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1 Introduction

In an accompanying paper [1] we have computed a free energy and the mass gap in the
d-regime in the framework of chiral perturbation theory without an explicit symmetry
breaking term, in finite asymmetric volumes. The computation was done both in dimen-
sional regularization (DR) and in the lattice regularization. Matching the results in two
regularizations enables us to establish relations between the 4-derivative couplings appear-
ing in these regularizations. The technical details are provided in the present paper.

In the computation of the free energy and the finite-volume mass gap we encounter
one and two loop integrals over the volume. A class of 1-loop sums with dimensional
regularization have been considered in detail by Hasenfratz and Leutwyler [2] in DR, we
summarize some of their results and also add some more. The main part of the paper deals
with the precise evaluation of the 2-loop sunset diagrams for both regularizations. For our
purposes we only require diagrams with zero external momenta but the methods are more
general. Massive sunset diagrams in finite volume have been treated in detail by Bijnens,
Bostrom and Léhde [3, 4], but as far as we can tell their methods are not applicable for zero
masses. In appendix B we outline an alternative method of calculating sunset diagrams by
introducing a mass, in addition to the finite volume. This setup allows to take the massless
limit as well.

Finally in section 6 we consider 1- and 2-loop massless sums in asymmetric finite
volumes with lattice regularization. For the 1-loop sums we introduce a new method to
compute precisely the coefficients of their expansions in the lattice cutoff.

The motivation to consider lattice-regularized chiral perturbation theory is addressed
in [1].



2 Dimensional regularization at finite volume

Our goal is to compute massless one and two loop diagrams in finite volume with periodic
boundary conditions within the framework of dimensional regularization. As in [2] we start
by considering diagrams in the massive theory.

The free massive propagator is

1 e'Pr
Gla, M) == 5, 2.1
(= M) Vzp:p2+M2 21

where p runs over a d-dimensional momentum space infinite lattice

p=2n(no/Lo,...,na,/La,), (2:2)

where d; = d — 1 and n,, are integers and

ds
V=1L (2.3)
pn=0

The numerical evaluation of the graphs will be done for spatially cubic volumes L1 = ... =
L4, = L, either for the hypercubic case Ly = L or for the elongated geometry Lo > L.

We will dimensionally regularize by adding ¢ extra compact dimensions of size L and
analytically continue the resulting loop formulae to ¢ = —2e.

2.1 Massive propagator sums in DR

In appendices of their classic paper [2] Hasenfratz and Leutwyler considered the sums

Gy = — 3" H(p), (2.4)

Hy(p) =T(r)(p* + M?)™", (2.5)
where p is now a D = d + ¢ dimensional vector and
Vp=VII. (2.6)

For convenience, in this subsection we reproduce some of their results, in particular those
that we need in [1].
Invoking the identity

LS ) = Flw) (2.7)
Vb

where f(x) is the Fourier transform of f(p):

fla) = / i '™ f(p) (2.8)
(2m)P ’ '
and the sum over w extends over the coordinate space lattice

w = ('U()Lo, e 7UD—1LD—1) 5 (29)



where v are integers, one obtains

G, =Y Hy(w), (2.10)

with - )
H,(z) = / AN (4mA) P2 exp <—>\M2 - L) . (2.11)
0
In the sum over w the term w = 0 corresponds to the infinite volume limit
7 d’p 2\ — L(r—D/2), p_y
H,(0)=Groo=T M7 =——— M7 2.12
(0)= G =T0) [ 53508+ M%) = S (212)

In particular

M G+ 0+ 40D -2 forD-2~0,

Gioo = —2£ for D =3, (2.13)
Mo [%4+6}+O(D—4) for D —4~0,
with 1
C= -5 [In(4r) —ye + 1], (2.14)

where yp = —I"(1) = 0.577... is the Euler constant.
It is useful to separate the infinite volume term to arrive at the representation

Gy = Groo+9r+0(D—d), (2.15)

gr:/ d)\)\r_l(47r)\)_d/Qe_AMQZexp -
0 v#£0 p=0

ds 272
vl
I (2.16)

In this decomposition the volume dependence is exclusively contained in the function g,

which is unambiguous for any integer value of D and is entire in .

The dimensional regularization only affects the volume-independent part G, o which
contains poles at D = 2r,2r +2,....
The sum occurring in the representation of g, converges rapidly if the sides of the box

are large compared to the Compton wavelength, ML, > 1. If all L, — oo then g, — 0

exponentially. Note if one considers other limits e.g. the temperature to T'=1/Lg to zero

ie. Lyg — oo with Ly, ..., Ly, fixed, then g, approaches a finite limit
. d) _ -1/2 (d—1)
Jim g1 = (4m) 72,7 (2.17)

For r = 0 this relation reflects the fact that in the limit 7' — 0 the partition function is dom-
inated by the contribution from the ground state, the quantity Indet D/2Lg approaching
the Casimir energy associated with the ds—dimensional box.

For the goal of considering the massless sums we need the properties of g, in the limit
M — 0 where infrared singularities occur. Introducing

S@y= Y ™ (2>0), (2.18)

n=—oo



(related to the Jacobi theta-function, defined in (3.52)), we have

IS 2\ |1 7

where L is some reference scale,

(,=1L,/L, (2.20)

and
z=ML. (2.21)

We will use the shorthand notation £ = {g, 41, ..., ¢4, } for the relative sizes in the physical
dimensions and £ = L/L = Lo /L for a =d,...,D — 1 for the extra dimensions.

The dependence on the auxiliary scale L of a given quantity (when the other variables
are made dimensionless) is given by its dimension. Using this we will often use L = L for
the spatially cubic volume and denote ¢ = ¢y = Lo/Ls and i = E/LS.

Since the product in (2.19) often appears below we also introduce the ancillary defini-
tion (with some abuse of notation)

S (f) ~ jf[; s <EEL> LS <;2> = ﬁ) s (é) . (2.22)

(For the general case of D dimensions we shall also use Sp(t/¢?) and Sp(¢2/t) defined
analogously. )

Note that the sum in (2.18) converges very fast for z > 1. The function S(x) satisfies
the well known remarkable identity

S(z) =251, (2.23)

Using (2.18) for x > 1 and (2.23) for = < 1 one needs only a few terms in the corresponding
sums to calculate S(z) very precisely.
Using (2.23) one obtains the representation

1 [L2\ .
gr = 7d E [Ar +V B, — Br—d/Q] ) (224)
where
1 [ 2%t t
A== r=t Sias — 2.2
v e (<5) s (7)), 225
e’} 2t
B,= | dt¢! _zt 2.2
/ exp ( M) | (2.26)
and
ds
v=[[t=vL" (2.27)
pn=0



d 1 2 3 4

a_y/2 | 0.04719755120 | 0.1044122116 | 0.1750738214 | 0.2641535689
Qg 0.04619141793 | 0.1008796989 | 0.1667047726 | 0.2474072414
aijp | 0.04619141793 | 0.0997350800 | 0.1627025205 | 0.2379659789
a1 0.04719755120 | 0.1008796989 | 0.1627025205 | 0.2349151988
agjp | 0.04929326270 | 0.1044122116 | 0.1667047726 | 0.2379659789
Qs 0.05265787558 | 0.1106437295 | 0.1750738214 | 0.2474072414

Table 1. Values for a, for £, =1 Vpu.
In (2.25) we introduced the notation [...Jsyr which will be used often below. It is
defined by

[@(t;.. o,
D(t;...) | = (L) —
(@ g = (E;- ) {[(I)(t;m)]m’

where [®(t;...)], and [®(¢;...)],, denote the leading asymptotic parts of ®(¢;...) at ¢ — 0

for0<t<1,
(2.28)

for 1 <t< oo,

and t — oo, respectively. According to (2.18) and (2.23) one has [S(z)], = 2~/ and
[S(z)],, = 1. In particular, in (2.25) one has
Su LY =y Si( L =1 (2.29)
7)), , 7). . .

The quantity A, does not contain infrared singularities and has an expansion in M?
of the form

A, =3 (-2) e (2.30)
" =\ dn pl ot ’
The expansion coefficients' depend on d and the ratios Ly
1 [ t
s = — dtt 1S | = . 2.31
° V /0 I: I (62 ) :| sub ( )

Some values for oy for £, = 1, Vu are given in table 1.
Infrared divergences are contained in the incomplete I'-function B, in the form of
fractional powers of M?2:

2 —S o0 2 n
z 1 z 1
By =|— I'(s)— Y —|(—— .
3 <47r> () Zn! < 47T> n+s

n=0

(2.32)

The pole in the I'-function at r = —N, N € N is canceled by a pole occurring in the
piece which is analytic in M. Merging the two singularities one obtains a logarithmic

N N
(_1)N+1 22 22 1
B y=-—"_ (2 In (- Nt
N N1 i M\ gr ) TE ;n

1/ 2\" 1
R _—— N:
* Z n!( 471') N-—-n’

!This expression is equivalent to the one given in [2] but has a more compact form.

contribution

(2.33)

0,1,2,...




For z = 0 and s < 0 one has
1
By|,_o=—, for s < 0. (2.34)
s

The small M expansions of g, for integer r can be obtained from that of gg using the
recursion relations

gr+1 = _dgr/dM2 . (2.35)

For d = 2 the expansion of gg takes the form

B 1 -1 22 = 1 2n
9= 13 ! 2V " In(z) gln(z) +nz:;)”!6nz ] ; (2.36)
Bo=ap—1+V ! {In(dr) — ve}, (2.37)
1
B = - [ron — {~In(am) 43— 1+ V7] (2.38)
1\" 1 1

= _—— — — > 2 == 2 . 2.

Bn ( 47r> [O‘”+n—1 nv]’"— d (2:39)
For d = 3:

1| gy In( )—Z—3+iiﬁ 2n (2.40)

90 =73 “ 7 b — n! n® ’ ’

2
o= a0 2 + V71 (i) — 7} (2.41)
1\" 2 1
For d = 4:
- 1 1 24 1 — 1 2n
1
fo=ao — 5 + V" {In4r) — 75} | (2.44)
1
br= 1o [OQ —In(47) +vg —1— 2)}} : (2.45)
1\" 1 1

5n—<—4ﬂ_> [an—FH—nv]a n#0,2, d=4. (2.46)

The table 2 gives results for the symmetric box £, = 1 Vi and table 3 for £ = 2 for
d=3,4.

2.1.1 Sums with extra factor in the numerator

Next we apply the methods of Hasenfratz and Leutwyler to the sums

1
Gr1= 7 Zp:szr(p) , N0 Sum over v. (2.47)



3

4

Bo
b1
B2

1.45384668796818338855
0.22578495944075803348
0.01060752889198424526

1.70121582349712182477
0.14046098554536575282
—0.02030477369161629693

Table 2. Values for 3, for ¢, =1 Vu for d = 3, 4.

3

4

Bo
b1
B2

0.74461239033155890201
0.14370432528775141208
0.02021612362190113525

0.98194779750230477518
0.05911493648278131899
—0.01075957063969698115

We have

Table 3. Values for 3, for ¢,

=1, p>0and £=2.

Gr,l = Gr,l,oo + gr1 +0 (D - d) )

where for infinite volume:

dDP 2/ 2 2 L(r—1-D/2) p o 1
roo:F M = M—T+2:f
Groe =T0) [ gt ot + 12y = 3G

and
1
gr1 = igr—l +E,2jhra

1 o0
hy = —ELQ / AN 3N Y2 MME N 2 exp [ -
0 v

Denote the logarithmic derivative of S(x) by

ds 272
o

= 4\

satisfying the relation

With this one has

1
hr:ﬁ

_S'(x) T
7@ =5 = 5@
T(w) =~

L2 r—1 00
<4) / dt¢7—4/2-3 exp
4 0

Putting the parts together we have

11

gr1 = iﬁ

22t 2 22
2\ hl
()7 () (s

LQ r—1
<47r> [—Bi_1-42 + D;] ,

r—1,00

).

