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Abstract: We consider the branch of the projectable Hořava-Lifshitz model which ex-

hibits ghost instabilities in the low energy limit. It turns out that, due to the Lorentz

violating structure of the model and to the presence of a finite strong coupling scale, the

vacuum decay rate into photons is tiny in a wide range of phenomenologically acceptable

parameters. The strong coupling scale, understood as a cutoff on ghosts’ spatial momenta,

can be raised up to Λ ∼ 10 TeV. At lower momenta, the projectable Hořava-Lifshitz grav-

ity is equivalent to General Relativity supplemented by a fluid with a small positive sound

speed squared (10−42 .) c2
s . 10−20, that could be a promising candidate for the Dark

Matter. Despite these advantages, the unavoidable presence of the strong coupling obscures

the implementation of the original Hořava’s proposal on quantum gravity. Apart from the

Hořava-Lifshitz model, conclusions of the present work hold also for the mimetic matter

scenario, where the analogue of the projectability condition is achieved by a non-invertible

conformal transformation of the metric.
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1 Introduction and summary

Modifications of gravity are the subject of intensive debate in the scientific community. The

main interest comes from cosmology. In particular, we do not know yet the origin of 95%

of the energy density in the Universe. While the Dark Matter component (27%) can be

relatively easily explained by an extension of the Standard Model, no convincing model of

Dark Energy (68%) has been proposed yet [1]. Besides these cosmological considerations,

finding a viable modification of General Relativity (GR) is, in a certain sense, a matter

of principle. The first attempts to promote the graviton to a massive field (the renowned

Fierz-Pauli model, [2]), have been made well before the discovery of Dark Matter and

Dark Energy. It turned out, however, that the Fierz-Pauli model is plagued by ghost

instabilities [3] and an unacceptably low scale of the strong coupling [4]. Motivated by

those problems, several proposals on Lorentz-invariant models of gravity have been put

forward recently [5, 6].

Another interesting approach to modifying gravity is to break Lorentz-invariance spon-

taneously or explicitly. (See the review [7], the references therein and refs. [8–10]). This is

argued to be a viable way of getting around the troubles with ghost instabilities and a low

scale of the strong coupling [11–13]. Moreover, relaxing the Lorentz symmetry, one opens

up an intriguing opportunity to construct Dark Energy, inflation and Dark Matter, with a

row of interesting models exemplified in the ghost condensate context [14–16].
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Violation of Lorentz invariance at the high energies may have dramatic consequences

in a view of another long-standing problem — the renormalization of gravity. Following

Hořava’s proposal [17–19], one assigns different scaling dimensions to the time, t, and

spatial coordinates, x, in the ultraviolet (UV),

x→ b−1x , t→ b−zt , (1.1)

where z is the so-called critical exponent. The scaling (1.1) fixes the high energy dispersion

relation for the graviton to be of the form ω2 ∝ p2z, where ω denotes the energy and p the

momentum. Consequently, the behaviour of the propagators changes in the UV, potentially

eliminating the divergence of the loop integrals. Power-counting (super-)renormalizable

gravity corresponds to the choice z = 3 (z > 3). See the discussion in subsection 2.1.

However, breaking the Lorentz symmetry does not come at zero price. It implies the

smaller group of diffeormorphisms compared to that of GR. As an immediate consequence,

one has extra degrees of freedom, on top of the standard helicity-2 graviton. In particular,

the lapse function, N(t,x), is a dynamical variable in Hořava-Lifshitz gravity. This new

degree of freedom suffers from gradient instabilities and furthermore leads to a very low

strong coupling scale in the theory [20, 21]. Looking for the solution of the problem, one

either turns to extensions of the Hořava-Lifshitz gravity or imposes some conditions capable

of eliminating the pathological mode. The first line of research was developed in ref. [22],

and we do not touch it in the present paper. We follow another approach, proposed already

in the original paper by Hořava [17], which is to impose the projectability condition.

In the projectable Hořava-Lifshitz gravity one entertains the possibility that the lapse

N is a function of time only, i.e., N = N(t). The reason why this scenario is important

is twofold. First, it is the only version of the Hořava-Lifshitz gravity which has been

renormalized so far [26].1 Second, it has quite a rich phenomenology. In particular, this

model provides a candidate for the Dark Matter and an alternative to inflation [27–31].

Still, the model of interest appears to be problematic in the infrared limit (IR). At

low spatial momenta, it is equivalent to GR plus a fluid characterized by the constant

sound speed cs [21, 23, 25], — a statement, which becomes manifest upon performing the

Stuckelberg trick [21, 23, 24] (see subsection 2.2). In what follows, we will consider two

branches of the projectable Hořava-Lifshitz gravity depending on the sign of the quantity

c2
s. The branch with the negative sound speed squared, i.e., c2

s < 0, is the only studied

in the literature. It is plagued by gradient instabilities in the IR, which can be cured in

the UV by the Lorentz-violating operators inherent in Hořava-Lifshitz gravity. Naively,

by tuning the sound speed cs to be arbitrarily small, one could avoid any conflict with

observations. This expectation, however, is not met in reality: the strong coupling scale is

finite and depends crucially on the sound speed [23, 25],

Λp ∼MPl · |cs|3/2 . (1.2)

Here MPl denotes the Planck mass defined as MPl ≡ G−1/2, where G is Newton’s constant.

Note that the cutoff (1.2) is applied to the spatial momenta p ≡ |p|, i.e., it breaks Lorentz

1However, in 4 dimensions the perturbative renormalization of the projectable Hořava-Lifshitz gravity

is achieved at the price of the phenomenological viability of the model. See the discussion below.
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invariance explicitly. Demanding that gradient instabilities do not propagate on a time

scale smaller than the age of the Universe, leads to the constraint Λp . 10−17 eV [23]. This

is by many orders of magnitude below the phenomenologically allowed values.

In this paper, we will argue that the second branch, with c2
s > 0, of the Hořava-Lifshitz

gravity is viable in a much wider range of sound speed values, so that the model remains

perturbative down to microscopic scales. The reason, why this branch has been ignored in

the literature is simple: unlike standard cosmological fluids, e.g., radiation, in our case the

positive sound speed squared comes at the price of having ghost instabilities [22, 23, 25].

Naively, this invalidates the scenario of interest. However, it is well-known that ghosts

are not particularly dangerous in Lorentz-violating theories of gravity [12].2 That is, for

a reasonably small cutoff Λ on the momenta and the frequencies of the ghosts, the decay

of the vacuum into Standard Model species in the final state is sufficiently slow, — in

agreement with the observed abundance of particles in the Universe.3 In the projectable

Hořava-Lifshitz gravity that cutoff is realized by the finite scale of the strong coupling (1.2),

above which, we assume, the model is free of instabilities. The upper limit on the scale Λ

obtained in ref. [12] reads Λ . 3 MeV. The latter is applied provided that the frequency

ω and the spatial momenta p have equal cutoffs. This condition, however, is not fulfilled

in our scenario, where the ghosts obey the non-relativistic dispersion relation ω2 = c2
sp

2,

with the sound speed much less than unity, i.e., cs � 1. As a by-product, the cutoff on the

spatial momenta (strong coupling scale (1.2)) can be relaxed by many orders of magnitude,

extending the validity of perturbation theory to the TeV range (see section 3).

The reason is twofold. First, in the formal limit cs → 0, the energies of the ghosts and,

say, the photons produced from the vacuum decay approach zero. This leads to a vanishing

phase-space volume of the outgoing particles. For generic values of the sound speed (still,

much smaller than unity), this argument implies the suppression of the phase-space volume

by some power of the quantity cs. Second, the coupling between the standard fields,

i.e., photons and helicity-2 gravitons, with the canonical ghost field is very weak. This

follows from normalization considerations. Collecting the suppressing factors altogether

and comparing the resulting decay rate into photons with the observed flux of cosmic X-

rays, one obtains c2
s . 10−20. The upper limit here implies that the strong coupling scale

in the projectable Hořava-Lifshitz gravity can be as large as Λp ∼ 10 TeV. This is about

thirty orders of magnitude weaker than the associated limit in the branch plagued by the

gradient instabilities.

