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1 Introduction

The first concrete realisation of gauge-gravity holography was obtained using D-brane

configurations in string theory and is embodied in the famous AdS/CFT correspondence [1].

While AdS/CFT provides very explicit examples, the concept of holography originated

in the more general context of gravitational physics and black holes [2, 3] without any

restriction to AdS or asymptotically AdS space-time. Thus it remains an important goal

to understand holography in theories with flat or deSitter asymptotics.

The AdS/CFT correspondence has taught us how to build a dictionary which relates

a theory of gravity with its dual non-gravitational theory. One of the insights obtained

from this duality [4] is that the asymptotic symmetry algebra in the gravity theory on

a manifold with boundary gives the symmetry of the dual non-gravitational theory on

that boundary. Thus one expects the asymptotic symmetry of the bulk theory with flat

or deSitter asymptotics to hold the key to the extension of holography beyond the AdS

context. In this work we focus on the flat space case.

It has been known for quite some time that the asymptotic symmetry algebra on I+ for

gravity theories with flat-space asymptotics is given by the Bondi-van der Burg-Metzner-

Sachs (BMS) algebra [5, 6]. It is natural to ask if this algebra encodes information about

bulk gravity with flat space asymptotics. Several interesting works have shed some light

on this question [7–13]. One outcome of these investigations is a detailed formulation of

the infinite-dimensional BMS algebras in both 3+1 and 2+1 dimensions. In the latter case,

the relevant algebra is known as BMS3, and is an extension of a single Virasoro algebra by

an additional chiral spin-2 generator along with two independent central charges.

It is interesting to ask if there are concrete realisations of the BMS algebra in terms

of quantum fields. Besides the motivation of flat-holography, this could be interesting just

from the point of view of conformal field theory. In principle realisations can be studied

in any dimension but since the BMS3 case has a Virasoro algebra as a sub-algebra, one
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may expect that the language of conformal field theory will be helpful in finding classes of

realisations. Moreover, three dimensional gravity is relatively simple in the bulk and two-

dimensional field theories (conformal and otherwise) have been studied for many decades.

Therefore, understanding BMS3/FT2 seems like an ideal place to start.

There already exist several works attempting to describe the boundary theory for

gravity/supergravity in an asymptotically flat bulk [11, 14, 15]. These duals are rather

complicated and in some cases involve non-polynomial constructions in terms of fields.

In this note we will approach the problem from the opposite direction: we construct a

very simple and explicit free-field realisation of BMS3. Remarkably it turns out that this

realisation provides non-vanishing central charges c1, c2 for BMS3, of which c1 is fixed. To

realise an arbitrary c1, it is sufficient to adjoin arbitrary chiral matter to this system. This

freedom can be used in particular to set c1 = 0, which is the value for pure Einstein gravity.

However our construction can also address more general asymptotically flat bulk theories

with nonzero c1. The important thing is that we achieve c2 6= 0, which is the case in

typical bulk realisations of BMS3 including Einstein gravity. The value of c2 per se is not

important as it can be changed by simply rescaling the Mn generators of BMS3. However

whether it is zero or non-zero is significant and our construction successfully permits the

latter choice. It must be pointed out, though, that there are some obstacles in going from

our present construction to an asymptotically flat gravitational dual for a reasons spelt out

below, and in the present work we will not attempt this.

Before describing our construction, we would like to motivate the relevance of free-

field representations of two-dimensional conformal algebras, known to mathematicians as

infinite-dimensional Fock space representations, with some historical background. Free

fermion and boson representations of affine Lie algebras originated in work of Bardakci

and Halpern [16, 17]. These ideas and subsequent developments were then rigorously

systematised by mathematicians [18–20] and the results had a remarkable impact on the

role of affine Lie algebras in both mathematics and physics. Among other things they led to

the vertex-operator construction of the Monster algebra [21], as well as the understanding

of enhanced gauge symmetry in toroidal compactifications of string theory [22]. Some years

later Wakimoto made the important discovery of free-field realisations of SU(2) at arbitrary

level [23] and this in turn was generalised to SU(n) after considerable effort by different

groups (for a nice review, see ref. [24]). Free-field realisations of coset and W-algebras were

discovered during the 1990’s [25, 26]. This background should make it clear that there is

no straightforward recipe to find free-field realisations of an arbitrary conformal algebra,

and also that when such a realisation exists it is usually of significance.

Returning now to a summary of our construction, it starts with a chiral β-γ bosonic

ghost system with spins (2,−1). A twist of the energy-momentum tensor1 by adding a

total derivative term leads to the BMS3 algebra complete with nonzero central extensions

c1, c2. Notably, our twist is not by the derivative of a primary current, as has usually been

the case in 2d topological field theory and related contexts [27–29]. Despite this, the twist

1To avoid potential confusion, we should emphasise that we are using language associated to chiral

conformal theories, but this should not be taken too literally. For example what we call the “energy-

momentum tensor” does not literally have to be the energy-momentum tensor of a boundary theory on I+.
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preserves the Virasoro algebra and we find that the Virasoro central charge (denoted below

by c1) is equal to 26. To achieve a general value of c1, we add chiral matter with central

charge c0 and verify that the algebra is completely unchanged by this addition, except that

c1 is modified to c0 + 26. A suitable choice of c0 can thus realise any positive or negative

value of c1. Meanwhile the other central charge (denoted c2 below) is proportional to the

twist, so in the end we have arbitrary central charges c1, c2 for the BMS3 algebra.