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)



where D, has the expansion in z:

> 22\" 1
r = Z _E a’)/r—i-na (2'56)

2 e[ s (L
=g ), o P (7) s @), =

For the definition of [...]sup see (2.28). Note that [T'(x)]o = —1/(2z) and [T'(z)]s = 0.
For the totally symmetric box £, =1, V u we have

2

with

Vs = g(s —Das—1, =1. (2.58)
We then have for D ~ 3:
1
= — -2 D — M 2.
Gon = oz b =2+ O(D=3) +O(M), (259)
and for D ~ 4:
Gog = ——5 [v2 — 1]
) L2
sml, L ) (2.60)

(note 2 depends on d).

2.1.2 Keeping first order D — d terms in G,

In our computation [1] we need to keep in consideration order ¢ = D — d terms in G, i:

GT,l - Gr,l,oo + gr,l; (261)
where
6= L (Y i 4 em (2.62)
7“71 - LD 47T 2 T v T ) .
with
o0 2 A2 q 2
grz/ dtt7= P22 exp (—“) S<£> Sy (£> —1] ) (2.63)
0 ™ t t
00 2 52\ ¢ 2 2
o= [T (s (F) 1 (B)s(F). em
0 T t t t
So )
1 L2\ ;
Gra = (1= qInL)gra (0) +a75 (W> d b +0(g) , (2.65)
with
00 2
m__ L r1 A (s (BN (L t
= my ), exP( 47r> [“(@5 2))"\e)%\e)],,
U 2, (2.66)
2 r—d/2—2 _rt
+4/1 dtt ln(t)exp( 7r>‘
For the expression appearing here one has [...Jo = 22V ¢~ %/271In(¢) and [.. ] = 0.



We introduce
e, e
OO

They have a finite limit for /—

r\L, = T3y | - ) 2.
prlteoe) = 35 [Tare o i ()] (2.69)
7l 00) = — /Oodtt”_lln(t) r(L)s, (L (2.70)
N TV Z)7N\E) ‘
Using these for z =0 and r < d/2 + 1 one obtains
O I W (2.71)
m1l=o - (d+2— 27’)2
In particular, for the case r =1 (cf. (2.55), (2.56))
1 2
o= —— | =21, 2.72
lz=0 = 573 [71 d} (2.72)
and for r = 1,d = 4:2
() WD) = n(LD)] 4~ (2.73)
Ll—0,d=4 = = a=a " 16
For { — oo one obtains .
Wi(£,50) = 71(£,00)] 4y + - (2.74)

3 Massless propagator sums in dimensional regularization

We are now in a position to give results for dimensionally regularized momentum sums

_ 1 / pgm
Iy = — , 3.1
Vb Ep: (»*)" 3.)

which can be re-expressed in terms of the massless propagator

1 ’ eipz
G(x) = — — 3.2
(1') Vo ; p2 ) ( )
where the sum is over momenta p = 2mw(ng/Lo,...,np-1/Lp-1), nx € Z, and the prime

on the sum means that the zero momentum is omitted: Z; = ZWAO.

2The notation Wi was used in [1].



We have e.g.?

Too = —‘}D ; (3.3)
IlO = G(O) ) (3 4)
Tao = / Ga)?, (3.5)
Tor = — | G(2)Ci(x), (3.6)

where we have introduced the notation G(z) = 8?G(z)/dx3.

The I,,, can be obtained by taking the limit of zero mass of the massive sums con-
sidered in the previous subsections. Here we will only consider the cases m = 0,1 and for
these we have?

= 1 I'(n)
InO - m J\IJIHO |:Gn MZ”VD] ) (3 7)
— 1
I,1=——1
n= ) i, Ont (38)
Now for d =2
G=——mn -~ |- sortsq+0m-2 (3.9)
LT o o7 |D—2 9
1
Go 47[_M2—|-gg, d=2. (310)
For d = 3:
M
_ M 11
Gl 47T+gl’ (3 )
1
GQ—W+QQ, d—3, (312)
and for d = 4:
M? 1
G = 82 lnM+m+C +91+O(D—4), (3.13)
Gy= 1M+L+C+1 g+ O(D— 1) (3.14)
2 = — 82 n D_4 g2 . .

The behavior of gi,g2 for M — 0 is readily extracted from (2.35) and the representa-
tions (2.36), (2.40) and (2.43).

30ne has —0G(z) = 6®)(z) — 1/Vp hence Too = —G(0) = —1/Vp where we used that §2(0) = 0
in DR.

“The subtraction in (3.7) is the removal of singularity due to the zero mode for M — 0. In (3.8) the
zero mode is not singular in the massless limit.

,10,



So for the corresponding massless sums we obtain for d = 2:

_ 1 1 _
Too=—-B1 — — | —— ~InL D-2
10 61 o D—2+C n +O( ):|

1 1 1
= |—— —WmL- a1+ —+0(D-2
or | D=3 MET gt gy Ol )]’

_ 1] 1 1
_ —— 7—1 _— —
19 - | D=2 nlL 2’)/2—}—O<D 2):| ,

For D = 3:

Finally for four dimensions:

Tio=—-B1L72,

_ 1 1 -
Too = Bo+ —= |INL — —— — D~d
20 = P2 87?2[11 D—4 C]’ ’

1
= — [lnL—

) }+92+O(D—4),

D -4

I = (2 —1),

1
8w L2

_ 1 1
131: 1I1L—+")/3:|—|-O(D—4),

1
32%2[ D—4 "2

?2:52*0 = [0421].

where
872 1672 2y
For /1 = 05 = ¥¢3 =1 and ¢y = ¢ we obtain

Gy = —0.0015995623298662568192 , for{ =1,
go = 0.0079456407220530589562 , for ¢ =2.

For the totally symmetric volume we have for d = 4:

1 1
1—21—11—10— TLQ&, for ¢ =1,
_ 1= 1 1 1 1
I31= —=Iyp= —— |InL— ——— + - -g D -4 f =1.
31 = pl20 = 5o o D_41 1 +492+O( ), fort

— 11 —

(3.15)

(3.16)
(3.17)

(3.18)

(3.19)

(3.25)

(3.26)
(3.27)

(3.28)

(3.29)

(3.30)

(3.33)

(3.34)



¢ M V2 V3
3.0 1.5084066631353647 4.4458864316201319 | 23.1870844937351901
2.0 1.1748067357894556 2.3510031738406602 6.5174542845883118
1.0 0 0.1174575993893936 0.2474072414293639
0.5 —10.0254579887014333 —3.1877267490551846 | —1.3395264586420596
0.25 | —167.9412483865704613 | —15.7551608044733235 | —2.7263973004934400

Table 4. Values for v1,v2,73 for d =4, {1 =45 = ¢3 =1 and ¢y = ¢, for different values of /.

So for the symmetric case we have

Yo =1-—2mp1, for =1, (3.35)

1
v3 = 167%gy + 3 fort=1. (3.36)

and this has been checked numerically. Some values of v, are given in table 4.°

3.1 The free propagator with periodic bc in DR

cvo=Lg_1 = L, and
Ly=...= Lp_1 = L with periodic boundary conditions in each direction.

Again we consider a D dimensional volume with Lo = L;, L1 =

The goal of this section is to give the analytic basis for writing efficient programs for
G(z) for the numerical evaluation of classes of Feynman diagrams in coordinate space. For
this purpose we find it convenient to write the finite volume propagator for the massless
case, with the zero mode subtracted as

G(z) = Ax) + g(x), (3.37)

where A(zx) is the infinite volume propagator and the finite volume piece g(x) will be
considered in detail in subsection 3.1.2. Note that G(z) satisfies the periodic boundary
conditions, while A(z) and g(z) do not. The singularity of G(z) is given entirely by A(x),
accordingly g(z) is a smooth function.

3.1.1 Propagator in infinite volume, D-dimensions

For the infinite volume propagator one has

o dA 2
_ —x?/(4\) — 2—D
A(x) /0 7(471_)\)1)/26 Apre=+, (3.38)
where 7 = |z| and
I'(D/2-1)
This is related to the area of the unit sphere
27TD/2
QOp = 4
(D—-2)ApQp =1. (3.41)

®Due to the subtraction term 1/t> on the interval ¢t € [0, 1] in (2.57) one has v1 ~ —1/(2¢*) when £ < 1.

— 12 —



The first and second “time” derivatives over t = x( are given by

A@):—U)—%AD%% (3.42)
A(z) = (D - Q)ADijaj (3.43)
In particular for D = 4 one has €4 = 272 and
Alz) = 473772, (3.44)
Az) = —# : (3.45)
Az) = % (3.46)

Note that by definition (by analytic continuation from D < 2) in DR one has A(0) = 0.

3.1.2 Calculating g(z) for general D

We start with the representation
1 . 00
G(z) = o Z/ e”’“c/0 dhe (3.47)
P

Then following [2] we split the region according to

ko dA 2 I 1 1 gtpe—pp®
Gz)= | —2) et/ _ L 4 : 3.48
@ = [ oo > AR (3.48)
where we have used the Poisson summation formula in the form
1 ipr—xp? _ 1 —(o4w)2/(4\)
v Ze pr—Ap? _ TENE Ze 7 (3.49)
p v
where
w = (voLo,...,UDflLDfl) , Uy € 7. (350)
For D = 4 this gives
1 2 / 1 2
= (1 e /(4u)) Lt a—(@tw)?/¢n)
g9(z) 1202 ( ¢ "'; 47T2($+w)2e
; 2
M 1 / eiPT—pp
— = —. (D=4) (3.51)
Vo Vb < D

Taking p = aL?/(47) with some length scale L ~ L, ~ L; and o ~ 1 only a few terms are
needed in the sums. Of course, the final result does not depend on a.
It is convenient to use the Jacobi theta function

S(uz) = 3 el

n=—oo

o0
=y~ /2 Z o™ /u cos(2mnz) .

n=—oo

(3.52)
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The first sum above converges quickly for 1 < w while the second for 0 < u < 1. One has

240, foru—0.
S,y =4" 7" (), foru (3.53)
e ™ 4+ O (e7™/t) | for u — 00, 2| < 1/2.
Further one has
1
S(u,0) = S(u), / dz S(u,z) = u="?, (3.54)
0

With this one obtains (using the arbitrary scale L) the following representation for
g(z) suitable for numerical evaluation:

7471' u Lu D

-2 — R -D/2g g _ybr_ L
g(0) 1 dusu o u Y
™ Jo D
1 [ 1 U 1
L Pad sy (my e L
ar J, “{VDSD <£2) “ VD}

In our computations we will need the expansion of g(0) and 92¢(0) in ¢ = D —d up to

D—1 2
oo {
) 11 Y
=0
and

(3.56)

first order:

9(0)LP 72 = go(0) + gg1(0) + O (¢*) , (3.57)
929(0)L” = 9290(0) + ¢0291(0) + O () . (3.58)

Using (2.31) and (2.67) one gets for d > 2

w0 = - |0 - 325 -5 (3.59)
91(0) = % [p1(7 A) + (d _22)2 + ln](f)] . (3.60)

Some values of ¢o(0), g1(0) for d = 4 are given in table 5. For d = 4, L; > L, one has
g(0)L2 = —0.2257849591 + L;/(12Ls), and g(t, z) decreases exponentially fast with ¢ until
g(t = L/2,0) = —m%(Ls/Ls)? + L/ (12Ly).