To summarize, the branch of the projectable Hořava-Lifshitz gravity with the ghosts

in the IR is a phenomenologically viable scenario. We note, however, that the presence

of the strong coupling by itself is not good from the viewpoint of renormalizing Hořava-

Lifshitz gravity.4 Naively, one could circumvent the problem by setting the UV cutoff of the

theory somewhat below the would be strong coupling scale. In that case, the computation

2The opportunity to have controllable ghost instabilities in Lorentz-invariant theories is discussed in

ref. [32].
3See refs. [33] and [34] for the applications of this idea to various gravitational frameworks.
4In particular, the presence of the strong coupling invalidates the discussion of ref. [26], where it is

assumed that the model can be treated perturbatively at the arbitrary scale.
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of the strong coupling cutoff performed within the IR theory is not valid. Instead, one

can argue that the theory remains perturbative at an arbitrary scale [35]. However, this

is not a viable option in the branch with the positive sound speed squared. The reason

is that the ghost instabilities are not cured by the operators arising in the UV. Hence,

retaining perturbativity would make them propagate at an arbitrary scale and lead to an

instantaneous destabilization of the vacuum. Thus, we are forced to assume that the UV

cutoff is above the strong coupling scale, and hence the projectable Hořava-Lifshitz gravity

enters the genuinely non-perturbative regime at some point. This is a non-appealing feature

of the IR theory, which severely obscures its UV completion. We sketch a possible solution

of the problem in the end of subsection 2.2 and in appendix. This solution, however,

involves operators beyond the projectable Hořava-Lifshitz gravity and, thus, is out of the

main scope of the paper.

Apart from the issues with the UV completion, the scenario at hand looks attractive

from a somewhat more down-to-earth perspective: it allows us to construct a fluid free

of any obvious pathologies characterized by a small sound speed. In particular, that fluid

could be an interesting candidate for Dark Matter. While practically indistinguishable from

a collection of cold non-interacting particles at the background and linear levels [27, 36–39],

it exhibits a different behaviour in the non-linear phase [31, 38]. These features might be

of sufficient interest in view of the series of small scale problems alleged to the Cold Dark

Matter [40].

Finally, we note that the results of the present paper can be literally translated into

the context of the mimetic matter scenario [36]. The latter is a novel proposal, originally

designed to explain the Dark Matter in the Universe by a singular disformal transformation

of the metric in GR [41]. In fact, the mimetic matter scenario extended by means of a

higher derivative term [37] is equivalent to the IR limit of the projectable Hořava-Lifshitz

gravity, as well as to a particular version of the Einstein-Aether theory [42–44]. The

classical evolution of cosmological perturbations in that setup was studied in refs. [37, 38],

and the stability issues have been partially addressed in ref. [45]. In a certain sense, the

results of the present paper extend those analyses to the quantum level.

The paper is organized as follows. In section 2, we review the IR limit of the Hořava-

Lifshitz gravity with the projectability condition imposed and re-derive the strong coupling

scale. In section 3, we estimate the decay rate of the vacuum into photons and ghosts and

establish an upper limit on the sound speed cs and, consequently, on the scale of the strong

coupling. Finally in section 4, we discuss some prospects for future research.

2 Review of projectable Hořava-Lifshitz gravity

2.1 Setup

We start with a brief review of the Hořava-Lifshitz gravity theory, focusing on its pro-

jectable version. We write the metric using the Arnowitt-Deser-Misner (ADM) formal-

ism [46],

ds2 = N2dt2 − γij
(
dxi +N idt

)(
dxj +N jdt

)
,
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(we assume the mostly negative signature). Along with eq. (1.1), one postulates the fol-

lowing scaling of the lapse function N , the shift vector Ni and the metric on the constant

t-hypersurface γij [17],

γij → γij , Ni → b2Ni , N → N .

Here the value of the critical exponent z = 3 is implied. Next, one classifies all the possible

operators according to their scaling dimensions. In particular, the operators entering the

GR kinetic term, i.e.,

KijK
ij , K2 ,

have scaling dimension 6. Here Kij and K are the extrinsic curvature tensor and its trace,

respectively. The operators of the same dimension as the kinetic terms are called marginal.

The action of the Hořava-Lifshitz gravity is then designed as the sum of all marginal and

relevant operators [17]. These can be assembled in the GR fashion,

S =
1

16πG

∫
dtd3x

√
γN

(
KijK

ij − λK2 − V
)
, (2.1)

where V is the so called potential typically involving powers of the 3-dimensional Ricci

scalar and tensor as well as their derivatives [17, 47, 48]. Just to illustrate the main

idea behind Hořava’s proposal, let us write down an example of an operator entering the

potential V,
1

M4
∗
R∆R . (2.2)

Here R is the Ricci scalar calculated on the constant t-hypersurface; M∗ is a free parameter

defining the scale of the UV completion of the theory. In the presence of the marginal

operator (2.2), the graviton propagator gets modified as follows [17],

1

ω2 − k2
→ 1

ω2 − k2 − (k2)3

M4
∗

. (2.3)

That is, at sufficiently long distances, one recovers the standard GR behaviour of the prop-

agator. At high energies, the scaling of the propagator strongly improves. Consequently,

one opens up the possibility to reduce the divergencies of the loop integrals. In particu-

lar, the behaviour as in eq. (2.3) leads to the power counting renormalizable gravity in 4

dimensions.

Having briefly described the UV properties of the Hořava-Lifshitz gravity, we switch to

its IR limit, — the main focus of our studies. In that limit, the potential V takes the form,5

V → −R . (2.4)

Substituting this into the action (2.1), we obtain the action of GR, modulo the constant λ,

which is generically not equal to unity. Naively, Einstein’s gravity is recovered in the limit

5Generically, one should write V → −ζR, where ζ is some arbitrary constant. This, however, can be

safely tuned to unity to better match the GR case.
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λ → 1. However, this is not so. The reason is that the action of Hořava-Lifshitz gravity

respects a smaller group of diffeomorphisms compared to that of GR [17],

t→ t̃(t) , x→ x̃(t,x) ,

called foliation-preserving diffeomorphisms. This eventually leads to an additional degree

of freedom on top of the helicity-2 graviton. The new degree of freedom typically exhibits

a pathological behaviour in the IR or leads to the breakdown of perturbation theory at

unacceptably large distances [20, 21]. So, unlike in GR, in Hořava-Lifshitz gravity (or, at

least, in its original incarnation) the lapse N(t,x) is a dynamical variable. This variable is

plagued by gradient instabilities and a very low strong coupling scale.

That problem is absent in the projectable version of the Hořava-Lifshitz gravity [17],

to which we turn now. There, one assumes that the lapse is a function of time only, i.e.,

N = N(t). In particular, it can be set to unity, i.e., N(t) = 1, by the proper choice of the

time reparametrization. To enforce the condition N = 1, following ref. [22], we introduce

a term in the action with a Lagrange multiplier Σ,

Sfix =

∫
d3xdt

√
γN

Σ

2

(
1

N2
− 1

)
. (2.5)

This is not the only option. Instead, one may consider a ghost condensate-like term [23],

i.e., M4(1/N2 − 1)2, where M is a fictitious mass parameter. The projectability condition

is then ensured by imposing the limit M → ∞. In what follows, we will see that the two

strategies lead to the same conclusions. Combining eqs. (2.1), (2.4) and (2.5), we are ready

to write down the action for the IR limit of the projectable Hořava-Lifshitz gravity,

SIR = SGR +

∫
d3xdt

√
γN

[
Σ

2

(
1

N2
− 1

)
− λ− 1

16πG
K2

]
. (2.6)

We explicitly grouped a part of the terms into the GR action SGR.

Despite the absence of the problems with the lapse, the model (2.6) has a propagating

helicity-0 mode, which exhibits ghost or gradient instabilities depending on the value of the

parameter λ [23, 25]. To study the properties of that mode is the main goal of the present

paper. For this purpose, the action (2.6) is not very convenient. Instead, we choose to

work with an equivalent formulation of eq. (2.6), which is manifestly invariant under the

full GR diffeomorphisms. This is achieved by performing the Stuckelberg trick, with the

Stuckelberg field ϕ dubbed as khronon in the context of the Hořava-Lifshitz gravity [21–

24, 49]. Note that by introducing the field ϕ, one does not enlarge the number of degrees

of freedom in the theory, but singles out those already present. In particular, the dynamics

of the field ϕ is eliminated by imposing the unitary gauge, where it takes the form,

ϕ = t .

We see that the field ϕ defines the absolute time. Hence, the name ‘khronon’.

