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1 Introduction

The study of non-relativistic field theories and their holographic duals has led to a renewed

recent interest in Newton-Cartan gravity [2–12]. The latter theory is formulated as a

covariant description of Newtonian gravity, incorporating the notion of absolute time in a

geometric framework (see e.g. [13, 14] for pedagogical introductions). It has been argued

that in the context of non-relativistic holography, Newton-Cartan gravity is the natural

geometric language in which the bulk-boundary dictionary is to be developed. For example,

the boundary geometry of Lifshitz spacetime has been shown to be described by a Newton-

Cartan geometry with torsion [5, 6]. On the other hand, starting with a non-relativistic

field theory, Newton-Cartan gravity arises as a means of introducing (non-relativistic)

coordinate invariance: while a (relativistic) CFT may be coupled to dynamical gravity by

introducing a metric gµν with dynamics governed by General Relativity, non-relativistic

field theories couple naturally to Newton-Cartan gravity, which can be formulated in terms

of two degenerate metrics, τµν and hµν . This insight has been used to construct effective

field theories for quantum Hall states and study universal features of the theories obtained

in this way [2–4].

Although the degrees of freedom in Newton-Cartan gravity differ fundamentally from

those of General Relativity, many conceptual aspects still carry forward to the non-

relativistic case. In the same way that General Relativity can be written as a gauge theory

of the Poincaré algebra, Newton-Cartan gravity can be formulated as a gauge theory of the

Bargmann algebra, which is the centrally extended Galilei algebra [15]. The formulation of

gravity as a gauge theory has the advantage that introducing supersymmetry to construct

theories of supergravity is relatively straightforward. In complete analogy to the case of

conventional (relativistic) supergravity, it is therefore possible to construct supergravity

theories with a non-relativistic supersymmetry group. In three dimensions, an on-shell

theory of Newton-Cartan supergravity with four real supercharges was constructed using

a vielbein approach in [16]. Moreover, by using a non-relativistic limiting procedure, the

authors of [1] were able to construct an off-shell version of the latter theory, starting from

off-shell N = 2 supergravity [17, 18]. These recent developments allow us to ask many of

the interesting questions that arise within the context of supersymmetry and supergravity,

applied to a non-relativistic context.

The main motivation for this paper is the prospect of using Newton-Cartan super-

gravity to elucidate some open questions in non-relativistic gauge/gravity dualities. In

the standard case of relativistic AdS/CFT, much recent progress in understanding various

dualities has been made by using supersymmetric localization. This technique allows one

to calculate observables in supersymmetric theories exactly, without having to resort to

perturbation theory (for a review of recent progress see [19] and references therein). The

new results obtained this way can be used to provide precision tests of AdS/CFT: for ex-

ample, the free energy of N =2? theories on S4, calculated via localization [20] matches

the result that one obtains from a holographic calculation [21]. Given that in the context

of non-relativistic holography, a microscopic description in terms of branes is not always

available to motivate the duality between non-relativistic field theories and gravity, it would

be desirable to find similar precision tests for non-relativistic AdS/CFT.
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Holographic results for observables in non-relativistic geometries such as Lifshitz and

Schrödinger spacetimes are plentiful. However, on the field theory side exact results are

naturally difficult to obtain, due to the strongly coupled nature of the theories involved.

Given the success of studying supersymmetric theories in the relativistic case, in partic-

ular using localization, one concrete open question is: is there a non-relativistic analog

of supersymmetric localization? To answer this question, it is first necessary to under-

stand and further explore the notion of “non-relativistic supersymmetry” itself. While

specific examples of non-relativistic supersymmetric field theories have been constructed

previously [22–24], many aspects of this subject still remain unexplored.

One interesting general question is which backgrounds of Newton-Cartan gravity admit

non-relativistic supersymmetry, and how to systematically construct Lagrangians on these

backgrounds. In the relativistic case, a systematic approach to this question was outlined

by Festuccia and Seiberg [25]. Starting with an off-shell formulation of supergravity cou-

pled to matter fields, one proceeds to take the “rigid limit” by freezing out graviton and

gravitino fluctuations, thereby obtaining a supersymmetric theory on a curved background.

The conditions for a background to be supersymmetric are found by demanding that the

gravitino variation vanishes. This in turn leads to Killing spinor equations in curved space,

which can be studied systematically to classify supersymmetric backgrounds [26–31].

In this paper, we initiate a similar approach to classifying curved Newton-Cartan

backgrounds that admit field theories with non-relativistic supersymmetry. Starting with

the off-shell version of three-dimensional Newton-Cartan supergravity found in [1], we

proceed to decouple gravity. Demanding that the gravitino and its variation vanish leads

to a non-relativistic Killing spinor equation, which we analyze in detail. Using integrability

conditions, we can derive the necessary and sufficient conditions for backgrounds to admit

four supercharges (unbroken supersymmetry), and also study examples of backgrounds

with reduced supersymmetry ( 12 -BPS solutions). The supersymmetric solutions found this

way can be characterized by a “gravitational force” field Φi(t, ~x) = Γi00, and a “Coriolis

force” field C(t, ~x) = 1
2εijΓ

i
0j , both of which represent the curvature induced by foliating

the temporal slices in a non-trivial way along the absolute time direction τµ. Interestingly,

a necessary condition for a background to preserve any number of supersymmetry is that

the spatial curvature, captured by Γijk, vanishes.

Since backgrounds of Newton-Cartan gravity are formulated in a somewhat unfamiliar

language, using either two degenerate metrics, or one spatial metric and a “velocity” field

τµ, it is instructive to connect our results to those for the relativistic N = 2 supergravity

theory. Given that the Newton-Cartan supergravity theory of [1] was obtained as the

c → ∞ limit of the relativistic theory [17, 18], one may ask whether the same limit can

be taken already at the level of the Killing spinor equations themselves, in order to relate

relativistic to non-relativistic backgrounds. Although taking this limit is possible, we are

not guaranteed to end up with the same BPS conditions for non-relativistic backgrounds

that we do by starting with Newton-Cartan supergravity, and freezing out gravity (see

figure 1). In other words, the rigid limit and the c → ∞ limit do not commute. The

non-commutativity is due to the additional constraints on auxiliary fields that are imposed

in Newton-Cartan supergravity, where the gravitino is generally nonzero. These conditions

are not needed at the level of rigid supersymmetry without gravity.
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Figure 1. The difference between the non-relativistic BPS-condition, (5.5) through (5.8), obtained

by taking the rigid limit of Newton-Cartan supergravity, and the set of backgrounds obtained by

taking the non-relativistic limit of the relativistic supersymmetric solutions (grey). In general, the

latter is a superset of the former.

The rest of this paper is organized as follows. In section 2, we briefly review Newton-

Cartan gravity in both the metric and vielbein formalism. In section 3, we review the

off-shell version of three-dimensional Newton-Cartan supergravity found in [1], and in par-

ticular the limiting procedure that was used to derive the theory. In section 4, we derive

and analyze the non-relativistic Killing spinor equation. Using integrability conditions,

we determine all backgrounds with maximal supersymmetry, and also study examples of

backgrounds with reduced supersymmetry. In section 5, we turn to the relativistic N = 2

supergravity theory and study supersymmetric backgrounds using the same method of

rigid supersymmetry as before. Using integrability, we derive all solutions admitting four

relativistic supercharges. In section 6, we discuss the c→∞ limit of the relativistic Killing

spinor equation, and show that it leads to a bigger class of non-relativistic solutions than

those found in section 4. We conclude with a discussion of our results and point towards

some interesting future directions.

2 Newton-Cartan gravity

To set the stage for our supergravity analysis, let us first review Newton-Cartan gravity [13,

14]. Newton-Cartan gravity is a covariant formulation of Newtonian gravity. Due to its

non-relativistic nature, this theory is commonly formulated in terms of a temporal metric

τµν , and a separate spatial metric hµν , making spatial and temporal distances two separate,

well-defined quantities. Both metrics are degenerate, which can be understood heuristically

by considering the example of the non-relativistic limit of the Minkowski metric [15]:

ηµν =

(
−c2 0

0 ID−1

)
, ηµν =

(
−1/c2 0

0 ID−1

)
, (2.1)

– 4 –
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In the limit c→∞, the metric naturally splits into a temporal and a spatial metric:

ηµν → τµν , ηµν → hµν , (2.2)

where in our case, τµν = −c2δ0µδ0ν , hµν = δij . The degeneracy can be expressed as

τµρh
ρν = 0. (2.3)

The temporal metric may be written as τµν = τµτν . Intuitively, we can understand the

geometries within Newton-Cartan gravity in the following way: the 1-form τµ defines a

global time direction. At each moment in time, there is a Riemannian space with (inverse)

metric hµν . The connection to Newtonian gravity is established by choosing the curvature

of the resulting manifold in such a way that the geodesics of particles moving in the curved

space geometry are equivalent to the curved paths of classical particles in flat space.