For the double derivatives one gets similarly (cf. appendix A)

Pg0(0) = —5m (D) + 5. (3.61)
9791(0) = —m1(¢,4) — % : (3.62)

Some values of 92go(0),92g1(0) for d = 4 obtained from (3.61), and (3.62) are given
in tables 6, 7 at different v, £ and {. Here v = 0,1,z denotes the time, one of the spatial
coordinates, and one of the D — 4 auxiliary coordinates, respectively. The coefficients
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0|0 90(0) 91(0)

1 1 | -0.140460985545365753 | 0.04602401621995892
1] 2 0.17329328071528666
1] 3 0.38989530371165459
1| 4 0.69314718058471526
1 110 4.33216987849965818
1115 9.74738222662423091
2 | 1 ]-0.059114936482781319 | 0.04524519886669500
2 0.09156830194292184
213 0.19876546078660153
2 | 4 0.35033070353224446
2 |10 2.16983884163206161
2 |15 4.87744501569431526
3 0.0242150467817175

4 0.1075483739041890

10 0.6075483738925662

20 1.4408817072258595

Table 5. Numerical values of go(0;¢), gl(O;E,E) for d = 4 at different values of £ and ¢. For large ¢
one has g(4=%(0; ) = g(4=3)(0; 1) + £/12, where g(?=3)(0;£ = 1) = —0.22578495944.

satisfy the relations (3.64), (3.65). For large £ one has 93go(0,£) = 93go(0,0) +1/¢, up to
an exponentially small correction.
Since g(x) satisfies the relation Og(x) = 1/Vp, one obtains for d = 4,

03(0) + 30£9(0) + (D~ )02(0) = 1 — (363

Expanding in D — 4 this leads to

1
590(0) + 39790 (0) = 7 (3.64)

391(0) + 30191(0) + D90(0) = ==

(3.65)

The values given in table 6, 7 satisfy these relations. It turns out (as expected) that
92 g0(0; £) approaches the £ — oo limit very fast.
In D = 4 one has for small z

o(@) = 9(0) + © (g<o> - 416) 4 — o)+ La? 40 (). (3.66)

3.2 Evaluation of some 1-loop integrals using the representation in subsec-
tion 3.1

As an illustration of the coordinate method that we will use to compute the sunset diagrams
in section 4, we first apply them to the computation of [ G (z)? for d = 4. The latter was

,15,



9290(0; 0) 0291(0;,0)

0.25 20.0625
-0.03163874689457073
-0.03157423948306426
15 -0.03157409482132951
20.33740336780472781 | -0.10189378657955458
0.08549134113439395
3 0.09641825496707322
15 0.09704905965741384
-0.5042033315676696
-0.5875369102375624
10.7375369106960411
10.7875369106959981

W N =

00 -0.83753691069608

1 0.25 -0.0625

2 -0.03163874689457073
3 -0.03157423948306426
15 -0.03157409482132951
1 | 0.27913445596490927 | -0.05908022312845156
2 -0.03155385450654626
3 -0.03150918768108555
15 -0.03150910214106698

0.279178888300334
0.279178970079188
0.279178970232028

[l e e I e e B en B en i o B e B en B eo B s BN el Hes BN e BN eo BN e N AN
N =
T I R I S e e B o~ U R R N ) e ST [N

Table 6. Numerical values of 82g0(0; ), 82g1(0;¢,0) for v = 0, 1.

already treated in [2] using the momentum-space representation and the result presented
in (3.26). We evaluate this Feynman graph in position-space using the decomposition
G(z) = A(x) + g(z) and writing the result as a sum of different terms, each of which
is calculated using appropriate methods, e.g. using subtraction, splitting the integration
domain, etc. Comparing the result with the momentum space result of [2] is useful as a
test of some subroutines that were used for numerical evaluation of the sunset diagram

treated in section 4.

3.2.1 [ [G(z)]?

We start (taking Ls = 1) by separating the cube Vp = [=1/2,1/2]* x [—¢/2,/2]P~* from
the total volume V = [—€/2,€/2] x [~1/2,1/2]> x [=0/2,0/2]°~4. The splitting is illustrated
in figure 1. Further we decompose

| c@r=3x.. (367)
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v|e| e 9290 (0; 0) 02g1(0;¢,0)

x| 1] 1 0.25 20.0625

x| 1] 2 | -0.56659219298166237 | 0.17118801988367523
x| 1] 3 |-0.97231532913191441 | 0.53453238828804972
x| 1] 4 |-1.25998268327401261 | 0.89196426717182040
x | 1110 | -1.91028900870890396 | 2.58200729545875239
x | 1] 15 | -1.92086060450589695 | 3.59782618606441357
x| 2 [ 1 | 0.27913445596490927 | -0.05908022312845156
x| 2] 2 | -0.33740336789472781 | 0.08549134113439395
x| 2] 3 | -0.55119683545590228 | 0.27446576838970181
x| 2] 4 | -0.69562959457825228 | 0.45372865145015078
x | 2110 | -1.02081444723100106 | 1.29878409706335203
x | 215 | -1.02610024512982040 | 1.80669354236667127

Table 7. Numerical values of 82g(0;), 82¢1(0;£,¢) for the second derivative taken along one of

the “extra” dimensions.

VAV

Figure 1. Splitting the regions of integration for the torus of volume V = L; x L% x L. From V
one cuts out the hypercube V and within this a D = d + ¢ dimensional sphere S with the radius
pLs. The singularity in D appears only in the integral over S, hence in the integrals over Vp\S
and V\Vj are evaluated in d dimensions. In the figure the longest direction is Ly, the other D — 1
dimensions L, are symbolized by the vertical extent of the box.

with

(3.68)

To separate the divergent terms we will also need integrals over the d-dimensional
sphere S with radius p, (which will be taken to be 1/2 in the actual numerical calculations)
as well as integrals over Vp\S.

5 =3 42 (3.69)
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integral (=1 =2
PP —0.030504553273361740 | —0.012838260547502574
DI 0.005284317053948634 0.002330969017104402
3y 0.01189047875442587 0.002457080245220858
35 0 0.004265656872109587
by —0.0015995623298662+ 0.0079456407220533

Table 8. Values for ¥; and ¥ for £ =1 and ¢ = 2.

with D—-1 4—D
a P QprY—idr (D/2—-1)p*
2():/ A 2:A2/ D _
vo= AP =Ap =5 4xD2(D = 2)(D — 4)
1 1 1
=23 [H—lnp—2(1+’m+lnﬂ') + ... (3.70)

1
= ————— + 0.00845810996666960998 + O (D — 4
8n2(D —4) * +0( )

with p = 1/2. The other contribution can be computed numerically to high precision:

1
») = / [A(z)]? = 0.003272085168451168, (p= = ,d = 4). (3.71)
Vo\S 2
So adding the two contributions we obtain
1
Y= .011730195135121 D—4). .72
1 87r2(D—4)+00 730195135121 + O ( ) (3.72)
Numerical integration gives
A(z) = 0.1085872819235967, (d=4). (3.73)

Vo

The other terms X3, 34, X5 can also be computed precisely for d = 4 for arbitrary ¢. Finally
one gets (restoring the dimensions)

/V G(a)? = —8% {171—4 - lnL} () +0(D—4) . (3.74)

Values for ¥(¢) and ¥; for £ = 1,¢ = 2 are given in table 8. We should have 3(¢) = g, with
gy defined in (3.30). The ¢ = 1 result agrees with Hasenfratz and Leutwyler [2] (cf. their
egs. (C.5), (A.17)) also in (3.31) and for £ = 2 in (3.32).

3.2.2 [ G(z)G(x)

Next we compute [ GG in a similar way:

7
/ G(a)Gi(x) = 3%, (3.75)
v r=1
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integral (=1 =2
¥, 0.027146820480899175 —0.036637714631555824279
DA 0 0.004861055079412517
¥ 0.035115246386341438250 0.014778734120695329750
L 0 —0.01377640717436285
P —0.027146820480899175 0.00776222484407871
¥ 0 —0.03074260054253895
¥/ 0.0351152463863414 —0.0537547083042711

Table 9. Values for ¥} and ¥’ for £ =1 and ¢ = 2.

with
= [ A@AE),  S=i0) [ A, 5y = / A(z) i(x) — (0] ,
Vo Vo 6
Y=o [ A, ¥= /V l9() — g(O) Alx), = /Vogma(:rx
- G(x)C(x) . (3.76)
V\Vo

Now X} = 0 since it is proportional to A(0) (which is zero in DR), and
¥, =—-9(0)/4+0(D—4) . (3.77)

The others need numerical evaluation (note the integral appearing in 3 is given in (3.73)).
Adding the contributions we get the desired result

/Gmm@:;y@+ow_®. (3.78)
1%

Numerical values for £ = 1,2 are given in table 9. We should find agreement with (3.28)
ie. /() = —g= (v2 — 1). The value for £ = 1 agrees with ¥'(1) = —g(0),=1/4,° and for
¢ = 2 with the value obtained from table 4 to 10 significant digits.

4 Massless sunset diagram with DR

In this section we shall calculate the dimensionless quantity”
U = 2P = 2P / dPzG(z)*G(x), (4.1)
v
at D ~ d = 4. Below we put L = Ly = 1 for simplicity. Inserting G(z) = A(x) 4 g(z) one

gets seven terms

v=>"7,, (4.2)

®Note for £ = 1 we have T = ifvo g(z) =—1 fVo A(z).
"The notation W was used in eq. (3.47) of [1].
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with

¥, = /V o(@)%i(x), W= /V o(2)*Az), vy =2 [ Aol
U= [ A@Pi),  T=2 [ Awg@A@), Ts= [ A@)?Aw),
Vo Vo Vo
Uy, = G(z)2G(x). (4.3)
V\Vo

At D =4 only ¥, and V5 have a pole, the others are finite.

4.1 ¥,y

Numerical integration of Wy is simple and results for £ = 1, ¢ = 2 are given in table 10. Note
as a check at { =1 we have ¥ = %24 = 0.01189047875442588 /4 = 0.002972619688606468
which agrees to all digits.

4.2 ¥y

We split ¥y in two terms

Wy = Wy, + Wy, (4.4)
with
Uy, = g(0)? ; A(z), (4.5)
Vo = [ o) = 9(07] A(a). (4.6)
Now ) )
; Al@) =5 /VO OA@2) = —5 . (4.7)
hence
Wa = — 90", (4.8)

Wy, is zero for £ = 1. A direct calculation for £ = 2 in Cartesian coordinates is not
too precise, and we get Wq, = 0.001458... , ¢ = 2. The reason for poor convergence
is the integrable singularity at the origin. One can improve drastically the convergence by
changing the variables

To =1, Ty = Nug, Z:17273 (49)

The region n € [0,1/2], u; € [—1,1] corresponds to the pyramid with the hyper-face
wo = +1/2 as basis.® The change of variables is illustrated in figure 2. Precise values of
Wou, Wop for £ = 1,¢ = 2 are given in table 10.

8These variables are also convenient to describe the part of the pyramid cut out by sphere S:

1/ (2vV1+u?) <np<1/2
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1/2
L
11
1A
Zas
Z; ]
T
NaY
\i\
N
-1/2
-1/2 Zo 1/2
Figure 2. For integration over the hypercube Vo = [~1/2,1/2]% or over V;\S it is convenient to

split Vy into 2d pyramids and introduce in each of them new variables n and u; where o = 1 and
x; = nu; (cf. (4.9)). This trick improves the precision of integration in the case when one has an
integrable singularity at x = 0.

4.3 Vg
We also split W3 in two parts
U3 = W3, + Wsgp, (4.10)
with
V3o = QQ(O)Q(O) A(IL‘) ) (411)
Vo
U3y = 2 g A(z) [9(x)§(x) — g(0)4(0)] - (4.12)
0

All quantities appearing in W3, are already available, and there are no problems with
numerical computation of W3, for d = 4. Values of W3,, W3, for £ = 1,£ = 2 are given in
table 10. As a check, for £ = 1 one has W3, = iZg which gives the same value as in table 10.

4.4 Py,
We have
Uy =Wy + Wy, (4.13)
with
Uy = §(0)%, (4.14)
Wy = g A(z)? [§(z) — §(0)] . (4.15)
0

Note that in eq. (4.14) ¥; is given in (3.72) and because of the pole one needs §;(0), the
O (D —4) term in §(0) which is given in eq. (3.62).
Adding values for Wy, we have

90(0;0)  §1(0;4,0)

Va6, 6) = “8r2(D—4)  8n2

+ WUy, . (416)

Here Wy, is the sum of Wy, and the contribution from the constant term in (3.72). Values
for Wy, Uy, are given in table 10.
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4.5 Wy

As for X; to separate the divergent terms we separate from the volume a D-dimensional

sphere S with radius p:
U5 = W54 + Wsp + Wse + s,

with
s, = 29(0) /5 A()A(),

Wy = Y 2g(0)0y) .