To write the action (2.6) in covariant form, it is enough to promote the lapse N and

the extrinsic curvature Kµν to the quantities invariant under GR diffeomorphisms. This

– 6 –
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has been done in ref. [21], and we omit the details of the calculations here. The result for

the lapse N reads,
1

N2
→ gµν∂µϕ∂νϕ . (2.7)

Now Kµν is the extrinsic curvature of the hypersurface ϕ =const, and its trace is given by

K → ∇µ

(
∇µϕ√

gµν∂µϕ∂νϕ

)
. (2.8)

This expression can be simplified by virtue of the constraint enforced by the Lagrange

multiplier Σ. In the Stuckelberg treatment the constraint is given by,

gµν∂µϕ∂νϕ = 1 . (2.9)

This can be safely plugged into eq. (2.8) readily at the level of the action. See appendix A

for the justification. As a result, eq. (2.8) gets simplified,

K → �ϕ .

The covariant action for the IR limit of the projectable Hořava-Lifshitz gravity is given

by [23],

SIR = SGR +

∫
d4x
√
−g
[

Σ

2
(gµν∂µϕ∂νϕ− 1) +

γ

2
(�ϕ)2

]
, (2.10)

where we introduced the shorthand notation,

1− λ
8πG

= γ . (2.11)

In passing, it is interesting to note that the action (2.10) by itself is not specific to the

projectable Hořava-Lifshitz gravity, but may arise in a drastically different framework. In

this regard, the mimetic matter scenario has brought some attention recently [36]. The

idea is to consider a particular (singular) conformal transformation of the metric, i.e.,

gµν → g̃µν = gαβ∂αϕ∂βϕ · gµν . Here ϕ is some scalar field. This transformation does not

leave the GR equations of motion invariant. The discrepancy from GR is equivalent to

extending the Einstein-Hilbert action by means of the term with the Lagrange multiplier

as in eq. (2.10) [45, 50, 51]. There is, however, a conceptual distinction from the Hořava-

Lifshitz model. In the mimetic matter case, the higher derivative term as in eq. (2.10) is

added in view of some phenomenological goals [37–39], i.e., it does not follow immediately

from the first principles underlying the scenario.

Keeping in mind this potentially interesting scenario, we proceed with the Hořava-

Lifshitz model as the main focus of the present work. The action (2.10) will be the starting

point of our further discussions.

2.2 Low-energy quadratic action

Interestingly, at the level of the background cosmological equations, the model given by

the action (2.10) describes dust (pressureless perfect fluid). This readily follows from the

ij-components of Einstein’s equations [38, 39, 44],

2H′ +H2 = 0 . (2.12)

– 7 –
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The 00-component of Einstein’s equations is given by

3H2(1− 24πγG) = 8πGa2Σ̄ . (2.13)

Here a prime denotes the derivative with respect to the conformal time, H ≡ a′/a, a is

the scale factor, and Σ̄ is the background value of the Lagrange multiplier field. As it

follows from eqs. (2.12) and (2.13), at the background level the higher derivative term is

irrelevant: effects due to the non-zero parameter γ can be absorbed into the redefinition

of the cosmological Newton’s constant. That degeneracy with the case of the pressureless

fluid gets broken at the linear level, where the γ-term gives rise to a non-zero scalar sound

speed as will be clear shortly. Before that, let us point out an intriguing possibility to

mimic the energy density of the Dark Matter by the field Σ, i.e., without invoking physics

beyond the Standard Model of particles. In this picture, the khronon ϕ is understood as

the velocity potential, while the constraint (2.9) leads to the geodesics equation followed

by the dust particles in the gravitational field. The properties of the Dark Matter in the

model (2.10) and closely related scenarios have been explored in refs. [27, 31] in the context

of the projectable Hořava-Lifshitz gravity, in refs. [36–39, 45, 50–53] in the mimetic matter

setup and in ref. [54] on purely phenomenological grounds.6 That line of research is out of

the scope of the present paper.

Naively, the higher derivative term in the action (2.10) would lead to an Ostrogradski

instability. However, the Ostrogradski theorem is not applicable to models with con-

straints [57–59] (the so-called degenerate systems). The reason is that the addition of the

constraints may reduce the dimension of the Hamiltonian phase space, and consequently,

the number of the propagating degrees of freedom may be smaller compared to the naive

counting. This is indeed the case in the projectable Hořava-Lifshitz gravity. In particular,

the scalar sector of the model has only one propagating degree of freedom.

To study linear perturbations in the projectable Hořava-Lifshitz model, we use the

standard conventions [60, 61],

N = a (1 + Φ) , Ni = a2∂iB , γij = a2(1− 2Ψ)δij + 2a2∂i∂jE .

Here Φ,Ψ, B,E are the scalar potentials, and we omit the discussion of the vector and

tensor modes (see the comment at the end of this subsection).

At the linear level, the constraint gµν∂µϕ∂νϕ = 1 gives

δϕ′

a
= Φ . (2.14)

The latter is enforced by the Lagrange multiplier field Σ. Therefore, one can safely use

eq. (2.14) to eliminate the field Φ without affecting the dynamics of the remaining degrees

of freedom [63]. Upon substituting eq. (2.14) in the quadratic action, integrating by parts,

6Note that Dark Matter is the prediction specific to the projectable version of the Hořava-Lifshitz model.

Still, in the different extensions of the model, one can entertain the opportunity of having MOND-like

phenomenology in the IR limit [55, 56].
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dropping boundary terms and making use of the background equations (2.12) and (2.13),

we obtain

δ2SIR =
1

16πG

∫
d4xa2

[
−6R′2 + 2∆Ψ

(
2
δϕ′

a
−Ψ

)
+

3H2δϕ∆δϕ

a2
+ 4R′ · (∆E′ −∆B)

]
+

+
γ

2

∫
d4xa2

(
3R′ + ∆δϕ

a
+ ∆B −∆E′

)2
. (2.15)

Here R is the gauge-invariant curvature perturbation, defined as R = Ψ + H
a δϕ. Note that

the action (2.15) does not assume any gauge choice. The fields B and E enter only via the

combination B −E′, as it should be, because of diffeomorphism invariance. The variation

with respect to the field B (or E′) yields

∆B −∆E′ =
1

4πγG
R′ − 3R′ − ∆δϕ

a
. (2.16)

At this level, we explicitly assume that the parameter γ is non-zero, i.e., γ 6= 0. As it

follows from eq. (2.16), B is an auxiliary field. Namely, it is separated from the other

fields by means of its own equation of motion. Therefore, one can safely substitute the

constraint (2.16) into the quadratic action (2.15) [63]. Doing so, we obtain

δ2SIR =
1

8πG

∫
d4xa2

(
− 1

4πγG
R′2 + 3R′2 −R∆R

)
. (2.17)

As it was expected, there is only one propagating degree of freedom in the scalar sector of

the model. Furthermore, in the unitary gauge δϕ = 0, one reproduces the result of ref. [23].

This serves as a simple cross-check of our calculations.

Note that the action (2.17) has a continuous limit to the flat space-time. This allows

us to set consistently a → 1 and H → 0, and ignore the effects related to the expansion

of the Universe in what follows. These have been already discussed to some extent in

refs. [27, 36–39, 54]. In the Minkowski limit, the gauge-invariant variable R takes the form

R = Ψ, and the action (2.17) reduces to,

δ2SIR =
1

8πG

∫
d4x

(
− 1

c2
s

Ψ̇2 −Ψ∆Ψ

)
. (2.18)

Here c2
s is the sound speed squared given by [22, 23, 25],

c2
s =

4πγG

1− 12πγG
.

As it follows, the IR properties of the field Ψ are characterized by the phonon-like dispersion

relation

ω2 = c2
sp

2 . (2.19)

Hereafter, we assume the hierarchy γ � M2
Pl, which allows us to simplify the expression

for the sound speed squared c2
s,

c2
s = 4πγG . (2.20)
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This is, in fact, the only phenomenologically viable option, as it will be clear from the

following discussions.

Let us start with the case γ = 0. This corresponds to GR supplemented by a pres-

sureless perfect fluid (dust), which is a classically well-defined system (up to the caustic

singularities). On the other hand, the action (2.18) is ill-defined in that case. However,

this does not signal the inconsistency in the discussion, as we assumed the choice γ 6= 0 at

the intermediate step (see the comment after eq. (2.16)).7 One obvious way to handle the

situation is to consider the limit of the infinitely small parameter γ, i.e., γ → 0, instead of

setting it exactly to zero. Then, demanding that the action (2.18) ((2.17)) remains finite,

one obtains the first order equation for the potential Ψ (the curvature perturbation R):

Ψ̇ = 0 (R′ = 0). The latter is recognized as the conservation of the potential (curvature

perturbation) characteristic of dust. There is a more trustworthy way to get the same

equation. That is, one gets back to the original quadratic action (2.15), which is mani-

festly applicable for the arbitrary values of the parameter γ. Then, the conservation of

the curvature perturbation follows immediately upon varying with respect to the field B.