In our second example we start with the Wakimoto free field representation [23] of

a chiral affine SU(2) algebra. The energy-momentum tensor obtained from the Sugawara

construction is twisted by the divergence of the third component of the SU(2) current,

and then deformed further by adding a total derivative term, to obtain a realisation of a

coupled SU(2)-BMS3 algebra. Our third example is a supersymmetric version of BMS3
algebra. For this we introduce another pair of ghosts b, c that are fermionic and have spins

(3
2
,−1

2
). Choosing the super-charge Q to be an appropriate function of b, β and c, we

realise super-BMS3 with again two independent central charges. Finally, we extend this

construction to the W3 case of higher-spin-BMS3.

At each step we need to introduce some new fields as well as new ways of using them.

It is remarkable that, despite the system being highly overconstrained, we are able to

precisely realise the desired algebra every time. It is worth mentioning that in the case of

BMS-W3 the normal-ordering prescription for the nonlinear terms is extremely subtle, and

great care is needed in verifying that the algebra is correctly realised.

It is important to mention that for all of our constructions, we have chosen a vacuum

defined by the highest weight condition:

Ln|0〉 = Mn|0〉 = 0, n ≥ −1 (1.1)

where Ln and Mn are modes of the BMS3 algebra in eq. (2.3), as well as analogous condi-

tions for the additional modes appearing in the supersymmetric and W3 cases. This is the

choice made in ref. [30]. As pointed out there, with this choice one does not get unitary

representations of BMS3 (when c2 > 0). Moreover these conditions violate parity. These

are potentially serious issue for applying the construction to flat-space holography. Alter-

native norms have been discussed in the literature [31]. It will be important to examine

these and more general possibilities in the context of free-field realisations before these can

be applied in the holographic context. As mentioned above, this construction may be of

field-theoretic interest even outside the context of holography.

2 Free fields and BMS3

The BMS3 algebra can be derived in various ways [5–7, 32]. One relatively simple way

is to start with the asymptotic symmetry algebra corresponding to asymptotically AdS3
spacetime. It is a celebrated result [4] that this is a pair of independent Virasoro algebras:

[Ln,Lm] = (n−m)Ln+m +
c

12
n(n2 − 1) δn+m,0 ,

[L̄n, L̄m] = (n−m)L̄n+m +
c̄

12
n(n2 − 1) δn+m,0 ,

(2.1)
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with, in principle, independent central charges c, c̄. If one specialises to ordinary gravity

at two-derivative order one finds c = c̄ = 3ℓ
2G

. The BMS3 algebra arises in the limit where

one takes the AdS3 radius ℓ to infinity. This has to be done by scaling the generators of

the two Virasoro algebras carefully while taking the limit. For this, one takes the linear

combinations:

Ln = Ln − L̄−n, Mn = ǫ(Ln + L̄−n) (2.2)

in the limit ǫ → 0. One finds that c1 = c− c̄ and c2 = ǫ(c+ c̄), hence to get a finite c1, c2
from this starting point we take c, c̄ → ∞ keeping c− c̄ fixed. The resulting algebra in this

limit, known as BMS3, is:

[Ln, Lm] = (n−m)Ln+m +
c1
12

n(n2 − 1) δn+m,0

[Ln,Mm] = (n−m)Mn+m +
c2
12

n(n2 − 1) δn+m,0

[Mn,Mm] = 0 .

(2.3)

As explained in the introduction, we are interested in finding an infinite-dimensional

Fock-space representation of the above algebra. For convenience we introduce a holomor-

phic coordinate z (as in the previous footnote, we emphasise that this should not literally be

taken as the coordinate of an underlying space or space-time) and construct canonical fields:

T (z) =
∑

n∈Z
Lnz

−n−2

M(z) =
∑

n∈Z
Mnz

−n−2
(2.4)

We are going to construct the two fields T (z),M(z) in terms of holomorphic free fields. It

is important to keep in mind that the above is only a technical device. In principle one

could keep working with the modes Ln,Mn and construct them in terms of infinitely many

pairs of modes satisfying canonical commutation relations, but the holomorphic approach

has been recognised since the seminal work of Belavin, Polyakov and Zamolodchikov [33]

to be more practical.

