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tion function with arbitrary stationary background metric and gauge fields, we are able
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equation for relativistic fluid surfaces, by considering a temperature dependence in the
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order, for uncharged fluids in 3+1 dimensions, we show that besides the 3 independent

bulk transport coefficients previously known, a generic localized configuration is character-

ized by 3 additional surface transport coefficients, one of which may be identified with the
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1 Introduction

The theory of hydrodynamics provides us with a tractable effective framework to study the

low-energy near-equilibrium states in any finite temperature system with a well behaved

microscopic description. Although the description of these states in terms of the micro-

scopic degrees of freedom may be very complicated, hydrodynamics allows us to describe
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them with a few effective degrees of freedom — the fluid fields. This effective theory is

constructed purely on the basis of symmetries inherent to the microscopic theory, in ad-

dition to certain empirical assumptions like the second law of thermodynamics (see [1]1).

The information of the underlying field theory is encoded, in a phenomenological way, in

the transport coefficients that characterize the effective macroscopic description.2

Although hydrodynamics is a very old and well studied subject, recently there has

been a renewed interest in it, particularly after the discovery of its connections with black

hole dynamics in the context of the AdS/CFT correspondence [7]. These recent studies

have valuably contributed to the improved understanding of the structural features of the

subject and has led to the unraveling of new transport phenomenon [2, 3, 8–11]. Most

of these latest developments mainly focus on the description of states in which the same

phase of the fluid fills the entire spacetime, which is taken to be a non-compact pseudo-

Riemanian manifold. In other words, the hydrodynamics that has been explored in most of

these recent developments is the effective theory of a class of states, which does not involve

any fluid surface or a phase boundary.

In this paper we proceed to analyze the situation where the class of states described by

the effective theory of hydrodynamics is extended to incorporate the states that include a

fluid surface, which separates two phases. We will mainly focus on finite lumps of relativistic

fluids, which occupies only a finite subspace of an otherwise non-compact spacetime. One of

the concrete examples of our set up is described in [12], where metastable finite lumps of the

deconfined phase of N = 4 SYM is separated from the confined phase by a phase boundary.

In the large N limit, such a situation can be described by a metastable fireball of plasma-

fluid separated from the vacuum by a fluid surface.3 Although we have a set up similar

to [12] at the back of our mind, we wish to clarify that in this paper we have taken a purely

field theory perspective and we make no use of the AdS/CFT correspondence in any way.4

We would like to highlight the fact that the behaviour of the microscopic field theory, at

or near the surface, can in general be quite different from that in the bulk. This difference

would be captured by new surface transport coefficients in the effective theory. Some of

these new surface transport coefficients would simply encode the way in which the bulk

transport coefficients are modified at the surface, while others would represent entirely new

transport properties, particular to the existence of the fluid surface.

A very well known example of such a surface phenomenon, at the leading order in

derivative expansion, is surface tension. In this paper, we study the surface transport

coefficients, at the subleading order, and investigate the relations that may exists between

them and the bulk transport coefficients. We would like to emphasize, that the surface

transport coefficients carry entirely new information about the microscopics and modify the

1See also [2–6] for a more recent use and discussion of the second law of thermodynamics in the context

of hydrodynamics.
2These transport coefficients are often expressible in terms of correlators of symmetry currents (Kubo

formulae), which may be evaluated directly from the microscopic quantum field theory.
3Although we have this specific set up in mind, our constructions can be straightforwardly generalized

to describe the surface transport properties of any phase boundary.
4On several occasions, in this paper, we use the word ‘bulk’ which would always mean the bulk of the

fluid in contrast to its surface. It should never be taken to imply the holographic dual.
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fluid equations at the surface very non-trivially. For instance, knowledge of the equation of

state5 for a fluid, tells us nothing about how the surface tension depends on temperature.

The study of surface transport has been carried out to some extent in the context of

fluids which are confined to a thin submanifold of spacetime [13–15]. This is the case in

which the bulk fluid is not present or, alternatively, its pressure and higher-order transport

coefficients vanish at the surface. In such situations, a systematic analysis based on an

effective action approach [13], underlying symmetries and positivity of the entropy cur-

rent [14, 15] have been used to constrain the form of the equations of motion up to second

order in derivatives. One of the particular features inherent to the study of dynamical sur-

faces is that, due to possible deformations along directions transverse to it, new transport

coefficients appear encoding the response of the surface to bending. One such transport

coefficient is the surface modulus of rigidity [13].6 The novelty in this paper resides on the

fact that the system we study is a more intricate one, in which both the fluid residing in

the bulk and the fluid living on the surface constitute the same system.

One of the central simplifying assumptions that we shall make in this paper is that

we will only consider stationary fluid configuration. For the case of stationary space-filling

relativistic fluids without any surface, the constitutive relations and hence the equations of

motion could be significantly constrained from a simple physical criterion. This criterion

is that we demand the symmetry currents, including the stress tensor, to follow from an

equilibrium partition function [19–23].

The stationary fluid configurations are considered in the presence of non-trivial back-

ground fields, like the metric and the gauge fields corresponding to other conserved charges.

These background fields are considered to be slowly varying, with respect to the length

scale associated with the radius of time-circle, in this finite temperature description. These

slowly varying background fields serve as sources in the relativistic fluid equations. On

solving these equations, the fluid variables are expressed in terms of these background

sources. Now, if we substitute this solution of the fluid variables, back into a putative ac-

tion for stationary configurations, we obtain the equilibrium partition function expressed

as a functional of background fields. Since, the fluid equations, and hence the solutions

of fluids fields, are constructed in a derivative expansion, therefore the partition function

could be expanded in a derivative expansion, in terms of these background fields and their

derivatives.

There are several advantages in considering the partition function expressed in terms

of the background fields, (instead of the fluid variables) as the starting point of the analysis.

This description is unaffected by any ambiguities related to choice of frames, as we move

to higher order in derivatives. Also, while constructing the derivative expansions for the

partition function, there is no need to account for constrains arising from lower order

equation of motion, as is required while writing down the constitutive relations.7

5This refers to the functional dependence of the pressure of the fluid on the local temperature or energy

density.
6In the non-relativistic context, these transport coefficients had a significant role to play in [16, 17].

See [18] for a review.
7By constitutive relations, we refer to the relations expressing the symmetry currents, like the stress

tensor etc., in terms of the fluid variables through a derivative expansion, based on symmetry considerations.

The coefficients multiply on-shell linearly independent terms in this expansion.
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It is straightforward to compute the symmetry currents from the partition function

by varying it with respect to the background fields. Then, we proceed to compare the

symmetry currents so obtained, with that which is expressed in terms of the fluid variables

through the constitutive relations. This comparison not only yields the expressions for the

fluid variables in terms of the background fields, specific to the stationary configurations

under consideration, but also provides non-trivial relations between the transport coeffi-

cients (see section 1.1 for more details). Although derived by analyzing stationary fluid

configurations, these relations between transport coefficients are expected to hold even

away from equilibrium.8 In this paper, one of our principal goals would be to adopt a such

a method to constrain transport properties at the surface of relativistic fluids.

1.1 The general set up

1.1.1 Generalities of the partition function analysis

Consider a relativistic fluid living in a spacetime N , equipped with a time-like Killing

vector, which has the most general stationary metric9

ds2 ≡ Gµνdxµdxν = −e−2σ(x)
(
dt+ ai(x)dxi

)2
+ gij(x)dxidxj . (1.1)

Here, the metric functions, depends only on the spatial coordinates x, and ∂t is our time-

like Killing vector. Here gij is the metric on spatial manifold obtained by reducing on the

time-circle,10 which we shall denote by Ns.
In some of our discussions, we will also include a conserved global U(1). The back-

ground gauge fields for this U(1) take the form

A = A0(x)dx0 +Ai(x)dxi . (1.2)

Since none of the functions depend on time, all the quantities of interest, including the

conserved currents, can be dimensionally reduced on the time-circle, whose radius we take

to be T0. It is possible to restrict to this reduced language, focusing only on Ns, for most

of the discussions relating to the partition function.

Among the reduced quantities, time-translation invariance survives as a gauge invari-

ance corresponding to the Kaluza-Klein gauge field ai(x). All our constructions starting

from the partition function, must be manifestly invariant under this Kaluza-Klein gauge

transformation.

Since the U(1) gauge fields in (1.2) transform non-trivially under the Kaluza-Klein

gauge transformation, it is convenient to define a new set of shifted gauge fields which are

8These constraints were found to be identical to the equalities among transport coefficients that fol-

low from the considerations of the second law of thermodynamics. See [24, 25] for more details on this

connection.
9The discussion in this subsection is generally applicable in all dimensions, but while performing the

analysis, particularly in section 3, we shall specialize to four dimensions. Also we shall choose the Levi-Civita

connection to define the covarinat derivative on N .
10This can be done by identifying all the points on the orbits generated by the time-like Killing vector.
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manifestly invariant under it11

Ai = Ai −A0ai, A0 = A0 . (1.3)

Thus B ≡ {σ(x), ai(x), gij(x), A0(x), Ai(x), T0} constitutes the set of background data in

terms of which the partition function is to be expressed.

Now, since we wish to describe a finite lump of relativistic fluid, we will assume that

the fluid is confined to a sub-manifold of N of the same dimensionality as the spacetime,

which we shall denote by M. The fluid surface is considered to be a co-dimension one

hypersurface. We shall denote the fluid surface by f(x) = 0, where f(x) is taken to be

independent of time, following our stationary assumption. In fact, f(x) can be taken to

be a spatial coordinate itself, which is positive inside the fluid and negative outside. The

region inside, f(x) = 0 isM, which can again be reduced on the time-circle to obtain Ms.

Here Ms is also a sub-manifold of Ns, with a compact boundary. We furthermore assume

that the boundary of M does not have boundaries itself.

The normal vector orthogonal to the fluid surface

nµ = − ∂µf(x)√
∂νf(x)∂νf(x)

=

{
0,− ∂if(x)√

∂jf(x)∂jf(x)

}
, (1.4)

is a spatial vector, with a vanishing inner product with the time-like Killing vector.

The partition function of interest, after performing the trivial time integral, can be

schematically written as

W =

∫
Ns
S(B,∇B . . . , θ(f(x)), ∂θ(f(x)) . . . ) , (1.5)

where θ(f) is a distribution functional of the surface function f(x) and is introduced to en-

code the variation of the fluid fields at the surface. Here, θ(f) contains all the information

of the surface. In particular, it has a dependence on the dimensionless parameter τ̃ = T0τ ,

with τ being the length scale associated with the surface thickness. All such non-universal

dependence of θ(f), which are sensitive to the microscopics, are left implicit throughout our

analysis. Realistically θ(f) is a distribution as shown schematically in figure 1. The nota-

tion θ(f) is purposely used to indicate the fact that, in the limiting case where the param-

eter τ̃ is small, this distribution may be well approximated by a Heaviside step function.12

We will also assume that the size of the fluid configuration, i.e. the average length scale

associated withMs, is much greater than τ as well as that associated with the temperature.