Furthermore, one may check that all the other equations following from eq. (2.15) (with

γ = 0 understood) are the same as in GR supplemented by a pressureless perfect fluid.

Although the simple dust model is typically employed to describe the behaviour of Dark

Matter on cosmological scales, it has two important drawbacks rendering the case γ → 0

pathological. First, the quantum properties of the model are unclear, as the strong cou-

pling scale tends to zero in that limit [23, 25].8 See the discussion in the next subsection.

Second, a pressureless perfect fluid develops caustic singularities at a finite time [62].

Therefore, we switch to the case γ 6= 0 in what follows. For negative values of the

parameter γ (sound speed squared), the field Ψ suffers from gradient instabilities. On the

other hand, positive values of the parameter γ (sound speed squared), lead to the ‘wrong’

sign of the kinetic term in the action (2.18). The study of this ghost-unstable branch of

the projectable Hořava-Lifshitz gravity will be our primary interest in the present paper.

Note one important difference between ghost and gradient instabilities in the pro-

jectable Hořava-Lifshitz gravity. At sufficiently high spatial momenta, the action (2.18)

must be completed by the relevant and marginal operators encoded in the potential V. In

the unitary gauge, these result into quadratic terms of the form,

1

M2
∗

Ψ∆2Ψ ,
1

M4
∗

Ψ∆3Ψ . (2.21)

Recall that M∗ is the scale at which the Lorentz-violating operators become important

presumably renormalizing gravity in the UV. As it follows from the structure of the

terms (2.21), they are capable to cure gradient instabilities in the UV, while leaving the

sign of the kinetic term in eq. (2.18) intact. Hence, from the higher derivative perspective

alone, ghosts are unavoidable in the scenario with the positive parameter γ. This situation

7Of course, one can rewrite eq. (2.16) in the form applicable for both cases γ = 0 and γ 6= 0, i.e.,

γ(∆B−∆E′) = 1
4πG
R′− 3γR′− γ∆δϕ

a
. Still, the choice γ = 0 is ‘singular’ in a sense that it does not allow

to integrate out the field B, which plays the role of the Lagrange multiplier now.
8Alternatively, the problem with the quantization can be understood from the fact that the curvature

perturbation satisfies the first order equation of motion in the limit cs → 0.
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may change due to the presence of sufficiently low strong coupling scale, above which the

theory is hopefully free of ghost/gradient instabilities.

This problem with the ghosts, we note, is specific to the projectable Hořava-Lifshitz

model, and can be avoided by relaxing some assumptions underlying the framework. Here

is a sketch of one possible solution. Let us assume an extension of the Hořava-Lifshitz

gravity by means of the operator,
1

M2
∗
K∆K . (2.22)

Recall that K is the trace of the extrinsic curvature tensor. Generically, the operators of

the form (2.22) may compromise power counting renormalizability of the Hořava-Lifshitz

gravity [64–66]. Therefore, they have been omitted in the original action (2.1). On the

other hand, the term (2.22) and similar ones are quite well motivated, as they allow to

stabilize the percolation of the Lorentz-violating effects from the gravity sector to the

particle one [67].

In the Stuckelberg treatment, the operator (2.22) can be rewritten as follows

1

M2
∗
�ϕ(�− ∂µϕ∂νϕ∇µ∇ν)�ϕ . (2.23)

Introducing this term into the action (2.10) indeed allows us to recover the positive sign

of the kinetic term of the potential Ψ in the UV, i.e., for spatial momenta |p| & M∗. We

relegate the details of the computations to the appendix B, and postpone a more thorough

analysis for future work.

One comment is in order here. Compared to the scalar sector, the tensor part of the

projectable Hořava-Lifshitz gravity exhibits healthy behaviour in the IR limit. Namely,

it is free of ghost/gradient instabilities and the strong coupling issues. See, e.g., eq. (9)

of ref. [26]. Nevertheless, the interaction with the strongly coupled scalar sector may

essentially affect the behaviour of the tensor modes at larger momenta, severely obscuring

their UV properties.

2.3 Cubic interactions: determining the strong coupling scale

The strong coupling scale has been calculated previously in refs. [23, 25] and is given by

eq. (1.2). In the present subsection, we re-derive this result by employing the Newto-

nian gauge.

To understand the structure of the cubic interactions, we expand the constraint equa-

tion (2.14) up to the quadratic terms in the potential Φ and the khronon field perturba-

tions δϕ,9

Φ = δϕ̇+
1

2
δϕ̇δϕ̇− 1

2
∂iδϕ∂iδϕ . (2.24)

Note that the terms ∼ Φ2 and ∼ δϕ̇ · Φ cancel out upon implementing the first order

constraint δϕ̇ = Φ. In the Newtonian gauge, the strong coupling stems from the following

term in the GR action,

∼M2
Pl∆ΨΦ , (2.25)

9Recall that we choose to work in the Minkowski background.
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(cf. the second term in the first line of eq. (2.15)). This is quadratic in the fields Ψ and

Φ, and, thus, naively does not correspond to any interaction. According to eq. (2.24),

however, the potential Φ is sourced by the quadratic order perturbations in the khronon

field. Therefore, we are left with the following interaction,

∼M2
Pl∆Ψ∂iδϕ∂iδϕ . (2.26)

We ignored the terms with the time derivatives in eq. (2.24). This is legitimate in view

of the dispersion relation ω2 = c2
sp

2, where c2
s � 1. The field δϕ is extracted from the

constraint (2.16), where we set the fields B and E to zero by the Newtonian gauge choice,

δϕ ∼
M2

PlΨ̇

γ∆
.

Substituting this into eq. (2.26), we get an estimate for the cubic interaction,

∼
M6

PlΨ

γ2∆

(
∂iΨ̇

)2
.

Again, taking into account the dispersion relation (2.19) and eq. (2.20), one rewrites the

estimate above as follows,

∼
M4

Pl

γ
Ψ(∂iΨ)2 .

This is to be compared with the standard quadratic term in the GR action involving the

spatial derivatives of the potential Ψ,10

M4
Pl
γ Ψ (∂iΨ)2

M2
PlΨ∆Ψ

∼
M2

Pl

γ
Ψ . (2.27)

To proceed, we need an estimate for the amplitude of the fluctuations of the field Ψ. For

this purpose, we switch to the canonical normalized variable Ψ̂ =
M2

Pl√
γ Ψ. Fluctuations of

the variable Ψ̂ are characterized by a Gaussian distribution with zero mean value and the

variance,

〈Ψ̂2〉 ∼
∫

dp

|ω(p)|
∼ MPl

|γ|1/2
|p|2 .

Returning to the variable Ψ, we obtain the estimate for its fluctuations,

Ψ ∼
√
〈Ψ2〉 ∼ |γ|

1/4|p|
M

3/2
Pl

.

Combining everything together and demanding that the ratio (2.27) does not exceed unity,

we conclude that the scale of the strong coupling is

Λp ∼
|γ|3/4

M
1/2
Pl

. (2.28)

10More rigorously, to deduce the strong coupling scale, one calculates the cross-section of the scattering

of two Ψ-particles. The obtained cross-section should not violate the optical theorem, i.e., unitary must be

obeyed. This gives a constraint on the allowed values of the momenta. We followed this way, and showed

that the result matches the one given below.
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This result exactly matches the one obtained in refs. [23, 25]. In particular, the scale of

strong coupling tends to zero in two limits: in the decoupling limit (MPl →∞) and in the

limit of the pressureless perfect fluid (γ → 0). Note that the cutoff (2.28) is applied to

the spatial momenta only, i.e., it breaks Lorentz-invariance explicitly. Hence, the subscript

‘p’. To understand the region of energies which can be treated perturbatively, one simply

makes use of the dispersion relation (2.19). This yields,

Λω ∼
|γ|5/4

M
3/2
Pl

. (2.29)

That cutoff is not of particular importance in the projectable Hořava-Lifshitz gravity, but

merely reflects the fact that the quanta of the field Ψ are ‘slow’. Indeed, the UV completing

operators written schematically in eq. (2.21) carry only spatial derivatives, and thus, are

sensitive only to the scale (2.28).