Y = /S 2A@)A(),

¥ =2 [ G0A@AE). () = gla) ~9(0) = 5 3 aZ0E0(0).

V=2 [ A@)A@g).
Vo\S

U5, is zero since by symmetry it is proportional to A(0).
Next for v = 0 we have

o) = [ @@ = (-4 [

S T

(Dt? — r?)t?
2D

p
:(D—2)A%)QD/ 72%3<Dcos419—c05219>,
0

where p = 1/2. The averaging over 9 is with weight sin”?~2 4. One has

[(1/2)T(D/2 — 1/2)
I'(D/2)

Ip = / sin? 2 9dy =
0

and Qp = Qp_1Ip. For general n we have

T'(n/2 + 1/2)T(D/2)

"y = )
cos ) = 5 2T D) T(1/2)
The averages appearing above are
1
2
) = —
(cos? 0) = .
3
4
V) = ————.
(cos™ ) = 5o 1)

Since [ A(z)A(x)r? = 0 by symmetry, we obtain

2P=51(D/2 — 1)
7P/2(D — 4)D(D + 2)

vl = (1—Déy) .

Using eq. (3.63) one has

> 029(0) (1 = Ddo) = 1 — Di(0).

— 922 —

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)



This gives

Ve — 2P=51(D/2 — 1) 1
7 2DR2D(D +2)(D — 4) | ¢ D4
Because of the pole at D = 4 we need here the expansion of §(0) to first order in D — 4,
given in eq. (3.62) and table 6.
Expanding in D — 4 one finally has

N 1 1 1 1 1 1 ..
Usp(4,0) = 1872 (D—4 +In2 - 3775 Inm — 6) <€ — 490(0,€)>

1 (lné 1 . )
1872 <€ Tt 491(0,€,€)> +0(D—-4). (4.31)

Dg'(O)] . (4.30)

As a check one can verify that Us,(1,1) = 0 since §o(0;1) = 1/4 and §;(0;1,1) = —1/16.
The last two integrals are convergent. Note that in d = 4 one has

o) = 9(0) + g (10) - ;). (1.32)

The integral in U5, is convergent due to the subtraction (§(z) = O (r?)) and it is
obviously zero for ¢ = 1 due to cubic symmetry. Numerical integration with increasing
precision indicates convergence to zero also for £ > 1 although g(x) does not have the cubic
symmetry in this case. A closer look shows that the angular integration at fixed r gives
zero. This can be explained as follows. Since Og(z) = 1/ it follows from (4.21) that g(x)
is a harmonic function, Og(x) = 0. Further, since §(z) = O (r*) its expansion in powers
of r contains only spherical harmonics of order larger than two. The angular dependence
of A(m) o 4t? — 22 in W5, is given by a spherical harmonics of order two, hence due to the
orthogonality of the spherical harmonics the angular integration indeed gives zero.

Hence we conclude that

V5. =0. (4.33)

Adding together W5 = W5, + U5, one has

) 1 1 1 (lnf 1 ;
5L, 1) = 872(D — 1) <€ - 490(0,5)) T (5 tot 491(@&@) +¢5+0 (D —4) .

(4.34)
Values of W54 and 5 for £ = 1, = 2 are given in table 10, (V54 = 0 for £ = 1,d = 4
because of symmetry).
4.6 ‘116 and \117

The integral Wg is zero

U= | A@)?2A) = —%A(O)Q ~0. (4.35)
Vo

Also W7 =0 for £ =1 and its value for £ = 2 is given in table 10.
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4.7 The final result for ¥

Collecting all terms one gets? for the sunset diagram eq. (4.1)

w(l,0) = _4&r2(11)—4) <1og'(0;£) _ le) - 16;2W(e) +O(D—4) (4.36)
. _48% [(1)1—4) {1090(0;6) - 2} +10G1(0;¢,0) + % +3W()| +0 (D —4) .

The sum of non-singular terms in (¢, ¢) are collected in W(). Its values for £ = 1,2 are
given in table 10.
According to (3.61), (3.62) one has

. 1 1
Go(0:6) = —gm(O) + 7, (4.37)
A A A 1
G1(0;4,0) = = W1 (£,0) = —71(£,0) — T (4.38)
4.8 Checks
For the special case £ = /=1
1
/ G(x)%j(z) = = | G(x)*. (4.39)
Vo D Vo
The lhs. is given by
1
v v UVy=—-——— . 168116473927 . 4.4
1+ VU3 + Uy 327r2(D—4)+000039 68116473927 (4.40)
Using (3.74) the rhs. is
1 2
— =—— . 168116473921 4.41
5 ), G(z) S3r(p 7+ 0-00039168116473921, (4.41)
which agrees with (4.40) up to the 14th digit.
The other contribution is
G(2)*Az) = Uy + U5 + Vg (4.42)
Vo
Since JA(z) = —d(x) and using A(0) = 0 one has
Gla)A(r) = ~ G0 = ~59(0) (4.43)
D D ’ '

Vo

in agreement with (4.42).
Also we checked the results for arbitrary £ by computing ¥ in a completely independent
way outlined in appendix B. Doing this we obtained W({ = 1) = 0.925362611856 , and

W(l = 2) = 0.154824638695. They differ from the results in table 10 in the 14th and 7th

9For a general shape one should replace here 1/£ by 1/ Hﬁ*": ol =1/V.
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integral (=1 =2
Uy 0.002972619688606468 —0.0002756518941414777
Wy, —0.0049323221150938617502 | —0.0008736439288408174456
Wy, 0 0.001457734623477771
Vs, —0.007626138318340436 0.004331672346637381
Wgy, 0.00132107926348728 —0.00183077295570103
Wy 0 0.0002857740147852
Wy 0.0029325487837802 —0.0036720333298669
Wsq 0 —0.000646088213001554
Vs 0 —0.0019520367762068
Wy 0 0.002098150204321247
w 0.9253626118515132 0.1548247146974042

Table 10. Values for ¥; and ¥ for £ =1 and ¢ = 2.

digits, respectively. We haven’t located the source of the discrepancy for ¢ = 2, but the
estimate to 7 digits is at present sufficient for our purposes.

Comparing the two approaches, note than in position-space the singularity is only at
x = 0, and several terms considered above have to be treated in DR to cure the singularity.
In contrast to this, in the momentum-space approach the singularity of the sunset diagram
appears in two loop-momentum variables, hence it is more difficult to handle it.

4.9 Other results

¥ has no pole at D = 3, and using similar methods for numerical evaluation as described
for D ~ 4 we obtain!® (for L = L = 1, cf. (4.1) and (4.36)).

— 1
V) =-W{) =— W(), d=3, (4.44)
1672
with
_ 2.12506105522294 | for{ =1,
W) = (4.45)
1.90198910547056 , for ¢ =2.
We have also evaluated the sunset integral
Z- [P, (4.46)
by similar methods.
For D ~ 3 ) )
Z ~ —2 —2InL| + Z(¢ 4.47
a2 o 2w + 70 A
with

—  [-10.290523702796, for £ =1,
Z (4.48)

—4.9484964492404, for{=2.

"The notation W was used in [1].
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Next for D ~ 4:

— 1 1 N
7 ~ —2InL| Z Z Z 4.4
(47T)3L2 {6 I:D_4 n } 0(£)+6 1(&6)4_ (ﬁ)} ) ( 9)
where
1
Zo(l) = —Amgo(0;4) = —an () + 1 + 55,
v
11 (A) (4.50)
R N R n
Z1(L,0) = —4mg1(0; £,€) = —p1 (L, £) — R
(cf. (3.59) and (3.60)).
Some numerical values of Z are:
_ —2.502240295082 , for/ =1,
Zg—y = (4.51)
—3.240047780695 , for 0 =2.

5 Dimensionally regularized integrals on a strip

In our paper [1] we quote the result of a computation of the mass gap of a massless
O(n) sigma model in 341 dimensions with dimensional regularization. The computation
involves computing the 2-point function of chiral fields separated in the “time” by distance

t in a volume!!

A:{x;xo €[-T/2,T/2],z, €0,L] ,forp=1,...,ds,z, € [O,E] forpu = d,...,D—l},
(5.1)

with periodic boundary conditions in the D — 1 “spatial” directions, and free boundary

conditions in the time direction (cf. [5]). The mass gap determines the exponential fall off

of the 2-point function for ¢ — oo (the limit 7" — oo being taken first).
The free Green function Gp(z,y) is determined by the following four properties:

/ | Grley)=0: (e, (5.2)
00Gr(r,y)=0; (vo=%T/2,y€A),
Gr(z,y) =Gr(y,z); (z,y € ), (5.4)

where A is the interior of A, and for z,y € A

~0Gr(ay) =8P -y~ (5.5)

Here the second term is due to the subtraction of the zero mode and

Vp=TVp, Vp=L+'LP~2 (5.6)

"' Note here T is the extent in the time direction not the temperature.
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A representation of the Green function is

1 w3+yd T
G _ = 0 0
(z,y) = o ( lzo—yol+—7— oT +12)
oo (5.7)
+ ) {R($o—yo+2mTaX—Y)+R(930+y0+(2m+1)T7X—Y)}a
m=—00
where . .
R(z) = — Y —e wrlleipz (5.8)
2Vp p#0 “p
Here the sum goes over p, = 27, /L,, p=1,...,D — 1 with v, € Z and
wp = |p|. (5.9)

The function R(z) is defined in (5.8) for all z € RP\0; in particular for |zg| — oo the
function R(z) falls exponentially. The singularity at z = 0 is regularized dimensionally
through an alternative representation in terms of the Jacobi theta function (3.52):

1 > 1 —227/(L%u —(D-1)/2 H 1
R(Z):47TLD_2/0 duﬁe om/(L7u) )/ H " L€ Ty (5.10)

where V' = Hi}:—ll 0.
It turns out that the mass gap to third order PT is completely determined by the
following three numbers involving R : R(0), R(0) and'?

U =[P = 2P / dy R(y)?02R(y), (5.11)

and the rest of this subsection deals with their numerical computation.
First from (5.10) follows

TR CANE
du —= { u= (P72 L) ——=5. 12
E(0) 47rLD2/ u Y };IIS(u) fa (5.12)
For numerical evaluation and ¢, =1 for p=1,...,ds and d > 2:
1 * du A1 2
= — 2 a2}, 1
R(O) 47I'Ld_2 {/0 \/ﬁ [S(U) :|sub + 2—d } (5 3)

Using this we find:

R(0) = —0.3103732206 x L', ford =3, (5.14)

R(0) = —0.2257849594407580334832664917 x L2, for d = 4. (5.15)

?The notation W = — [ dyR(y)*95 R(y) was used in eq. (5.13) of ref. [1].
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5.1 Calculation of the sunset diagram

Next we turn to the numerical computation of ¥ for D ~ 4 in (5.11), setting initially L = 1
and recovering later the dependence on L. In analogy to the computation of ¥ in section 4
it is advantageous to first separate the infinite-volume propagator:

R(z) = A(2) + h(2), (5.16)
with!3
D-1 2 2
1 o0 du 2 1 f z 1 e TZ /u
P Db 7 94 R Sz L e
h(z) = i J, e 0 W(D—1)/2 1_[1 S ( " €M> v a0z (5.17)
M:
We have
7
V= Z@T’ (5.18)
r=1
with
Uy = / h(z)*h(z), Uy = A(z)h(z)?, U3 =2 [ A(z)h(z)h(z),
V() VO Vo
Uy = / A(z)?h(z), Us =2 [ A(x)A(x)h(z), Tg= A2)?A(z),
Vo Vo Vo
U7 = / R(z)*R(z). (5.19)
V\Vo

Although & is defined for ¢ — oo, we find it convenient to use (5.16) with a large but
finite ¢, since the deviation decreases exponentially fast. In this case