We would like to expand S in a derivative expansion. Keeping in mind the repa-

rameterization invariance of the surface, this derivative expansion can be schematically

performed in the following way

W =

∫
Ns

(
θ(f)

(
S0
(0)(B) + S0

(1)(B,∇B) + S0
(2)(B,∇B,∇

2B) + . . .
)

+n · ∂θ(f)
(
S1
(0)(B, n) + S1

(1)(B,∇B, n,∇n) + . . .
)

+ . . .
)

,

(1.6)

11Note that our definition of A0 here differs from that in [19], in that we do not include the shift with

respect to the chemical potential, which may be thought to have been absorbed in the constant part of A0.
12Besides the θ(f) and δ̃(f), the surface transport coefficients may also be dependent on τ̃ . Here we shall

also leave that implicit (see section 1.2 for more details).
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where Sj
(i) is a collection of terms containing i number of derivatives on the background

fields B. S0
(i) are the terms in the bulk of the fluid and they are exactly the ones that

have been considered for space filling fluids, in the earlier constructions of stationary fluid

partition functions [19, 21–23, 26]. The dots at the end, in (1.6), denote terms where

more than one derivatives act on θ(f). On all such terms, an integration by parts can

be performed and they can be cast into the same form as the second term in (1.6). On

performing such an integration by parts, the modified S1
(i) now must contain terms involving

derivatives of the normal vector n. These new kind of terms specific to the existence of

the surface are simply the ones involving the extrinsic curvature of the surface and its

derivatives. Indeed, these are the type of terms considered in the analysis of effective actions

for fluids confined to a thin surface [13–15]. We may write, without any loss of generality13

W =

∫
Ns
θ(f)

(
S0
(0) +S0

(1) +S0
(2) + . . .

)
+ δ̃(f)

(
S̃1
(0)(B) + S̃1

(1)(B,∇B, n,∇n) + . . .
)
, (1.7)

where we have used

− n · ∂θ(f) =
√
∂f · ∂fδ(f) ≡ δ̃(f) . (1.8)

Here, δ(f) denotes the derivative of the distribution θ(f). This notation is again purposely

chosen, so that, in the limit where θ(f) approximates to Heaviside step function, δ(f) ap-

proximates to the Dirac delta function. Finally, if we can reliably approximate θ(f) and

δ(f) to the Heaviside step function and the Dirac delta functions respectively, we may

write (1.7) as14

W =

∫
Ms

(
S0
(0) + S0

(1) + S0
(2) + . . .

)
+

∫
∂Ms

(
S̃1
(0)(B) + S̃1

(1)(B,∇B, n,∇n) + . . .
)
. (1.9)

The second term in (1.9) is the main focus of this paper, and in particular cases, we shall

provide the explicit forms of the surface partition function, up to the first non-trivial orders

in derivatives.

Upon variation of the partition function (1.7) with respect to the background metric,

the stress tensor that we get has the form

TµνPF = Tµν(0)θ(f) + Tµν(1) δ̃(f) + Tµνρ(2) ∂ρδ̃(f) + . . . . (1.10)

Note that although we were able to remove the derivatives of delta function in the partition

function by an integration by parts, such derivatives are still present in the expression for

the local stress tensor. The remaining symmetry currents also have a structure similar

to (1.10).

There is a very important and interesting role played by the function f(x) in the

partition function (1.7). We may derive an equation of motion for f(x) by extremizing

the partition function with respect to it. We can think of this equation as the one which

13Note that reparameterization invariance of the surface fixes the dependence on
√
∂f · ∂f . Therefore

any other additional dependence on this quantity has not been considered.
14Here we have to use the fact,

√
∂f · ∂f =

√
γ
g

, where γ is the determinant of the induced metric on

∂Ms, γij = gij − ninj .
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Figure 1. Schematic plots of surface distribution functionals. The dark region denotes surface

while the light shaded region denotes the inside of the fluid lump.

determines the location of the surface. This equation of motion for f(x) is identical to the

particular surface fluid equation which follows by demanding diffeomorphism invariance in

directions orthogonal to the surface.15

1.1.2 Fluid variables and choice of frames

Now let us consider the description in terms of the original fluid variable {uµ, T, . . . }. We

can write down a stress tensor in terms of these fluid fields and their derivatives purely

based on symmetry considerations, which has the same structure as (1.10), namely

TµνC = T̃µν(0)θ(f) + T̃µν(1) δ̃(f) + T̃µνρ(2) ∂ρδ̃(f) + . . . (1.11)

The transport coefficients are the functions of scalar fluid fields, that multiply specific

symmetry structures when T̃µν(i) is further expanded in a derivative expansion. The number

of scalar structures that goes into the partition function is, in general, much less than the

allowed linearly independent symmetry structures which arises in the stress tensor (1.11).

Therefore comparing TCµν with TPFµν gives us very non-trivial constraints on the transport

coefficients. This exercise, when executed for the fluid configurations with a surface, not

only gives relations among surfaces transport coefficients but also relates them with some

of the bulk transport coefficients.

While writing (1.11), there is a crucial issue of the choice of fluid frames. Since we do

not want the fluid to spill out of the surface, we must require

uµnµ|f=0 = 0 , (1.12)

to be true at all orders in derivative expansion. Also, we want the surface to be moving

in the same way as the bulk of the fluid. Therefore a suitable frame choice should ensure

that the fluid fields does not jump discontinuously at the surface. We should point out

15This equation, in a limited context, is known as the Young-Laplace equation. In the later sections

we will see how this Young-Laplace equation in modified when we relax some of the assumptions made in

writing its original form.
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that one of the most popular frame choice — the Landau frame, in which uµ is an eigen-

vector of the full stress tensor, is not a suitable frame choice in this respect. This is

because since the stress tensor has new corrections at the surface, the Landau frame choice

introduces discontinuities in the fluid variables at the surface. Also, trying to impose

the condition (1.12) in addition to the Landau frame condition may turn out to be more

constraining than necessary.

A suggestion for a suitable frame choice may be to work with a Landau frame condition

only for the bulk stress tensor.16 That is, we may impose

uµT̃ (0)
µν = −Euν , (1.13)

both in the bulk and at the surface of the fluid. Here E is only the bulk energy density.

This, in particular, would imply that the direction of energy flow at the surface of the

fluid is not along the fluid flow, which is not a problem at all. However, although this

cures one of the problems (that there would be no separate corrections to the fluid fields

at the surface), imposing (1.12) in addition may still be over constraining, particularly at

the second and higher orders in derivatives.

This problem may be easier to visualize, if we remember the results of [19] for 3+1

dimensional uncharged fluids. In that paper, after comparison with the partition function,

in the Landau frame, it was found that the velocity uµ, which is identical to the Killing

vector of (1.1) at the leading order, receives nontrivial corrections in terms of derivatives

of the background fields at second order in the derivative expansion. So if we now wish to

impose (1.12) on that result, it would be automatically satisfied at the leading and first

order. But at second order, it would imply non-trivial constrains involving the background

field and the normal vector nµ, which may be too restrictive.

Hence, the most suitable choice of frame for this problem is to choose a frame

where (1.12) is a part of the frame fixing condition. This is possible to implement only

because, at leading order the fluid velocity uµ is proportional to the time-like Killing vector

of (1.1) therefore (1.12) is automatically satisfied. The higher order corrections can always

be manipulated by a frame choice. In fact, we may foliate the bulk of the fluid M, with

constant f(x) surfaces, thus extending nµ throughout M. Then uµnµ = 0 can be chosen

to be part of frame fixing condition throughout the bulk of the fluid.17 The remaining

part of the frame choice can be implemented by imposing a condition similar to (1.13) but

projected orthogonal to nµ. We will refer to this frame as the orthogonal-Landau-frame.18

While performing the partition function analysis in section 3.3, we shall make this frame

choice.

There is another very interesting point of view while describing the fluid surface in

terms of the fluid variables. We may consider two separate sets of fluids variables one in

the bulk {uµ, T}blk and the other at the surface {ua, T}sur. The surface has one less fluid

variable because it is one dimension less than the bulk. Now we can regard the surface

16If the bulk fluid is not present, then it is possible to set the surface fluid in the Landau frame [14].
17This choice of frame is reminiscent of the µdiss = 0 frame, in the case of superfluids, as discussed in [10].
18In appendix A, we provide the details for performing a transformation from the Landau-frame to the

orthogonal-Landau-frame, in the bulk of the fluid.
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equation of motion,19 as being the dynamical equations for the variables {ua, T}sur. In

this equation, the bulk variables only act as sources and we can solve them to obtain

specific solutions {usa, T s}sur. Subsequently we should solve the bulk fluid equations with

the boundary condition20

(uµblk)nµ|f=0 = 0, and {eµauµ, T}blk|f=0 = {usa, T s}sur , (1.14)

where eµa is the projector on to the tangent space of the surface. Thus, in this point of

view, the fluid equations are solved with dynamical21 boundary conditions. The dynamics

of the boundary conditions are given by the surface equations of motion. In this paper, we

strive to constrain the form of this surface equation using the framework of the equilibrium

partition function.

1.2 A brief summary of results

At first, in section 2 we consider perfect fluids in arbitrary dimensions. The partition

function for perfect fluids with a surface can be written as

W = logZ =

∫
Ns
d3x
√
g

(
θ(f)

eσ

T0
P
(
T0e
−σ)+ δ̃(f)

eσ

T0
C
(
T0e
−σ)) , (1.15)

where just like P can be identified with the pressure P in the bulk of the perfect fluid,

C is identified with the surface tension χ. Comparison of the stress tensor constructed

through symmetry arguments, with that following from (1.15) yields the expected surface

thermodynamics. The component of the stress tensor conservation equation normal to the

surface, at the surface, reads

P (T )|f=0 = χK + TχS nµa
µ|f=0 , (1.16)

where K is the extrinsic curvature of the surface and aµ is the fluid acceleration. This

is a modified version of the Young-Laplace equation where the term proportional to the

acceleration is new compared to its original form. This additional term is non-zero only if

the surface entropy χS is non-zero, i.e., if there is a non-trivial temperature dependence of

surface tension.

This term has a very simple physical interpretation. If the surface entropy is non-zero,

it implies that there are non-trivial degrees of freedom localized at the surface. Then the

additional term accounts for the centripetal acceleration of these degrees of freedom in the

force balance equation that (1.16) represents.

Since the acceleration term in (1.16) has not been widely considered in the literature

before, we analyzed the consequence of this term on some simple fluid configurations in

19By this we mean the part of the equation of motion proportional to δ̃(f) and its derivatives. Note that

the number of fluid equations at the boundary is equal to the number of dimensions M rather than ∂M,

which is one higher than the number of fluid variables {ua, T}sur. The extra equation, may be thought of

as the equation of motion for the function f(x).
20This boundary condition should be implemented at all orders in derivatives.
21Here the word ‘dynamical’ is to interpreted only in a restricted sense, since we only consider a stationary

equilibrium ansatz. Some dynamics is still present in our stationary assumption, in contrast to a static one.
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section 4. For this purpose, as a sample system, we choose to revisit the localized configu-

rations of deconfined plasma of large N , strongly coupled N = 4 Yang-Mills theory, com-

patified down to 2+1 dimensions on a Scherk-Schwarz circle, that were constructed in [27].

These configurations are dual to exotic black holes in Scherk-Schwarz compactified AdS5.

However, due to the unavailability of the exact dependence of surface tension on tem-

perature for this system, the surface tension was taken to be a constant,22 in the analysis

of [27]. In section 4, we suitably parameterized this ignorance and studied the change in

the phase diagram for the configurations, as we varied this parameter. We found that

turning on this parameter introduced an upper bound on the surface velocity. This arises

from the fact that the surface temperature dips below the phase transition temperature,

when the bound is overshot. This results in the termination of the phase curve at a specific

point, see figure 2. This has important consequences for the existence of a phase transition

between the ball and ring configurations. We find that the phase transition may not exist

for large values of this parameter.23

Moving on to the case of finite lumps of superfluids, at zeroth order in derivatives, P
and C in the partition function (1.15), now would also depend on A0 and the norm of the

superfluid velocity ξµ [23]. We find that (1.16) is further modified in the case of superfluids

to become

P (T )|f=0 = χK + (χE − χ) nµa
µ|f=0 + λ nµ ξν ∇νξµ|f=0 . (1.17)

In section 3 we consider the case of uncharged fluids in 3+1 dimensions, where the

first corrections to the perfect fluid partition function occurs at second order in the bulk

and at first order on the surface. The full partition function upto this order, including the

parity odd sector, takes the form

W = logZ =

∫
Ms

d3x
√
g

(
eσ

T0
P
(
T0e
−σ)− 1

2

[
P1(σ)R+ T 2

0P2(σ)fijf
ij + P3(σ)(∂σ)2

])
(1.18)

+

∫
∂Ms

d2x
√
γ
eσ

T0

(
C
(
T0e
−σ)+ B1

(
T0e
−σ)ni ∂iσ + B2

(
T0e
−σ) εijknifjk + B3

(
T0e
−σ)K) ∣∣∣∣

f=0

.