For the model to be phenomenologically viable, the strong coupling scale Λp must be

larger than the maximal scale, at which GR has been tested, i.e.,

Λp & 10−3 eV . (2.30)

This translates into the bound on the parameter
√
|γ|,√

|γ| & 10 MeV . (2.31)

In the branch of the projectable Hořava-Lifshitz gravity plagued by the gradient instabilities

at low spatial momenta, the associated constraints are orders of magnitude stronger [23],

making it phenomenologically non-viable. Let us show this explicitly. Due to the presence

of the Lorentz-violating terms as in eq. (2.21), gradient instabilities are cut at the scale

|p| ∼M∗. One then demands that the time at which they propagate exceeds the age of the

Universe. Namely, |Im ω| . |cs|M∗ . H0, where H0 is the Hubble constant. The parameter

M∗ is bounded from below, M∗ & 10−3 eV, — otherwise, Lorentz violating effects would

pop out at sub-mm scales, in conflict with GR tests. Combining everything together, we

obtain the constraint on the strong coupling scale: Λp . 10−17 eV [23]. This is by many

orders of magnitude lower than the allowed value (2.30). Strictly speaking, having the

hierarchy Λp �M∗, one cannot trust these results, as they were obtained by exploiting the

region of the momenta, where perturbation theory breaks down. Instead, let us assume

that gradient instabilities are cut by the scale of the strong coupling itself — with the

hope that the theory is free of any instabilities in the non-linear regime. In that case, the

range of the momenta, where the theory can be treated perturbatively, is slightly extended:

Λp . 10−8 eV, — still in conflict with the GR tests.

From this point on, we abandon the branch of the Hořava-Lifshitz gravity characterized

by the negative sound speed squared, and switch to the one plagued by the ghosts in the

IR. In the end of the previous subsection, we observed that the ghosts cannot be cured

in the UV, at least in the projectable Hořava-Lifshitz gravity, as it stands. In this regard,

the presence of the strong coupling is necessary to render the model phenomenologically

acceptable. Namely, above the scale Λp, the results of the linear theory are not valid
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anymore. Therefore, we may assume that the model is free of instabilities in the non-

perturbative regime. While looking quite speculative, this expectation has some reasons

behind it. Indeed, the term in the GR action, which is responsible for the strong coupling,

in the linear theory gives rise to the kinetic term with the negative sign (see the second

term in eq. (2.15)).

Accordingly to the discussion above, we must set the UV cutoff M∗ somewhat higher

than the scale Λp,

M∗ & Λp . (2.32)

Otherwise, our conclusions about the scale of the strong coupling would not be legitimate.

Indeed, the estimate (2.28) has been obtained within the IR theory, and must be revisited,

if the UV operators (2.21) become relevant already in the weakly coupled regime. In that

case, one can argue that the model retains perturbativity at the arbitrary momenta [35].

This inevitably causes the presence of the all-scale ghost instabilities, and, consequently, a

catastrophically fast vacuum decay.

To summarize, by imposing the condition (2.32), we sacrifice the renormalization of

the Hořava-Lifshitz gravity in favour of its phenomenological viability. Let us be not too

pessimistic, however. Indeed, apart from the projectable Hořava-Lifshitz model, the two

issues, — low scale ghosts and strong coupling at large momenta, — are not necessarily

related to each other. In particular, introducing the higher dimension operators, as, e. g.,

in eq. (2.22), one can simultaneously recover the positive sign of the kinetic term of the

potential Ψ, and retain perturbativity of the theory. In the current work our goal is

modest — to show that the projectable Hořava-Lifshitz gravity in its original incarnation

is experimentally acceptable in the branch containing ghosts. Therefore, we postpone any

detailed investigation of this potentially interesting loophole for the future.

3 Vacuum decay

Now, let us consider vacuum decay into ghosts and Standard Model particles. In the

Lorentz-invariant theories of gravity, the associated decay rate is infinite.11 The situation

is different in the Lorentz-violating theories, given that there is a low energy cutoff Λ on

the spatial momenta [12].12 If the ghosts interact with the matter only via gravity, the

decay rate per space-time volume is typically estimated to be of the order Γ ∼ Λ8

M4
Pl

. This

is to be contrasted to the measured flux of MeV-photons [77], what yields the constraint

on the cutoff scale Λ . 3 MeV [12]. The upper limit here is applied, provided that the

sound speed is of the order unity, i.e., there is no hierarchy between the frequency and

spatial momenta cutoffs. If c2
s � 1, then the constraint on the spatial momenta cutoff

can be relaxed by several orders of magnitude. The reason is twofold. First, there are

11This assumes that gravity remains unmodified at all the scales. Given that standard gravity must be

embedded into some microscopic theory at the scales &MPl, a more conservative limit on the decay rate is

Γ .M4
Pl. This is nevertheless many orders of magnitude larger than the phenomenologically allowed value.

12On the other hand, in the Lorentz-invariant theories, the cutoff is imposed on the center-of-mass energy√
s of the colliding particles. In this situation, the region of the integration over the spatial momenta is

infinite. Namely, one can always boost the momenta, while keeping the quantity
√
s unchanged.
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kinematic considerations, which severely constrain the phase space of the decay products

for c2
s � 1. Second, the Standard Model particles are coupled to the gravitational potential

Ψ (directly or via the graviton), which is different from the canonically normalized variable

Ψ̂ by a huge factor, once again depending on the sound speed. As a result, the effective

coupling between the matter particles and the field Ψ̂ is very small. With all the factors

taken together, the decay rate turns out to be suppressed by a large power of the sound

speed (compared to the case with the unit sound speed). In turn, this allows to extend the

perturbative regime in the model to the TeV scales.

The discussion above is applied to the case where there is no direct interaction of the

khronon field with the Standard Model particles. We specialize to this case in what follows.

That is, we assume that the khronon affects the matter properties only via the mixing with

the scalar gravitational potential Ψ. Apart from the vacuum stability issues, by the direct

coupling of the khronon to the matter, one risks to reprocess the Lorentz-violating effects

to the particle sector [68, 69].13 Typically, this is expected to modify the dispersion relation

of the particles leading to a potential conflict with observational data [70–73].

We will be primarily interested in the processes with photons in the final state. These

are argued to be the most relevant ones in ref. [12]. The action for electromagnetism is

given by

Sel = −1

4

∫
d4x
√
−g · gλµgρνFµνFλρ ,

where Fµν ≡ ∇νAµ−∇µAν = ∂νAµ−∂µAν is the electromagnetic tensor. The interactions

of the photons with the ghosts are of two sorts: those following from the direct coupling of

the photons to the scalar potential Ψ, and those involving an exchange of a graviton. In

terms of the canonically normalized field Ψ̂, the former are described by,14

Lph−gh ∼
√
γ

M2
Pl

· Ψ̂ · F 2
µν ,

γ

M4
Pl

· Ψ̂2 · F 2
µν . (3.1)

Recall that the field Ψ̂ is related to the scalar potential Ψ by

Ψ̂ ∼
M2

Pl√
γ

Ψ . (3.2)

At the tree level, the first interaction term on the r.h.s. of (3.1) leads to the process with two

photons and one ghost particle in the final state. Naively, this should be the dominant one.

In fact, it does not occur for the simple kinematic considerations discussed in subsection 3.1.

The second interaction term on the r.h.s. of eq. (3.1) contributes to the process with two

Ψ̂-particles in the final state (see the left plot in figure 1), and is kinematically allowed.

We estimate the associated vacuum decay rate in subsection 3.1. In particular, we will see

that it gives a negligible contribution to the total decay rate compared to the interaction

involving tensor degrees of freedom.

13In fact, Lorentz violation percolates the particle sector even in the absence of the direct coupling of the

khronon to the standard matter, i.e., via quantum gravity loops [67]. However, this mechanism leads to the

effects suppressed by the ratio of the UV cutoff M∗ and the Plank mass MPl.
14One can write the analogous interactions but with the potential Φ instead of Ψ. These, however, give

nothing new, because of the relation Ψ = Φ, which holds in linear theory.
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Ψ̂

Ψ̂ γ

γ

Ψ̂

Ψ̂

γ

γ
G

Figure 1. Two diagrams of the vacuum decay into a pair of photons (the wiggly lines labelled by

‘γ’) and a pair of ghosts (the straight lines labelled by ‘Ψ̂’). The diagram on the left follows from

the 4-point contact interaction (3.1). It gives the negligible contribution to the total vacuum decay

rate. The leading contribution comes from the diagram on the right involving the propagator of

the graviton (the springy line labelled by ‘G’).

Schematically, the interaction of the photons with the tensor modes is given by the

Lagrangian,

LT−ph ∼
1

MPl
· ĥµνT el

µν ∼
1

MPl
ĥµνFµαF

α
ν . (3.3)

Here T el
µν is the electromagnetic stress-energy tensor; ĥµν is the canonically normalized field

of the helicity-2 graviton related to the traceless part of the metric, hµν , by

ĥµν ∼MPl · hµν .