V2 20 12 (5 20)
1 1 '
h(z) = g(z) — v + W(s(l‘o) ,

where V' = /P~ =1 — (D —4)In/ +.... Note that g(z) is a smooth function at z = 0,
hence (5.20) gives explicitly the singular part of h(z) at the origin.
Assuming ¢ > 1 and using the DR rule §(P)(0) = 0 one has

0
R(0) = h(0) = g(0) — 5 = —0.2257849594407580334832664917

5.21)
) . 1 (
R(0) = h(0) = §(0) — ; = —0.8375369106960818783868945203

13The function R(z) is used in Peter Hasenfratz’s rotator paper, the propagator without the contribution
of the slow modes, p = 0. Tt is denoted there by D*(z), while our h(z) by D*(2); cf. egs. (49) and (52) of
ref. [6].
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51.1 T,

Uy =Wy, + ¥y, (5.22)
where
Uy, = / h(x)? [§(z) — 1/4] = —0.0119854538 , (5.23)
Vo
and
U= [ 8(zo)h(z)? = 0.0379616384 . (5.24)
Vo
So'4
Wy = 0.0259761846 . (5.25)
5.1.2 Wy
We split
Uy =h(0)2 | A(x)+ [ Ax) [h(z)? - n(0)?] . (5.26)
Vo Vo
The first integral gives
Wy, = —h(0)*/4 = —0.0127447119774161875580368870 . (5.27)

For the second one we divide the volume into 8 pyramids, e.g. the one defined by (4.9)
with 1 € [0,1/2] and u; € [~1,1]. The advantage of this is that the Jacobian, n*® cancels
the integrable singularity at x = 0. Since the integrand is even in all components z,, one
can restrict the integration to u; € [0,1]. Thereby we obtain

Wq, = —0.0176501762. (5.28)

Hence
Uy = —0.0303948882 . (5.29)

Note that the parameterization (4.9) is also useful to calculate integrals over Vp\S,

taking 1/ (2\/1 + u2> < n < 1/2. The integral over the whole torus can also be done
this way.

5.1.3 U4

It is convenient to decompose this into three terms

W3 = U3, + Ugy + Us,., (5.30)
with
Too =2 | A@)(a) [ste) - 33 (5.31)
Uy, = 2h(0)h(0) . Az), (5.32)
Ty = 2 /V A { [g(x) _ H h(z) — h(O)B(O)} | (5.33)

14We checked that it does not depend on the summation cut, o and £. Also with numerical differentiation
vs. the analytic formula for g(z).
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We obtain

W3, = —0.0810043077,
W3, = —0.04903475008980288 h(O) = 0.04106841310696793 ,
W3, = —0.017070896 ,

where in (5.35) we used (3.73). Collecting contributions

U3 = —0.0490347500898029 A(0) — 0.0980752037 = —0.057006791 .

5.1.4 WUy,
Wy = Uy, + Uy + Uy,
with
Uy = h(0)2,
— 1
U= | Ax)*5(x0),
V' v,
Uy = | Ax)?[§(z) — §(0)] .
Vo
Using (3.72)
_ 1 .
Uy, = |——=—— +0.011730195135120778| ~(0
w=| st Jio)

1 .
=——————h(0)—0. 24471 12651 .
S72(D — 1) (0) — 0.009824471395331265
For Uy, we have
1/2 .D-2

1 1 1
- A 25 :AQ/ —2D+4:7AQQ _ / |
V/ /S (x) (xo) V/ D SD71 |X| V/ D:D—1 0 ,’,,2D_4 r

1, 2D=3 1 (/T(D/2—1)\> 2x(P-1)/2 9D-3
:7ADQD—1 -
V 3—-D V' \ 4gD/2 r(D-1)/2) 3-D
1
= —— D—4) .
27r3+o( )
Together with
A(z)*5(z0) = 0.00272219663411 ,
Vo\S

this gives
Wy = —0.013403570582 .

We evaluate
Uy = 0.00028615356 .

Collecting terms one has

— 1
Uy =|—-—=——5——~+0.011730195135120778 | h(0) — 0.01311741702
s ( R 95135120 8) (0) =0 0
1 .
= —————-h(0) — 0.022941888418 .
8m2(D — 4) 0)

Note that one needs here the expansion of h(0) to O (D — 4).
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5.1.5 Py

Expanding one has

. 1 _ _
U5 = Uso + Vs — Vng‘;) + W, + Usy + s, (5.48)
with
U5, = 2h(0) / A(z)A(z), (5.49)
/ A(2)A(x)]z0], (5.50)
Wy =2 A(z)A(z)h(z). (5.51)
Vo\S

The terms Vs, wé?)) and U5, are given by (4.19), (4.20) and (4.21), respectively.

The term W5, = 0 since by symmetry it is proportional to A(0). The second and third
one are logarithmically divergent and have a pole in D — 4. Therefore we need here the
expansion of 92¢(0) to first order in D — 4 given in eqgs. (3.61), (3.62) and table 6. The last
two integrals are convergent.

1 1 1 1 1
\I/5a(€, E) 4872 <D4 +In2— 5")/ — 51117'(' — 6) (Z — 49(0))
1 (Il 1
B (5 + 45) +O(D—4) . (5.52)

Next from (4.28)

1o 2 2PT(D2-1)(D - 1)
gy = /A Lo = g@D747rD/2D(D+2)(D —4)

1 1
- —71 —Ini - — D-4). .
167r2€ <D jtin2-3y-ghr—I 12)+O( ) (5.53)
T 1 o [ (DB —r?)Jt]
\Ij5d:V,(D_2)AD/ST2D
1 3 D
:W(D_Q)A QD D<D008319—cosz9>, (5.54)

where p = 1/2 and the averaging is again over ¥ € [0,7/2] with weight sin?~2¢. Us-
ing (4.25) we have

_ I'(D/2)
‘os) = Tp T 12)T(/2) (5:55)
_ I'(D/2)
(cos” 9) = T(D/2+3/2)T(1/2) (5:56)
So for D = 4 we obtain
Ty — _% , (5.57)
5. = 0.00094695753 . (5.58)

— 31 —



Altogether (recalling V5. = 0):

— 1 1 1 1 17 -
Us=—— |-=——+-7—-In2+ =1 = | h(0) = 0.011 24 ,
5= o2 | T p_q T3Y M2ty n7T+6 (0) —0.011953656 (5.59)

5.1.6 Wg and ¥y
The integral ¥g = ¥g = 0 (see (4.35)), and numerical integration yields

U7 = 0.0000034832546 . (5.60)

5.1.7 Final result for ¥

Collecting all terms one obtains the final result!®
_ 5 1 . .
V=———-—"nh(0)—0.0344802923 h(0) — 0.1275614
512D 1 (0) — 0.0344802923 h(0) — 0.1275614973 (5.61)
5 1 . :
= }(0)-o. 29798 .
512 D 4h(O) 0.0986829798

Note that the terms containing ¢ cancel and one can take here the ¢ — oo limit. This
result depends on the O (D — 4) term of i(0) which in turn depends on /, the size of the
extra dimensions. However, this dependence cancels from a physical quantity, like the
mass gap.

6 Finite volume momentum sums with lattice regularization

In this section we present results for certain one and two loop momentum sums that we
require for our computation of the free energy in massless x-PT with lattice regulariza-
tion [1]. We work in an asymmetric d-dimensional volume Ly = L, L, = L,u=1,...,ds
and periodic boundary in each direction. We work with the standard lattice action so that
the free propagator is given by

1 ipT

e
p#0
where the sum is over p, = 2mn,/L,, n, = 0,...,L, — 1,V = HZS:OLu and p, =

2sin(p,/2) . In many equations we will set the lattice spacing a to 1.
Forward and backward difference operators are defined by

Ouf(x) = flx+p) - f(z),
Opf(x) = f(x) = flz — ),

where [ is the unit vector in the p-direction, and the symmetric derivative

1
V=5 0+ . (6.4)

5Eq. (5.61) does not agree with Peter Hasenfratz’s result (63) where he has 0.029492025146 instead of
0.0986829798. He also has a In(Ls) term, but this is absent in the present convention due to the choice of
the scale L = L.
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Defining the lattice Laplacian by

Ou = 0,0;, O= ZDM, (6.5)

the propagator (6.1) satisfies
O0G(z) = —=6(z) + 1/V. (6.6)
Some useful relations involving the lattice propagator are given in appendix C.

6.1 Some 1-loop momentum sums

We define the following 1-loop momentum sums

L~ (68)"
Inm = 1s oL ) 6.7
4 ; (%) 67
J _lz’ (ﬁ%)mzuﬁﬁ (6.8)
IV T |
1 (0)™ (2, Py)
Kpm = — L : 6.9
Vi T~ G (6.9)
wm =Y (ﬁé) > cos(pu — pu)Pps (6.10)
4 )" <
1 B>,
ok = — Sl Al 6.11
k= Zp: )" (6.11)
Some of these are related to each other e.g.
1 ! P(Q) VISR
Lnm = 7 Z (2) Zpu cospu |+ Zpu S Pu
Pl ) M (6.12)
1
= In-2m — Jn—1m *Knm nm3 — FYnmd,
2, In—1,m + 1 + Jnum3 4J 4
since cosp, = 1 — %ﬁi and sin® Du = ﬁz — %ﬁ;‘;.
Note for all dimensions:
Ioo=1-a%)V, (6.13)
Iy =2, (6.14)
Ipo =6, (6.15)
IlOZG(O), d> 2, (616)
(6.17)

IQO = Z G(.’E>2
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nm Inm;O

00 1
10 | 0.1549333902310602140848372081
11 0.25

12 ] 0.7066242375215119838793013966
13 | 2.2930387971053356784850269783
14 | 7.9054013578728483268787567644
21 | 0.0387333475577650535212093020
22 | 0.0950666097689397859151627919
23 | 0.2935149141187831114192539608
24 | 0.9869336725760196423390828121
25 | 3.4667969623207723780809806095
32 | 0.0162003867900594714029834178
33 | 0.0436681142558825109634685570

Table 11. Values for I,,,,,o for d = 4. (For notation cf. (6.19)).

We are interested in the expansion of these sums for N = L/a — oo. As has been
shown in ref. [7] the 1-loop sums we consider here have a cutoff dependence of the form

o0
A+ BInN+ N4> "¢, N2, (6.18)
s=0

where § is determined by behavior of the summand, |k|= at small momenta. The 2-
loop sums, however, have a more general structure. To cover the different cases we use
the notation'6

Xa=) (Xay+XapaInN)N". (6.19)

T

6.1.1 Leading terms

In many cases the infinite volume limit L — oo of the sums (provided the limit exists)
can be computed to arbitrary precision using recursion relations in coordinate space. This
observation was first made by Vohwinkel and described in detail for d = 4 in ref. [8] and
later for d = 2 in [9] and for d = 3 in [10]. Some results for d = 4 are given in tables 11, 12.
(According to (6.19) the infinite volume limit is denoted by Ipm.0, Jnm:0, €tc.)

6.2 Expansion coefficients

To determine the expansion coefficients of the 1-loop sums we have applied two methods.
One is simply to compute the sums to a high precision for a large range of N and fit
the data to the expected form, inserting the precisely known leading term when avail-
able. Alternatively we obtain the coefficients analytically as integrals involving the theta
function (3.52), as described in the next subsection.

16The 2-loop sum Ws, for d = 2 given in (6.102) is an exception, it has an extra In® N/(872) term.
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nm Jnm;O

10 2.8264969500860479355172055864
11 6

12 18.5673720026100263486623960739
21 0.7066242375215119838793013966
22 2.1065867439525275504184371975
23 7.0275833199331741248758386402
31 0.0950666097689397859151627919
32 0.2665605938037799596982534915

nml Jnml;()

213 2.2930387971053356784850269783
214 7.9054013578728483268787567644
313 0.2935149141187831114192539608
314 0.9869336725760196423390828121
323 0.8658304227039986342356139427
324 2.9908252229698117808886771047

nm Knm;O
21 18.5673720026100263486623960739

31 2.1065867439525275504184371975
32 6.4861586895511410207353 777372

Table 12. Values for Jpm.0, Jnmi;0, Knm:o for d = 4.