Here Pi are the three independent coefficients that were considered in [19], while Bi are the

new three surface transport coefficients. The terms proportional to B1 and B2 can also be

viewed as bulk total derivative terms, while the term B3, a term which was studied in [13],

eventually contributes to the modulus of rigidity.

As pointed out before, the surface transport coefficients in (1.18) may also depend on

τ̃ (the dimensionless ratio of surface thickness and T0), which we leave implicit here. If any

particular limit is taken on this parameter τ̃ , it may directly influence the surface transport

coefficients in (1.18), particularly B3.
For the stress tensor TµνC , which follows from symmetry considerations, there are 31

surface terms that can be written down, which are linearly independent for stationary

22The value of surface tension at the phase-transition temperature which was previously computed in [12]

was used for this constant value.
23More specifically, if χ ∼ T−ζ , then we found for ζ & 1/3 the phase transition would cease to exist

between the ball and the ring.
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configurations. Now, taking into consideration the fact that Pi correspond to three inde-

pendent transport coefficient in the bulk fluid, we are able to derive 28 relations between

the 31 surface transport coefficients and the 3 independent bulk transport coefficients, as

it has been explicated in section 3.

2 Perfect fluids

In this section we will study fluids at zeroth order in derivatives. At this order, the only

surface effect is encoded in the surface tension, which is extremely well studied. However,

it is very instructive to re-derive the known physics in the language of partition functions

described in section 1. We will also get the occasions to discuss a few effects related to the

temperature dependence of surface tension and surface tension in superfluids which has

not been widely discussed in the literature.

2.1 Ordinary uncharged perfect fluids in arbitrary dimensions

At first, let us briefly review the partition function for space filling ordinary perfect fluids

as discussed in [19]. The partition function in terms of the metric sources can be written as,

W = logZ =

∫
d3x
√
g
eσ

T0
P
(
T0e
−σ) . (2.1)

The functional form of P is to be determined from microscopics. Let us now evaluate the

stress tensor from the above partition function by using [19]

T00 = −T0e
2σ

√
−G

δW
δσ

, T i0 =
T0√
−G

δW
δai

, T ij = − 2T0√
−G

gilgjm
δW
δglm

. (2.2)

Evaluating these formulae explicitly for (2.1) we get

T00 = e2σ
(
P − T ∂P

∂T

)
, T i0 = 0 , T ij = Pgij , (2.3)

where T = T0 e
−σ. By comparing (2.3) with the zeroth order form of the stress tensor

that follows from symmetry considerations

Tµν = (E(T ) + P (T ))uµuν + P (T )Gµν + . . . , (2.4)

we get

P = P , E = −P + T
∂P
∂T

, (2.5)

while the fluids fields are found to be

uµ = e−σ{1, 0, . . . , 0}+ . . . , T = T0e
−σ + . . . . (2.6)

Note that (2.5) is identical to the condition on pressure and energy density that follows

from thermodynamics. In this way, we are able to derive the thermodynamic properties

of the fluid by comparison with the partition function. In some sense, pressure and energy
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density can be thought of as zeroth order transport coefficients, which are related by

thermodynamic relations which follow from the partition function analysis.

Following the above procedure, we wish to write down a partition function for perfect

fluids in equilibrium, confined within a surface (which itself is dynamically determined by

minimization of the free energy). Respecting the principles of KK-gauge invariance for

writing down the partition function and reparameterization invariance of the surface, the

partition function is given in terms of two unknown functions24

W = logZ =

∫
Ns
d3x
√
g

(
θ(f)

eσ

T0
P
(
T0e
−σ)+ δ̃(f)

eσ

T0
C
(
T0e
−σ)) . (2.8)

In order to obtain the stress tensor, we have to vary the partition function (2.8) with

respect to the background metric fields.25

In fact, using (2.2), explicitly we find

T00 = e2σ
(
P − T ∂P

∂T

)
θ(f) + δ̃(f)e2σ

(
C − T ∂C

∂T

)
,

T i0 = 0 ,

T ij = Pgijθ(f) + δ̃(f)Cγij .

(2.9)

Now we have to compare (2.9) with the stress tensor that may be written from symmetry

arguments (1.11) to this particular order, namely,

Tµν = T (0)
µν θ(f) + T (1)

µν δ̃(f) . (2.10)

The bulk stress tensor components T
(0)
µν are given by (2.4), while the components of the

surface stress tensor also have a similar form

T (1)
µν = χE(T ) uµuν − χ(T ) Pµν + . . . . (2.11)

Here, Pµν = Gµν +uµuν −nµnν is the projector orthogonal to both the velocity vector and

the normal to the surface. In (2.11) we also introduced χE and χ, which are, respectively,

the surface energy and the surface ‘pressure’, also known as surface tension.

Comparing (2.9) with (2.11), we can therefore identify

χ = −C , χE = −C + T
∂C
∂T

, (2.12)

while the fluids fields are again given by (2.6).26 This identification (2.12) had also been

done in [13]. Just like the bulk perfect fluid, (2.12) implies the thermodynamic identity

χE = χ+ TχS , (2.13)

24Note that, as described in section 1, under suitable assumptions on θ(f) and δ(f), (2.8) may also be

written as,

W = logZ =

∫
Ms

d3x
√
g
eσ

T0
P
(
T0e
−σ)+

∫
∂Ms

d2x
√
γ
eσ

T0
C
(
T0e
−σ) ∣∣∣∣

f=0

. (2.7)

25The functionalW is to be taken to be a functional of the metric functions and the function f , defining the

surface. All these functions are independent functions of the coordinates and must be treated independently.
26Note that with this the continuity of the fluids fields, as we move from the bulk to the boundary is

maintained. Also, (2.6) implies u · n = 0, is automatically satisfied, at the order of perfect fluids.
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where χS = −∂χ/∂T is the surface entropy. Therefore, if the surface tension depends

non-trivially on the fluid temperature, it means that the surface entropy is non-zero and

hence that there are active degrees of freedom living on the surface of the fluid. When

the surface entropy vanishes (that is the surface tension is constant), the surface tension is

equal to the negative of surface energy.

The conservation of the stress tensor (2.10), implies

∇µTµν = θ(f)∇µTµν(0) + δ(f)
(
−nµTµν(0) + ∇̃µTµν(1)

)
+ . . . , (2.14)

where we have defined ∇̃µ (. . . ) = 1/
√
∂f · ∂f ∇µ

(√
∂f · ∂f . . .

)
. In the bulk (2.14) will

give rise to the usual equation bulk conservation equation ∇µTµν(0) , while at the surface, it

gives rise to the condition

− nµTµν(0) |f=0 + ∇̃µTµν(1) = 0 . (2.15)

This equation is in fact a Carter equation with a force term [28], and is extensively used

in the context of (mem)-brane hydrodynamics [13–15, 29]. As with any Carter equa-

tion, (2.15) gives rise to two physically different sets of equations, obtained by projecting

both orthogonally and tangentially to the fluid surface. Before doing so, let us note that

nµT
µν
(0) = nνP (T )|f=0 , (2.16)

that is, for a perfect fluid, the bulk contribution to (2.15) is only present in the normal

component of (2.15). Thus, if we project (2.15) along the fluid surface with the projector

eaν such that nνeaν = 0, we obtain

eaν∇̃µT
µν
(1) = 0 . (2.17)

Here the index a = 0, 1, 2 labels the directions along the surface. Equation (2.17) expresses

the conservation of the surface stress tensor along the surface. Note that if we consider

higher derivative corrections, this equation will also receive a contribution from the bulk

stress tensor, which would signify energy and momentum transport from the bulk to the

surface. For the perfect fluid, however, such transport does not take place.

The component of (2.15) normal to the surface, describing the elastic degrees of free-

dom of the surface, is more interesting and provides us with the condition that determines

the position of the surface. For perfect fluids, it reduces to

− P (T )|f=0 + nν∇̃µTµν(1) = 0 . (2.18)

Now, given that the surface stress tensor (2.11) is orthogonal to the normal vector nµ, we

can rewrite the second term in (2.18) in the following way

P (T )|f=0 + Tµν(1)Kµν = 0 , (2.19)

where Kµν is the extrinsic curvature of the surface. We can easily check that both (2.18)

and (2.19) reduces to27

P (T )|f=0 = χK + (χE − χ) nµa
µ|f=0 , (2.20)

27Note that uµuνK
µν = −nµaµ, since nµuµ = 0.
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where aµ = uν∇νuµ is the fluid acceleration, and K = GµνKµν is the mean extrinsic

curvature. If there are no active degrees of freedom in the boundary and the surface

tension is constant implying that χE = χ, then (2.20) immediately reduces to

P (T )|f=0 = χK , (2.21)

which is the Young-Laplace equation. Thus (2.20) is a generalization of the Young-Laplace

equation, when there are non-trivial degrees of freedom living on the surface of the fluid.

Such generalization had not been previously considered in the works of [27, 30, 31]. In

section 4, we shall examine the consequence of the presence of this additional term in (2.20)

for some simple fluid configurations.

It is noteworthy that (2.20) can also be directly obtained from the partition func-

tion (2.8). In terms of the partition function, this is simply given by the extremization of

the partition function with respect to the surface function f , which is the equation of motion

f . This is intuitively expected since the location of the fluid surface is obtained by the min-

imization of the free energy. If we vary (2.8) with respect to f , at the leading order we find

δ(f)

(
P + C(T0e−σ)K +

(
C(T0e−σ)− T ∂C(T0e−σ)

∂T

)
ni∂iσ

)
= 0 , (2.22)

where K = gij∇̄inj , with ∇̄ being the spatial covariant derivative defined with re-

spect to the reduced metric.28 Given the thermodynamical relations (2.5), (2.12) and

remembering that in terms of the background fields the fluid acceleration is given by

ai = gij∂jσ [19], (2.20) reduces to (2.22).

2.2 Zeroth order superfluids with a surface

For the case of superfluids, the zeroth order stress tensor is modified in order to include

the superfluid velocity ξµ [32, 33]. The bulk stress tensor has the form

T (0)
µν = (ε+ P )uµuν + PGµν + λξµξν , (2.23)

and it is accompanied by a conserved current

J (0)
µ = quµ − λξµ . (2.24)

Just like in the case of ordinary fluids, in the presence of a surface there are surface stress

tensor and current contributions, which read

T
(1)
ab = (ε+ P )uaub + PHab + λξaξb , J (1)

a = q ua − λ ξa . (2.25)

It can be explicitly checked that this form of the boundary stress tensor and current follows

from the following partition function

W = logZ =

∫
M
d3x
√
g
eσ

T0
P
(
T0e
−σ, A0, ξ

)
+

∫
∂M

d2x
√
γ
eσ

T0
C
(
T0e
−σ, A0, ξ

) ∣∣∣∣
f=0

,

(2.26)

28K is related to the full extrinsic curvature by K = K+ n · ∂σ.
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where ξ is the norm of the superfluid velocity. The bulk term of this partition function

was first derived in [23]. In the presence of the surface we must also assume that the

superfluid velocity and the normal to the surface are mutually orthogonal nµξµ|f=0 = 0.