Using the relation between algebras and operator product expansions we can rewrite

the BMS3 algebra in terms of the operator product expansion of the fields:

T (z)T (w) ∼ 1

2

c1
(z − w)4

+
2T (w)

(z − w)2
+

∂T (w)

z − w

T (z)M(w) ∼ 1

2

c2
(z − w)4

+
2M(w)

(z − w)2
+

∂M(w)

z − w

M(z)M(w) ∼ 0 ,

(2.5)

where, as usual, we write only the singular terms on the r.h.s. The field T generates a

Virasoro sub-algebra. The operator product expansion between T and M tells us that M

is a dimension 2 field under the Virasoro algebra, but due to the presence of a central term

it fails to be a primary field.
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To obtain a free field representation of the BMS3 algebra above, we start with a bosonic

β-γ satisfying the operator product expansion:

γ(z)β(w) ∼ 1

z − w
(2.6)

Such a system has played an important role in many areas of conformal field theory and

string theory, and a review of some aspects can be found in ref. [34]. One can take the

conformal dimensions of (β, γ) to be (p, 1 − p) for any integer p. This is achieved by

starting with the “basic” pair with dimensions (1, 0) and twisting the energy-momentum

tensor suitably by a derivative of the ghost-number current : βγ :. For our purposes, we

would like (β, γ) to have dimensions (2,−1) and will work with an energy-momentum tensor

that has already been twisted to achieve this, which turns out to be:

Tβ,γ = −2:β∂γ : − :γ∂β : . (2.7)

It immediately follows that

Tβ,γ(z)β(w) ∼
2β(w)

(z − w)2
+

∂β(w)

z − w

Tβ,γ(z)γ(w) ∼
−γ(w)

(z − w)2
+

∂γ(w)

z − w
.

(2.8)

As is familiar, the central charge of Tβ,γ is 26.

Let us note here that the pair of spin-2 fields (Tβ,γ(z), β(z)) generate something close

to the BMS3 algebra if we identify them with the BMS3 generators (T (z),M(z)). Indeed

the OPE of Tβ,γ with itself, together with the second equation above, form a BMS3 algebra

with c1 = 26, c2 = 0. As we will see, the latter is the bigger problem — a general BMS3
requires nonvanishing c2. This does not arise in the present system because β is primary.

To remedy this problem and introduce c2 6= 0, we twist the energy-momentum tensor:

T (z) = Tβ,γ − a ∂3γ (2.9)

where a is an arbitrary constant. As mentioned in the introduction, this twist is not of

the form T (z) → T (z) + 1

2
∂J(z) for a primary current J(z). Indeed in the present case,

J(z) would be proportional to ∂2γ which is definitely not primary, being the descendant

of the primary γ under the action of L2
−1. As a result it is not at all clear that the above

twist preserves the Virasoro algebra. What is evident, however, is that it will induce a

fourth-order pole, or in other words a central term, in the T (z)β(w) OPE.

The calculation of the OPE of T (z) above with itself involves cross terms between Tβ,γ

and ∂3γ. At intermediate stages these give rise to poles of up to fifth-order. For T (z)

to continue to satisfy the Virasoro algebra, the fifth- and third-order poles must cancel

completely while the second and first-order poles should depend only on T (z) and not sep-

arately on ∂3γ. None of these facts can be influenced by a choice of the coefficient a (since

all the cross terms are proportional to a) and therefore the system is quite overdetermined.

However a moderately tedious calculation shows that all the unwanted terms indeed cancel

out and one gets:

T (z)T (w) ∼ 1

2

26

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
. (2.10)
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Surprisingly, the new term ∂3γ in T has not even changed the central charge, nor has it

introduced any extra poles in the T -T OPE. Instead, it just modifies the right-hand side

of (2.10) such that the final expression is again expressed in terms of T .

Now choosing M(z) = β(z), we see that the operator product expansion of β with T

is modified due to the twisting term, with the result:

T (z)M(w) ∼ 1

2

12a

(z − w)4
+

2M(w)

(z − w)2
+

∂M(w)

z − w
(2.11)

Finally, because of the first-order nature of the ghost system we have:

M(z)M(w) ∼ 0 (2.12)

Combining the results in eq. (2.10) and eq. (2.11) we see that together T (z) and M(z)

define a BMS3 algebra with c1 = 26 and c2 = 12a. The central charge c2 can be set to any

nonzero value by tuning a. This freedom corresponds to the fact that within the BMS3
algebra one can always change the value of c2 by scaling M .

This construction lands us in a fixed value of the Virasoro central charge, namely,

c1 = 26. However, we can always couple any chiral conformal field theory, whose energy mo-

mentum tensor Tmatter has central charge c0, to this system. The total energy-momentum

tensor will then be

T (z) = Tmatter + Tβ,γ − a ∂3γ , (2.13)

resulting in a total central charge c1 = c0+26 and no change in any other operator product

expansions. To summarise, we see that a (β, γ) system of spin (2,−1), suitably combined

with any standard set of fields realising one copy of the Virasoro algebra, gives an explicit

realisation of the BMS3 algebra with completely arbitrary central charges.

3 Free field representation of super-BMS3

In this section we will consider the minimal supersymmetric generalisation of the BMS3
algebra. This is obtained by adjoining a single set of spin-3

2
generators Qr to the BMS3

algebra, with commutation relations [15, 35]:

[Ln, Lm] = (n−m)Ln+m +
c1
12

n(n2 − 1) δn+m,0

[Ln,Mm] = (n−m)Mn+m +
c2
12

n(n2 − 1) δn+m,0

[Mn,Mm] = 0

[Ln, Qr] =
(n

2
−m

)

Qn+r

[Mn, Qr] = 0

{Qs, Qr} = Mr+s +
c2
6

(

s2 − 1

4

)

δr+s,0 .