Scalar-tensor interactions in the gravity sector are of the form,

LT−gh ∼
1

MPl
ĥµνT Ψ̂

µν ∼
1

MPl

(
ĥ00 ˙̂

Ψ2 + c2
sĥ
ij∂iΨ̂∂jΨ̂

)
, (3.4)

where T Ψ̂
µν is the stress-energy tensor of the scalar Ψ̂. Note that the two terms inside the

parentheses of eq. (3.4) are of the same order. Thus, we can estimate the strength of the

scalar-tensor interaction simply by

LT−gh ∼
γ

M3
Pl

· ĥij∂iΨ̂∂jΨ̂ . (3.5)

The corresponding diagram of the vacuum decay into a couple of photons and ghosts is

pictured in figure 1 (right plot), and contains the propagator of the graviton. We estimate

the associated decay rate in subsection 3.2.

One comment is in order before we proceed. While we mainly focus on the electro-

magnetic interactions of the ghosts, there are a few more, which may trigger potentially

dangerous processes. The first ones involve two gravitons/neutrinos in the final state. The

corresponding interaction Lagrangians have the same order of magnitude as in the case

of photons. However, those processes leave much weaker signatures in the observational

– 16 –



J
H
E
P
0
6
(
2
0
1
6
)
0
2
0

data, and therefore, are practically undetectable. The process with an electron-positron

pair in the final state is irrelevant for another reason. The pair carries the minimal energy

∼ 1 MeV, which must be balanced by the outgoing ghosts. We will see, however, that the

energies of the particles produced in the vacuum decay do not exceed ∼ 1 keV. Hence, this

process is forbidden.

3.1 Vacuum decay into photons from the 4-point contact interaction with

ghosts

In view of our objectives, it will be enough to perform a rough estimation of the vacuum

decay rate. In particular, we will ignore the interference between two diagrams in figure 1,

and calculate the associated rates separately. We start with the case of the 4-point con-

tact interaction between photons and ghosts (3.1). The corresponding matrix element is

estimated by

M(k1,k2; p1,p2) ∼ γ

M4
Pl

· |k1| · |k2| .

We use the notation ki for the momenta of the photons, and pi for the momenta of the

ghosts. Recall that the coefficient γ
M4

Pl
originates from the definition (3.2) of the canonically

normalized variable Ψ̂; the factor |k1| · |k2| stems from the derivative structure of the

interactions in eq. (3.1). Modulo the irrelevant phase factors, the decay rate per space-

time volume is given by,

Γ ∼
∫
dp1

|ω1|
dp2

|ω2|
dk1

E1

dk2

E2
|M(k1,k2; p1,p2)|2δ(4)(p1 + p2 + k1 + k2) , (3.6)

where δ(4)(...) is the delta function, which ensures the conservation of the energy and

momentum; ωi ≡ p0
i < 0 and Ei ≡ k0

i denote the energies of the ghosts and photons, re-

spectively. To handle the integral in eq. (3.6), it is convenient to introduce the intermediate

integrals over fictitious momenta P and K [74],∫
d4Pδ(4)(P − p1 − p2) = 1 ,

∫
d4Kδ(4)(K − k1 − k2) = 1 . (3.7)

Then, the decay rate can be written as follows,

Γ ∼ γ2

M8
Pl

∫
d4Pd4Kδ4(K + P )I1(P )I2(K) . (3.8)

In the case of the direct coupling of the field Ψ to the matter, the integrals I1(P ) and

I2(K) are defined as,

I1(P ) =

∫
dp1

|ω1|
dp2

|ω2|
δ(4)(P − p1 − p2) , (3.9)

and

I2(K) =

∫
dk1

E1

dk2

E2
|k1|2 · |k2|2δ(4)(K − k1 − k2) . (3.10)

These integrals can be evaluated in a straightforward manner. The result for the integral

I1(P ) reads

I1(P ) ∼
M3

Pl

γ3/2
, (3.11)
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(note that it is independent of the momentum P ). Partially such a huge value of the

integral is explained by the presence of the factors |ωi|−1 in eq. (3.9) (recall the dispersion

relation |ωi| = cs|pi| ∼
√
γ

MPl
|pi|). The estimate for the integral I2(K) is given by,

I2(K) ∼ K4
0 . (3.12)

Substituting eqs. (3.11) and (3.12) into eq. (3.8) and performing the integration over the

fictitious 4-momentum P , we get the following estimate for the decay rate,

Γ ∼
√
γ

M5
Pl

∫
d4KK4

0 .

In order to understand the region of integration over the momentum K, one should include

kinematic considerations. So, one has

|K| . K0 = |k1|+ |k2| = cs(|p1|+ |p2|) .

Recall now that the spatial momenta of the ghost particles are bounded from above by the

strong coupling scale, above which the theory is assumed to be free of instabilities. Hence,

|K| . K0 . csΛp. As it follows, for c2
s � 1, the momenta of the photons are much smaller

than those of the ghost particles. Consequently, for the momentum conservation equation

to be obeyed, the outgoing ghost particles must be practically anti-collinear.

Using kinematic considerations, we obtain an order of magnitude expression for the

decay rate,

Γ ∼
γ9/2Λ8

p

M13
Pl

.

We see explicitly the huge suppression by a large power of the Planck mass. This fact

becomes particularly prominent upon substituting the estimate for the strong coupling

scale, i.e., Λp ∝ γ3/4

M
1/2
Pl

. We obtain,

Γ ∼ γ21/2

M17
Pl

. (3.13)

By contrasting this decay rate to the observed flux of photons on the Earth, one can extract

a constraint on the parameter
√
γ and, consequently, on the strong coupling scale Λp. As we

will see in the next subsection, however, the decay rate (3.13) is sub-dominant compared to

that of the process involving an exchange by the graviton. Hence, the resulting constraints

are expected to be milder.

Here let us pause for an instant to show that the process with two photons and one

ghost in the final state is indeed forbidden. This follows from kinematic considerations

similar to those discussed above. The momentum p of the (only) ghost is defined from

the conservation equation, i.e., p = −k1 − k2, where k1 and k2 are the momenta of the

photons. The total energy of the particles in the final state is given by,

|k1|+ |k2| − cs|k1 + k2| & (|k1|+ |k2|) · (1− cs) > 0 .

The inequality on the r.h.s. implies that the energy conservation equation in the process

with one ghost cannot be obeyed. Consequently, this process does not occur. It is straight-

forward to generalize the latter statement to any process of the vacuum decay with one

ghost particle in the final state.
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3.2 Vacuum decay into photons mediated by the exchange of a graviton

The matrix element for the process involving an exchange by the graviton is estimated as,

M(k1,k2; p1,p2) ∼ γ

M4
Pl

(|k1| · |k2|) · (|p1| · |p2|)
q2

. (3.14)

Here (q2)−1 = [(ω1 + ω2)2 − (p1 + p2)2]−1, — the propagator of the graviton. The decay

rate is estimated by the same generic expression (3.6), now with the matrix element (3.14)

substituted in. Again introducing the integration over the fictitious momenta P and K,

one can write the decay rate as in eq. (3.8) with the integral I2(K) still given by eq. (3.10),

and the integral I1(P ) defined by,

I1(P ) =
1

P 4

∫
dp1

|ω1|
dp2

|ω2|
· |p1|2 · |p2|2δ(4)(P − p1 − p2) .

The factor 1/P 4 stems from the propagator of the graviton. To evaluate this integral, it is

convenient to make a redefinition of the variable P0 = csP̃0. Then, the value of the integral

can be estimated on the simple dimensional grounds,

I1(P ) ∼ 1

P 4

M3
Pl

γ3/2
P̃ 4

0 ∼
1

P 4

M7
Pl

γ7/2
P 4

0 ∼
M7

Pl

γ7/2
.

Note that compared to the case with the direct coupling to the field Ψ, we gained the

amplification factor M4
Pl/γ

2. Therefore, the resulting decay rate is parametrically larger,

Γ ∼ γ17/2

M13
Pl

.

Now, let us contrast our theoretical prediction of the vacuum decay rate to the experimental

data. The number density n of the produced photons is related to the quantity Γ by [12]

n ' Γt0 ,

where t0 denotes the age of the Universe, t0 ∼ H−1
0 , and H0 is the current Hubble rate.

On the other hand, the measured flux F of the photons in the range of energies Eph

corresponding to the X-rays (keV) and gamma-ray bursts is estimated from [75–77]

F · Eph ∼ A ·
keV

s · cm2 · sr
.