As in the previous sections, the stress tensor is conserved and the normal component of the

conservation of the boundary stress tensor gives the generalized Young-Laplace equation.

To leading order, the bulk and surface currents are conserved separately, with no current

flowing from the bulk to the surface.

The generalized Laplace-Young equation (2.20), is further modified in the case of su-

perfluids. It takes the form

P (T )|f=0 = χK + (χE − χ) nµa
µ|f=0 + λ nµ ξν ∇νξµ|f=0 . (2.27)

Note that the new term is present even if there is no temperature dependence in the surface

tension, as long as the goldstone boson also constitutes an active degree of freedom on the

surface. Also this modified equation is also applicable to the case when there is an emergent

goldstone boson only at the surface of a fluid, a situation which is reminiscent of topological

insulators in the context of fluids.

3 Next to leading order corrections for uncharged fluids

In this section we shall consider the next to leading order corrections for uncharged fluids

with a surface. The principal goal of this section is to demonstrate that there are only

three new equilibrium transport coefficients on the surface of the uncharged fluid, at the

next to leading order, two of which are parity even and the other one being parity odd.

Two of these new boundary terms in the partition function, also precisely coincide with

two possible bulk total derivative terms. Here, we work out the interplay between these

new surface transport coefficients and the bulk second order transport coefficients.

3.1 Partition function at next to leading order

In order to write down the first corrections to the partition function (2.8), we need to write

down all KK-gauge invariant scalar terms at higher order in derivatives. As it was observed

in [19], the bulk of the fluid does not receive any corrections at first order. In other words,

there are no KK-gauge invariant scalar bulk terms at first order, which can be written in

terms of the sources of an uncharged fluid.

However, at the surface of the fluid, there is an additional geometrical structure, which

is the vector normal to the fluid surface. This allows us to write down two possible parity

even scalar terms which may constitute the partition function. These are

K , ni ∂
iσ . (3.1)

Here K is the trace of the extrinsic curvature reduced along the time direction

Now for parity odd terms, there is only one possible parity odd scalar

εijknifjk , (3.2)
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which must be taken into account while writing down the partition function. For space-

filling fluids, it was not possible to construct any parity odd term in the partition function,

at the second order [19]. Therefore the existence of this term suggests that even uncharged

fluids may have parity odd transport when surface effects are considered. Since, the fluid

surface is co-dimension one, this term is particularly reminiscent of a parity odd transport

that can exist in 2 + 1 dimensions [19, 20].

Including these new surface terms, the partition function takes the following form

W = logZ =

∫
Ms

d3x
√
g

(
eσ

T0
P
(
T0e
−σ)) (3.3)

+

∫
∂Ms

d2x
√
γ
eσ

T0

(
C
(
T0e
−σ)+ B1

(
T0e
−σ)ni ∂iσ + B2

(
T0e
−σ) εijknifjk + B3

(
T0e
−σ)K) ∣∣∣∣

f=0

.

It is important to note that if we include these first order surface terms in the partition

function then we must also include the second order bulk terms for consistency. For in-

stance, the surface stress tensor following from the partition function in (3.3) may get

contributions from total derivative terms at second order in the bulk. In fact, we must

point out that two of the new terms that we have added in (3.3) may also be written as a

bulk total derivative terms at second order.

Thus, including the bulk second order terms, which was written down in [19],29 we have

W = logZ =

∫
Ms

d3x
√
g

(
eσ

T0
P
(
T0e
−σ)− 1

2

[
P1(σ)R+ T 2

0P2(σ)fijf
ij + P3(σ)(∂σ)2

])
(3.4)

+

∫
∂Ms

d2x
√
γ
eσ

T0

(
C
(
T0e
−σ)+ B1

(
T0e
−σ)ni ∂iσ + B2

(
T0e
−σ) εijknifjk + B3

(
T0e
−σ)K) ∣∣∣∣

f=0

,

where Pi denote the three independent transport coefficients at second order for a fluid

without surfaces.

Now, as pointed out before we can write the new surface terms as a bulk term in the

following way

W = logZ =

∫
Ms

d3x
√
g

(
eσ

T0
P
(
T0e
−σ)

−1

2

[
P1(σ)R+ T 2

0P2(σ)fijf
ij + P3(σ)(∂σ)2 +∇2P4(σ) + εijk (∂iP5) fjk

])
+

∫
∂Ms

d2x
√
γ

(
eσ

T0
C
(
T0e
−σ)+ P6(σ)K

) ∣∣∣∣
f=0

, (3.5)

where we have defined

P ′4(σ) = −2eσ

T0
B1
(
T0e
−σ) , P5(σ) = −2eσ

T0
B2
(
T0e
−σ) , P6(σ) =

eσ

T0
B3
(
T0e
−σ) . (3.6)

Now, as it was shown in [19], P1, P2 and P3 were determined in terms of the bulk second

order equilibrium coefficients. Also eliminating the P1, P2 and P3 from those relations, gave

rise to 5 relations among the eight possible second order equilibrium transport coefficients.

29We entirely follow the notation and conventions of [19] for the second order terms.
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It is clear that the terms proportional to P4 and P5 (or any total derivative term) will

not enter the bulk stress tensor.30 But they definitely contribute non-trivially to the surface

stress tensor. It is important to note that both the form of the partition function (3.4)

and (3.5) are equivalent and describe the same system. Hence, everything physical that

is evaluated from them, such as the surface stress tensor or the Young-Laplace equation,

must be identical.

3.2 Corrections to the stress tensor

Once we have written down the partition function (3.5), it is immediate to evaluate the

stress tensor by varying with respect to the background fields using (2.2). It is convenient

to split the bulk and surface contributions, up to second order, in the followind way

Tµνblk = Tµν(0)θ(f) , T µνsur = Tµν(1) δ̃(f) + Tµνρ(2) ∂ρδ̃(f) . (3.8)

The bulk stress tensor remains the same as that computed in [19] and involves only the the

coefficients P1, P2 and P3 while the surface contribution is obtained as terms proportional

to δ̃(f) and its derivatives31

Tsur
lk = gligkj

[
δ̃(f)T0e

−σ
[
gij

(
−P1K −

(
2P ′1 +

1

2
P ′4 + P ′6

)
nk∂kσ

)
− ninj

(
P ′6n

k∂kσ + P6K
)

+ P1∇(inj) + (2P ′1 + P ′4 + 2P ′6)n(i∂j)σ

]
+ T0e

−σ
[
(P1 + 2P6)n(i∂j)δ̃(f)− (P1 + P6)gijn

k∂kδ̃(f)− P6ninjn
k∂kδ̃(f)

]]
,

T sur
00 = δ̃(f)T0e

σ

[(
−1

2
P ′4+P ′6

)
K+P3 n

k∂kσ+
1

2
P ′5 ε

ijknifjk

]
+

(
−1

2
T0e

σP ′4

)
nk∂kδ̃(f) ,

Tsur
i
0 = δ̃(f)

[
− T 3

0 e
−σP2njf

ji + T0e
−σεijk

(
P ′5nj∂kσ

) ]
. (3.9)

This stress tensor must satisfy the conservation equation

∇µTµνsur = Tµν(0)nµδ̃(f) , (3.10)

which gives rise to two separate sets of equations as in section 2, one determining the

position of the surface and the other the conservation of the surface stress tensor along

surface directions. Indeed, by explicitly using (3.9), one can verify that the tangential

projection of (3.10) is automatically verified — a trivial consequence of diffeomorphism

invariance along the surface.

30This is because, a bulk total derivative can always be written as∫
Ms

d3x
√
g ∇iV i =

∫
Ms

d3x∂i
(√

g V i
)
, (3.7)

for any Vi. Since the variation of such terms, with respect to the metric, always lies within the derivative,

hence such terms can only contribute to the surface stress tensor and never to the bulk stress tensor.
31Here we have kept the term proportional to ∇inj − ∇jni. This term depends on how ni is extended

away from the fluid surface. We may choose to perform this extension so that this anti-symmetric

derivative of ni is zero. However, we perform our analysis without such an assumption so that, if our

equations is applied in some generalized circumstance where a more natural extension of ni away from the

surface demands this term to be non-zero.
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a S(a) Reduced form Sred(a)

1 δ̃(f) nµaµ δ̃(f) ni∂iσ

2 δ̃(f) K δ̃(f)
(
K + ni∂iσ

)
3 δ̃(f) nµ`µ δ̃(f)

(
eσ

2

)
εijknifjk

4 nµ∂µδ̃(f) ni∂iδ̃(f)

Table 1. Scalars.

a Vµ(a) Reduced form V i(a)
1 δ̃(f) Pµαaα δ̃(f) P ij∂jσ

2 δ̃(f) Pµαnνωνα δ̃(f)
(
eσ

2

)
P ijfjknk

3 δ̃(f) Pµαnβ∇βnα δ̃(f) P ijnk∇knj

4 δ̃(f) Pµα`α δ̃(f)
(
eσ

2

)
P ijgjkεklmflm

5 δ̃(f) Pµαεαλνσuλnνaσ δ̃(f) P ijgjkεklmnl∂mσ

6 δ̃(f) Pµαεανλσuν∇λnσ δ̃(f) P ijgjkεklm∇lnm

7 Pµα∂αδ̃(f) P ij∂j δ̃(f)

Table 2. The first order vectors on the surface projected on the surface and orthogonal to the

velocities. Here Pµν = Gµν+uµuν−nµnν , is the projector orthogonal to both uµ and nµ. The spatial

components of this projector, projects orthogonal to ni in a given time slice, that is Pij = gij−ninj .
Also, note that in the reduced language V0(j) = 0.

3.3 Constraints on surface transport coefficients from the equilibrium parti-

tion function

In this section we write down the next to leading order surface stress tensor in equilibrium

by classifying all the terms allowed by symmetries. We then reduce this stress tensor along

the time circle and compare it with that which follows from the partition function. This

allows us to see a rich interplay between the surface transport coefficients and the bulk

second order coefficients.

Under the assumption of time independence, at first order on the surface, the non-zero

linearly independent terms have been classified in tables 1, 2 and 3. The presence of the

vectors uµ and nµ breaks down the local Lorentz symmetry at the surface to a smaller

subgroup. The classification is based on transformation properties of the surface quantities

under this preserved subgroup. We refer to the objects as scalars, vectors and tensors,

depending on their transformation properties under this subgroup. Note that we have

defined Kµν = ∇(µnν).

We would like to point out that in table 2, we have not included the term Pµαuβ∇βnα
because upon reduction it evaluates to the same result as Pµαnνωνα. Hence, in the sta-

tionary equilibrium case under consideration, these two terms are not independent. Also,
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k T µν(k) Reduced form T ij(k)

1 PµαPνβKαβ − 1
2P

µνPαβKαβ P ikPjm
(
Kkm − 1

2gkmK
)

Table 3. Symmetric traceless tensor. Upon reduction, T i0 and T00 components of the tensor

vanishes.

owing to the identity

εijknj∂kδ̃(f) = δ̃(f)εijk∂jnk ,

the term Pµαεανλσnνuλ∇σ δ̃(f) is not independent from V µ
(6). Also note that in table 3,

PαβKαβ is distinct from K, since uαuβKαβ is non-zero. In the stationary case, PαβKαβ

reduces to K, while K = K + n · ∂σ, as shown in table 1.

Since we would like to have, the velocity at the surface, to be equal to the bulk velocity

evaluated at the surface, there is no freedom in choosing a frame at the surface once the

bulk frame has been chosen, as discussed in section 1.1.2. In order to respect the continuity

of fluid variables and to naturally impose the condition (1.12), we shall proceed with the

frame choice as described in section 1.1.2. This frame choice only constrains the form of

the bulk stress tensor and leaves the surface stress tensor unconstrained. Therefore, while

constructing the surface stress tensor at first order, we have to write down all possible

terms that are allowed by symmetry without imposing any restrictions. We have

Tµνsur =

4∑
i=1

(
Pµν s1i S(i) + uµuν s2i S(i) + nµnν s3i S(i) + u(µnν) s4i S(i)

)
+

7∑
i=1

2
(
v1i u

(µVν)(i) + v2i n
(µVν)(i)

)
+ tT µν ,

(3.11)

where {S(i),Vν(i), T
µν} are specified in the second column of tables 1, 2 and 3, respectively.