(3.1)

– 6 –



J
H
E
P
0
6
(
2
0
1
6
)
0
2
4

Here (r, s) are both integer or both half-integer. For definiteness we will take it to be

half-integer. This algebra can be written in terms of the operator product as

T (z)T (w) ∼ 1

2

c1
(z − w)4

+
2T (w)

(z − w)2
+

∂T (w)

z − w
,

T (z)M(w) ∼ 1

2

c2
(z − w)4

+
2M(w)

(z − w)2
+

∂M(w)

z − w
,

T (z)Q(w) ∼
3

2
Q(w)

(z − w)2
+

∂Q(w)

z − w
,

Q(z)Q(w) ∼ 1

3

c2
(z − w)3

+
M(w)

z − w
.

(3.2)

with the remaining OPE’s being non-singular. We have supplemented T (z),M(z) with the

chiral field Q(z) =
∑

r Qrz
−r− 3

2 .

We would now like to obtain a free-field realisation of this algebra. For this, we

supplement the β-γ system of section 2 by a Grassmann-odd b-c ghost system of spins
(

3

2
,−1

2

)

. The OPEs of the b-c fields are given by

b(z)c(w) ∼ 1

z − w
, b(z)b(w) ∼ 0, c(z)c(w) ∼ 0. (3.3)

This system is well-known to have central charge −15. Now we proceed by choosing T (z)

to be the standard energy-momentum tensor for the fields (β, γ) and (b, c) of dimensions

(2,−1) and (3
2
,−1

2
) respectively. Next we twist it by −a ∂3γ as in the previous section.

Letting M(z) = β(z) as before, we obtain the bosonic part of the super-BMS3 algebra with

central charges c1 = 26− 15 = 11 and c2 = 12a.

The next step is to represent the supersymmetry generator Q(z). Since this has di-

mension 3

2
, it would be most natural to start by realising it as b(z). However, this would

give rise to the OPE Q(z)Q(w) ∼ 0 which is not what we want. So we try to supplement

b(z) by terms of the same dimension, namely 3

2
, such that both M(z) and a central term

appear on the r.h.s. of Q(z)Q(w). Since M(z) = β(z), the former requirement is achieved

by adding a term of the form βc in Q. For the central term, we must add a term propor-

tional to ∂2c. In this way we ensure that the desired terms arise, but in principle we might

get several additional terms from the square of individual terms in Q as well as from an

additional cross term between βc and ∂2c. Fortunately every one of these terms vanishes.

The squares of individual terms do not contribute to the singular OPE because each term

contains only one of a pair of canonically conjugate variables. Similarly the additional

cross term vanishes. Now the coefficients of the terms in Q are easily adjusted to give the

correct Q(z)Q(w) OPE, and we find:

Q(z) = b(z) +
1

2
:βc : (z) + a ∂2c(z) (3.4)
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At this stage, we have completely specified all the generators for the super-BMS3
algebra:

T (z) = −3

2
:b∂c : (z) +

1

2
:c∂b : (z)− 2 :β∂γ : (z)− :γ∂β : (z)− a ∂3γ(z),

M(z) = β(z),

Q(z) = b(z) +
1

2
:βc : (z) + a ∂2c(z),

(3.5)

where T (z) and M(z) generate the three dimensional BMS algebra and Q(z) is the super-

symmetry current. However we now have another potential problem. The OPE’s T (z)Q(w)

and M(z)Q(w) have not yet been verified, and there is no more freedom to adjust any of

the generators.

The first of these OPE’s simply says that Q(z) is a primary under T (z). However,

this seems impossible to ensure since, out of the two terms added to b(z) to form Q, the

term βc appears to be primary because it is the product of two commuting free fields,

while the term ∂2c is certainly not primary, being the second derivative of a primary.

However one notices that the twist in T by ∂3γ renders the βc term in Q non-primary as

well. Moreover, for the pre-determined values of the coefficients of these terms, these two

non-primary contributions neatly cancel! As a result we find the desired OPE’s:

T (z)T (w) ∼
15

2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
,

T (z)M(w) ∼ 6a

(z − w)4
+

2M(w)

(z − w)2
+

∂M(w)

z − w
,

T (z)Q(w) ∼
3

2
Q(w)

(z − w)2
+

∂Q(w)

z − w
,

Q(z)Q(w) ∼ 4a

(z − w)3
+

M(w)

z − w
.

(3.6)

Finally the OPE M(z)Q(w) follows from the fact that Q is independent of γ(z). We have

thus obtained a free-field representation of the super-BMS3 algebra with central charges

c1 = 15 and c2 = 12a.

We have seen that the OPE of the supersymmetry current with itself in the minimal

super-BMS3 algebra considered in this section does not give T (z), rather it produces M(z).

In this fact it differs significantly from the OPE of a supersymmetry charge in a standard

(chiral) superconformal algebra, where Q(z)Q(w) gives rise to T (z). Hence if we want to

augment our construction with other degrees of freedom to make the central charge c1
arbitrary, we cannot achieve this by coupling the above system to a superconformal field

theory. Rather, we need to couple it to a bosonic conformal field theory of chiral matter

with central charge c0. In this way only T (z) changes while M and Q remain as before.