6.2.1 Lattice analogue of the theta function

Consider the Fourier transform of f(#) defined on the interval 0 < 0 < 27:

3 1 2 71m0 _ . Famb
Jm = Gy f(0)e f(0) = Z Jme

m=—o00
Multiplying the equation

o0

> e—imW:% Z 5(9—n>.

m=—0oQ n=—oo
by (2m)71f(6) and integrating over @ one obtains
N-1 )
1 27 -
S (5n) = X g
N n=0 N m=—00

Using this relation one obtains

N—-1
1
=N Z exp zpk Z I,n(22)
k=0 m=—00
(e.)
z) +2 Z dmn (%)
m=1
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where p, = 2sin(wk/N) and

bn(z) = e %1,(22) (6.24)
where I,,(z) is the modified Bessel function, which for integer n is given by
1 ™
I,(z2) = / e*<% cos(nh)dh . (6.25)
T Jo

For convenience of the reader we have summarized some properties of I, that we use
in appendix D. For fixed z, @Qn(z) approaches ¢(z) exponentially fast. The approach
becomes slower with increasing z, but the expansion (D.7) shows that even when the
argument increases slower than N? one still has

lm (Qn(cN®) — ¢o(cN®) =0  for o < 2, (6.26)

N—oo

with the difference decreasing faster than any inverse power of N. This is not true for
z o« N2, and for this case one obtains another scaling function.
We introduce the lattice counterpart of S(z) by

N-1
Sn(x) =) exp (—zN?p}/(4m))
k=0

= Ne ®N*/@m N~ [ v (aN?/(2m)) (6.27)
2
a7
or equivalently
1 Az
ant:) = ysw (35 ) - (6.25)
In the large N limit one has
A}i_r)rloo Sn(z) = S(z). (6.29)

Note that the N — oo limit is not uniform in z. Since Sy (0) = N while S(z) ~ 1/y/z for
small z, one expects that Sy (z) ~ S(x) holds for N > 1/./x.

Similarly to the continuum case, the first representation in (6.27) converges very fast
for x > 1 while the second one for x < 1. In both cases one needs only a few terms in
the corresponding sum. For Qn(z) in (6.23) this corresponds to z > 2zo(N) and z < zo(N)
with zo(N) = N?/(4n).

The relatively slowly convergent lattice sums I, defined in (6.7) can be calculated
using Sy (z). For m = 0 one has

1 &0 _ 1
Ino:F(n)/O dz 2" [HQNH(Z)_V

“ (%) o [ [H s () - 1] ’

where ¢, = N,/N. (N is arbitrary and one can choose it to be the spatial size, N = Nj).

(6.30)
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For m >0

_ D™ T s m)
Inm = F(n) / dzz 1CgNo (Z) H QN;L(Z)

0 u#0
(NQ)n m— d/2 m 0o ) (631)
dz: 271 5(m < ) SN < > .
(471')" ml“( )€2m+1 /0 No !g) s
It is useful to split the integral and write (for /1 = ... = {41 = 1, fop = ¢ and general d)
(D™ [ a1 [ ) o1 dmo
Inm = F(n) /0 dZZ QNO (Z) N (Z) - m
(Ng)n—m—d/Z . (632)

(=)™ [ n—1 | g(m) d—1
()T () 21 /xo dea" (83 (35) S @)~ mo)

where x¢ = 4729/N2.

To obtain the expansion of I, for large N we need the asymptotic expansion of
Sn(z) (6.33) in the next subsection.
6.2.2 Asymptotic behavior for N — oo

As discussed before, for z = zy o« N* with a < 2 the correction term Qn(zn) — ¢o(2n)
goes to zero exponentially fast for N — oo.
Expanding (6.27) in 1/N? one obtains an asymptotic expansion

S%(@) = S(2) + 1351 (x) + 1752(a) + . (6.33)

Si(z) = 228" (),

3
2
So(z) = = (43;5( )z )+5x25(4)(az)),
% (6.34)
3 .
T () — () 24(5) 36(6)
a(t) = zos (ms (z) + 842250 (z) + 35235 (:c)),

4

4(%) = 350200

<48x5<5> (z) + 696225 (z) + 840225 (z) + 1753:45(8)(93)) .

As mentioned above the expansion (6.33) is not uniform.
We will also need the behavior of the corresponding terms at z = 0:

G, 3 g, 52
Sl 4.%' 3 52 32 z ’
Introducing z = yN® with 0 < a < 2 one has
S% (4TN*"%y) ~ N¢o (N%y) . (6.36)
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This means that the singularity of S%(x) at  ~ 0 matches the asymptotic behavior
of ¢o(2) = e ??Iy(2z) for = — oo. The relation can be checked using the asymptotic
form (D.6) and S(z) = z~1/2 1+0 (e_”/m)].

The relation between the x > 1 and z < 1 regions for S(z) is given in (2.23). Differ-
entiating it one obtains the corresponding relations between the derivatives of S(z).

At x = xo(N) the difference Sy(x) — S(z) changes sign: for z < x¢(/N) one has
Sn(xz) < S(x) while for x > x¢(N) one has Sy(z) > S(z). Interestingly, for N > 8 one
has with a very good precision zq(N) ~ 4m29/N? where zg = 0.06447351504.

For N — oo, N9 = ¢N in d-dimensions one has for the bracket appearing in the
integrand of (6.32)

Sk () S @) = 8o

. . (6.37)
~ (x5 l) = Do (25 0) + mq)lm(x;f) + mq)zm(l“;f) +...,
where
Do (2 0) = S91(2) S (e%) o (6.38)
—=(m) (x\ 1 9, & m) [T
(3 0) = S @S (55) 5 + (A= DS @)Sa(@)s™ (5) (6.39)
—(m i 1 _ — m X 1
Doy (2 6) = ST (2)SL™ (?2) i+ ([d=1)s° 2(2)S1 ()™ (ﬁ) = (6.40)
DS 2()5, (5™ (E) + La— 1)(d - 20593 ()52 (2) 5™ (L
+(d - 1)S2(2)So(z)S (52) +5(d=1)(d -2 @)5} (@) <£2> .
Their leading singularity for x — 0 is given by
~ F(m +1/2) _
@Slng . — (_ 1 2m+1 (m+d/2) 41
; F(m +1/2) _
O34 ) = (—1)™ mT om 2m+1,. (m+1+d/2) 49
2
sing /. _ mlr m+1/2) 2 2
O, B (z;l) = (—1) 3 T2 (12m* + 20m + 4dm + 8d + d*)
x (2l = (m42+d/2) (6.43)

As illustrated in the next subsection, for the case when I,,,, has a finite N — oo limit
(ie. 2(n — m) < d) one obtains!’

(_1)mN2(n—m)—d /oo 71 .
Ly = dr x|V, (2 0) — UPHe(x: 4)] . 6.44
(4m)=mT (n)2m+1 wa" " (U () e (23 0)] (6.44)
Expanding in powers of 1/N? one gets for the coefficient of N~
Lomw = (=)™ " dw ! [@ (z:0) — &8 (g, e)} (6.45)
MY ()T (n) 2L pm hm AL '

where k =0,1,... and v =2(k +m —n) — d.

"Eqgs. (6.44), (6.45) give the correct answer for some higher coefficients even when 2(n —m) > d, but
these cases need a special treatment, like for Isp in d = 4 discussed below.
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6.2.3 Examples: I19,I2; for d > 2
Consider Iy for d > 2 in a Ny x N% volume (Nyg = Lo/a = N¢,N = L,/a):

Lo = /OOO dz [QNZ(Z)QN(Z)CIS Zlo\fldﬁ} ) (6.46)

_/0 dzQne(2)Qn (2)" Nd£+/ dz [QNZ( JON ()™ = 7

One can show that for zy oc N2 only the first term contributes to the constant piece I 10:0

and one obtains'® ~
Top = / dz [do(2)]" | (6.47)
0
To calculate the 1/N" corrections we consider the differences
20
BaN,z0) = [ dz [QualaIQn (" — dn(e)] (6.45)
0
and -
Ap(N.z0) = [ dz [Qui)Q(a)" - QRIQR()™] | (6.49)
20
where A
as TZ
QN(2) = S <N2> : (6.50)

For zp = 29(N) = ¢N®, where 1 < a < 2 both integrals (6.48) and (6.49) go to zero for
N — oo exponentially fast.
We have

° 1
I —I;:—/ dz ¢ ——I—/ dz[ 2)Q¥(2)% — =
10 10;0 o 0( ) ng ( ) N( ) Nde (651)
+ Aa(N, 20) + Ap(N, 20) -

Here the zy dependence should cancel, i.e. Q¥ (z0) and ¢o(z9) should have the same
asymptotic behavior for zo(IN) = ¢N® and N — oco. Note that the argument x(N) =
4720(N)/N? oc N®=2 of the functions S(z) in (6.50) goes to zero in this limit. Hence the
contributions from the large-z asymptotic of ¢g(z) and the small-z asymptotic of S%'(z)/N
cancel each other. This is indeed the case, one has'®

1 47z 1 1 9
— S| — ] ~ ~N—— 14+ —+ —= +... ] . .52
NN ( N2 ) %o(z0) Iz ( T 162 51222 T ) (6:52)
With z¢ = 4729/N? one has
1 1 >
as( \ds __ — as _
/zo @ [QW( JeN (=) Ndz] 4N / do 5% () SR @™ -1}

1 o 1
T 4nNTE / dx{%o@;& o ®r0(r 0+ 3 Baol ) + } .

!8The result of numerical integration with MAPLE for d = 4 agrees to 27 digits with the exact value

(6.53)

given in table 11.
9The N-dependence on Q%i(z) cancels in the asymptotic expansion.
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The subtraction of the integral of ¢o(z)? amounts to subtracting from each term its
singular part for z — 0. So finally we have for d > 2

1 1

1
o = hoo + gz ho-2 + Jrgloa + s a2 + - (6.54)
where
I —l/ood (Do (:.0) — —— (6.55)
10;d—2 — Al 0 x i 00\ L5 xd/2 ’ .
1 [ [ wdl
IlO;d = W/O dﬂj -(plo(ﬂf,g) — 4(1;d/2+1:| s (656)
I | 720d(d + 8)
L. = — Liij ) — ———— .
10;d+2 Al /0 dx i 20($7 E) 32.’Ed/2+2 (6 57)
Comparing (6.55) with 51 given in (2.42) and (2.46) for d = 3,4 we obtain
IlO;d—Q = _51 5 for d = 3, 4, (658)

relating coefficients of the lattice expansion to shape coefficients in DR. This is just one
example of many such relations.
Repeating the steps used above one gets for the expansion coefficients of Io1:

Iy = ého;o + #121@—2 + %IQl;d +..., d>2, (6.59)
with ) - P
Ipig—o = _477€3/0 drz [@01(30;@ + W} . (6.60)
Again, for d = 3,4 Iy1.q—2 is related to the corresponding DR shape coefficient e.g.
Ipio = 8%(72 —1)=L*Ty, d=4. (6.61)

Next

(6.62)

1 (d+ 2)7763]
Iyq =

o0

_47763/0 dzx [CIJH(x;E) + @z

So far in this subsection we have only considered sums which have a finite infinite
volume limit. As an example of a sum which does not have this property we consider Isg.
For d = 3 Iy is linearly divergent (see (6.74), (6.75)).

In the rest of this subsection we only consider the case d = 4 for which Iy is loga-
rithmically divergent for N — oo. Here we will separate the ~ log(N) and the constant
terms.?’ Restricting also to £ = 1 we have

Tog = /0 ’ dz » <Qj‘v(2) — ]\14> + Flﬂa /xo dzz (S?V(x) — 1) (6.63)

where xg = 4mwzg/N 2. Choosing zgp = ¢N?~¢ with some fixed small € > 0 in the first term
one could replace Qn(z) by ¢o(z) up to exponentially small corrections.