2.1 Vielbein formalism

In this paper, we will also use an alternative formulation of Newton-Cartan gravity in terms

of vielbein fields [15]. Recall that General Relativity in D dimensions can be formulated

as a gauge theory of the Poincaré algebra, which has generators PA and MAB (A,B =

0, 1, . . . , D − 1). The associated gauge fields are the vielbein EAµ , and the spin connection

ΩAB
µ . Newton-Cartan gravity can be written in the same language. To accomplish this,

we first identify the generators of the non-relativistic symmetry group. In our case, the

generators are given by time translations H, spatial translations Pa, rotations Jab, and

Galilean boosts Ga (a = 1, . . . , D − 1), which together form the Galilean algebra. To

connect the relativistic and non-relativistic symmetry groups, it turns out to be more

natural to consider the Bargmann algebra, which is the central extension of the Galilean

algebra by a U(1) generator Z [15]. The Bargmann algebra can be obtained by performing

an Inönü-Wigner contraction of the Poincaré algebra [1]. For each of the generators, we

then introduce corresponding gauge fields:

time translations: H ↔ τµ (2.4)

spatial translations: Pa ↔ eaµ (2.5)

rotations: Jab ↔ ωabµ (2.6)

Galilean boosts: Ga ↔ ωaµ (2.7)

U(1): Z ↔ mµ (2.8)

We see that the spacetime-translation generator PA of the Poincaré algebra has split up

into time translations H and spatial translations Pa. Correspondingly, the vielbein splits

as EAµ → (τµ, e
a
µ), where τµ is a “temporal vielbein” and eaµ is a “spatial vielbein”. In a

similar fashion, the spin connection ΩAB
µ splits up into an SO(2) spin-connection ωabµ , and

a boost connection ωaµ. Finally, the abelian gauge field Z provides a central extension of

the Galilean algebra (2.4)–(2.7) to the full Bargmann algebra. It is needed to consistently

perform the contraction of the Poincaré algebra. Later we will see that the geometric role of

– 5 –
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the corresponding gauge field mµ is to define the rules of parallel transport, or equivalently

to define a connection Γ.

Next, we define inverse vielbein fields eµa , τµ such that

eµae
b
µ = δba, τµτµ = 1, (2.9)

eρae
a
µ = δρµ − τµτρ, τµeaµ = τµe

µ
a = 0. (2.10)

Note that flat spatial indices a, b, . . . are contracted using δab. The degenerate metrics

introduced previously are given in terms of the vielbeine in the usual way:

hµν = eaµeνa, hµν = eµae
νa, τµν = τµτν . (2.11)

The constraints (2.10) then imply

hµνhνρ = δρµ − τµτρ, hµντ
ν = hµντν = 0. (2.12)

We will make use of these conditions when constructing explicit background metrics later.

Although the vielbein formalism is useful to construct Newton-Cartan (super)gravity, we

will also use the metric hµν when studying particular backgrounds, as it connects more

directly to the familiar metric formulation of General Relativity.

2.2 Constraints and adapted coordinates

We can define gauge covariant curvatures of each of the gauge fields. In the relativistic

(Poincaré) case, those curvatures are given by

R A
µν (E) = 2∂[µE

A
ν] − 2ΩAB

[µ Eν]B, (2.13)

R AB
µν (Ω) = 2∂[µΩAB

ν] − 2ΩAC
[µ Ω

B
ν]C . (2.14)

By imposing the first structure equation

R A
µν (E) = 0, (2.15)

we can solve for the spin connection ΩAB
µ in terms of EAµ . In complete analogy with the

relativistic case, we can define gauge covariant curvatures corresponding to each of the

generators in Newton-Cartan gravity:

Rµν(H) = 2∂[µτν], (2.16)

R a
µν (P ) = 2∂[µe

a
ν] − 2ωab[µ eν]b − 2ωa[µτν], (2.17)

R ab
µν (J) = 2∂[µω

ab
ν] − 2ωac[µω

b
ν]c , (2.18)

R a
µν (G) = 2∂[µω

a
ν] − 2ωab[µων]b, (2.19)

Rµν(Z) = 2∂[µmν] − 2ωa[µeν]a. (2.20)

In the absence of additional structure, one can show that taking the non-relativistic limit

of the torsion-free condition (2.15) consistently requires imposing the following constraints

on the non-relativistic curvature tensors [1]:

Rµν(H) = R a
µν (P ) = Rµν(Z) = 0. (2.21)

– 6 –
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These constraints can be used to determine the connections ωabµ and ωaµ in terms of

(τµ, e
a
µ,mµ):

ωabµ = −2eν[a∂[µe
b]
ν] + ecµe

ρaeνb∂[ρe
c
ν] − τµe

ρaeνb∂[ρmν], (2.22)

ωaµ = τν∂[µe
a
ν] + ebµe

ρaτν∂[ρe
b
ν] + eνa∂[µmν] − τµeρaτν∂[ρmν]. (2.23)

A background of Newton-Cartan gravity is therefore uniquely determined by choosing

(τµ, e
a
µ,mµ).

The constraint Rµν(H) = 2∂[µτν] = 0 gives rise to torsionless Newton-Cartan gravity.

In fact, this torsion-free condition can be relaxed by including a background gauge field

while taking the non-relativistic limit [32]. For our present analysis, however, we restrict to

the torsionless theory, in which case we can locally write τµ = ∂µT (xν). By construction,

τµ singles out a time-direction, so it is useful to introduce “adapted coordinates” by letting

T (xµ) = x0 ≡ t, so that τµ = δ0µ. In these coordinates, the constraints (2.9) and (2.12) imply

τµ = δ0µ, (2.24)

τµ = (1, vi), (2.25)

hµ0 = 0, (2.26)

hµ0 = −hµivi. (2.27)

Note that our gauge choice does not completely fix the coordinates. In fact, there is a

residual gauge freedom given by

t→ t+ const.,

xi → F i(t, xj), (2.28)

with det∂F
i

∂xj
6= 0.

2.3 Connection and interpretation of mµ

Given a background characterized by (τµ, e
a
µ,mµ), we can uniquely define a connection by

imposing the vielbein postulate [15]

∂µe
a
ν − ωabµ eνb − ωaµτν − Γρνµe

a
ρ = 0, (2.29)

∂µτν − Γλνµτλ = 0, (2.30)

which can be solved to find the connection coefficients

Γρµν = τρ∂(µτν) + eρa(∂(µe
a
ν) − ω

ab
(µeν)b − ω

a
(µτν))

= τρ∂(µτν) +
1

2
hρλ(∂νhλµ + ∂µhλν − ∂λhµν + 2Kλ(µτν)), (2.31)

where

Kµν = 2∂[µmν]. (2.32)

As we will see, the definition of Γ is the only place where mµ shows up. Therefore, mµ

plays the role of determining the rules of parallel transport in a given background (τµ, e
a
µ).

– 7 –
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The Riemann tensor can be written in terms of the connection in the usual way:

Rµνρσ(Γ) = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓλνσΓµλρ − ΓλνρΓ

µ
λσ (2.33)

Alternatively, we can express it in terms of the boost- and spin-curvature tensors of the

Bargmann algebra:

Rµνρσ(Γ) = −eµa
(
R a
ρσ (G)τν +R ab

ρσ (J)eνb

)
. (2.34)

3 Off-shell Newton-Cartan supergravity

Three-dimensional Newton-Cartan supergravity can be constructed as a gauge theory of

the supersymmetric extension of the Bargmann algebra introduced in section 2.1 [16].

To derive an off-shell version of this theory, one starts with an off-shell realization of

N = 2 supergravity and performs an Inönü-Wigner contraction that reduces the relativistic

supersymmetry algebra to the super-Bargmann algebra [1].

In three dimensions, there are two inequivalent formulations of N = 2 supergravity,

namely the N = (1, 1) theory [17, 33, 34] and the N = (2, 0) theory [17]. We will focus

on the (2, 0) theory, since it was used as a starting point for constructing the torsionless

Newton-Cartan supergravity theory of [1]. The gravity multiplet of both N = 2 super-

gravity theories contains a vielbein EAµ (A = 0, 1, 2) and two gravitini Ψµi (i = 1, 2), which

are Majorana spinors with two real components each. The off-shell multiplet of the (2, 0)

theory additionally contains two gauge fields Mµ and Vµ, as well as a scalar D. The varia-

tions of each field under supersymmetry can be found in [1, 17]. Here we focus only on the

transformation properties of the gravitino. Under a combined supersymmetry transforma-

tion (parametrized by two Majorana spinors ηi) and U(1)R-transformation (parametrized

by ρ), the gravitino transforms as

δΨµi = ∇µηi + εijηjVµ − γµηiD +
1

4
γµγρσF̂

ρσεijηj − εijΨµjρ, (3.1)

where

F̂µν = 2∂[µMν] −
1

2
εijΨ̄[µiΨν]j , (3.2)

and ∇µ = ∂µ − 1
4ΩAB

µ γAB.