The corresponding surface transport coefficients are denoted by {s1i, s2i, s3i, s4i, v1i, v2i, t}.
As we may already foresee, among these 4× 4 + 2× 7 + 1 = 31 transport coefficients, only

3 are independent. The rest are determined in terms one another or bulk second order

transport coefficients. We will now work out these relations.

If we consider the reduction of (3.11) along the time direction, we obtain the following

reduced stress tensor

T sur
00 =

4∑
a=1

e2σ s2a Sred(a) ,

Tsur
i
0 =

4∑
a=1

(−eσ)ni s4a Sred(a) +
7∑

a=1

(−eσ) v1aV i(a) ,

Tsur
ij =

4∑
a=1

(
P ij s1a Sred(a) + ninj s3a Sred(a)

)
+

7∑
a=1

(
v2a n

(iVj)(a)
)

+ t T ij ,

(3.12)

where {Sred(a) , V
i
(a), T

ij} are specified in the third column of tables 1, 2 and 3, respectively.
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Now comparing (3.12) with (3.9) we get

s21 = T0e
−σ
(
P3 +

1

2
P ′4 − P ′6

)
, s22 = T0e

−σ
(
−1

2
P ′4 + P ′6

)
, s23 = T0e

−2σP ′5, s24 = −T0e
−σ

2
P ′4,

s4a = 0, ∀a ∈ {1, 2, 3, 4}, v1a = 0, ∀a ∈ {1, 4, 3, 6, 7}, v12 = 2(T 3
0 e
−3σ)P2, v15 =

(
−T0e

−2σP ′5
)
,

v2a = 0, ∀a ∈ {2, 4, 5, 6}, v21 = T0e
−σ (2P ′1 + P ′4 + 2P ′6

)
, v23 = T0e

−σP1,

v27 = T0e
−σ (P1 + 2P6) , s11 = T0e

−σ
(
P1 −

(
2P ′1 +

1

2
P ′4 + P ′6

))
, s12 = −T0e

−σP1, s13 = 0,

s14 = −T0e
−σ (P1 + P6) , s31 = T0e

−σ
(
P1 + P6 +

1

2
P ′4

)
, s32 = −T0e

−σ (P1 + P6) ,

s33 = 0, s34 = 0, t = T0e
−σP1 . (3.13)

Let us recall from [19] that P1, P2 and P3 may be expressed in terms of the bulk

transport coefficients in the following way32

P1 = κ1, P2 =
1

8T 2
(2κ1 + κ2 − λ3) , P3 =

TPTT
PT

(
2

3
(κ2 − κ1)− 2ζ2 + ζ3

)
. (3.15)

Finally, eliminating the Pi variables from (3.13), we can summarize the following relations

involving surface first order coefficients and second order bulk transport coefficients

s4a = 0, ∀a ∈ {1, 2, 3, 4}, v1a = 0, ∀a ∈ {1, 3, 4, 6, 7} ,
v2a = 0, ∀a ∈ {2, 4, 5, 6}, s13 = 0, s33 = 0, s34 = 0 ,

s31 = −(s14 + s24), s32 = s14, s12 = −t, s23 = −v15 ,
s22 = s24 + T∂T (s14 + t)− (s14 + t) , v21 = 2 (T∂T s14 − s14 − s24) ,

v23 = −(2s14 + v27), v27 = −t− 2s14, s11 + s31 + T∂T (s14 − t) = 0 ,

t = Tκ1, v12=
T

4
(2κ1+κ2−λ3), s21=

PTTT
2

PT

(
2

3
(κ2−κ1)−2ζ2+ζ3

)
−s22 .

(3.16)

These relations (3.16) are one of the central results of the paper. Let us now highlight some

of the most interesting aspects of these relations (3.16). The last three relations in (3.16)

relate bulk transport coefficients to those in the boundary. This shows that the linear

response to particular deformation of the surface is intimately related to some, otherwise

unrelated, transport coefficient in the bulk. Particularly interesting is the fact that t and

κ1 are proportional to each other. This physically implies that the linear response to a

longitudinal stretch of the surface is entirely determined by how the fluid reacts to a change

in background curvature.

32Here we pick up only three specific relations; they can be expressed in several other ways using the

relations between bulk second order coefficients, as was obtained in [19]. The bulk second order coefficients

in (3.15) appeared in the Landau-frame stress tensor in the following way

Tµν = T
(
κ1 R̃〈µν〉 + κ2 K〈µν〉 + λ3 ω

α
〈µωαν〉 + λ4 a〈µaν〉 + Pµν(ζ2R̃+ ζ3R̃αβu

αuβ + ξ3ω
2 + ξ4a

2)
)
.

(3.14)
For further details of the conventions, we refer the reader to [19]. In the orthogonal-Landau-frame as defined

in section 1.1.2, which is the most suitable bulk frame for describing the fluid configurations with a surface,

the stress tensor takes the form (A.5). Note that the bulk transport coefficients appearing in (3.15) have

very similar physical meanings in both the frames. See appendix A for further details.

– 20 –



J
H
E
P
0
6
(
2
0
1
6
)
0
1
5

Another noteworthy fact is that the parity odd term introduced in (3.3), is reminiscent

of the possible parity odd term in 2+1 dimensional space-filling fluids discussed in [19, 20].

It leads to two non-zero parity odd coefficients, namely s23 and v15. The scalar S2 is propor-

tional to n · `, while Vµ5 is non-zero only when the acceleration at the surface aµ has a com-

ponent parallel to the surface (see tables 1 and 2). It is interesting to note that although,

space-filling uncharged fluids do not have any parity odd stationary transport at next to

leading order, such a transport may exist at the surface of a finite lump of the same fluid.

Some of these constraints can be anticipated from the structural aspects of the conser-

vation equation (3.10) on an arbitrary surface stress tensor, as explained in appendix B.

In appendix C, the remaining constraints are also obtained through an entropy current

argument, particularly adapted to deal with the stationary transport coefficients.

3.4 Description in terms of original fluid variables

In this section we lift the partition function of stationary neutral fluids (3.4) to a four-

dimensional covariant action.33 This action assumes that existence of a spacetime Killing

vector field kµ with modulus k =
√
−Gµνkµkν along which the fluid flows are aligned, i.e.,

uµ = kµ/k as in [13, 20]. We also assume that the surface is characterized by the same

bulk Killing vector field restricted to the surface such that k|f=0 =
√
−Habkakb, where

Hab is the induced metric on the surface. Generically, we may write the effective action as

the sum of a bulk and surface parts,

I =

∫
M

√
−G Iblk (Gµν , ∂Gµν , . . .) +

∫
∂M

√
−H Isurf (Hab, ∂Hab,Kab, . . .) . (3.17)

This effective action, for neutral fluids up to second order, as in the case of the partition

function, is described in terms of six transport coefficients,

I =

∫
M

√
−G

(
P + P̃1R̃+ P̃2ω

2 + P̃3a
2
)

+

∫
∂M

√
−H

(
χ+ B̃1aµnµ + B̃2`µnµ + B̃3K

)
,

(3.18)

where R̃ is the Ricci scalar of the spacetime, ω2 = ωµνω
µν and a2 = aµaµ. Here, the

pressure, the surface tension and all transport coefficients are functions of the local fluid

temperature T which is given in terms of the global temperature T0 and the modulus k

via the relation T0 = kT .

The bulk part of this action has been written down in [20], and the coefficients P̃i
measure the response of the fluid to background curvature, vorticity and acceleration. The

surface part of this action was analyzed in [13] in arbitrary spacetime dimensions. However,

there, as explained in appendix B, since the bulk pressure vanished at the surface, the

scalars aµnµ and K were not independent. Here the response coefficient B̃3 is the surface

modulus of rigidity of the surface fluid [13] while B̃1 encodes the response to centrifugal

acceleration on the surface. Furthermore, dimension-dependent scalars were not analyzed

33Note that we are using the terminology action in a slightly different way than [34]. This is because in

the presence of a surface we can view (3.18) as an action functional for the surface f . Indeed, the surface

part of (3.18), to leading order, is equivalent to the DBI action for co-dimension one branes when χ is

constant and no worldvolume or background fields are present.
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in [13]. In this case, the scalar `µnµ is well known from the study of 2 + 1 parity odd

fluids [20] and encodes the response due to vorticity at the surface. Despite being written

in four spacetime dimensions, the action (3.18) generalises to arbitrary spacetime dimension

with B̃2 = 0.

The equations of motion can be derived from the action (3.18) by performing a general

diffeomorphism of the form δGµν = 2∇(µξν) and decomposing ξµ into tangential and normal

components to the surface such that ξµ = eµ
aξa + nµn

νξν as in [13]. The surface part of

the variation of the action (3.18) yields

δξI =

∫
∂M

√
−H

(
−Tµν(0)nµξν + TabsurδξHab + nρT

abρ
(2) δξKab

)
, (3.19)

where δξ denote variations along the co-vector field ξµ and where we have defined

Tabsur =
2√
−H

δI
δξHab

, nρT
abρ
(2) =

2√
−H

δI
δξKab

. (3.20)

This variation leads to two sets of equations of motion [13], which can equivalently be

obtained from (3.10). One expresses conservation of the surface stress tensor in directions

tangential to the surface,

∇aTabsur = nρT
acρ
(2) ∇

bKac − 2∇a
(
nρT

acρ
(2) Kc

b
)

+ Tµν(0)nµe
b
ν , (3.21)

and is automatically satisfied for the stress tensor obtained for each contribution in (3.18).

Indeed, the stress tensor (3.11) with the coefficients (3.13) satisfies (3.21). The other

equation is the modified Young-Laplace equation, due to the presence of ∂ρδ̃(f) corrections

in the surface stress tensor,

TabsurKab = nρ∇a∇bT acρ(2) + nρT
abρ
(2) nλn

µR̃λaµb + Tµν(0)nµnν , (3.22)

where the stress tensor Tabsur, obtained by directly varying (3.18) with respect to the induced

metric on the surface, is given in terms of the components (1.11) as34

Tabsur = T ab(1) − n
λ∇λ

(
nρT

µνρ
(2)

)
eaµe

a
ν + nρT

abρ
(2) K + T abc(2) vc − 2nρT

(acρ
(2) Kb)

c , (3.23)

where R̃µνλρ is the Riemann tensor of the spacetime and where we have defined vc =

uc
ρnλ∇λnρ. Note that if we do not consider higher order corrections, then Tµνρ(2) vanishes

and T ab(1) takes the perfect fluid form. In this case, equations (3.21) and (3.22) reduce

to (2.15) and (2.17).

In order to understand the relation between these transport coefficients and the ones

appearing in the partition function of section 3.3, we reduce (3.18) over the time circle and

obtain

W=logZ=

∫
Ms

d3x
√
g
eσ

T0

(
P+P̃1R+

e2σ

4

(
P̃1+P̃2

)
fijf

ij+
(
P̃3+2P̃ ′1

)
(∂σ)2

)]
(3.24)

34This expression was derived in [13] but using other conventions for the stress tensor. Here we have

written it using the conventions in (1.11) which required using a result from [35].
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+

∫
∂Ms

d2x
√
γ
eσ

T0

(
χ+
(
B̃1+B̃3−2P̃1

)
ni∂iσ+

eσ

2
B̃2εijknifjk+B̃3K

) ∣∣∣∣
f=0

.