Then we find an arbitrary value c1 = c0+15 for the first central charge of super-BMS3. As

before, the second central charge c2 is proportional to a free parameter a and was therefore

arbitrary to start with.
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4 Spin 3 BMS3 algebra

We now attempt to find a free field representation of the W3 BMS3 algebra. In terms of

modes, we have Ln and Mn as in the ordinary BMS3 algebra, supplemented by Wn and

Vn. The algebra of these modes is given by the commutators: [25, 36]:2

[Lm, Ln] = (m− n)Lm+n +
c1
12

(m3 −m)δm,−n

[Lm,Mn] = (m− n)Mm+n +
c2
12

(m3 −m)δm,−n

[Lm,Wn] = (2m− n)Wm+n, [Lm, Vn] = (2m− n)Vm+n

[Mm,Wn] = (2m− n)Vm+n

[Wm,Wn] =
1

30

[

(m− n)(2m2 + 2n2 −mn− 8)Lm+n

+
192

c2
(m− n)Λm+n − 96(c1 +

44

5
)

c2
2

(m− n)Θm+n

+
c1
12

m(m2 − 1)(m2 − 4)δm,−n

]

[Wm, Vn] =
1

30

[

(m− n)(2m2 + 2n2 −mn− 8)Mm+n

+
96

c2
(m− n)Θm+n +

c2
12

m(m2 − 1)(m2 − 4)δm,−n

]

, (4.1)

where Θm ≡ ∑

nMnMm−n and Λm ≡ ∑

n :LnMm−n : − 3

10
(m+2)(m+3)Mm. Observe that

Λ contains a bilinear of two non-commuting modes L and M and therefore normal-ordering

is necessary. It is also noteworthy that Λ contains a term linear in M .

To find a free field representation, note that upon conversion to fields, the generators

of the above algebra are the pair of spin-2 fields T (z) and M(z) augmented by the pair

of spin-3 fields W (z) and V (z). There are similarities between M(z) and V (z) in that

both are self-commuting (viewed as modes) or equivalently have non-singular OPE’s with

themselves (as fields).

Now let us introduce another conjugate pair of free fields. For this we first rename the

(β, γ) system of previous sections as (β2, γ−1) where the subscripts indicate the conformal

dimensions. Next we introduce a new pair (β3, γ−2) of conformal dimensions 3 and −2

respectively. In terms of these two pairs of bosonic ghosts, we attempt to represent the

algebra by starting with the standard energy-momentum tensor T (z) for the canonical pairs

and choosing M(z) = β2(z). Twisting T (z) by −a ∂3γ−1 reproduces the BMS3 algebra as

before. We now need to fix the remaining generators.

It is easy to imagine that the spin-3 analogue of M(z), namely V (z), should be repre-

sented by the spin-3 free field β3 up to a normalisation. This takes care of its behaviour as

a primary as well as the fact that its OPE with itself is non-singular. The normalisation

is not determined by either of these requirements so we leave it free for the moment. We

2Our normalization of this equation is in agreement with ref. [25] and differs from ref. [36] by a factor

of 30 in the last two commutators.
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could also twist T (z) by ∂4 γ−2, but this would introduce a central term into T (z)V (w)

which is not present in the algebra, so we do not carry out this twist.

The last step is to define W (z). The possible linear terms are β3 as well as derivatives

of γ−1 and γ−2. The derivative terms threaten to render W non-primary, though in the

algebra it is expected to be primary. Thus, as in the supersymmetric case, we have to

ensure a delicate cancellation of non-primary terms if we introduce them. It will turn out

that we only need ∂5γ−2. Already we face a problem because the cross term between β3
and ∂5γ−2 would give an unwanted sixth-order pole and we need other terms to cancel it.

Proceeding further, we add bilinear terms with the restriction that canonically conjugate

fields (β2 and γ−1, or β3 and γ−2) do not appear in the same term. This allows for

bilinears involving β2 and γ−2 together with three derivatives, or bilinears involving β3 and

γ−1 with a single derivative. The former case offers four terms with different distributions

of derivatives, while the latter case offers two. Thus we introduce six bilinear terms along

with all possible linear terms, all with arbitrary coefficients. However it turns out that the

system is overdetermined and one cannot simultaneously satisfy the T −W,M −W,V −W

and W − W OPE’s. We are therefore led to introduce cubic terms. The computation

steadily becomes more complicated as each new term, besides potentially giving a desired

term in the OPE, can create a large number of unwanted terms (for example in W − W

a new term potentially introduces nine cross-terms!). Despite this, we were able to find

precisely two cubic terms, involving two factors of β2, one factor of γ−2 and one derivative.

Nested normal-ordering among these has to be carefully prescribed. While it may seem

surprising that normal-ordering is relevant at all, given that β2 and γ−2 are mutually

commuting fields, this has to do with lower-order poles and becomes very important when

the leading poles are of a high order. A related context is the Wakimoto representation of

SU(2)k, which crucially involves normal-ordering between mutually commuting fields (see

for example eq. (5.8) of the following section, or eqs. (15.279) and (15.281) of ref. [37]).