*0For our work in ref. [1] the constant term is actually needed only for the renormalization.
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One has

IA_/ZOd Q4()_L /Zod Gi(z) — 25
0= | 22| Qn(2) — 37 ; 2200(2) = 5

1 20 1
— d 4 d 40y 6.64
/0 z z2¢g(2) +/1 zz (gbo(z) 167r222> ( )
1 22
| _ 0
* l6m2 9870 T i

In the second integral of (6.63) one can replace Sy(z) by S(z) up to O (1/N?) correction.

1 [ L e
IQBOZW/ dvz (Sy(z) —1) ~ 167T2/x dzva (S*(z) — 1)

o 0

- 161772 /ldm (S4(x) - a:12> " 1617r2 /100 dra (§() 1) (0%

zo

1— a3 1
3272 1672

Adding the two terms and for large N one obtains

1 00 1
Iy = /0 dz z¢4(2) —i—/ﬂ dz z <¢g(z) - 167r222>

tige ) oo (3= )+ g [ (st -0 600)

1 1 N2
g [ 1/N?) .
3272 1 1672 Og<47r> +0 (/%)

Evaluating the integrals one has

1
Ig = g log N + 0.01004098140549470847620108 + O (1/N?) . (6.67)

The coefficients Iap.2 and Ig.4 for d = 4 are given in the next subsection.

One can repeat these steps for the general case of I,,,. Using the representation (6.32)
one reproduces the form of the expansion given by (6.18). The log N term comes from the
1/x and 1/z terms of the corresponding integrands while in the rest one can set xg = 0 and
29 = 00, as in (6.64) and (6.65). Finally, the coefficient N2("~")~4 in front of the second
integral in (6.32) reproduces the prefactor N°~¢ of the sum in (6.18).
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6.2.4 Expansions for d = 4

We are interested in the expansion of the lattice sums for N~! = a/L — 0 (at a fixed
aspect ratio £) up to and including the O (a4 / L4) terms. For the sums we require we have:

Ip=1—-¢*N"*

Lo =Tioo + Tioa N2+ Tipa N4+ ...

Iy =hio+ hia N7,

Ino = In N/(87%) + Lo + Toop N2 4+ Iogu N4 + ...
Iy =T+ lpoa N 24 Ipa N4 4.

Iop = Inoo + Topa N7 4 ...

I3 =InN/(327%) + Lo + Isna N2 + Ispa N+
Iso = Isoo + Ispo N2 + Ispa N4 ..

Is3 = Is30 + Isga N7 4 ...

J31 = J31,0 + J31.4 N~ 4. ..

(6.68)

The coefficients I, can be calculated (at least for the cases with finite infinite-volume
limit) from (6.45).

Next consider the lattice sum J3; (see (6.8)); for d = 4 one has

J31 = ‘1/2; Eié;i +JE, (6.69)
with
JE — 32};' ﬁig)%f . (6.70)
The first term in (6.69) is I33, hence
Jata = Isza + Jg1,, for d=4, (6.71)
with
JB, = —% /0 ~ dwa? [S(x)QS”(x)S’ (%) + ;’ﬁ,} . (6.72)

In tables 13 and 14 we give values of the coefficients above for £ =1,2,3 and £ = 4,5
respectively using the integral representation (6.45) with MAPLE. We checked that all
results agreed to at least 12 digits in all cases with fits of the data (using the precise
infinite volume results when available).
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=1

=2

=3

L2
Lo
I
I50.2
I50.4
I51.2
I31:4
I5o.4
I312
I31:4
I32.9
I39.4
I33.4
J31;4

—0.1404609855453658

0.1418858055568331

—0.25

0.0014757515175671
0.0731806946434512

—0.0351152463863414

0.0354714513892083
0.4256574166704993
0.0003689378793918
0.0182951736608628
0.0022136272763506
0.1647046454257431
0.5483743850461059
0.4256574166704993

—0.0591149364827813

0.1445281475197173
0.3374033678947278
0.0122627013456392
0.0593077967014635
0.0537547083123951
0.1554316713871277
0.7569495889658734
0.0167916533065880
0.0404550162559959
0.0820388915996510
0.1861803595341033
1.0693538988138826
1.3110648228057027

0.0242150467817181
0.1582885920258339
0.5042033315676824
0.0261308665866801
0.0615529993132684
0.1371074647314091
0.1699444287054589
0.9229739816883220
0.0307265836535553
0.0435488531765849
0.1653308457382867
0.1990444597971972
1.2370421989724505
1.4811535630769142

Table 13. Values for Ip,pn.2, Imn;a, J31;4 for d =4 and £ =1,2,3.

=4

¢=5

Io;2
Lp;4
Ii1.4
I50;2
I50.4
I51.9
I51:4
I59.4
I31.9
I31.4
I32.9
I32.4
Is34

J31;4

0.1075483739041892
0.1652326717601757
0.5875369102375629
0.0400196677374950
0.0628240364390694
0.2204408534728138
0.1768917723653977
1.0063053711184669
0.0446158019765458
0.0448289656504658
0.2486639742820079
0.2059796377872626
1.3203816834539149
1.5645033197516197

0.1908817072259303
0.1693993375068985
0.6375369106952257
0.0539085563322884
0.0635879153141902
0.3037741869459578
0.1810584492251718
1.0563053660562876
0.0585046924277057
0.0455929029967931
0.3319973068786403
0.2101462558490117
1.3703817074781796
1.6145033783791748

Table 14.

Values for In:2, Imn;a, J31;4 for d =4 and £ = 4,5.
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6.2.5 Expansions for d =3

Some infinite volume values are

o0 = 0.252731009859 ,
120 = 0.913649942701 ,
.0 = 0.084243669953 ,
I0:0 = 0.164845993428 , (6.73)
Iy3,0 = 0.486683859112 ,
Is0.0 = 0.046176554504 ,
Is3,0 = 0.096821201585 .

Also in this case we determined the coefficients both by fitting the N-dependence and

by direct calculation using (6.45), when it was applicable. In all cases we got an agreement

within the precision of the fitting procedure. (The worst case was that of I3p.; where the

fit gave only four significant digits.)

For ¢ = 1:

Lo = Iio — 0.225784959441 N~1 + 0.0428997562958 N> + ... |

1 1
Ijj=-—-N3
11 3 3 )

Ly=Tloo+...,

I = 0.010607528892 N + 0.012164158583 — 0.0155358881130 N ™! + .. .,
Iy = Io10 — 0.0752616531469 N1 + 0.014299918765276429 N> + .. . |
Ipg = Ing0 4 0.171599025183 N2 + .. ., (6.74)

I3 =Ioz0+ ...,

Io = 0.000136552463 N + 0.00191507947957 N + 0.000837762
—0.000388292243730 N ' + ...

I31 = 0.00353584296399 N + 0.004054719528 — 0.00517862937101 N ™! + ... |

I35 = I320 — 0.0310717762260 N ' + 0.0973259651475 N3 + ... |

I3y = I330 + 0.348442731224 N3 + . ...

For ¢ = 2:

Io = T10.0 — 0.143704325288 N~1 +0.0614336837790 N3 + ... |

1
I = 3 +0.218784444721 N3 4 ... |

Lo =1I920+...,

Iy0 = 0.020216123622 N + 0.012164158583 — 0.00356885724612 N~ + .. . ,
Iy = Ipyy + 0.0114671446126 N " + 0.0992873225148 N3 + ... |
Iy = Ingo + 0.578733423280 N3 + ... | (6.75)

Ipg = Ip30+ ...,
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I3p = 0.001155699930 N3 4 0.00424327053578 N + 0.000837763
+0.00161399011894 N~ + ... |

I31 = 0.0133862498578 N + 0.004054719527 4+ 0.0102078527937 N1 + ...,

I3 = I32.0 + 0.0503041764078 N ! + 0.132427332872 N> + ... |,

I33 = I33.0 + 0.847216528219 N3 + ... .

Here only Iy, Isgp and I3; diverge for N — oo. However, also in these cases the
coefficients 120;1, 130;,1, 130;1, 131;,1, 131;1 are COI‘I‘GCtly given by (645)
The shape coefficients I1p,; and Iz, are related to 3, defined in (2.42) through:

Loy = —p1, (6.76)
120;_1 = 62 . (677)

Further there are relations to 3, defined in [11]:

1~

Ir11 = —651, (6.78)
1 ~

131;,1 = Eﬁg . (679)

6.2.6 Expansions for d = 2

In this subsection we consider only the ¢ = 1 case and concentrate on terms which do not
vanish in the infinite volume limit.

For the logarithmically divergent sum I;¢ we have

o = /020 dz (Q?V(z) — ]\1[2> + ﬁ /OO dz (S%(z) — 1) , (6.80)

o

where xg = 4mzg/N 2. Choosing zg = ¢N?~¢ with some fixed small € > 0 in the first term
one could replace Qn(2) by ¢o(z) up to exponentially small corrections. One has

A =0 2 1 0 2 20
1 20 1 1 P
_ 2 20y~ )4 & _ 0
= /0 dz¢g(2) +/1 dz (gbo(z) 47rz) + gy log 2o NE

In the second integral of (6.80) one can replace Sy (z) by S(z) up to O (1/N?) correction.

(6.81)

I%:;/wdaz(sjzv(x)—l) ~417r/oodx(52($)—1)

o

1 [t 1 1 [®
= — [ da(S%*x)—— )+ — [ dz(S*(@x)-1 6.82
), x( (2) 33>+47T/1 x (S%(z) — 1) (6.82)
_1—:U0_i1
4 4 080 -
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Adding the two terms and for large N one obtains

1 [e’s)
I = /O dz¢(z) + /O dz <¢3(z)—471r2>

S fa(sn g [
_ i n %log (‘Zj) +0(1/N?) .

Evaluating the integrals one has
1
Iy = o log N + 0.048765633170141301742768467921 + O (1/N?) . (6.84)
T

For ¢ = 1 we trivially have

1 1 1
I11 = Iy

For n > 2 in the large N limit the leading term of I, is proportional to N?"=2_ The
corresponding coefficient is given by (see [12])

1 ro1 4

: 2—2n _ -

N o = @n kZ = 5-C(n)B(n), (6.86)
0,f1=—00

where ((n) and S(n) are Riemann’s zeta-function and Dirichlet’s beta-function, respec-
tively. In particular, up to O (N _2) one has

1
oy =
VIR T o2

+ ... =0.0038669465907372100307 + . .. , (6.87)
where K = 0.91596559417721901505 is Catalan’s constant (since ((2) = 72/6 and 3(2) =
K). One also has

1 1
Vfgl = WIQO = 0.0019334732953686050153 + ... . (6.88)

Alternatively from the integral representation

1 1 [ _
710 = (47T)2/0 dzx [S*(x) = 1] + O (N7?) | (6.89)

the evaluation of which agrees to all digits with (6.87).
Further we have

1
It = S o, (6.90)
and [9]
/!
I /0 dz z¢o(2)py(2) 5~ o (6.91)
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Next

he =g [ d w0 + o [ drats@)s @)

0

1 1 00
= 2/0 dz 22¢0(2)dy (2) —I—;/1 dz 2* (gf)o(z) 0(z) — 16iz3)

1
+8i7T dz 22 <S(a;)S"(x)— 473:1;3) (6.92)

1)+ = tow (-
/ dz 228 S()+32 log(47r

= 16777 log N 4 0.0212534753416951596 .
1 3

I33,0 = —;/0 dz 2260(2)6 ) (2) = 5 T I (6.93)

6.3 Some 2-loop momentum sums

In this subsection we consider only the following 2-loop lattice sums which appear in the
computations [1]:

Wsa ==Y G(z)’ViG(z), (6.94)
Wse = > VoG(z) [(0G(2))> — (95G(2))*] = 5 D [DoG()) (6.95)

It is sometimes useful to write

Wse = Wi — 2G(0 Z Gz (6.96)
where
Wi = = > [G(x) = G0) ViG(x) . (6.97)
Using V3 = Oy + 102
Z G(z)ViG(z) = —Io + 3122, (6.98)
Wsa =~ 3 [G(x) — GO ToGlx) + 5 A1, (6.99)
where )
Ay =—3 > [G(x) - GO TG () . (6.100)

