has a drawback — there is a fine-tuning not only between

the bulk and brane scalar field potentials, but also between the scalar field potentials and

the five-dimensional background metric (through the parameter k). The latter looks rather

unnatural, at least in the absence of a symmetry which can ensure such a fine-tuning.
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A Relation between the first-order and second-order differential equa-

tions for the case G(z) ≡ Me−σ

Let us take equation (4.7) and differentiate it with respect to z. We get

f ′′n + (2σ′′+F ′)fn+ 5σ′f ′n+σ′(mn+M)e−σf̃n+ (F −3σ′)f ′n− (mn+M)e−σf̃ ′n = 0, (A.1)

where we have used 2σ′ = 5σ′ − 3σ′. After substituting f ′n and f̃ ′n from equations (4.7)

and (4.8) into the last two terms of (A.1), all the terms with f̃n vanish and we arrive

exactly at (4.5).

A fully analogous procedure can be performed with equation (4.8), resulting in (4.6).

B The absence of tachyonic modes in the case F (z) ≡ 0

It is convenient to represent equation (4.23) as

m2f + eσ
(
∂5 + 2σ′

)
eσ
(
∂5 + 2σ′

)
f + eσ (eσG)′ f − e2σG2f = 0. (B.1)

Multiplying this equation by e3σf , integrating over the coordinate of the extra dimension

z, performing the integration by parts in the two terms and combining the resulting terms,

we arrive to the following equality:

m2

∫
e3σf2dz =

∫
e5σ
(
f ′ + 2σ′f +Gf

)2
dz. (B.2)

Since both integrals are nonnegative, we get m2 ≥ 0.

C The absence of tachyonic modes in the case G(z) ≡ K δ(z − L)

In order to examine a possible existence of tachyonic modes, let us change m2 → −µ2

in equations (4.67) and (4.68), where µ2 > 0. In this case, instead of equations (4.69)

and (4.70) we get

f ′(z) + (2σ′ + F )f(z) = β̂µe−σf̃(z), (C.1)

f̃ ′(z) + (2σ′ − F )f̃(z) = β̂µe−σf(z), (C.2)

where β̂ = 1 or β̂ = −1. Without loss of generality we can take β̂ = 1. Substitut-

ing (4.65), (4.66) into equations (3.6), (3.7) with G(z) ≡ Kδ(z−L) and using (C.1), (C.2),

we get

iγµ∂µψL + µψR = 0, iγµ∂µψR − µψL = 0, (C.3)

iγµ∂µψ̂L − µψ̂R = 0, iγµ∂µψ̂R + µψ̂L = 0 (C.4)

everywhere except z = L. At the point z = L equations (3.6) and (3.7) again give (4.73)

and (4.74). Substituting (4.73) and (4.74) into (C.4), we can find that (C.3) and (C.4) are

consistent if the condition

lim
ε→+0

K2f2(L)

4f̃2(L− ε)
= −1. (C.5)

holds. Clearly, this equation does not provide any roots.
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D Orthogonality of the modes in the case G(z) ≡ K δ(z − L)

Let us take the integral

mn,i

L∫
−L

e3σ
(
fn,i(z)fk,i(z) + f̃n,i(z)f̃k,i(z)

)
dz, (D.1)

where i = 1 or i = 2. Substituting equations (4.69), (4.70) say, for the fields fn,i, f̃n,i, into

this integral, performing the integration by parts and again using equations (4.69), (4.70),

we get

(mn,i −mk,i)

L∫
−L

e3σ
(
fn,i(z)fk,i(z) + f̃n,i(z)f̃k,i(z)

)
dz

= 2e4σ(L)
(
fn,i(L)f̃k,i(L)− f̃n,i(L)fk,i(L)

)
, (D.2)

where f̃n,i(L) = lim
ε→+0

f̃n,i(L − ε), f̃k,i(L) = lim
ε→+0

f̃k,i(L − ε) and the symmetry properties

of the functions fn,i(z), fk,i(z), f̃n,i(z), f̃k,i(z) were taken into account. With (4.76), the

r.h.s. of equation (D.2) can be represented as

2e4σ(L)
(
fn,i(L)f̃k,i(L) + f̃n,i(L)fk,i(L)

)
= −Ke4σ(L)fn,i(L)fk,i(L)

(
1

βi
− 1

βi

)
= 0.

Thus, from (D.2) and with mn,i 6= mk,i we get (4.80).

Now let us take the integral

mn,1

L∫
−L

e3σ
(
fn,1(z)fk,2(z)− f̃n,1(z)f̃k,2(z)

)
dz. (D.3)

Performing the calculations, fully analogous to those presented in the previous paragraph,

we get

(mn,1 +mk,2)

L∫
−L

e3σ
(
fn,1(z)fk,2(z)− f̃n,1(z)f̃k,2(z)

)
dz

= −2e4σ(L)
(
fn,1(L)f̃k,2(L) + f̃n,1(L)fk,2(L)

)
. (D.4)

With (4.76), the r.h.s. of equation (D.4) can be represented as

−2e4σ(L)
(
fn,1(L)f̃k,2(L) + f̃n,1(L)fk,2(L)

)
= Ke4σ(L)fn,1(L)fk,2(L)

(
1

β1
+

1

β2

)
= 0.

Thus, from (D.4) we get (4.81).
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E The absence of tachyonic modes of the Higgs field

The equation for the wave function of the n-th Kaluza-Klein mode, coming from (5.23),

takes the form (
e2σf ′χ,n(z)

)′
+m2

χ,nfχ,n(z)− 2λbrv
2
brδ(z − L)fχ,n(z) = 0, (E.1)

where mχ,n is the mass of this mode. Multiplying it by fχ,n and integrating the result over

the coordinate of the extra dimension, we get

m2
χ,n

L∫
−L

f2
χ,n(z)dz =

L∫
−L

e2σ
(
f ′χ,n(z)

)2
dz + 2λbrv

2
brf

2
χ,n(L). (E.2)

Since the r.h.s. of this equation and the integral in the l.h.s. are positive for fχ,n(z) 6≡ 0,

we get m2
χ,n > 0.

Analogously, for equation (5.24) we can obtain

m2
ρi,n

L∫
−L

f2
ρi,n(z)dz =

L∫
−L

e2σ
(
f ′ρi,n(z)

)2
dz, (E.3)

leading to m2
ρi,n ≥ 0.
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