Following the above process we finally arrive at a free-field realisation of all the gener-

ators of the W3 BMS3 algebra:

T (z) = −2 :β2∂γ−1 : − :∂β2γ−1 : −3 :β3∂γ−2 : −2 :∂β3γ−2 : −a ∂3γ−1

W (z) =
1√
15

[

3 :β3∂γ−1 : + :∂β3γ−1 : +5 :β2∂
3γ−2 : + :∂3β2γ−2 : +

9

2
:∂2β2∂γ−2 :

+
15

2
:∂β2∂

2γ−2 : +
8

a

(

:β2(:β2∂γ−2 :) : + :β2(:∂β2γ−2 :) :
)

+
a

2
∂5γ−2 +

68

15a
β3

]

M(z) = β2, V (z) = − 1√
15

β3

(4.2)

Note the presence of nested normal-ordered products in W (z). These will generate non-

trivial contributions to the linear terms in M that are crucial to obtaining the algebra with
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the right coefficients. One also needs to define the composite fields:

Λ(w) = :TM : (w)− 3

10
∂2M(w)

Θ(w) = :MM : (w)
(4.3)

A lengthy and tedious computation results in the following non-vanishing OPEs:3

T (z)T (w) ∼ 50

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)

T (z)M(w) ∼ 6a

(z − w)4
+

2M(w)

(z − w)2
+

∂M(w)

(z − w)

T (z)W (w) ∼ 3W (w)

(z − w)2
+

∂W (w)

(z − w)

T (z)V (w) ∼ 3V (w)

(z − w)2
+

∂V (w)

(z − w)

M(z)W (w) ∼ 3V (w)

(z − w)2
+

∂V (w)

(z − w)

W (z)W (w) ∼ 100

3(z − w)6
+

2T (w)

(z − w)4
+

∂T (w)

(z − w)3

+
1

(z − w)2

[

2

60

(

16

a
Λ− 1088

15a2
Θ

)

+
3

10
∂2T

]

(w)

+
1

(z − w)

[

1

60

(

16

a
∂Λ− 1088

15a2
∂Θ

)

+
1

15
∂3T

]

(w)

W (z)V (w) ∼ 4a

(z − w)6
+

2M(w)

(z − w)4
+

∂M(w)

(z − w)3

+
1

(z − w)2

[

2

60

(

16

a
Θ

)

+
3

10
∂2T

]

(w)

+
1

(z − w)

[

16

60a
∂Θ+

1

15
∂3T

]

(w) (4.4)

When converted to modes, this precisely agrees with eq. (4.1). Thus we have obtained

a free-field realisation of the W3 BMS3 algebra with central charges in terms of just two

canonically conjugate pairs of free fields, (β2, γ−1) and (β3, γ−2).

We see that the central charges are c1 = 100 and c2 = 12a. Notice that c1 is precisely

the critical central charge of the W3 algebra [25]. Unlike the previous cases, it would be

rather non-trivial to extend the above construction to allow an arbitrary value for the

central charge c1 (including the value c1 = 0) and we leave this for the future.

5 An SU(2) generalisation of BMS3 and its Wakimoto representation

In this section we will use affine current algebra symmetry to try and derive a generalisation

of the BMS3 algebra which one can call “SU(2)-BMS3”. It contains both the BMS3 algebra

3We have used the Mathematica package Lambda [38] to compute these OPEs. This package was also

used for ensuring proper normal ordering of composite operators.
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and the SU(2) affine Lie algebra as subalgebras. Thereafter we will use the Wakimoto free-

field representation [23] as well as the method of the previous section to find a free-field

representation of the full SU(2)-BMS3 algebra. We will be partially successful in this: we

do find a realisation of the extended algebra without a Virasoro central charges, but when

we incorporate our twist in T (z) to incorporate this central charge, we find other non-

central terms in the algebra. Nevertheless, our algebra contains BMS3 and affine SU(2) as

subalgebras and each one has the desired central extensions.

Affine symmetry arises from the mode expansion of conserved currents in a conformal

field theory:

Ja(z) =
∞
∑

n=−∞
Ja
nz

−n−1, J̄a(z̄) =
∞
∑

n=−∞
J̄a
n z̄

−n−1, (5.1)

where the index a runs over the dimension D of the Lie algebra. The energy-momentum

tensor is built out of these currents using the Sugawara construction(see for example [37]):

TJ(z) =
1

2(k + g)
:Ja(z)Ja(z) : , (5.2)

where k is the level of the affine algebra and g is the dual Coxeter number. The currents

transform as dimension-1 primary fields of the Virasoro symmetry. This is summarised in

the following singular operator product expansions:

TJ(z)TJ(w) ∼
1

2

c

(z − w)4
+

2TJ(w)

(z − w)2
+

∂TJ(w)

z − w

Ja(z)Jb(w) ∼ kδab

(z − w)2
+

ifabcJc(w)

z − w

TJ(z)J
a(w) ∼ Ja(w)

(z − w)2
+

∂Ja(w)

z − w
,

(5.3)

where the Virasoro central charge c = kD/(k + g) and fabc are the structure constants of

the Lie algebra.

Let us specialise to SU(2). In our conventions this algebra has fabc =
√
2 ǫabc. Using

the basis J± = 1√
2
(J1 ± iJ2), J0 =

√
2 J3, the current algebra is:

J+(z)J−(w) ∼ k

(z − w)2
+

J0(w)

z − w
,

J0(z)J±(w) ∼ ±2J±

z − w
,

J0(z)J0(w) ∼ 2k

(z − w)2
.