Off-shell Newton-Cartan supergravity is constructed by taking a non-relativistic limit

of the fields that mirrors the limit taken in the contraction of the Poincaré algebra. Let us

give a brief review of this limiting procedure, as outlined in [1]. One starts by redefining

the bosonic fields as follows:

EAµ = δA0

(
ωτµ +

1

2ω
mµ

)
+ δAa e

a
µ,

Mµ = ωτµ −
1

2ω
mµ,

D =
1

ω
S, (3.3)

– 8 –
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where a = 1, 2. The spinors are first rewritten as

Ψ± =
1√
2

(Ψ1 ± γ0Ψ2) , η± =
1√
2

(η1 ± γ0η2) , (3.4)

and then rescaled according to

Ψ+ =
√
ωψ+, η+ =

√
ωε+,

Ψ− =
1√
ω
ψ−, η− =

1√
ω
ε−. (3.5)

Finally, the curvature form splits into spatial and temporal components as follows:

Ωab
µ = ωabµ +O

(
1

ω2

)
, (3.6)

Ω0a
µ =

1

ω
ωaµ +O

(
1

ω3

)
. (3.7)

The one-form ωaµ is a boost connection, while ωabµ is a spin connection for spatial rotations.

Next, we take the limit ω →∞, which can be thought of as taking c→∞. To eliminate

divergences that appear in the transformation laws, one is forced to impose the following

constraints on the bosonic fields:

∂[µτν] = 0, (3.8)

Vµ = −2τµS, (3.9)

F̂µν = 2∂[µMν] −
1

2
εijΨ̄[µiΨν]j = 0. (3.10)

Finally, the non-relativistic variations of the gravitini take the form

δψµ+ = Dµε+ + Sτµγ0ε+ + γ0ψµ+ρ, (3.11)

δψµ− = Dµε− − 3Sτµγ0ε− +
1

2
ωaµγa0ε+ − Seaµγaε+ − γ0ψµ−ρ, (3.12)

where the derivative operator Dµ ≡ ∂µ− 1
4ω

ab
µ γab is covariant under local spatial rotations.

The non-relativistic supergravity multiplet consists of τµ,eaµ, ψµ±, as well as the auxiliary

fields mµ and S. The vielbein EAµ has split up into a temporal vielbein τµ and a separate

spatial vielbein eaµ (see section 2.1). Finally, note that this construction gives rise to

torsionless Newton-Cartan supergravity. The constraints (3.8), (3.9) and (3.10) can be

lifted by instead considering the torsionful theory [35].

4 Non-relativistic supersymmetric backgrounds

To find backgrounds that respect non-relativistic supersymmetry, we proceed by demanding

that the gravitini ψ± and their variations (3.11) and (3.12) vanish. This guarantees that the

– 9 –
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bosonic fields do not vary under supersymmetry, and in addition gives rise to the following

Killing spinor equations:

Dµε+ = −Sτµγ0ε+, (4.1)

Dµε− = 3Sτµγ0ε− −
1

2
ωaµγa0ε+ + Seaµγaε+. (4.2)

Each solution (ε+, ε−) of the equations above corresponds to a single preserved supercharge.

To determine when such a solution exists, we examine the integrability conditions

[Dµ,Dν ] ε± = 0. (4.3)

Using [Dµ,Dν ] ε± = −1
4R

ab
µν (J)γabε±, (4.1) and (4.2), the integrability conditions take

the form

Aµνγ0ε+ = 0,

Bµνγ0ε− + Caµνγaε+ = 0, (4.4)

where

Aµν = −1

4
R ab
µν (J)εab − 2τ[µ∂ν]S, (4.5)

Bµν = −1

4
R ab
µν (J)εab + 6τ[µ∂ν]S, (4.6)

Caµν = −1

2
εabR

b
µν (G) + 2ea[µ∂ν]S − 4S2εabe

b
[µτν]. (4.7)

To arrive at these expressions, we have used the constraints (2.21).

Assuming that (ε+, ε−) span a 4-dimensional spinor space, the necessary and sufficient

condition for integrability is Aµν = Bµν = Caµν = 0. This is the maximally supersymmetric

case with four supercharges, which we analyze further in section 4.1.

To find backgrounds with less than maximal supersymmetry, one may consider im-

posing further constraints on the Killing spinors, e.g. ε− = 0. In this case, however, the

integrability condition needs to be rederived in the appropriate lower-dimensional sub-

space of solutions, and may take a different form1. We will study examples of such 1
2 -BPS

backgrounds with two supercharges in section 4.2.

As we will demonstrate later, the existence of a single supercharge implies the existence

of at least one more supercharge, i.e. solutions to the Killing spinor equations always come

in pairs. Hence there are no 1
4 -BPS solutions.

4.1 Maximally supersymmetric solutions

Backgrounds with completely unbroken supersymmetry admit four real supercharges, or

equivalently four linearly independent Killing spinors of the form (ε+, ε−). To solve the

1For example, it is easy to convince oneself that setting ε− = 0, Aµν = Caµν = 0 solves (4.4), but plugging

this ansatz back into (4.1) and (4.2) does not guarantee a solution.
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integrability condition (4.4), we therefore need to demand Aµν = Bµν = Caµν = 0, which

implies

τ[µ∂ν]S = 0, (4.8)

R ab
µν (J) = 0, (4.9)

R a
µν (G) = 8S2τ[µe

a
ν] − 4εabe

b
[µ∂ν]S. (4.10)

Together with the constraint Rµν(H) = 2∂[µτν] = 0 (see section 2.2), these equations

completely determine the maximally supersymmetric backgrounds. To make contact

with the more familiar language of General Relativity, it is useful to translate the con-

straints (4.9) and (4.10) into conditions on the Riemann tensor constructed from the

Christoffel connection,

Rµνρσ(Γ) = −eµa
(
τνR

a
ρσ (G) + eνbR

ab
ρσ (J)

)
. (4.11)

Using this expression, we can rewrite the conditions (4.8) through (4.10) as

τ[µ∂ν]S = 0, (4.12)

Rµνρσ(Γ) = −8S2τντ[ρδ
µ
σ] + 4εabe

µ
aτνe

b
[ρ∂σ]S. (4.13)

The Ricci tensor is given by

Rµν = 8S2τµτν . (4.14)

This is, in fact, the standard Einstein equation for Newton-Cartan gravity, Rµν = 4πGρτµτν
with S2 playing the role of the Newtonian mass density ρ. Note, however, that here it arises

as a condition of maximal supersymmetry, and not through the direct imposition of any

equations of motion.

To analyze (4.12) and (4.13) further, we introduce adapted coordinates (see sec-

tion 2.2). In these coordinates, the first of the two constraints simply becomes

∂iS = 0. (4.15)

To evaluate the second constraint, we first note that (4.14) implies Rij = 0. The spatial

metric hij is therefore flat, with a possible time dependence:

hij = g(t)δij . (4.16)

We can use the gauge freedom (2.28) to set

hij = δij , hij = δij . (4.17)

After making this gauge choice, the remaining allowed coordinate transformations are

t→ t+ const.,

xi → Aij(t)x
j + ai(t), (4.18)
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where AikA
k
j = δij . The Aij parametrize time-dependent rotations, while ai(t) corresponds

to a Galilean boost. For this reason, the gauge choice hij = δij is sometimes referred to as

choosing “Galilean coordinates” [14]. In these coordinates, the conditions (2.12) determine

the spatial metric to take the form

hµν =

(
vivi −vi

−vi δij

)
. (4.19)

Knowing the form of the spatial metric, we can explicitly write down the vielbein and its

inverse:

eaµ = (−va, δai ), (4.20)

eµa = (0, δia)
T . (4.21)

We are now ready to write the second integrability condition (4.13) in Galilean coordinates.

To express the Riemann tensor explicitly in terms of metric components, first note that

the only nonzero connection coefficients are

Γi00 = ∂i

(
m0 −

1

2
h00

)
− ∂0(mi − hi0) ≡ Φi, (4.22)

Γi0j = −Γj0i = ∂[i(mj] − hj]0) ≡ Cij = −Cji. (4.23)

To simplify our discussion, it will be useful to define C ≡ 1
2εijC

ij , with ε12 = 1. Using

these definitions, the Riemann-constraint (4.13) may be written as

∂iC = 0, (4.24)

∂jΦi − εij∂0C + δijC
2 = 4δijS

2 + 2εij∂0S. (4.25)

Taking the antisymmetric part of the second equation and using the definitions (4.22)

and (4.23), we find ∂0S = 0, and therefore conclude that S = const.

To summarize, backgrounds admitting four supercharges are given by a degenerate

spatial metric hµν of the form (4.19), and connection coefficients Φi, C, such that

∂(iΦj) + δij
(
C2 − 4S2

)
= 0, (4.26)

∂iC = 0, (4.27)

S = const. (4.28)

Given a specific background, the auxiliary field S required to close the non-relativistic

SUSY algebra is found by solving (4.26). Since S is constant, (4.14) demonstrates that

maximally supersymmetric solutions are essentially Newtonian cosmologies with a homo-

geneous matter distribution ρ = 2S2/πG ≥ 0.