We introduced the fictitious dimensionless parameter A, which ranges between 1 and 100.

The uncertainty here accounts for the slight energy dependence of the quantity F ·Eph. We

demand that the flux of the photons originating from the vacuum decay does not exceed

the observed one, and that yields the upper bound on the parameter
√
γ,

√
γ . 109 GeV , (3.15)

(practically independent of the uncertainty on the parameter A). This sets the limit on

the strong coupling scale in the theory,

Λp . 10 TeV , (3.16)
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(accidentally, it coincides with the scale of experiments at the LHC). The constraint (3.16)

is seven orders of magnitude less stringent than the limit of ref. [12] deduced assuming the

standard dispersion relation for the ghosts. Furthermore, eq. (3.16) demonstrates thirty

orders of magnitude improvement compared to the constraint obtained in the branch of

the model plagued by gradient instabilities.

Constraints (3.15) and (3.16) imply that the maximal energies of the produced particles

lie in the keV-range. This follows from eq. (2.29),

Λω . 1 keV . (3.17)

Therefore, the comparison with the flux of the cosmic X-rays is justified. The result (3.17)

has immediate consequences for the series of processes would be going naively in the pres-

ence of the ghosts. First, it forbids the vacuum decay with an electron-positron pair in

the final state. Indeed, the minimal mass of the pair is of the order MeV and is paramet-

rically larger than that allowed by eq. (3.17). For the similar reasons, the constraint on

the energy of the produced ghosts makes it impossible for lighter particles to decay into

heavier ones [78]. So, the hypothetic processes of the electron decay into the muon and

two neutrinos, i.e., e− → µ− + νe + ν̄µ + ghosts , or the proton decay with the neutron,

positron and neutrino in the final state, i.e., p→ n+ e+ + νe + ghosts, do not occur.

In the remainder of the section, we comment on the alternative ways to constrain the

parameter
√
γ and the strong coupling scale Λp. First, the vacuum decay triggered by

the direct coupling of the ghosts to the photons is characterized by the smaller rate and,

hence, results into milder limits on those parameters. These read
√
γ . 1011 GeV and

Λp . 104 TeV.

Stronger constraints, of the order of those given in eqs. (3.15) and (3.16), follow from

cosmological considerations. That is, one does not want to overproduce radiation. Indeed,

the energy density of the photons originating from the vacuum decay is estimated by

ρph ∼ csΛpΓt0 .

The factor csΛp stands for the maximal energy of the photons, while the factor Γt0 accounts

for their number per unit volume. This should not exceed the total energy density of

radiation in the Universe, ρrad ∼ 10−5H2
0M

2
Pl. Substituting the numbers, we again obtain

the upper limit (3.16) on the strong coupling scale.

Note that the cosmological constraint taken separately could be essentially relaxed

for the following reasons. The energy of the ghosts produced in the vacuum decay is

equal to that of the photons, but has opposite sign. Furthermore, the condensate of the

ghosts is characterized by a radiation-like equation of state. Hence, at least naively, the

vacuum decay with the photons in the final state does not affect the cosmological evolution

appreciably. This potentially interesting loophole is irrelevant for our discussion, — the

constraint (3.16) obtained from the direct observation of keV-photons is strong enough to

not worry about any consequences for cosmology.

The constraint (3.15) on the parameter
√
γ may have some applications for the Dark

Matter physics (albeit, perhaps, futuristic). Converting it to the upper bound on the sound
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speed squared, we have,15

c2
s . 10−20 .

This is 10 orders of magnitude stronger than the limit deduced from the galaxy formation

considerations. Namely, for the bottom-up picture of the large scale structure formation to

occur, the constraint c2
s . 10−10 must be applied [38]. The upper bound here corresponds to

the situation, when the formation of dwarf galaxies is suppressed. Such a large value of the

sound speed squared could be relevant for the so called missing satellite problem [40, 79, 80],

— the observed number of the dwarf galaxies is much smaller than the one predicted in the

Cold Dark Matter framework. Note, however, that the mismatch between the observations

and the theoretical expectation can be relatively simply explained by the effects of the

baryonic physics [81], — hence, it is not an immediate source of worry.

4 Discussion

In the present paper, we showed that the strong coupling scale of the projectable Hořava-

Lifshitz gravity can be raised to 10 TeV, upon switching to the ghost unstable branch

of the scenario. This is certainly an advantage over the branch plagued by the gradient

instabilities, since now we do not have the problems with recovering GR at large distances.

We reiterate, however, that the presence of the strong coupling by itself (even a high one)

leads to the loss of perturbativity in the Hořava-Lifshitz gravity. In this sense, prospects

for renormalizing the model, — the original motivation behind the Hořava-Lifshitz gravity,

— still remain unclear.

Meanwhile, keeping in mind the problems with the UV completion, we can enjoy the

rich phenomenology of the model. Perhaps, the most relevant one is the Dark Matter. This

is quite a generic prediction of the IR modifications of gravity involving the spontaneous

breaking of the Lorentz symmetry, e.g., the ghost condensate [14, 16]. Not surprisingly,

the same observation has been made also in the context of the projectable Hořava-Lifshitz

gravity [27, 28]. The specific feature of this Dark Matter is that the fluid elements always

follow geodesics equation, as it is indicated by the constraint (2.9). This typically implies a

pathology in the model, — attracted by the gravitational force, trajectories corresponding

to the different fluid elements cross at finite times leading to the so-called caustic singu-

larities.16 On the other hand, that conclusion may alter due to the presence of the higher

derivative term as in eq. (2.10), which may smoother the caustic singularity. The corre-

sponding mechanism has been discussed in refs. [28, 38] and stems from the possibility to

have regions in space, where gravity acts as a repulsive force (namely, it turns into anti-

gravity). However, numerical simulations capable of verifying or ruling out this mechanism

are still pending.

Particle production caused by the vacuum decay opens up an intriguing opportunity

to reheat the Universe even without inflation. Note that for this scenario to be realized,

the parameter γ must be sufficiently large at very early times. Otherwise, one would be

15The lower limit on the sound speed can be inferred from eq. (2.31). It reads, c2s & 10−42.
16See refs. [82, 83] for the examples of caustic singularities in the models with the non-canonical

scalar fields.
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able to produce only very low energetic particles. In fact, the constant γ is implied to

follow the renormalization group flow starting from the values of the order of the Planck

mass squared. Apart from the obscure quantum gravity issues, the time dependence of

γ appears to be necessary for the production of the Dark Matter with the correct initial

conditions [39, 84].

From somewhat more down-to-earth perspective, the production of the keV-photons

out of the vacuum may strongly affect the equilibrium in the early Universe. In particular,

the injection of the out-of-equilibrium photons at the redshifts z . 106 is expected to

strongly modify the black-body spectrum of the Cosmic Microwave Background [85].17 It

would be certainly interesting to contrast the values of the µ and y-type distortions following

from the scenario at hand with the associated COBE/FIRAS limits, and furthermore make

the predictions for the future PIXIE data. This might be one promising way to improve

the constraint on the parameter γ. At even higher redshifts, the presence of the keV-

photons may have some impact on the Big Bang nucleosynthesis. Note, however, that

the bound energies of the nuclei are much larger and, thus, do not get destroyed by the

injection of the soft photons. Nevertheless, keV-photons may change the conditions at

which nucleosynthesis proceeds.

Acknowledgments

We are indebted to E. Babichev, N. Bartolo, D. Blas, M. Ivanov, P. Karmakar, M. Pshirkov

and A. Vikman for many useful comments and discussions. The work of FA is supported by

the National Taiwan University (NTU) under Project No. 103R4000 and by the NTU Le-

ung Center for Cosmology and Particle Astrophysics (LeCosPA) under Project No. FI121.

A On the equivalence between the IR limit of projectable Hořava-Lifshitz

gravity and mimetic matter scenario

At the end of subsection 2.1, we pointed out that the action for the IR limit of the pro-

jectable Hořava-Lifshitz gravity can be written in the form (2.10). On the other hand,

eq. (2.10) describes the dynamics of the version of the mimetic matter scenario considered

in refs. [37–39, 51]. Hence, results of the present paper can be literally translated into

the latter context. The fact that the projectable Hořava-Lifshitz gravity and the mimetic

matter scenario are equivalent was first pointed out in ref. [43].18 The present appendix

serves to prove this statement rigorously.