(5.4)

The remaining products are all regular, in particular J+(z)J+(w) has no singularity. We

will make use of this fact later on.

Next, the Sugawara construction in this basis looks like:

TJ(z) =
1

2(k + 2)

[

1

2
:J0J0 : (z)+ :J+J− : (z)+ :J−J+ : (z)

]

(5.5)
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In order to combine this with BMS3, we actually need a variant of the above construc-

tion. In fact it has long been known that there is a twisted version of the SU(2) current

algebra, first introduced in ref. [27] in the context of 2d gravity, in which (J+, J0, J−)

have conformal dimensions (2, 1, 0) respectively. This version is obtained by modifying the

above Sugawara energy-momentum tensor as:

T (z) = TJ(z)−
1

2
∂J0(z) (5.6)

It is easy to verify that after this twist, the conformal dimensions of the currents change

as above. We now have a potential way of defining a combined SU(2)-BMS3 algebra. Note

that T (z) and J+(z) together form a pair of spin-2 holomorphic fields of which the former

satisfies a Virasoro algebra, the latter has a non-singular OPE with itself and the latter

is a spin-2 primary under the former. These are all the ingredients that define a BMS3
algebra with a vanishing second central charge c2. This leads us to define the SU(2)-BMS3
algebra with central extensions by introducing a c2 term in the T − J+ OPE, leading to:

T (z)T (w) ∼ 1

2

c1
(z − w)4

+
2T (w)

(z − w)2
+

∂T (w)

z − w

T (z)J+(w) ∼ 1

2

c2
(z − w)4

+
2J+(w)

(z − w)2
+

∂J+(w)

z − w

J+(z)J+(w) ∼ 0,

J+(z)J−(w) ∼ k

(z − w)2
+

J0(w)

z − w
,

J0(z)J±(w) ∼ ±2J±

z − w
,

J0(z)J0(w) ∼ 2k

(z − w)2
,

T (z)J0(w) ∼ 2k

(z − w)3
+

J0(w)

(z − w)2
+

∂J0(w)

z − w

T (z)J−(w) ∼ ∂J−(w)

z − w

(5.7)

At this stage it is not clear what central terms, or other terms, we need to incorporate in

the last two OPE’s to make a consistent algebra. While in previous sections of this paper

the algebra including central extensions was completely specified in advance, here we will

take a different approach — to let the free-field realisation determine what additional terms

the algebra should contain.

Let us now introduce the Wakimoto representation of the SU(2) affine Lie algebra [23]

(see also ref. [37]). Recall that this has been one of the most important uses of (β, γ)

systems and enables us to construct the affine SU(2) algebra at arbitrary level k. In this

representation, the three holomorphic SU(2) currents J±(z), J0(z) are constructed out of

β, γ and a free scalar ϕ with a background charge that depends on a real number k. For

this purpose, the (β, γ) pair is taken to have spin (1, 0). The precise construction is as
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follows:

J+(z) = β(z),

J0(z) =
i
√
2

α+

∂ϕ(z) + 2 :γβ : (z),

J−(z) =
−i

√
2

α+

:∂ϕγ : (z)− k∂γ(z)− :βγγ : (z) .

(5.8)

Here k is the level of the affine algebra and α+ = 1√
k+2

is proportional to the background

charge of the scalar field ϕ. Via the canonical OPE’s of β with γ and ∂ϕ with itself, one

can show that the above spin-1 currents satisfy the affine SU(2) algebra at arbitrary level

k: the energy-momentum tensor in this representation is given by:

TJ(z) =
1

2(k + 2)

[

1

2
:J0J0 : (z)+ :J+J− : (z)+ :J−J+ : (z)

]

= − :β∂γ : (z)− 1

2
:∂ϕ∂ϕ : (z)− iα+√

2
∂2ϕ(z) .

(5.9)

We see that in the Wakimoto form it splits into two pieces corresponding to the energy-

momentum tensor of a β-γ system and that of a scalar field ϕ with a background charge.

Comparing with the canonical form for the latter, we find that the background charge for

ϕ is −α+/2. By virtue of being one of the currents in the Wakimoto representation it is

obvious that the conformal dimension of β is 1. It follows that its canonically conjugate

field γ has conformal dimension 0.

Next we ask how, in the Wakimoto representation, one can perform a twist to change

the spins of (J+, J0, J−) to (2, 1, 0). This has already been carried out in ref. [29] where it

was shown that the above twist can be implemented within the Wakimoto representation

precisely by changing the spins of (β, γ) to (2,−1). Therefore to realise SU(2)-BMS3 with

an arbitrary central charge, we must perform this twist of the Wakimoto representation,

and then twist the energy-momentum tensor of the theory by ∂3γ as in the previous section.

We have already shown that in this situation T (z) and β(z) satisfy a BMS3 algebra. The

new ingredient is that we now have additional generators J0, J− that extend BMS3 and

we will find that the OPE’s come out as specified in eq. (5.7) plus some additional terms.