4.1.1 Connection coefficients

To give a physical interpretation to the connection coefficients Φi and C, let us consider

the geodesic equation in the backgrounds discussed above:

d2xi

dt2
+ Φi + 2Cij

dxj

dt
= 0, (4.29)
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We see that Φi represents the gravitational force, while Cij is akin to the Coriolis force in

a rotating reference frame. Defining a scalar and vector potential via

ϕ = m0 −
1

2
h00, (4.30)

Ai = mi − hi0,

we may use (4.22) and (4.23) to write the two force fields as

Φi = ∂iϕ− ∂0Ai,
Cij = ∂[iAj]. (4.31)

One may then identify Φi and Cij in (4.29) as “electric” and “magnetic” - type fields, which

are invariant under the gauge transformation ϕ→ ϕ+ ∂0λ, Ai → Ai + ∂iλ.

Finally, note that the vector field mµ is not part of the metric itself, but only shows

up in the expressions (4.22) and (4.23) for the connection coefficients in a given back-

ground hµν . Changing mµ is equivalent to changing the rules for parallel transport in a

fixed background.

We can solve the conditions (4.26) through (4.28) explicitly by performing a Galilei

transformation (4.18) into a non-rotating coordinate frame, where C = 0. In this case Ai is

rotation-free, and we can locally write Ai = ∂iψ. The constraint (4.26) then takes the form

∂i∂jϕ̂ = 4S2δij , (4.32)

where we introduced a new potential ϕ̂ = ϕ − ∂0ψ. Taking the trace of this equation,

we recover Poisson’s equation with a source ρ = 2S2/πG = const. However, since (4.32)

also contains the additional condition
(
∂21 − ∂22

)
ϕ̂ = ∂1∂2ϕ̂ = 0, the solution is further

constrained. We find

ϕ̂(x, y) = 2S2(x2 + y2) + c1(t)x+ c2(t)y + d(t), (4.33)

instead of the usual logarithmic solution for a gravitational potential of a homogeneous

matter distribution. A particle moving along a geodesic in a maximally supersymmetric

background experiences a Newtonian gravitational force

Φi = ∂iϕ̂ = 4S2xi + ci(t). (4.34)

4.1.2 Killing spinors

We can explicitly construct all four supercharges of the maximally supersymmetric case

by solving (4.1) and (4.2) in the backgrounds constructed above. For backgrounds with

hij = δij , the Killing spinor equations take the form

0 = ∂iε+, (4.35)

0 =

[
∂0 +

(
1

2
C + S

)
γ0

]
ε+, (4.36)

0 = ∂iε− −
(

1

2
C + S

)
γiε+ −

1

2
εab∂ivaγbε+, (4.37)

0 =

[
∂0 +

(
1

2
C − 3S

)
γ0

]
ε− +

(
S − 1

2
C

)
vaγaε+ −

1

2
εab(Φa + ∂0vb)γbε+. (4.38)
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These equations can be solved, provided the integrability conditions found previously hold.

The condition ∂µS = ∂iC = 0 guarantees the existence of two linearly independent homo-

geneous solutions

ε+ = 0, ε− = e−
´
dt′(3S− 1

2
C)γ0ε0, (4.39)

with ε0 an arbitrary constant Majorana spinor. Using (4.26), one can show that there are

two additional inhomogeneous solutions:

ε+ = e−
´
dt′( 1

2
C+S)γ0ε′0, ε− = e

´
dt′(3S− 1

2
C)γ0M(t)ε′0. (4.40)

Here ε′0 is another constant Majorana spinor, and we defined

M(t) =

ˆ t

dt′
[
e
´ t′ dt′′( 1

2
C−3S)γ0

((
1

2
C − S

)
vaγa +

1

2
εab(Φa + ∂0va)γb

)
e−
´ t′ dt′′( 1

2
C+S)γ0

]
.

(4.41)

This concludes our discussion of maximally supersymmetric backgrounds.

4.2 1
2
-BPS solutions

We now turn to backgrounds that admit only two supercharges. Since we are interested

in solving the Killing spinor equations (4.1) and (4.2) in a 2-dimensional subspace S of

the full spinor space spanned by (ε+, ε−), the integrability condition (4.4) will have to be

rederived in the appropriate subspace. For each such space Si, we will be able to give the

necessary and sufficient condition for integrability. If we label the set of backgrounds that

satisfy this condition by Mi, the full set of 1
2 -BPS backgrounds is given by

⋃
Mi.

However, since there are of course infinitely many subspaces S, using integrability

to find all 1
2 -BPS backgrounds seems impractical. We therefore content ourselves with

studying specific examples of 1
2 -BPS solutions by specifying the subspace Si in which their

Killing spinors live, and study integrability for each of them individually.

4.2.1 Backgrounds with two supercharges of the form (0, ε−)

We start by considering the case ε+ = 0. The Killing spinor equations (4.1) and (4.2)

simplify to a single equation:

(Dµ − 3Sτµγ0) ε− = 0. (4.42)

This equation is integrable if and only if

R ab
µν (J) = 12εabτ[µ∂ν]S. (4.43)

In adapted coordinates R ab
ij (J) = 0, which implies Rij = 0 (see (4.11)). Thus we can

again choose Galilean coordinates such that hij = δij . The spatial vielbein and its inverse

are given by (4.20) and (4.21), respectively. The nonzero components of the Riemann

tensor are

R
(i
0j)0(Γ) = −R i)

(j0 (G) + 6εb(iv
b∂j)S, (4.44)

Ri0jk(Γ) = 12εi[k∂j]S, (4.45)

Rijk0(Γ) = 6εij∂kS. (4.46)
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We can once again express the left hand side of these constraints in terms of the connection

coefficients Φi = Γi00, C = 1
2εijΓ

i
0j . Since R

i)
(j0 (G) remains undetermined, the first equa-

tion does not impose any further constraints on Φi and C. Equations (4.45) and (4.46) are

equivalent to the condition

∂iS =
1

6
∂iC. (4.47)

To summarize, a given background admits two supercharges of the form (0, ε−) if and

only if Rij = 0. Given a background with arbitrary Φi and C, one can always choose the

auxiliary scalar S such that (4.47) is satisfied.

The Killing spinors in this class of backgrounds can be constructed explicitly by solv-

ing (4.42), which now takes the form

0 = ∂iε−, (4.48)

0 =

[
∂0 +

(
1

2
C − 3S

)
γ0

]
ε−. (4.49)

The second equation can be easily integrated to find the two solutions

ε− = e
´
dt′(3S− 1

2
C)γ0ε0, (ε+ = 0), (4.50)

where ε0 is a constant Majorana spinor. The integrability condition (4.47) then guarantees

that (4.48) is satisfied as well.

4.2.2 Backgrounds with two supercharges of the form (ε+, 0)

Another class of 1
2 -BPS backgrounds is characterized by ε− = 0. The Killing spinor equa-

tions in this case read

(Dµ + Sτµγ0) ε+ = 0, (4.51)(
1

2
ωaµγa0 − Seaµγa

)
ε+ = 0. (4.52)

Note that the second equation is purely algebraic. Integrability requires

Aµν ≡ −
1

4
R ab
µν (J)εab − 2τ[µ∂ν]S = 0, (4.53)

as well as
1

2
ωaµγa0 − Seaµγa = 0. (4.54)

The first condition implies R ab
µν (J) = −4εabτ[µ∂ν]S. This condition differs from (4.43)

only by a numerical factor, so we again conclude that Rij = 0, and choose hij = δij . In

adapted coordinates, the nonzero components of the Riemann tensor are then

R
(i
0j)0 = −R i)

(j0 (G)− 2εb(iv
b∂j)S, (4.55)

Ri0jk = −4εi[k∂j]S, (4.56)

Rijk0 = −2εij∂kS. (4.57)
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As before, the first equation does not yield any additional constraints. The second and

third equation are equivalent to

∂iS = −1

2
∂iC, (4.58)

which is the analog of (4.47).

We now turn to solving the second integrability condition, (4.54). After evaluating the

boost connection ωaµ for a metric of the form

hµν =

(
vivi −vi

−vi δij

)
(4.59)

we arrive at the following conditions:

S = −1

2
C +

1

4
εab∂avb, (4.60)

∂(avb) = 0, (4.61)

Φa = (2S − C)εabv
b − ∂0vb. (4.62)

Note that the first two conditions together imply (4.58). The last condition can be rewritten

using (4.30) and (4.31) to find

∂am0 − ∂0ma = −εabvbεcd∂cmd. (4.63)

Assume that we fix a background metric hµν by fixing va, such that ∂(avb) = 0. Then (4.63)

can be viewed as a constraint on the allowed mµ, which determine the choice of connection

Γ in this background.

To find the two supercharges explicitly, we consider (4.51) and (4.52):

0 = ∂iε+, (4.64)

0 =

[
∂0 +

1

4
εab∂avbγ0

]
ε+. (4.65)

The solutions are given by

ε+ = e−
1
4

´
dt′εab∂avbγ0ε0, (ε− = 0), (4.66)

with ε0 a constant Majorana spinor.