T

For the symmetric case £ = 1 we have

1
W34 = I1o (d

1
IlO - 2.[22) - WI20 + A1, f=1. (6101)
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6.3.1 Cased =2

In this case we only consider the symmetric case where we can use (6.101) and previous
results to obtain

1 In N 1 1
Wa, = @m?z\w g—ﬂ (110;0 -+ ) + Wiao + O (1/N?) , =1, (6.102)

4  Ar
with 1 1 1 K 1
o0=-lollipg—=+— ] ———= + = =1 1
Waao = 51100 < 00~ 5+ 27T> 152 T3 =1, (6.103)
where . 5 BB .
(11:—1 k—;E;2 ZZ(k‘i‘l)u
k,l kBB g1 I (6.104)
= 0.0461636292439177762(1) ,
where Ej, = k2. Putting in the numerical value for I;o.9 for £ = 1 we obtain
Wsa:0 = 0.0140266223093143915(1), £=1. (6.105)
For the other double sum
Wse = Waeo + O (N72) (6.106)

where Wi is the infinite volume sum which can be obtained for example by computing
Wgc for £ = 1:

1

—6Wac(t = 1) = 5 3 { [(eG@)] + [016())*)

= % > {0oG(z) + 0hG(x)} {[DOG(J;)F — OoG(x) 1 G(x) + [DlG(q:)]Q}

— -5 X {0 - H{Do6w - @i + D))

=5 <1 - 1>2 Y {[D0G(@)] - oG (@) Th Glx) + [OhG ()}

=—2+0/V). (6.107)

So
Wieo = —, d=2. (6.108)

6.3.2 Cased=3

We have determined the expansions by fitting the sums for a range of values of N for fixed
£. For the leading terms we have

W34:0 = 0.007958105980 , (6.109)
W30 = 0.005702360998 . (6.110)
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The large N expansions are of the form:

1 1
Wsall = 1] = Waao — 0.019432034237 + 0013457106339 15 + O (N73),  (6.111)

1 1
Wall = 2] = Waq — 0.012367818370 + 0.012044486715 57 + O (N73),  (6.112)

and
Wse = Waeo + O (N73) . (6.113)

The coefficient W32 is related to 1, 81, 81 defined in [11] through

W3a2 =¥ + %5131 : (6.114)

6.3.3 Cased=4

Again we have obtained the expansions by fitting the sums for a range of N for fixed £.
For the infinite volume limit we obtained

W34:0 = 0.001850792346021407306 , (6.115)
W30 = 0.00227599909081849438 . (6.116)

The expansion of W3, is given by

W3all = 1] = Waa0 — 0.004204473492568 N ~*
—(327%) "' N In N 4+ 0.0077108092 N~ + ... (6.117)
W3a[l = 2] = Waa0 — 0.0017695104622235 N2 (6.118)
+ 0.0081775349546087202407 N4 In N + 0.004168882181 N4 4 ...
W3a[l = 3] = Waa0 + 0.00072483841 N2

+0.011346635653943 N4 In N + 0.0131674 N4 + ... (6.119)
W3a[l = 4] = Waa0 + 0.0032192873 N 2
+0.01292978432706041335 N ~*In N + 0.033262 N4 + ... (6.120)

The coefficient of N=%In N can be obtained from the DR calculation. This gives

1 1 .
W3a;4z = @ <€ - 109(O,€)> . (6121)

The fitting procedure reproduces this value.
For W3, we obtain:

Wic[l = 1] = Waeo — 0.01188332621 N4 + ... (6.122)
Wie[l = 2] = Waeo + 0.01603789713 N4 + ... (6.123)
Wae[l = 3] = Wiaeo + 0.02396645060 N4 . .. (6.124)
Wie[l = 4] = Wae + 0.027927570 N~ 4. .. (6.125)
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The computation in [1] required the following relations for consistency:

1
Wsa2 = ¢ (8 Iio,0 — 1) Tho;2 (6.126)
1 1
W3a;4a: — 48? 10 Ill;4 + E N (6127)
1
W3ea = ~3 (4Loo—1) I11.4. (6.128)

These are satisfied by the numerical values above.
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A Derivation of formulae for g(0) and g(0) up to O (D — 4)
Using (3.56), (2.22) and (2.28) we have

gL = 47r1VD /OO du [SD <€2)} sub 47;)13 ; 27r(D1— 2) " (A1)

Expanding in ¢ one gets (3.59) and (3.60).
To calculate the second derivatives we use the relations

82 = 2 —mon?
@S(U, z) L = n:Z_OO (47r v?n? — 2mv) e = —27v (20T (v) + 1) S(v), (A.2)
0? 2 2 2mi2 202 (2 2
i s =——= |—T 1 . A.
o (0 2], = [0 () 5 (5) 9

From (3.55) one obtains then
02g(0)LP = —% /Ooo Q;;;l { [2?T <€j> + 1] Sp <€;> - 1}
- /OOO du{EQ;D (42) So () + 2uD1/2+1} (A-4)
o), [T (7)2 @), 5

Expanding in ¢ one gets (3.61) and (3.62).

B Evaluation of ¥ for the massive case in DR

Here we first considered the integral over the torus 7 = Hd LSY(L WS 1(E)]q:
W (M) = / [G(z, M)]?0>G(xz, M), no sum over v, (B.1)
x€T

with the massive free propagator G(z, M).

— 50 —



Using the Schwinger representation:

W (M /ZGT ]Hl/ ;| W, (B.2)

Ve 1 )
W = oM (t1+ta+ts) L Zpl” exp {ip1z — pltl} H <VD Z exp {iprz — pztk}> . (B.3)
Pr
We then break the t) integrations into parts (to = L2/ (47)):

W=w" pow® 4 WO L W L ow® WO (B.4)

/ dty / dty / dts W, (B.5)
to to to
[e%e) [e%e) to
_ / / dt, / dts / dts W, (B.6)
zeT Jtg to 0
to )
_ / / di, / dt / dts W, (B.7)
z€T JO to to
o0 to to
/ dt / dts / dts W, (B.8)
t 0
0 to
/ di, / dt / dts W, (B.9)
z€T JO to
to to to
_ / / dt, / dts / dts W, (B.10)
zeT JO 0 0

and considered these separately. The advantage of this procedure is that in each case the

with

| |
&\
m
3

| |
&3\
m
=3

x integration can be done first analytically. The disadvantage over the coordinate space
method is that there are many terms to be considered and the integration over the ¢; is
often quite difficult.

The term W(l) is the simplest:

W) = V H/ dtj | =M (htttts) > v exp {—pits — pita — (p1 + p2)’ts}

P1,p2

2\3 4.2 |3
— (L> I / | e ttrterta)/am)
VD 4 LV J=1 1

x Z ni, exp { Z 2 [nlutl + n2ut2 + (1, + nop) t3] }

ni,n2
L4—2D

= o g O Rz OR( n OR(z, (m + ) 6), (B.11)
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where z = ML and
(B.12)

r(z,v) = = + 2. (B.13)

Splitting off the terms in the double sum with n = 0 and n + m = 0 we can separate the
singularities as M — 0 and the remaining sums can be computed accurately.
Next we turn to W(Q); using the Poisson summation formula (3.49) we obtain

772 1 > > o —M2(t1+ta+t3)
w (M) = W dtl dtg dtg (§]
D JxeT Jitg to 0

x (4mtz) =D/ Z exp <— 2t nuLu)Q)

Aty

X Zpij exp {iplac — p%tl} Z exp {ipzzn — p%tg} ) (B.14)
p1 P2

An important step now, which is also used for the remaining W(a), is to use trans-

lation invariance to replace the z integration over 7 by an integration over R” which is
readily performed:

7 (2) 1 > > o —M?(t1+ta+t3) —D/2 a?
W (M) = — / / dtl/ dtg/ dtse 1TR2TEs) (4rrts) exp | ——
V§ Jzerp Ji, to 0 415

X Zp%u exp {z’plx — p%tl} Z exp {ipgx — p%tg}
P2

p1
1 [e%s} o0 to 2
=5 2/ dtl/ dtQ/ dt3 e_M (t1+ta+t3)
VD to to 0

x > pi,exp {—pits — pita — (p1 + p2)°ts}
p1,p2

2\ 3 42 poo 00 1
- i (L> 47T/ dtl/ dtg/ dts e*(t1+t2+t3)22/(47f)
V’% 47[' L12j 1 1 0

T
% Z n?, exp {— Z 72 [t + n3,ta + (n1 + na2)jits] }
n1,n2 oK

L472D B

where

R(z0) = 1— exﬁ{z—;(z, v)} .

(B.16)

The computation of all terms is too lengthy to present here. The terms W(4), W(S),
W(G) have poles at D = 4 which are separated analytically. The remaining integrals over
the ¢; continued to D = 4 are computable using e.g. NAGLIB routines.

Note that the singularities as M — 0 in W (M) come from the terms p = 0 in the pro-
pagators at finite volume. Our finite volume zero mass propagators exclude the zero mode.
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C Some useful relations involving the lattice propagator

Some other useful relations are:

. 1
G(0) = I — 51'11 ,
A 1
=T+ — (I — I
G(k) 10 + 2. (In 00)

1
80G(0) — —5.[]_]_ 3

1
AG0) = =11y,

2
1
O,G(0) = —— (Lgg — I
G (0) 5. (Ioo — I11) ,
i 1
8kG(O) = Tds (IOO - Ill) y
OG(0) = —Ino,
1 C1
OSG(O) = —111 + 5]12 ( )
1 1 1
2
= — | —J T — =T l
9;G(0) . < 00+ 111 — 5l + 2J10) ,
1
: = — Ipn — 1
050,G(0) 1d. (Io1 — I12) ,
1
80|:|0G(0) = 5]—127
DO2G(0) = I+ s — ST+ 2
00}k = 24, 01 12— 53+ 501 )
2G(0) = I,
O00G(0) = Loz -
1 1 1 1 1
&5 0RG(0) = 4 <101 —Io — 5-702 + I3 — 1114 - §J11 + 4J12) )
D Modified Bessel function
For integer order n the modified Bessel function can be calculated by
s 1 \ 2k+n
I,(x) = — (= . D.1
(z) kzzok!(nJrk)!(Q) (D-1)
For n > x one has
1 sax\n 1 er\n
n@)~ 0 (3) ~ 7= () (D-2)
For v = fixed, x — oc:
_ 1 o ax(v)
e I, (x) ~ —1)* D.3
@)~ o LV (D3)
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where

(42 —1)(40? — 3?) ... (4% — (2k — 1)?)

For n = 0 one has
1 T\ 2k
=> e l3) (D:5)
k=0
and for z — oo
€ o\®
\/ 2’f k' k!(8x)F
= (82) (D.6)
S S SR .
2z 8r | 12822 ’
A uniform expansion for I, (vz) is v — oo
_ evP Uk (p)
e I, (vx) ~ , D.7
(va) \/27771/(1—1—1‘2)1/4]62:0 vk (D.7)
where
Uo(p) =1
1
Uilp) = 5,(3p — 5p%), (D.8)
1p? — 462p* 6
U2(p) = 11558 p® — 462p* + 385p°)
and
T
p 14+ V1 + 22 (D.9)

p=(1+a?)"t

Eq. (D.7) can also be regarded as asymptotic expansion for x — oo, v = fixed.
For large x one has p = —1/(2z) + O (z~?). This shows that for z,, < n® with a < 2

~

for n — oo e * I, (x,) decreases exponentially fast. Therefore
NY2[Qn (xN®) — ¢o (xN¥)] = O (exp(~N?"%/z)), 0<a<2. (D.10)

Using (D.6) one obtains in the large N limit a simple scaling function,

1
lim N®/2 N%) =
N NN (N = G

For a = 2 this is not true any more, and according to (6.29) one obtains a non-trivial

0<a<2. (D.11)

scaling function
lim NQu (zN?) = S(4rz). (D.12)
N—oo

Summarizing one has three different scaling regimes

¢o(r), a=0,
Jim N2Qy (eN%) = §1/Virz 0<a <2, (D.13)
S(drz), a=2.
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