17Although, keV photons are quite separated from the CMB photons by a large energy gap, things were

different at redshifts z . 106, where the CMB distortions are expected to be produced. Namely, in that

case, the energy of CMB photons was in the sub-keV range, thus making them particularly vulnerable to

the energy of non-equilibrium photons.
18More precisely, ref. [43] links the projectable Hořava-Lifshitz gravity to the version of the scalar Einstein-

Aether model considered in ref. [44]. However, comparing refs. [37–39, 51] with ref. [44], one recognizes the

latter as a generalization of the mimetic matter scenario.
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The proof of the equivalence is based on the following observation. Let us consider the

action of the form,

S =

∫
L(χ, f) + λ(f − F (χ, ∂µχ, ∂µνχ, ...)) . (A.1)

Here L(χ, f) is the Lagrange function of some variables χ and f as well as their derivatives,

and the Lagrange multiplier λ enforces the constraint f = F (χ, ∂µχ, ∂µνχ, ...), so that the

field f is a function F of the field χ and its derivatives. Then, one can show that the

dynamics of the field χ generated by eq. (A.1) is equivalent to that following from the

reduced action,

Sr =

∫
L(χ, f) |f=F (χ,∂µχ,∂µνχ,...)

. (A.2)

The proof of this statement is given in the Comment 1 of section 2 of ref. [63] (see also

the references therein), and we do not repeat it here. We would like to emphasize that the

equivalence between the actions (A.1) and (A.2) is not exact, but only with respect to the

dynamics generated for the field χ. Indeed, variation of the action (A.1) with respect to the

field f gives rise to the equation of motion, which is absent in the case of the action (A.2).

This observation will be important for our further discussion.

Now, let us consider the ‘true’ action for the projectable Hořava-Lifshitz gravity, i.e.,

before substituting the constraint gµν∂µϕ∂νϕ = 1. Combining eqs. (2.6), (2.7) and (2.8)

we get,

SIR = SGR +

∫
d4x
√
−g

 Σ̃

2
(gµν∂µϕ∂νϕ− 1) +

γ

2

(
∇µ

(
∇µϕ√

gµν∂µϕ∂νϕ

))2
 . (A.3)

Here we introduced the notation Σ̃ for the Lagrange multiplier field to avoid the confusion

in the future. Below we also repeat the action (2.10) of the mimetic matter scenario for

the convenience of the references,

Smim = SGR +

∫
d4x
√
−g
[

Σ

2
(gµν∂µϕ∂νϕ− 1) +

γ

2
(�ϕ)2

]
. (A.4)

The point is to show that both actions (A.3) and (A.4) are equivalent to the following one,

S = SGR +

∫
d4x
√
−g

[
Σ

2
(gµν∂µϕ∂νϕ−X) +

Σ̃

2
(X − 1) +

γ

2

(
∇µ
(
∇µϕ√
X

))2
]
, (A.5)

and, therefore, they are equivalent between each other. In eq. (A.5), X is the new variable,

which obeys the constraint X = 1 enforced by the Lagrange multiplier field Σ̃. First,

it is obvious that the actions (A.5) and (A.4) match the generic ones (A.1) and (A.2),

respectively, with the field λ in eq. (A.1) understood as the Lagrange multiplier Σ̃ in

eq. (A.5). Hence, eqs. (A.5) and (A.4) describe the same dynamics with respect to the fields

Σ, ϕ and the metric gµν . On the other hand, the actions (A.5) and (A.3) are analogous to

those of eqs. (A.1) and (A.2), respectively, with the field λ in eq. (A.1) understood as the

Lagrange multiplier Σ in eq. (A.5), and the associated constraint given by X = gµν∂µϕ∂νϕ.
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Hence, the actions (A.5) and (A.4) describe the same dynamics with respect to the fields Σ̃,

ϕ and the metric gµν . To summarize, the actions eqs. (A.3), (A.4), (A.5), and, consequently,

the IR limit of the projectable Hořava-Lifshitz gravity and the mimetic matter scenario,

are equivalent.

Let us make one important observation here. Strictly speaking, the discussion above

implies only the equivalence in the dynamics of the metric gµν as well as the khronon field

ϕ. Namely, provided that they start from the same initial conditions in both models, they

follow the same evolution at later times. However, this is not true for the fields Σ and Σ̃

(that is why we chose the different notations for them).19 To understand the difference in

treating the Lagrange multiplier fields in two models, it is enough to vary the action (A.5)

with respect to the field X, and then set the latter to unity in the end. This gives,

Σ− Σ̃ = γ∇ρ�ϕ∇ρϕ . (A.6)

Therefore, one should be cautious, when keeping the fields Σ and Σ̃ as the independent

variables. In particular, setting them to be equal at the initial Cauchy surface will result

into different dynamics in the two models. On the other hand, with the choice of the

independent variables (ϕ, gµν),20 the dynamics will be the same, i.e., the predictions of the

two models will be physically indistinguishable. The technical reason is that the shift (A.6)

is exactly compensated by the associated shift of the stress-energy tensor calculated in the

IR limit of the projectable Hořava-Lifshitz gravity T IR
µν compared to that of the mimetic

matter scenario Tmim
µν . Namely, these are related to each other by,

T IR
µν = Tmim

µν

(
Σ→ Σ̃

)
+ γ∇ρϕ∇ρ�ϕ∇µϕ∇νϕ , (A.7)

where the tensor Tmim
µν is given by [37],

Tmim
µν = Σ∇µϕ∇νϕ+γ

(
∇µϕ∇µ�ϕ+

1

2
(�ϕ)2

)
gµν−γ(∇νϕ∇µ�ϕ+∇ν�ϕ∇µϕ) . (A.8)

Combining eqs. (A.6), (A.7) and (A.8), we get T IR
µν−Tmim

µν =(Σ̃−Σ+γ∇ρϕ∇ρ�ϕ)∇µϕ∇νϕ =

0. This completes the proof.

B Curing ghost instabilities beyond projectable Hořava-Lifshitz gravity

Here, we briefly discuss one possible way to simultaneously cure ghost instabilities and

retain the model perturbative. For this purpose, we include the operator (2.23) into the

analysis. That operator, we remind, has a dimension higher than marginal. Therefore, it

was not considered in the bulk of the paper. In the unitary gauge, the quadratic action for

19As the attentive reader could notice, the reason is that the projectable Hořava-Lifshitz model is equiv-

alent to the model (A.5) with respect to the set of the fields (Σ̃, ϕ,Ψ, ...). At the same time, the mimetic

matter scenario is equivalent to the model (A.5) with respect to the set of the fields (Σ, ϕ,Ψ, ...).
20This has been indeed our strategy in subsection 2.2. That is, the Lagrange multiplier field is not present

in the quadratic action (2.15): it drops off upon substituting the constraint (2.14).
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an extended model including the UV operators (2.21) is given by

δ2S =
1

16πG

∫
d4x
[
−6Ψ̇2 − 2Ψ∆Ψ + 4Ψ̇

(
∆Ė −∆B

)
+

α

M2
∗

Ψ∆2Ψ + ...
]
+

+
γ

2

∫
d4x ·

[
3Ψ̇ + ∆B −∆Ė

]
Â
[
3Ψ̇ + ∆B −∆Ė

]
,

(B.1)

where we assume the Minkowski background. Here α is an order one constant governing the

relevant operator and the ellipsis stand for the contributions from the marginal operators.

We introduced the operator Â defined by,

Â ≡
(

1−
βM2

Pl

γM2
∗

∆

)
,

where β is an order one constant governing the operator (2.23).

Varying the action (B.1) with respect to the combination B−Ė, one gets the constraint

equation,

∆B −∆Ė =
Ψ̇

4πγGÂ
− 3Ψ̇ . (B.2)

Substituting this back into the action (B.1), one gets

δ2S =

∫
d4x

(
6Ψ̇2 − Ψ̇2

2πγGÂ
− 2Ψ∆Ψ +

α

M2
∗

Ψ∆2Ψ

)
.

Switching to the Fourier space analysis, we observe that for small momenta |p| . M∗,

the second term on the r.h.s. dominates over the first one. Hence, the kinetic term has a

ghost-like sign in this regime. On the other hand, for larger momenta |p| & M∗, the first

term is dominant, and we recover the positive sign of the kinetic term.

This solution is not without problems, though. Indeed, that way of curing ghost

instabilities is at risk of getting gradient instabilities instead. The problem can be avoided

by a proper tuning of the constants α and β.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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[21] D. Blas, O. Pujolàs and S. Sibiryakov, On the Extra Mode and Inconsistency of Hořava

Gravity, JHEP 10 (2009) 029 [arXiv:0906.3046] [INSPIRE].
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