4.2.3 Backgrounds with two supercharges of the form (ε+, F ε+)

To complete our discussion of 1
2 -BPS solutions, we consider the case where the 2-

dimensional spinor subspace S is not simply given by ε± = 0, but is rather spanned by

nontrivial linear combinations of ε+ and ε−. We make the ansatz

ε− = F (t, ~x)ε+ = Fµ(t, ~x)γµε+. (4.67)
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Plugging this ansatz into the Killing spinor equations (4.1) and (4.2), we find

Dµε+ = −Sτµγ0ε+, (4.68)

bµ = −(∂µ + aµ)F aγa, (4.69)

F 0 = 0. (4.70)

where

aµ = −1

2
ωabµ γab − 2Sτµγ0, (4.71)

bµ =
1

2
ωaµγa0 − Seaµγa, (4.72)

encode the geometric information about the background.

A nonzero Killing spinor ε+ exists if and only if (4.68) is integrable, which as we saw

previously, requires

R ab
µν (J) = −4εabτ[µ∂ν]S. (4.73)

Following the analysis in section 4.2.2, the Riemann components are given by (4.55)–(4.57),

and we again find that hij = δij and

∂iS = −1

2
∂iC. (4.74)

It is important to recall that the functions F a were introduced to determine a certain

subspace (ε+, F ε+) , in which we find the Killing spinors. Therefore, (4.69) should not be

seen as a PDE for F a; rather, we should think of F as being fixed, and (4.69) as determining

the background, encoded in aµ and bµ. In section 4.2.2, we followed precisely this strategy

by choosing F = 0, which led to bµ = 0. For an arbitrary but fixed F , there are two Killing

spinors of the form

ε+ = e−
´
dt( 1

2
C+S)γ0ε0, (ε− = Fε+), (4.75)

where ε0 is a constant Majorana spinor.

4.2.4 A nontrivial example

An example of a nontrivial two-dimensional spinor-subspace S with F 6= 0 is given by

Fa =
1

2
εabvb. (4.76)

With this choice, we find the following conditions on the background fields:

S = −1

2
C, (4.77)

Φa = 0. (4.78)

Following (4.75), the two supercharges take the form

(ε+, ε−) =

(
ε0,

1

2
εabvbγ

aε0

)
. (4.79)

Notice that if the background satisfies ∂µC = 0, all the conditions for maximal supersym-

metry (4.27)–(4.28) are satisfied as well, and supersymmetry is enhanced from two to four

supercharges.
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Figure 2. The non-relativistic BPS-condition is obtained by taking the rigid limit of Newton-

Cartan supergravity, which arises as a non-relativistic limit of N = 2 supergravity. One may

ask whether the same result can be obtained by reversing the order of the non-relativistic and

rigid limits.

5 Rigid backgrounds of N = 2 supergravity

In the previous section we have found rigid backgrounds of non-relativistic supergravity. It

is interesting to ask whether the same result can be obtained by taking the non-relativistic

limit of rigid backgrounds of N = 2 supergravity [17, 28, 36–38] (see figure 2).

With this question in mind, in this section we revisit the computation of rigid back-

grounds of relativistic supergravity, with the purpose of taking the non-relativistic limit pre-

sented in [1] later on. We start by recalling the variation of the gravitino under supersym-

metry transformations parametrized by the Majorana spinors ηi, and an R-transformation

parametrized by ρ (see (3.1)):

δΨi
µ = Dijµ ηj −

1

2
εijΨ̄[µiΨν]j + Ψµjρ, (5.1)

where the operator Dijµ given by

Dijµ ≡ ∇µδij − γµDδij + Vµε
ij +

1

4
γµγ

ρσFρσε
ij . (5.2)

Fρσ is the field strength of the gauge field Mσ, F = dM . In the rigid limit we set Ψi
µ =

δΨi
µ = 0, which implies

Dijµ ηj = 0. (5.3)

Rigid supersymmetric backgrounds are given by a choice of gµν , as well as auxiliary fields

Vµ,Mµ, D such that the Killing spinor equation (5.3) is integrable. We determine when

solutions to (5.3) exist by studying its integrability condition, which takes the general form

0 = [Dijµ ,Djkν ]ηk = (Aµνδ
ik +B λ

µν γλδ
ik + Cµνε

ik +D λ
µν γλε

ik)ηk. (5.4)
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In our case, we find

Aµν = 0, (5.5)

B λ
µν = −1

4
Rµνρσε

ρσλ + 2δλ[µ∂ν]D − 2ε λ
µν D

2 +
1

2
εστλFµσFντ , (5.6)

Cµν = 2∂[µVν] +
1

2
ερσ[µ∇ν]Fρσ, (5.7)

D λ
µν = δλ[µεν]

ρσDFρσ −
1

2
∇λFµν . (5.8)

We focus on maximally supersymmetric backgrounds, which admit four real supercharges.

In this context, just as in the non-relativistic case, there are four linearly independent

Killing spinors, so all terms in (5.4) should vanish independently. Aµν = 0 is already

guaranteed. B λ
µν = 0 imposes

Rµν = −8D2gµν + gαβFαµFβν , (5.9)

D = const. (5.10)

These constraints are found by solving for the Riemann tensor and contracting it with

the metric, and by contracting Riemann with the Levi-Civita tensor. It is convenient to

express the constraints in terms of the dual field strength, defined by

Fµν = εµνρf
ρ,

fρ = −1

2
Fµνε

µνρ. (5.11)

With this redefinition, the Ricci tensor (5.9) is then given by

Rµν = −8D2gµν + fµfν − fαfαgµν . (5.12)

The condition Cµν = 0 imposes a relation between the field strength of Vµ and Fµν ,

2∂[µVν] = −1

2
ερσ[µ∇ν]Fρσ. (5.13)

Using (5.11), we rewrite (5.13) as an expression relating the field strength of fµ and that

of Vµ,

2∂[µVν] = −∂[µfν]. (5.14)

Thus, fµ and Vµ are proportional up to the addition of an arbitrary closed 1-form, which

would not change (5.14),

fµ = −2Vµ + λ′µ. (5.15)

Finally, the condition D λ
µν = 0 implies

∇µfν + 2Dεµνρf
ρ = 0. (5.16)

The symmetric and antisymmetric parts of (5.16) are

∇(µfν) = 0, (5.17)

∇[µfν] = −2Dεµνρf
ρ = −2DFµν . (5.18)
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Equation (5.17) shows that fµ is a Killing vector, while (5.18) implies that the field strength

of fµ is proportional to Fµν . Equivalently, fµ and Mµ are related by

fµ = −4DMµ + λµ, (5.19)

where λµ is an arbitrary closed 1-form. Again, this ambiguity shows up since the addition

of a closed 1-form to fµ does not change the constraint (5.18). Another consequence

of (5.16) is

∇µfνfν = −4Dεµνρf
νfρ = 0. (5.20)

That is, in addition to being a Killing vector, fµ has constant norm. Hence, the possible

backgrounds are given by fµ = 0 as well as fµ 6= 0 with fµ timelike, spacelike, or null.

5.1 The fµ = 0 case

For a vanishing fµ, the Ricci tensor reduces to

Rµν = −8D2gµν . (5.21)

The background is locally AdS3, with radius `A = 1
2|D| . Equations (5.15) and (5.19) imply

that Mµ and Vµ are closed and undetermined, i.e., they are pure gauge.

5.2 The timelike case

For fµ a constant norm timelike Killing vector, we introduce adapted coordinates such that

fµ∂µ =
∂

∂t
. (5.22)

Normalizing fµ by taking f2 = −N2 < 0, where N is a non-negative constant, we can

write the most general metric admitting a timelike Killing direction as

ds2 = −N2(dt+ u)2 + ds2(2), (5.23)

where u = ui(x, y)dxi and

ds2(2) = e2σ(dx2 + dy2) (5.24)

is a conformally flat 2-dimensional metric with σ = σ(x, y). The metric (5.23) describes

a fibration of a timelike coordinate over the 2-dimensional metric ds2(2). In the adapted

coordinate system, fµ is given by

fµ = (−N2,−N2ui). (5.25)

The integrability constraints (5.12) and (5.16) impose

e−2σ(∂21 + ∂22)σ = (16D2 −N2). (5.26)

4D

N
= (∂1u2 − ∂2u1)e−2σ, (5.27)

The first constraint is Liouville’s equation, the left hand side of which describes R(2),

the Ricci scalar of the 2-dimensional base metric ds2(2). Liouville’s equation has well known
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solutions; once solved one can insert the solution σ(x, y) into the second constraint and

solve for u, which specifies the way R is fibered over the spatial manifold.

We focus on the Ricci scalar,

R(2) = −2e−2σ(∂21 + ∂22)σ = 2(N2 − 16D2). (5.28)

In the last step we used (5.26). We see that the curvature of the 2-dimensional manifold

is constant. Note that N contributes positively to the curvature while D contributes

negatively. Thus, the supersymmetric backgrounds with a timelike fµ are fibrations of a

timelike direction over a 2-dimensional manifold that is locally S2, H2, or R2:

R×̃S2, if N > 4|D|, (5.29)

R×̃R2, if N = 4|D|, (5.30)

R×̃H2, if N < 4|D|. (5.31)

Up to coordinate transformations, the metric can be obtained by solving (5.26)

explicitly:

ds2 = −N2

(
dt+

4D

N

2r2

1 + (N2 − 16D2)r2
dφ

)2

+

(
2

1 + (N2 − 16D2)r2

)2

(dr2 + r2dφ2).