Comparison with (3.4) leads to the identification of the pressure and surface tension as

P = P and C = χ as well as to the relations between higher and lower dimensional

transport coefficients. More precisely, we find

P1T = −2P̃1 , P2T
3 = − P̃1 + P̃2

2
, P3T = −2(P̃3 + 2P̃ ′1) ,

B1 = B̃1 + B̃3 − 2P̃1 , B2 =
eσ

2
B̃2 , B3 = B̃3 ,

(3.25)

and, if written in the form (3.5), then we can readily identify

TP ′4 = −2
(
B̃1 + B̃3 − 2P̃1

)
, TP5 = −eσB̃2 , TP6 = B̃3 . (3.26)

By using the identifications above in (3.16) and computing (3.23), one can explicitly check

that equation (3.21) is automatically satisfied.

4 Fluid configurations in 2+1 dimensions

In this section, we shall construct a few simple stationary fluid configurations to demon-

strate the relevance of a non-zero surface entropy. The modifications of the fluid equations,

in particular the Young-Laplace equation (2.20), when there is a non-zero surface entropy

or equivalently a non-trivial dependence of surface tension on temperature, was discussed

in section 2. Here, we will work out some particular solutions to these equations and ex-

plore the consequences of a non-zero surface entropy on the phase diagram of these fluid

configurations.

We will keep our focus only on perfect fluids in 2+1 dimensions, ignoring possible higher

derivative corrections. For working out explicit configurations we need the knowledge of

the equation of state, for which we have to consider a specific system. For this purpose,

we will consider the system of localized deconfined plasma of N = 4 Yang-Mills theory,

compactified down to 2+1 on a Scherk-Schwarz circle, dual to rotating black holes and black

rings in Scherk-Schwarz compactified AdS5, via the AdS/CFT correspondence [12, 27].

Here, we shall revisit the analysis of [27] in order to find out how the results there

are modified in the presence of non-zero surface entropy. In this section, we would like to

briefly present our main results and therefore refer the reader to [27] and the references

therein (also see [30, 36]), for the background material.

One of the key assumptions in [27] was that the surface tension was constant, which

we would like to relax here. This was assumed mainly because the value of surface tension

for the interface between the confined and deconfined phase of N = 4 Yang-Mills was

only known at the critical temperature [12]. The full dependence of surface tension on

temperature for this interface is still unknown, but we would like to parameterize this

ignorance in a suitable way and study its consequences.
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4.1 Equation of state and thermodynamic quantities

The configurations that we shall deal with here (these are the ones that were already found

in [27] in 2 + 1 dimensions), have the feature that the temperature is constant throughout

the surface of the configuration. Also there is an empirical fact that the surface tension

must decrease with the increase in temperature. This expectation follows from the fact

that otherwise the surface entropy would become negative. Taking these two observations

into consideration, and assuming that the surface temperature is very near to (slightly

above) the phase transition temperature Tc, we can consider the following dependence of

the surface tension on temperature

χ(T ) = χ0

(
1 + κ

(
Tc − T
Tc

)
+O

(
Tc − T
Tc

)2
)
, (4.1)

where χ0 is the value of surface tension at Tc.
35 We would like to emphasize that for the

configurations of interest, the value of temperature at the fluid surface is in general different

from the critical temperature. But, as we shall demonstrate later in this section, for all

the configurations that we consider here, the surface temperature remains very close to Tc,

thus justifying our assumption. Also for the metastable plasma configurations to exist we

must have that Ts ≥ Tc. As it will turn out, this condition will play a very important role

in our analysis.

In (4.1), κ is the parameter that parameterizes our ignorance about the exact temper-

ature dependence of surface tension. Positivity of surface entropy implies that κ must be

positive. The results in [27] were obtained with κ = 0 and the main goal in this section is

to study how those results are modified as we turn on κ.

Using the thermodynamical relations from section 2, we find that the surface energy

density χE and the surface entropy χS are respectively given by

χE
∣∣
Ts

= (1 + κ)χ0 , χS
∣∣
Ts

= − ∂χ
∂T

= κ
χ0

Tc
. (4.2)

In addition, we also need the explicit form of the equation of state of the bulk fluid.

Following [27], we take this to be

P = α T 4 − ρ0 =
ρ

3
− 4ρ0

3
, (4.3)

where ρ is the energy density and ρ0 is the shift in the free energy due to the Scherk-

Schwarz compactification (see [27], for more details). The other thermodynamic quantities

simply follow from (4.3) via the thermodynamic relations. In particular, the bulk entropy

density and temperature can be expressed in terms of the energy density as follows

s = 4
( α

33

) 1
4

(ρ− ρ0)
3
4 , T =

(
ρ− ρ0

3α

) 1
4

. (4.4)

35In [12], it was found that at the critical temperature χ0 = 2.0
(
π2N2

2

)
T 2
c for the plasma-balls in N = 4

SYM.
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4.2 Spinning ball and ring

Before proceeding and state our results, we will briefly mention our conventions, while the

rest of the details can be checked in [27]. The fluid configurations are in 2 + 1 dimensional

flat space with metric

ds2 = −dt2 + dr2 + r2dφ2 . (4.5)

We seek rigidly rotating fluid configurations with the velocity vector uµ = γ{1, 0, ω} and

γ =
(
1− r2ω2

)1/2
. As an ansatz for rigidly rotating stationary configurations, the surfaces

are are taken to be constant r slices in the spacetime (4.5).36

Since the bulk fluid equations are not affected by κ, the solution in the bulk remains

identical to [27]. The energy density in the bulk of the fluid has the form

ρ(r) = ρ0 +
C

(1− r2ω2)2
, (4.6)

C being a constant of integration. At the inner and outer surfaces (denoted by the subscript

− and + respectively), the Young-Laplace equation enforces

P± = ±χ0

(
1

r±
− κ r± ω

2

1− r2± ω2

)
. (4.7)

For the rotating balls, there is no inner surface and therefore no condition associated with

it. The second term in (4.7) is precisely the acceleration term in the modified Young-

Laplace equation (2.20). This additional term, in this boundary condition, is one of the

two new modifications in our analysis compared to that in [27].

Now we proceed and obtain the phase diagram for the rotating balls and rings. We

wish to plot the total entropy versus the total angular momentum at fixed total energy,

for these configurations. The total energy E and the total angular momentum L is simply

obtained by integrating the T tt and r2T tφ components of the stress tensor (2.10).

The total entropy S, is obtained by integrating the time component of the entropy

current Jµs = s uµ. This is equivalent to integrating γs, where s is the total entropy

density, including contributions from the surface

s = sθ(f) +
∑
i

χs δ(fi) , (4.8)

where s is given by (4.4) while χs is given by (4.2). This inclusion of the surface contribution

to (4.8) is the second important modification in our analysis.

Following [27], we introduce dimensionless quantities

Ẽ =

(
ρ0
πχ2

0

)
E , L̃ =

(
ρ20
πχ3

0

)
L , S̃ =

(
ρ
5/4
0

πα1/4χ2
0

)
S , ω̃ =

(
χ0

ρ0

)
ω , r̃ =

(
ρ0
χ0

)
ω ,

(4.9)

36The function f in the previous sections, defining the surface, is taken to be f = r+ − r for the outer

surface and f = r − r− for the inner surface.
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where we have also defined a velocity v = r̃ω̃. For the rotating ball we have

Ẽ =
1

ω̃2

(
4v2+ − v4+ + (5 + 2κ) ω̃v+ − (1 + κ) ω̃v3+

)
,

L̃ =
2

ω̃3

(
v4+ + (1 + κ)ω̃v3+

)
,

S̃ =
4v

5/4
+(

1− v2+
)1/4

ω̃2

(
−v3+ − (1 + κ)v2+ω̃ + v+ + ω̃2

)3/4
+

2κv+

ω̃
(
1− v2+

)1/2 ,
(4.10)

where v+ is the velocity at the surface of the ball. In turn, for the rotating ring we have

Ẽ =
1

ω̃2

(
4(v2+ − v2−)− (v4+ − v4−) + (5 + 2κ) ω̃(v+ + v−)− (1 + κ)ω̃(v3+ + v3−)

)
,

L̃ =
2

ω̃3

(
(v4+ − v4−) + (1 + κ)ω̃(v3+ + v3−)

)
,

S̃ =
4v

5/4
+(

1− v2+
)1/4

ω̃2

(
−v3+ − (1 + κ)v2+ω̃ + v+ + ω̃2

)3/4
+

2κv+

ω̃
(
1− v2+

)1/2 ,
−

4v
5/4
−(

1− v2−
)1/4

ω̃2

(
−v3− − (1 + κ)v2−ω̃ + v− + ω̃2

)3/4
+

2κv−

ω̃
(
1− v2−

)1/2 ,
(4.11)

where v+ and v− are respectively the velocities at the outer and inner surface of the ring.

We must point out that v+, v− and ω̃ are not independent parameters for the rings. In fact,

they must be related by the condition that the following two functions, must be identical

g+ =
(
1− v2+

)((
1− v2+

)
+
(
1− (1 + κ)v2+

) ω̃
v+

)
,

g− =
(
1− v2−

)((
1− v2−

)
−
(
1− (1 + κ)v2−

) ω̃
v−

)
.

(4.12)

As expected, these expressions reduce to their counterparts in [27] when we set κ = 0.

4.3 Phase diagram for spinning balls and rings

The phase diagram that emerges out of (4.10) and (4.11) has been plotted in figure 2. We

have plotted the total entropy S̃ versus total angular momentum L̃ for a fixed total energy

Ẽ. We have used the same fixed value of energy Ẽ = 40, as in [27], so as to facilitate

easy comparison. In fact, in both the plots in figure 2, we have displayed the κ = 0 phase

diagram with light gray lines.

We have displayed the phase diagram for two values of κ = 0.1, 0.5. The dark line

represents the rotating plasma-ball solution while the blue and the green lines represent

the rotating fat and thin plasma-ring respectively.

The main qualitative difference that we find here, as compared to [27], is that neither

the spinning ball nor the rings reach zero entropy. This is because, at a given energy Ẽ,

there is an upper bound for the velocity at the outer surface v+, which lies below 1, for

non-zero κ. This upper bound on velocity is the point, where the curves terminate, while

the curves for κ = 0 continue to zero entropy as v+ approaches 1.
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Figure 2. Phase diagram for the rotating ball and ring configurations for Ẽ = 40. The blue line

refers to the fat ring while the green line refers to the thin ring.

This bound on v+ arises from the fact that the temperature at the outer surface T+,

reaches the phase transition temperature Tc at the upper bound for v+. At higher values

of v+, even if it remains below 1, the temperature at the surface would drop below Tc and

the configuration would cease to exist. We have demonstrated this behaviour of the surface

temperature T+, in figure 3.

In figure 3, the temperature at the outer surface of the rotating ball and the fat ring

have been plotted as a function of the velocity at the outer surface v+ at fixed energy

Ẽ = 40. For the thin ring, the behaviour of temperature is identical to that of the fat

ring. The various lines represent values of κ ranging from 0.1 to 0.9, where the darkest line

corresponds to 0.9. As it is apparent from figure 3, the value of v+ for which the temperature

dips below the dotted blue line, representing the phase transition temperature, decreases

with the increase in κ.

For the rings, there is also a lower bound on v+, below which the solutions ceases to

exist. This was also present for κ = 0. Also, as it is apparent from figure 3, the surface

temperature for all the configurations remains very close to Tc. This justifies our initial

assumption that, in this analysis, we have taken the value of the surface tension and surface

entropy evaluated at Tc in (4.2).

The important consequence of this qualitative difference is that, for sufficiently large

values of κ the phase transition between the ball and the ring configurations may disappear.