The first twist gives, in the Wakimoto representation:

T̃J(z) = TJ(z)− ∂J0(z)

= −2 :β∂γ : − :γ∂β : −1

2
:∂ϕ∂ϕ : − i√

2

(

α+ +
1

α+

)

∂2ϕ.
(5.10)

With respect to T̃ , the β-γ system now has conformal dimension (2,−1) and as desired,

this changes the conformal dimension of the J+ current to 2 and that of J− to 0. Since

J+ = β has a trivial OPE with itself, we get the following set of OPE’s:

T (z)T (w) ∼ 1

2

c1
(z − w)4

+
2T (w)

(z − w)2
+

∂t(w)

z − w
,

T (z)J+(w) ∼ J+(w)

(z − w)2
+

∂J+(w)

z − w
,

J+(z)J+(w) ∼ 0,

(5.11)

– 14 –



J
H
E
P
0
6
(
2
0
1
6
)
0
2
4

where c1 = 27 − 6
(

α+ + 1

α+

)2

is the Virasoro central charge. Since J+ is a Virasoro

primary, we do not find a central extension term in the second commutator. This limitation

can be overcome by further deforming the energy-momentum tensor, defining T = T̃−a ∂3γ.

Now the operator product expansion of T with J+ has a fourth order pole which gives rise

to the desired central extension. Just as in the previous section, this deformation does not

produce any unwanted terms in the Virasoro algebra or change its central charge c1.

The final energy-momentum tensor then takes the form:

T = −2 :β∂γ : − :γ∂β : − a :∂3γ : −1

2
:∂ϕ∂ϕ : − i√

2

(

α+ +
1

α+

)

∂2ϕ. (5.12)

The OPEs between T (z) and J+(z) give the BMS3 algebra, namely, we identify M(z) =

J+(z) and the resulting OPEs are as in eq. (5.11) except that the middle line is modified to:

T (z)J+(w) ∼ 1

2

12a

(z − w)4
+

2J+(w)

(z − w)2
+

∂J+(w)

z − w
(5.13)

We see that c2 = 12a. But now this structure is supplemented by the remaining SU(2)

currents. The additional OPEs between T and these currents are:

T (z)J0(w) ∼ 12aγ(w)

(z − w)4
+

2k

(z − w)3
+

J0(w)

(z − w)2
+

∂J0(w)

z − w
,

T (z)J−(w) ∼ −6a :γγ : (w)

(z − w)4
+

∂J−(w)

z − w
.

(5.14)

Under the twisting which takes us from TJ to T̃ the Wakimoto currents J± remain

primary while their conformal dimensions shift from (1, 1) to (2, 0). Meanwhile the current

J0 is no longer primary, acquiring a central charge proportional to k after the twist. How-

ever when we go from T̃ to T , none of the currents remains a primary field. The operator

product expansion of T with J0 acquires a central term proportional to k with a cubic pole,

as well as a term proportional to a multiplying the free field γ with a quartic pole. For T

with J−, one finds a non-central fourth-order pole. However since the modification of the

energy-momentum tensor does not affect the current algebra as such, the system continues

to have SU(2) affine symmetry. So it may be interesting as a non-Abelian extension of

BMS3. As in the previous section, here too we can couple this system to a conformal field

theory of chiral matter with central charge c0, which allows us to have arbitrary value for

the central charge c1.

6 Conclusions and future directions

We have shown that the BMS3 algebra with arbitrary central charges c1, c2 can be written

in terms of a twisted chiral conformal field theory of free fields coupled to arbitrary chiral

matter. We also constructed a free-field realisation for the supersymmetric extension of

the BMS3 algebra and the higher-spin W3-BMS3 algebra. Finally, we discussed a coupled

SU(2)-BMS3 system using the Wakimoto free field representation of the chiral SU(2) affine

algebra. In the BMS3 and supersymmetric cases, we were able to tune the central charge
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c1 to zero if desired by adding suitably (non-unitary, in the usual sense) matter. For W3 we

did not yet show how to tune c1 to an arbitrary value. It is important to note that c2 6= 0

in our construction, which is achieved by a twist of the energy-momentum tensor and its

generalisations. It remains an interesting open question to generalise our construction to

the Wn (n > 3) and W∞ versions of BMS3.

Our work suggests a variety of possible directions to pursue. First of all, one should

understand whether there is any way to restore unitarity, which as it stands is broken by

the highest-weight conditions. One may then ask what is the bulk dual for our theories and

what quantity in the bulk is computed by correlation functions of our free-field realisation.

Beyond the fact that the bulk theory contains asymptotically flat gravity, it may also con-

tain various other types of fields and we have yet to initiate a detailed investigation of this.

Another interesting observation is that these chiral CFT-like representations suggest

possible relations between the asymptotic BMS3 symmetry algebra and the symmetry alge-

bra of open string theory. If we choose a conformal field theory with central charge c0 = 0

(in the β-γ) formulation or c = 6(α+ + 1

α+
)2 − 1 (in the Wakimoto SU(2) theory), we can

get a critical open string theory representation with BMS3 symmetry. One possibility is to

avoid adding a matter part entirely, but instead to add a pair of (b, c) ghosts of spins (2,−1)

(to be viewed as worldsheet ghosts, and not to be confused with the supersymmetric (b, c)

system discussed above). Passing to the BRST cohomology, we then appear to find a topo-

logical string with BMS3 symmetry. It would be interesting to investigate this possibility.
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