(5.32)

For N > 4|D|, we can transform to spherical coordinates, so that

ds2 = L2
[
−(dτ − 4DL cosχdφ)2 + dχ2 + sin2 χdφ2

]
,

f = −NL(dτ − 4DL cosχdφ), (5.33)

where L2 = (N2 − 16D2)−1. When D = 0, this metric reduces to that of a product space

R× S2. For N = 4|D|, the space is flat, and we have

ds2 = N−2

[
−
(
dτ +

1

2
χ2dφ

)2

+ dχ2 + χ2dφ2

]
.

f = −
(
dτ +

1

2
χ2dφ

)
, (5.34)

Finally, for N < 4|D|, we obtain instead

ds2 = L2
[
−(dτ + 4DL coshχdφ)2 + dχ2 + sinh2 χdφ2

]
,

f = −NL(dτ + 4DL coshχdφ), (5.35)

where L2 = (16D2 − N2)−1. Note that here we cannot obtain a direct product space by

setting D = 0 because of the strict inequality |D| > N/4 ≥ 0.

5.3 The spacelike case

For f2 > 0, fµ is a spacelike Killing vector; again we can introduce adapted coordinates

such that

fµ∂µ =
∂

∂y
. (5.36)
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The most general metric admitting a spacelike Killing vector is

ds2 = e2σ(−dt2 + dx2) + f2(dy + u)2 (5.37)

σ = σ(t, x), u = uα(t, x)dxα, α = 0, 1.

In the coordinates (5.37) fµ is

fµ = (f2u0, f
2u1, f

2). (5.38)

The metric (5.37) describes a fibration of a spacelike coordinate over a conformally flat

Lorentzian manifold. Note that the spacelike and timelike cases can be related via analytic

continuation.

The integrability conditions (5.12) and (5.16) impose the constraints

e−2σ(∂20 − ∂21)σ = −(16D2 + f2). (5.39)

−4D

f
= (∂0u1 − ∂1u0)e−2σ. (5.40)

In complete analogy with the timelike case, the first equation determines the curvature

of the 2-dimensional metric ds2(2) while the second one describes the fibration. The Ricci

scalar R(2) is given by

R(2) = 2e−2σ(∂20 − ∂21)σ = −2(16D2 + f2). (5.41)

In the last step we used (5.39). Unlike the timelike case, we see that both D2 and f2

contribute negatively to the curvature. The solution is again a fibration of the real line

over a 2-dimensional manifold, but now the only possible 2D manifold is AdS2. Thus, the

supersymmetric background allowing for a spacelike Killing vector is R×̃AdS2.

5.4 The null case

Finally, we consider the case where fµ is a null Killing vector. We define adapted coordi-

nates (u, v, x) such that

fµ∂µ =
∂

∂v
. (5.42)

Any metric with a null Killing direction v can be written as

ds2 = H−1
(
Fdu2 + 2dudv

)
+ e2σdx2, (5.43)

where H, F and σ are functions of u and x only. The integrability constraints (5.12)

and (5.16) translate into the following differential equations for the metric functions:

∂xlogH = 4Deσ, (5.44)

∂2xF − ∂xF (∂xlogH + ∂xσ) + 2He2σ
[
∂2uσ + (∂uσ)2 + ∂uσ∂ulogH +H−2

]
= 0. (5.45)

This system can be solved by first using (5.44) to express σ in terms of H, plugging the

result into (5.45), and then integrating the resulting equation to find F(u, x). However, the
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solution is cumbersome and not particularly illuminating. We therefore content ourselves

with giving a nontrivial example: consider the case H(u, x) = 1, which implies D = 0 . In

this case, σ is arbitrary, and we may choose σ = 0. The solution to (5.45) is then given by

F(u, x) = −x2 − a(u)x− b(u), (5.46)

with a(u), b(u) being integration constants. The metric reads

ds2 = 2dudv −
[
x2 + a(u)x+ b(u)

]
du2 + dx2. (5.47)

This is a plane-fronted wave in Brinkmann coordinates.

6 Non-relativistic limit of N = 2 supergravity

Given the supersymmetric backgrounds of N = 2 supergravity, it is instructive to study

how they connect to the non-relativistic supersymmetric solutions of section 4 in the non-

relativistic limit proposed in [1]. Recall the expansions (3.3) of the background fields:

EAµ = δA0

(
ωτµ +

1

2ω
mµ

)
+ δAa e

a
µ,

Mµ = ωτµ −
1

2ω
mµ, (6.1)

D =
S

ω
.

In addition, we will also need the inverse vielbein, which we obtain perturbatively in 1/ω:

EµA = δaA

(
eµa −

1

2ω2
mνe

ν
aτ

µ +O(ω−4)

)
+

1

ω
δ0A

(
τµ − 1

2ω2
mντ

ντµ +O(ω−4)

)
. (6.2)

All other bosonic fields can be expanded in inverse powers of ω. For example,

Vµ = V (0)
µ +

1

ω
V (−1)
µ + · · · ,

fµ = f (0)µ +
1

ω
f (−1)µ + · · · . (6.3)

In the derivation of the Newton-Cartan supergravity theory [1], it was necessary to impose

the constraints (3.8) through (3.10), to eliminate divergences. To see if the non-relativistic

backgrounds of section 4 could possibly arise as the non-relativistic (ω → ∞) limit of

relativistic solutions, we first check if the integrability conditions (5.15) and (5.19) are

consistent with (3.9). Taking ω →∞, we find:

Vµ = 2DMµ −
1

2
(λµ − λ′µ)→ 2Sτµ −

1

2
(λ(0)µ − λ′(0)µ ). (6.4)

We see that relativistic integrability implies a relation between the auxiliary fields in the

non-relativistic limit. However, there is an ambiguity, parametrized by the closed form

λµ − λ′µ. The consistency condition (3.9) corresponds to the specific gauge choice λ
(0)
µ −

λ
′(0)
µ = 8Sτµ.
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The integrability condition (5.12), which fixes the Ricci tensor, can be evaluated in the

ω →∞ limit as well:

Rµν → 8S2τµτν + λ(−1)α λ
(−1)
β ηabeαae

β
b τµτν . (6.5)

This expression differs from the non-relativistic integrability condition (4.14) only by a λµ-

dependent contribution. The extra contribution can once again be interpreted as a gauge

choice in the definition of the fields, fµ,Mµ, Vµ: the particular choice λ
(−1)
µ = 0 yields

equation (4.14).

6.1 Killing spinor equation

The difference between the non-relativistic limit of the N =2 backgrounds and the non-

relativistic solutions found directly within Newton-Cartan supergravity can be analyzed

more systematically by applying the ω →∞ limit (see section 3) directly to the relativistic

Killing spinor equations (5.3), which we recall here for convenience:

∇µηi + Vµε
ijηj − γµDηi +

1

4
γµγ

ρσFρσε
ijηj = 0. (6.6)

Note that the covariant derivative is given by ∇µ = ∂µ − 1
4ΩAB

µ γAB. We first rewrite (6.6)

in terms of the spinors η± (3.4):(
∂µ −

1

4
Ωab
µ γab

)
η+ −

1

2
Ω0a
µ γ0aη− −Dγµη− −DEµ0γ0(η− − η+)

−
(
Vµ +

1

2
fµ

)
γ0η+ +

1

2
Fµνγ

νγ0η− −
1

2
FµνE

ν
0 (η+ + η−) = 0, (6.7)(

∂µ −
1

4
Ωab
µ γab

)
η− −

1

2
Ω0a
µ γ0aη+ −Dγµη+ +DEµ0γ0(η− − η+)

+

(
Vµ +

1

2
fµ

)
γ0η− −

1

2
Fµνγ

νγ0η+ +
1

2
FµνE

ν
0 (η+ + η−) = 0. (6.8)

We can expand these equations in powers of ω by using the redefinitions (3.6) and (3.7)

for the spin/boost-connection and (3.5) for the Killing spinors, and also expanding the

auxiliary fields according to (6.3). The resulting equations are

0 =
√
ω

[(
∂µ −

1

4
ωabµ γab

)
ε+ − Sτµγ0ε+ −

(
V (0)
µ +

1

2
f (0)µ

)
γ0ε+

+
1

2
τµe

ν
af

(0)
ν ε− −

1

2
εabe

a
µe
ν
bf

(0)
ν ε+

]
+

1√
ω

[
−
(
V (−1)
µ +

1

2
f (−1)µ

)
γ0ε+ + τµe

ν
af

(−1)
ν γaε− −

1

2
εabe

a
µe
ν
bf

(−1)
ν ε+

]
+O(ω−

3
2 ),

(6.9)

0 = − ω
3
2

2
τµe

ν
af

(0)
ν γaε+ −

√
ω

2
τµe

ν
af

(−1)
ν γaε+

+
1√
ω

[(
∂µ −

1

4
ωabµ γab

)
ε− − Sτµγ0ε− +

(
V (0)
µ +

1

2
f (0)µ

)
γ0ε− +

1

2
ωaµγa0ε+

− Seaµγaε+ −
1

2
F (−1)
µν eνaγ

aγ0ε+

]
+O(ω−

3
2 ). (6.10)
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Here we have used the definition Fµν = εµνρf
ρ = EAµE