As we can see from figure 2, such a phase transition does not exist for κ = 0.5. The critical

value of κ at which this phase transition ceases to exist is approximately 0.33 ≈ 1/3. Thus,

we see that the temperature dependence of the surface tension can crucially affect the

existence of the phase transitions between fluid configurations. In the dual gravity picture,

this would have important consequence for the phase transition between black holes of

different horizon topologies. This calls for a future investigation, along the lines of [12]

from the gravity side to ascertain the value of κ.

Finally, we would like to observe that the parameters determining the validity of our

analysis are the same as in [27]. The first of such parameters is given by the change in the

fluid temperature over the scale of the mean free path ∆u ≡ ω̃v+/(1 − v2+), which must

be small for the fluid approximation to be valid. The other parameter is v+/ω̃ for the ball

and {v−, v+ − v−}/ω̃ for the rings, which must be large for δ(f) to be well approximated
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Figure 3. Temperature at the outer surface of the rotating ball and the fat ring as a function of

the velocity at the outer surface v+, at fixed energy Ẽ = 40. The various lines represent values of

κ, ranging from 0.1 to 0.9, the darkest line corresponding to 0.9.

by the Dirac delta. These parameters have a κ dependence through ω̃ for a fixed value

of energy. Both these parameters are not significantly affected by the value of κ (for the

values of it that we have used), in the range of parameters that we consider. Therefore, we

expect the validity of our result to be as good as that in [27].

5 Discussions

In this paper, after performing a systematic analysis of the nature of surface transport in

relativistic fluids, we were able to significantly constrain the structural form of the fluid

equations at the surface. We have focused on some particular cases during our analysis,

namely perfect fluids in arbitrary dimensions and the next to leading order corrections to

3+1 dimensional relativistic normal fluids.

Although we have a specific set up at the back of our minds, as indicated in section 1,

our construction may be useful in more general settings, like when boundaries between

different fluid phases are present. Since we do not use any particular form for the distri-

butions θ(f) and δ(f), they can be suitably chosen to model a wide variety of situations.

In order to serve a more general purpose, it may be particularly useful to study the non-

relativistic surface effects. This may be achieved by taking a non-relativistic limit of our

set up following [37–39].

There are some immediate extensions of our work that are worth investigating. For

instance, it would be very interesting to work out the next to leading order surface effects

in superfluids. Due to the interplay between the vector which is normal to the surface,

and the superfluid velocity, there may be a very rich, but yet unexplored surface transport

properties in this case. In fact, while analyzing the zeroth order superfluids in section 2.2,

we noticed a new term, in the modified Young-Laplace equation (2.27), which has not been

widely considered in the literature.

It would be very interesting to understand the implication of this term on the ther-

modynamics of finite lumps of superfluids. This may be accomplished by undertaking an

analysis of various possible superfluid configurations along the lines discussed in section 4.

In fact, such an analysis may also provide direct hints towards the existence of hairy
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black-rings or hairy black holes with other exotic horizon topologies in Scherk-Schwarz

compactified AdS spacetimes via the AdS/CFT correspondence.

In section 4, we have analyzed the effects of temperature dependence of surface tension

on phase diagram of some simple fluid configurations. We found that this effect can be very

significant, especially while drawing conclusions about the existence of a phase transition

between the ball and ring type configurations. Since, we have considered our sample sys-

tem to be the same as in [27], our observation may have direct relevance for the existence

of phase transition between spinning black holes and black-rings in Scherk-Schwarz com-

pactified AdS5. In particular, if the surface tension for these configurations scales as the

inverse of temperature, then our analysis suggests that the existence of such a phase tran-

sition cannot be reliably predicted by a fluid dynamical analysis. This observation calls for

generalization of [12], to deduce the exact dependence of surface tension on temperature.

Another interesting extension of our work is the possible generalization to embedded

fluids with surfaces of higher co-dimension and its application to the description of asymp-

totically flat and AdS black holes. As it is well known, both Myers-Perry black holes and

the higher-dimensional Kerr-AdS black holes admit ultraspinning regimes [40, 41]. More-

over, it was shown in [41, 42] that these regimes can be described by a rotating fluid disc

with a boundary, where the fluid is moving at the speed of light. These analytic solutions,

therefore, could allow us to extract some of the new surface transport coefficients that we

have found in this work and hence study the physical and stability properties of these black

holes using the description of fluid dynamics with surfaces.

We would like point out one curious feature related to anomaly induced transport

properties (see [43–45] for the most recent discussions on this). In our constructions here,

we have treated the bulk of the fluid by multiplying the partition function of space filling

fluids with a θ(f) function. This procedure was justified (see section 1) by noting that

θ(f) denoted the change in the bulk transport coefficients at or near the surface. Since

the usual transport coefficients are macroscopic parameters, representing the microscopic

UV theory only in an effective way, this procedure of introducing the θ(f) function is

perfectly well-defined. However, there may exist certain terms in the partition function

whose coefficients must be a constant as a consequence of gauge invariance [19]. The terms

representing transport due to anomalies (for instance the term Wanom in [19]), also falls

within a similar category, since their form is fixed by the criterion that they reproduce

the right anomaly coefficient locally everywhere in spacetime, including at the surface of

the fluid. Such an anomaly coefficient is not an effective macroscopic parameter but a

parameter of the microscopic theory. Therefore, those terms cannot be straightforwardly

handled in an effective way by multiplying the, with θ(f).37 We postpone further analysis

of these terms, in the context of fluid surfaces, to future work.

It would be interesting to see how the transport coefficients discussed in this paper

fit into the classification of [5, 46]. Further, recently there has been significant progress

in formulating dissipative fluid dynamics in terms of an action [47, 48]. It would be very

37This is because it would then imply that the anomaly coefficient is varying in spacetime. Whether

there can be a consistent microscopic theory where the anomaly coefficient can vary over spacetime may

be an interesting question in itself.
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interesting to understand how the presence of surfaces generalizes these constructions. In

fact, it would be particularly interesting to understand the time evolution of fluid surfaces,

involving dissipation. If we are able to incorporate time dependence, in a controlled fashion

within our set up, it may have some relevance to situations concerning dynamical forma-

tion of surfaces, in the interface of two phases, which are described by the Cahn-Hilliard

equations [49].
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A Frame transformation in the bulk

In this appendix, we shall perform a frame transformation from the Landau-frame in the

bulk of the fluid, to the orthogonal-Landau-frame which was defined in section 1.1.2.

In the presence of the surface at f(x) = 0, we can choose our coordinates so that one

of the spatial coordinates vanishes at the surface. Let us refer to such a coordinate by f .

For sufficiently well behaved spacetimes, the constant f surfaces would foliate the entire

spacetime, including the bulk of the fluid. Every point on the constant f surfaces would

admit a well defined, outward pointing normal vector, which we refer to as nµ. This provides

us with an extension of the normal vector on the surface throughout the spacetime.38

As discussed in section 1.1.2, instead of imposing the Landau-frame condition

uµTµν = −Euν (A.1)

in the bulk, we make a slightly different frame choice, which is given by

Hαν ũµTµν = −E ũα, ũ · n = 0 (A.2)

to all orders, everywhere in the bulk of the fluid. Here Hµν = Gµν − nµnν , is the projector

orthogonal nµ, which is defined throughout the bulk of the fluid. It possible to impose this

38This extension of nµ is clearly non-unique. But in our description, this ambiguity is absorbed into the

ambiguity related to choice of frames for the bulk fluid variables.
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condition everywhere in the bulk, since we now have a definition of nµ extended throughout

the bulk of the fluid. This immediately ensures that the fluid velocity is orthogonal to the

normal vector at the surface of the fluid, where nµ is unambiguously defined. This frame

transformation may be achieved by simply redefining

ũµ = uµ − nµ (u · n) (A.3)

Now, at the leading order, for stationary configurations, the fluid velocity can be oriented

along the time-like killing vector, preserving the Landau-frame condition. Since, the surface

has a trivial time evolution for stationarity configurations, this immediately implies n ·u(0)

must be zero. This is no longer true at higher orders and we need to perform a frame

transformation by higher derivative terms in order to achieve (A.2).

In the partition function construction presented in [19], the fluid velocity and tem-

perature in the bulk, are solved in terms of the background fields. The first non-trivial

corrections to the fluid velocity occurs at the second order in derivatives. This implies that

we have to perform a frame transformations with second order terms, and the transforma-

tion should have a form like (A.3). In fact, the exact form of the required transformation

can be read off from the second order corrections to the fluid velocity in [19]39

uµ = ũµ + nµ
((
ṽ1 aαω

αν + ṽ2 P
ν
α∇βωβα

)
nν

)
+ . . . , (A.4)

where Pµν = Gµν + uµuν , is the projector orthogonal to the fluid velocity and the ellipsis

denote the higher order order corrections that may be necessary to keep (A.2) intact. We

should take the coefficients ṽ1 and ṽ2 to be the same as the ones appearing in the second

order velocity corrections, worked out in [19].

This frame transformations directly impacts the form of the second order stress tensor.

In the Landau-frame the second order bulk stress tensor was given by (3.14), and is now

modified to

Tµν = T
(
κ1 R̃〈µν〉 + κ2 K〈µν〉 + λ3ω

α
〈µωαν〉 + λ4 a〈µaν〉 + Pµν(ζ2R̃+ ζ3R̃αβu

αuβ + ξ3ω
2 + ξ4a

2)
)

+
(
ũ(µnν)

(
v1 aαω

αρnρ + v2 P
ρ
α∇βωβαnρ

))
. (A.5)

Here vm = 2(E+P )ṽm. All the second order fluid quantities in (A.5) are to be expressed in

terms of the transformed velocity ũµ, and the vector field nµ is the extension of the normal

vector at the surface throughout the bulk, as explained above.

Now, we know from the partition function analysis that there are only 3 independent

bulk transport coefficients and therefore v1 and v2 must be related to the rest of the

transport coefficients, through two new relations. The necessary frame transformation to

ensure (A.2) fixes them to be

v1 = −T 2∂T (2κ1 + κ2 − λ3) , v2 = T (2κ1 + κ2 − λ3) . (A.6)

39Note that the combination of the second order terms are chosen such that in the stationary situation,

when expressed in terms of the background data, it reduces to the velocity corrections obtained in [19].

This choice may not be unique, specially when applying this trick to arbitrary orders, but as long as we

focus only on stationary configurations, all such frames would be equivalent.
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These relations must hold in addition to the five relation between the rest of the transport

coefficients in (A.5) as explicated in [19]. The fluid velocity ũµ that will now be obtained

in terms of the background data, when we compare (A.5) with the bulk partition function

in (1.18), will be automatically projected orthogonal to nµ, which has been ensured due to

the frame choice (A.2).

B General constraints on the stress tensor

In this appendix we discuss generic constrains and symmetries of the surface stress ten-

sor (3.11). The full spacetime stress tensor, including the bulk contribution, to second

order in derivatives, can be decomposed as in (1.11), where the surface stress tensor (3.11)

is written in the form

Tµνsurf = Tµν(1) δ̃(f) + Tµνρ(2) ∂ρδ̃(f) . (B.1)

Here, the structure Tµν(1) denotes the contribution to the surface stress tensor of a monopole

source of stress while Tµνρ(2) denotes the contribution of a dipole source of stress. When

applying this decomposition to (3.11) we easily read off

Tµνρ(2) =
(
s14Pµν + s24u

µuν + s34n
µnν + s44u

(µnν)
)
nρ + v17u

(µPν)ρ + v27n
(µPν)ρ , (B.2)

while Tµν(1) includes all the other surface stress tensor components.