B
ν E

ρCεABCfρ to expand Fµν in

powers of ω as well. We see that the Killing spinor equation has split up into terms that

are singular/non-singular in the non-relativistic limit ω → ∞. In the full supergravity

approach, the O(
√
ω)- and O( 1√

ω
)-terms would correspond to the variations of ψµ+ and

ψµ−, respectively. Here we have already set δψµ± = 0 in the beginning, so (6.9) and (6.10)

lead to Killing spinor equations, plus constraints. Solving (6.9) and (6.10) order by order

in large ω, and neglecting O(ω−
3
2 ) terms, we find five independent equations: there are

three constraint equations,(
V (−1)
µ +

1

2
f (−1)µ

)
γ0ε+ − τµeνaf (−1)ν γaε− +

1

2
εabe

a
µe
ν
bf

(−1)
ν ε+ = 0, (6.11)

τµe
ν
af

(0)
ν γaε+ = 0, (6.12)

τµe
ν
af

(−1)
ν γaε+ = 0. (6.13)

Making no further assumptions about the form or number of supercharges, these conditions

need to hold for all ε+ and ε−. We thus conclude that

V (−1)
µ +

1

2
f (−1)µ = 0, eνaf

(0)
ν = eνaf

(−1)
ν = 0. (6.14)

Using these constraints, we obtain the remaining two equations from (6.9) and (6.10):

Dµε+ = Sτµγ0ε+ +
1

2
λ′(0)µ γ0ε+, (6.15)

Dµε− = Sτµγ0ε− −
1

2
λ′(0)µ γ0ε− −

1

2
ωaµγa0ε+

+ Seaµγaε+ +
1

2
τµ

(
eνaf

(−2)
ν − 1

2
mσe

σ
aτ

νf (0)ν

)
ε+. (6.16)

Here Dµ = ∂µ − 1
4ω

ab
µ γab, and λ′µ = 2Vµ + fµ is the undetermined closed form introduced

in (5.15). To obtain the last term in the second equation, we have further expanded Fµν
in powers of ω using Fµν = εµνρf

ρ as before.

Comparing the differential equations (6.15) and (6.16) with the non-relativistic Killing

spinor equations (4.1) and (4.2), we see that in general they do not agree. Backgrounds

that allow spinor solutions of (6.15) and (6.16) are in general not identical to the rigid

supersymmetric backgrounds we studied in section 4. However, if we choose

eνaf
(−2)
ν − 1

2
mσe

σ
aτ

νf (0)ν = 0, (6.17)

λ′(0)µ = −4Sτµ, (6.18)

we reproduce the non-relativistic Killing spinor equations studied previously. This means

that the backgrounds allowing for solutions of (6.15) and (6.16) are a superset of the

maximally supersymmetric solutions of Newton-Cartan supergravity (see figure 1 in the

introduction).

The difference between the two sets of spinor equations is due the different order of

limits used in their derivation. Recall that to derive (6.15) and (6.16), we first took the
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rigid limit Ψµ, δΨµ → 0, and then the non-relativistic limit ω → ∞. On the other hand,

the Newton-Cartan supergravity theory of [1] was derived by taking ω → ∞ first. In this

limit, there are singular terms that arise in the supergravity transformations with nonzero

gravitini. To obtain a consistent theory, these singular terms have to be eliminated by

imposing the following conditions on the auxiliary fields (see (3.9) and (3.10)) [1]:

F̂µν = 0, Vµ = −2τµS. (6.19)

In the rigid limit, the first condition becomes fµ = 0. With these constraints, equa-

tions (6.17) and (6.18) are satisfied identically, and we obtain the non-relativistic Killing

spinor equations (4.1) and (4.2). Since (6.15) and (6.16) were not derived as a rigid limit

of a consistent non-relativistic supergravity theory, we expect the constraints (6.19) to

reemerge as a consistency condition if one attempts to couple the rigid supersymmetric

theory to gravity.

Note, in particular, that the constraint fµ = 0 is very strong, as it ought to be imposed

before taking the non-relativistic limit if we wish to remain within the Newton-Cartan

supergravity theory of [1]. For maximally supersymmetric backgrounds, this restricts the

relativistic starting point to be the fµ = 0 case of section 5.1. Defining gµν = −ω2τµτν+hµν
and substituting into the Einstein condition (5.21) then gives

Rµν = 8S2τµτν − 8D2hµν , (6.20)

where we have taken S = ωD. Taking ω → ∞ along with D → 0 while holding S fixed

then reproduces the Ricci condition (4.14) for maximally supersymmetric solutions of the

non-relativistic theory.

7 Discussion

In contrast to the maximally supersymmetric case, where we were able to construct all

non-relativistic backgrounds explicitly, our discussion of 1
2 -BPS solutions in section 4.2 was

limited to providing examples of such backgrounds. To find all backgrounds with reduced

supersymmetry, it would be interesting to carry out an analysis using spinor bilinears, to

find the necessary and sufficient conditions for preserving a single supercharge (see ap-

pendix B for such an analysis in the relativistic case). Nevertheless, the three general cases

studied in sections 4.2.1, 4.2.2, and 4.2.3 essentially capture all possible 1
2 -BPS solutions.

We saw that in each of these three cases, integrability demands that Rij = 0, so we can

conclude that a necessary condition for non-relativistic supersymmetry is that spatial slices

are flat.2 It would be interesting to see if this continues to be true in higher dimensions,

or if it is possible to allow for nonzero curvature of spatial slices.

In our analysis of non-relativistic 1
2 -BPS solutions, which admit two supercharges, we

may equally have started by assuming only the form of a single supercharge (e.g. (ε+, 0)).

After solving the integrability conditions in the appropriate subspace of the 4-dimensional

2The ansatz in section 4.2.3 can be slightly generalized to ε− = (Fµ(t, ~x)γµ +G(t, ~x)) ε+ . However, the

integrability condition of (4.68) and thus the conclusion Rij = 0 still remain the same.
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space of spinors, we saw that Killing spinors necessarily come in pairs, and are characterized

by a two component Majorana spinor ε0. Hence a single supercharge is automatically

enhanced to two supercharges, and there are no 1
4 -BPS solutions. This is a familiar feature

from relativistic supersymmetry [30, 39] (see also appendix B).

In order to make contact with the backgrounds studied in the context of non-relativistic

holography, such as Lifshitz and Schrödinger spacetimes, it is necessary to extend the

analysis presented here by including nonzero torsion into the supergravity theory. A tor-

sionful version of Newton-Cartan supergravity has recently been constructed in [35]. It

would be interesting to search for rigid supersymmetric backgrounds within this theory as

well, with the goal of systematically constructing supersymmetric Lifshitz or Schrödinger

field theories.

With explicit non-relativistic supersymmetric backgrounds now available, the next step

to exploring the concept of non-relativistic supersymmetry further would be to explicitly

construct Lagrangians. Following the ideas of rigid supersymmetry, one way to accomplish

this is to consider realizations of matter multiplets in Newton-Cartan supergravity and

freeze out gravity to obtain a non-relativistic SUSY algebra. Knowledge of the transfor-

mation rules then allows one to build supersymmetric Lagrangians systematically [25, 40].

The study of relativistic supersymmetric field theories has recently led to a plethora of

new results and a deeper understanding of strongly coupled field theories and holography.

Further developing the concepts of non-relativistic supersymmetry and supergravity may

turn out to be equally fruitful, and may provide us with valuable tools to study non-

relativistic field theories and gauge/gravity dualities.
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A Notation and conventions

We choose the 2+1 dimensional Dirac matrices to be

γA = {iσ2, σ1, σ3}, (A.1)

where σi are Pauli matrices, and A = 0, 1, 2 denote flat tangent space indices. The Dirac

matrices satisfy the following duality relations:

γAB = −εABCγC , (A.2)

γABC = −εABC . (A.3)

Here εABC is the Levi-Civita symbol, with ε012 = 1. These identities imply the

useful relations

γab = εabγ0, (A.4)

γa0 = εabγb, (A.5)

where a, b = 1, 2 and ε12 = 1.
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Note that when using curved indices, ε needs to be replaced by the Levi-Civita tensor

ω, so that for example γµνρ = −ωµνρ. The Levi-Civita tensor is related to the ε-symbol by

ωµνρ =
√
−gεµνρ. (A.6)

We can define a charge conjugation matrix C = γ0, with the following properties:

CT = C−1 = −C = −C∗ (A.7)

CγAC−1 = −
(
γA
)T

(A.8)

A Dirac spinor ψ in 2+1 dimensions consists of two complex components. We define the

Dirac conjugate in the usual way as ψ̄ ≡ ψ†γ0, and the charge conjugate as ψc ≡ ψTC.

Majorana spinors satisfy the Majorana condition

ψ̄ = ψc, (A.9)

which implies that ψ has two real components.

B Bilinear analysis of N = 2 backgrounds

In this appendix, we construct supersymmetric backgrounds preserving at least one super-

symmetry by performing an invariant tensor analysis following the work of [39, 41]. We

focus once again on the N = (2, 0) theory. For a similar analysis in the N = (1, 1) case,

see [38].

The D = 3, N = (2, 0) superalgebra is specified by a pair of two component Majorana

spinors ηi [17]. We take ηi to be commuting, and form a complete set of bilinears

κ[ij] = η̄iηj , K(ij)
µ = η̄iγµη

j . (B.1)

We can equivalently write

κ = κ12, Kµ =
1

2
(K11

µ +K22
µ ), L1

µ = K12
µ , L2

µ =
1

2
(K11

µ −K22
µ ). (B.2)

The set of bilinears comprises one scalar and three vectors, corresponding to ten compo-

nents, as expected for the symmetric combination of four spinor components.

The bilinears are not all independent, but may be related via Fierz identities. The

relevant ones are the norms of the vectors

KµK
µ = −L1

µL
1µ = −L2

µL
2µ = −κ2, (B.3)

the outer product relation

L1
µL

1
ν + L2

µL
2
ν = KµKν − ηµνKλK

λ, (B.4)

and the identities

εµ
νρL1

νL
2
ρ = κKµ, εµ

νρL2
νKρ = −κL1

µ, εµ
νρKνL

1
ρ = −κL2

µ, (B.5)

demonstrating that the vectors form a basis for the three-dimensional spacetime.
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We now turn to the differential identities that may be obtained from the Killing spinor

equation (3.1)

0 = δΨµi = ∇µηi + εijηjVµ − γµηiD +
1

4
γµγρσF

ρσεijηj . (B.6)

We find

∂µκ
ij =

1

2
εijFµνK

kk ν , (B.7)

∇µKij
ν = 2DεµνλK

ij λ − 1

2
Fµνδ

ijεklκkl

+

((
1

4
εµλσF

λσ − Vµ
)
δρν −

1

2
Fµσεν

ρσ

)
(εikKjk

ρ + εjkKik
ρ ). (B.8)

Using (B.2), we have

∂µκ = FµνK
ν ,

∇µKν = 2DεµνλK
λ − Fµνκ,

∇µLaν = 2Dεµν
λLaλ − εabελσ[µF λσLbν] −

1

2
gµνε

abερλσFλσL
b
ρ + 2εabVµL

b
ν , (B.9)

or equivalently

dκ = −iKF,
dK = 4D ∗K − 2Fκ,

dLa = 4D ∗ La + 2εabLb ∧ ∗F + 2εabV ∧ Lb, (B.10)

along with

∇(µKν) = 0,

∇(µL
a
ν) = −1

2
gµνε

abερλσFλσL
b
ρ + 2εabV(µL

b
ν). (B.11)

We can immediately see that Kµ is a Killing vector with norm given by KµK
µ = −κ2.

The analysis then proceeds in two cases: Kµ being timelike, and Kµ null.

B.1 Timelike case

If κ 6= 0, Kµ is a timelike Killing vector. We proceed by choosing adapted coordinates such

that Kµ∂µ = ∂/∂t and writing the metric as

ds2 = −κ2(dt+ ω)2 +H2(dx21 + dx22), (B.12)

where the metric functions are κ(xa), ωa(x
b) and H(xa). Introduction of the natural

dreibein basis

e0 = κ(dt+ ω), ea = H dxa, (B.13)
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allows us to write K = −κe0 = −κ2(dt + ω). Acting with the exterior derivative gives

dK = −2dκ ∧ e0 − κ2dω. Comparison with (B.10) then allows us to solve for F

F = −e0 ∧ dκ
κ
− 2De1 ∧ e2 +

1

2
κdω. (B.14)

Note that the Bianchi identity dF = 0 constrains D(xa) to be independent of t.

To proceed, we note that the algebraic identities imply that L1 and L2 span the 2-

dimensional space orthogonal to e0. Hence we may write

La = κ(cosψδab + sinψεab)eb, (B.15)

where ψ(t, xa) parametrizes a local frame rotation. Substitution of this expression for La

into the identity for dLa in (B.10) allows us to determine Vµ

V =
1

2

(
dψ − (∗2dω)e0 + ∗2d log(κ/H)

)
, (B.16)

where ∗2 is the Hodge dual on the 2-dimensional space spanned by e1 ∧ e2. There is

one remaining condition to check, which is the symmetrized ∇(µL
a
ν) differential identity

in (B.11). However, explicit computation shows that this is automatically satisfied for the

configuration above.

To summarize, supersymmetric backgrounds with a timelike Killing vector can be

written as

ds2 = −κ2(dt+ ω)2 +H2(dx21 + dx22), (B.17)

along with the auxiliary fields

D = D(xa),

F = dM = −e0 ∧ dκ
κ
− 2De1 ∧ e2 +

1

2
κdω,

V =
1

2

(
dψ − (∗2dω)e0 + ∗2d log(κ/H)

)
. (B.18)

The solution is specified by the arbitrary (but time-independent) functions κ(xa), ωa(x
b),

H(xa) and D(xa). Note that the function ψ(t, xa) is a gauge parameter, and can be set to

zero if desired.

Given this background field configuration, we can now return to the Killing spinor

equation (B.6). After some manipulation, we find that the Killing spinors have the form

ηi =
√
κ(cos(ψ/2) + γ0 sin(ψ/2))ηi0, (B.19)

where ηi0 satisfies the 1
2 -BPS projection

ηi0 = γ0εijη
j
0. (B.20)

Although the analysis proceeded by assuming only one unbroken supersymmetry out of

four, we see that the background actually preserves at least two supersymmetries.
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While the background (B.18) is generically 1
2 -BPS, the supersymmetry can be com-

pletely unbroken for appropriate choices of the fields. Such backgrounds ought to match

those obtained by the integrability analysis of section 5. However, note that there is no a

priori reason that the choice of metric in (B.18) needs to coincide with the ones of section 5.

In fact, the dual field strength from (B.14)

f =

(
2D − 1

2
κ ∗2 dω

)
e0 +H−1 ∗2 d log κ, (B.21)

does not necessarily even point along a single adapted coordinate direction, and hence falls

outside of the ansätze used in section 5. Of course, we expect the backgrounds to be related

by appropriate coordinate transformations.

B.2 Null case

We now turn to the null case, corresponding to κ = 0. Following [39], we note from (B.10)

and (B.11) that Kµ satisfies K ∧ dK = 0 and Kµ∇µKν = 0, so it is both hypersurface

orthogonal and tangent to affinely parametrized geodesics. This allows us to introduce null

coordinates (u, v, x) and write

Kµ ∂

∂xµ
=

∂

∂v
, Kµdx

µ = H−1du. (B.22)

We then specialize the metric to take the form

ds2 = H−1(F du2 + 2du dv) + e2σdx2, (B.23)

where the functions H(u, x), F(u, x) and σ(u, x) are independent of v. We use the

dreibein basis

e+ = H−1du, e− = dv +
1

2
F du, e3 = eσdx, (B.24)

and take the tangent space metric to be η+− = η33 = 1.

When κ = 0, the first identity in (B.10) places a constraint on F

F = F+3(u, x)e+ ∧ e3, (B.25)

where independence of v arises from demanding the Bianchi identity dF = 0. The second

identity in (B.10) allows us to solve for D

D = −1

4
e−σ∂x logH. (B.26)

Note, curiously, that this is similar to the expression (5.44) obtained from integrability in

the null case, however with the opposite sign. Nevertheless, there is no inconsistency since

the null Killing vectors (5.42) and (B.22) are distinct, so that the corresponding adapted

metrics are not directly equivalent.

Given F and D, what remains is to use the differential identities for La in (B.10)

and (B.11) to solve for V . In order to do so, we note that substituting κ = 0 in (B.5)

shows that La ∧ K = 0, so that La is parallel to K. This allows us to write La = φaK
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where φa(u, v, x) can in principle depend on all coordinates. The Fierz identity (B.4) then

demonstrates that (φa)2 = 1, so that we can express

L1 = K cosψ, L2 = K sinψ, (B.27)

in terms of a single function ψ(u, v, x). We can now solve for V , and find the simple pure

gauge result

V = −1

2
dψ. (B.28)

In summary, for the null Killing vector case, the supersymmetric background is given by

ds2 = H−1(F du2 + 2du dv) + e2σdx2, (B.29)

along with the auxiliary fields

D = −1

4
e−σ∂x logH,

F = dM = Fux du ∧ dx,

V = −1

2
dψ. (B.30)

This solution is specified by the metric functions H(u, x), F(u, x) and σ(u, x) as well as by

Fux(u, x). As in the timelike case, the function ψ(u, v, x) is a gauge parameter, and can be

set to zero.

Returning to the Killing spinor equation, we find that the Killing spinors have the form

η = e
i
2
ψσ2

η0, γ1η0 = 0. (B.31)

Here we have used a shorthand notation of combining the two spinor parameters (η1, η2)

into a two-component vector which is acted upon by the Pauli matrix σ2. The projection

γ1η0 = 0 demonstrates that this is generically a 1
2 -BPS background.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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