However, we can impose additional constraints which follows from the fact that the

the stress tensor (B.1) enjoys a symmetry, for which its components transform as (see [35]

for more details)

δTµν(1) = −εµνava , δT µνρ(2) = εµνaeρa , (B.3)

for some coefficients εµνa and where we recall that we have defined va = ea
ρnµ∇µnρ. This

transformation arises due to the freedom of introducing (D− 1) redundant delta functions

in (B.1), so that (B.1) could have been written as

Tµνsurf =

∫
∂M

(
Tµν(1) δ̃

(D)(f) + Tµνρ(2) ∂ρδ̃
(D)(f)

)
, (B.4)

where δ̃(D)(f) =
√
∂f.∂fδ(1)(x1)δ(2)(x2) . . . δ(D−1)(xD−1)δ(f). Therefore, the tangential

derivatives of the distribution δ̃(f) are integrated out and the coefficients Tµνa(2) can be

removed [35]. This implies that the terms involving v17 and v27 in (B.2) can be set to

zero.40 However, the stress tensor that follows from the partition function is obtained in a

fixed gauge, as far as the transformations (B.3) are concerned. In that case, although we

do get v17 = 0, v27 however, is related to other transport coefficients (see (3.16)).

Furthermore, for a stress tensor of the form (1.11), there is a perturbative symmetry

that allows to displace the surface located f = 0 by a small amount ε such that f →
f + ε. This symmetry expresses the freedom of defining the surface theory on a specific

40In this paper we assume that the surface does not have boundaries. However, if there were boundaries

then this symmetry would not present at the surface boundary and there we would need to impose εµνaηa =

0|∂M for a normal covector ηa to the surface boundary.
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infinitely thin slice of a surface with finite thickness. Looking at figure 1, this means slightly

displacing the dashed vertical line into another location within the distribution δ̃(f). Under

this infinitesimal displacement, the form of the stress tensor (1.11) is unchanged but its

components have varied according to

δTµν = ε
(
−Tµν(0) + nρ∂ρT

µν
(1)

)
δ̃(f) + εTµν(1)n

ρ∂ρδ̃(f) . (B.5)

From (B.5) we see that this transformation induces a contribution proportional to nρ∂ρδ̃(f).

If we take Tµν(1) to have the perfect fluid form at leading order, then by appropriately

choosing ε we could work with a surface for which either s14 or s24 vanish. However, since

the transformation (B.5) induces a term proportional to Tµν(0) δ̃(f), such choice of surface

would require to introduce the bulk pressure P |f=0 as an independent scalar in the surface

part of the partition function. For this reason we have decided to work with the scalars K

and aµnµ instead.41

There are structural consistency conditions on the components of the surface stress ten-

sor (B.1), which, therefore, are not all independent and thus cannot be freely chosen. These

consistency conditions arise due to the fact that we are working with the expansion (B.1)

to a particular order and they can be derived by carefully analysing the conservation equa-

tion (3.10) to this particular order. The resulting conditions must hold in any physical

situation, including time-dependent settings. One of these conditions constrains the dipole

source of stress such that [35]

nµnνnρT
µνρ
(2) = 0 , (B.6)

and also, for codimension-1 surfaces, it follows that we must have

eaµnνnρT
µνρ
(2) = 0 , (B.7)

which is a trivial consequence of there being no transverse two-plane on which the surface

can rotate [13]. In turn, both conditions imply the constraints

s34 = 0 , s44 = 0 . (B.8)

The remaining conditions determine the normal components of the monopole source

Tµν(1) in terms of the dipole source of stress Tµνρ(2) . In particular we must have that

nµnνT
µν
(1) =

(
T abρ(2) Kabnρ − nλnρT λρa(2) va

)
= (s14K + (s14 + s24)a

ρnρ) .
(B.9)

If we now evaluate the normal components of Tµν(1) in (3.11) we obtain

nµnνT
µν
(1) = (s31a

ρnρ + s32K + s33`
ρnρ) , (B.10)

which upon comparison with (B.9) leads to the constraints

s31 = −(s14 + s24) , s32 = s14 , s33 = 0 . (B.11)

41When the bulk pressure vanishes at the surface, which is the case studied in [14], then K and aµnµ are

not independent.
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Moreover, the remaining normal components of Tµν(0)surf must respect the following condition

eaµnνT
µν
(1) = −2nρ

(
∇bT abρ(2) +

(
T acρ(2) + T aρc(2)

)
vc

)
= −2Pab

(
(−T∂T s14 + s14 + s24) a

b +

(
s14 +

1

2
v27

)
vb
)
.

(B.12)

Performing the same operation in (3.11) yields

eaµnνT
µν
(1) =

6∑
i=1

v2iVa(i) +
1

2

3∑
i=1

s4iS(i)ua , (B.13)

which, again, upon comparison with (B.12) leads to the constraints

v2i = 0 ∀ i ∈ {2, 4, 5, 6} , v21 = 2 (T∂T s14 − s14 − s24) , v23 = −2

(
s14 +

1

2
v27

)
,

s4i = 0 ∀ i ∈ {1, 2, 3} . (B.14)

As it can be quickly verified, the constraints (B.8), (B.11) and (B.14) are a subset of the

contraints captured by the partition function analysis (3.16). From these considerations, we

see that the only components which are left unconstrained due to stress tensor conservation

are the surface components of the stress tensor T ab(1) and the dipole source components

T abρ(2) , also known as the bending moment. The remaining constraints in (3.16) in the case

of relativistic fluids can be obtained by demanding positivity of the entropy current, an

analysis which is carried in appendix C.

C Entropy current constraints

In this appendix we analyze the constraints on the transport coefficients that arise from

the positivity of the entropy current and show that both the partition function and the

effective action capture these constraints. This can be done by analyzing the divergence of

the entropy current for a membrane subjected to external forces. The equations of motion

were given in (3.21) and (3.22). The fact that the equations of motion only involve Tabsur,
T abρ(2) and Tµν(0) , signifies that only these three structures are required in order specific the

dynamics of the membrane. However, we need to specify what the conservation equation

for the surface entropy current is. The full entropy current can be expanded analogously

to the stress tensor,

Jµs = Jµs(0)θ(f) + Jµs(1)δ̃(f) + Jµρs(2)∂ρδ̃(f) + . . . , (C.1)

where the surface part, up to first order, is given by

Jµs sur = Jµs(1)δ̃(f) + Jµρs(2)∂ρδ̃(f) . (C.2)

For stationary configurations, we require (C.1) to be divergence free. In the bulk, this sim-

ply results in the bulk conservation equation ∇µJµs(0) = 0 while in the surface this results in

∇aJ as = Jµs(0)nµ|f=0 , (C.3)

– 34 –



J
H
E
P
0
6
(
2
0
1
6
)
0
1
5

where [50]

J as = Jas(1) − e
a
µ∇ρJµρs(2) − e

a
µ∇aJµbs(2) + nρJ

bρ
s(2)K

a
b . (C.4)

Here we have assumed that the entropy current can be obtained from the partition

function/action in a similar way as a U(1) charge current, in the spirit of [5]. From the

effective action (3.18), the surface entropy current can be obtained via the variation [14, 15]

J as =
∂Isurf
∂T

ua , (C.5)

though, depending on the type of corrections that the bulk action receives, there may

be contributions to J as due to bulk terms. Note that we have assumed that it is always

possible to write the entropy current that follows from an action in the form (C.5), which

does not include all terms allowed by symmetry. The reason for this is that for stationary

configurations we are always free to add total derivative terms to the entropy current,

which are also divergence free, such that it takes the form (C.5). This is true for uncharged

fluids up to second order in derivatives, both for the bulk entropy current and for the

surface entropy current. Since (C.3) depends only on J as and Jµs(0) it is only necessary to

classify these terms in order to obtain the constraints on the fluid transport.

Before proceeding and classifying possible terms that can appear in the different rel-

evant structures, it is important to properly define fluid frames both in the bulk and in

the boundary. Because, in principle, we can be placing a completely different fluid on the

surface of another bulk fluid, we should consider two fluids, each described by their own

fluid variables. In this appendix, we use tilde quantities to describe the bulk fluid, which is

characterized by the set of bulk variables (T̃ , ũµ), while the surface fluid is characterized by

the set of surface variables (T, uµ). However, in order to fully specify the system, we need

to impose boundary conditions on the bulk fluid variables. These boundary conditions

were described in (1.14) and a natural consequence of them is that

ũµ∇µT̃ |f=0 = ua∇aT . (C.6)

These boundary conditions are dynamical, in the sense that the evolution of (T̃ , ũµ), de-

scribed by the bulk equations to leading order

ũµ∇µT̃ = −s̃∂T̃
∂s̃

Θ̃ , Pµν∇ν T̃ = −T̃ ãµ , (C.7)

where Θ̃ = ∇µũµ, must be subjected to the boundary conditions (1.14), which are dynam-

ically determined by the surface evolution equations to leading order

ua∇aT = −s∂T
∂s

Θ , Pab∇aT = −Tab . (C.8)

Note that (C.6) states that derivatives of the temperature along the fluid flows are equal in

the bulk and in the surface. Derivatives of the temperature tangentially to the surface, but

perpendicular to the fluid flows, are also guaranteed by (1.14) to be the same in both the

bulk and in the surface. This can be seen by tangentially projecting the second equation

in (C.7) and comparing it with the second equation in (C.8). In order to more clearly
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present our results, we will impose (1.14) from the get go while carefully keeping track of

the derivatives of ũµ and T̃ using equations (C.7).

We now make a few comments regarding fluid frame transformations of the bulk and

surface fluids. Frame transformations of the bulk fluid variables (T̃ , ũµ) allows us to set

the bulk stress tensor in the orthogonal-Landau frame (A.2), that is,

T µν(0) ũµH
λ
ν = 0 , (C.9)

where T µν(0) are the higher derivative corrections to Tµν(0) . However, due to the boundary

condition (1.14), the restriction of such frame transformations to the surface at f = 0 will

induce a frame transformation of the surface fluid variables (T, uµ), if they are defined

in the Landau frame. However, since we are working with stationary fluids up to second

order in bulk derivatives, then such bulk frame transformations are second order in deriva-

tives. Since the surface fluid quantities are only expanded to first order, then bulk frame

transformations do not affect the surface stress tensor neither the surface entropy current.

On the other hand, we can perform a first order frame transformation of the surface fluid

variables (T, uµ) and set the surface stress tensor in the Landau frame

T(ג)
ab
sur
ub = 0 , (C.10)

where again, T(ג)
ab
sur

are the higher derivative corrections to Tabsur.
This is not an elegant choice, in the sense that if we impose (C.10) for the surface stress

tensor then we cannot simultaneously impose (C.9) for the bulk stress tensor evaluated at

the surface. However, this is still a convenient choice because, as it will be explained

below, the analysis of the divergence of the entropy current is insensitive to such frame

transformations of the bulk stress tensor at the surface besides the fact that it reduces the

number of structures appearing in the stress tensor to 4. We note, furthermore, that frame

transformations do not modify the components T abρ(2) of the stress tensor [14].

We now proceed and write the relevant terms that enter the several structures involved.

We note that, since we are working in the orthogonal-Landau frame (C.9)–(C.10) and since

the entropy conservation equation (C.3) only involves the projection of eq. (3.21) along uµ,

we find, using (A.5), that

Tµν(0)uνnµ|f=0 = −1

2

(
v1 ãαω̃

ανnν + v2 P
ν
α∇βω̃βαnν

)
. (C.11)

Moreover, the fact that only the contraction matters Tµν(0)uνnµ|f=0 for the divergence of

the entropy current implies that surface fluid frame transformations do not affect it. On

the other hand, the classification of Jµs(0) has already been done in [4]. As we will see

later in this section, when comparing with the partition function and effective action, the

contraction Jµs(0)nµ|f=0 for stationary configurations can be written as

Jµs(0)nµ|f=0 = π1Θaµnµ + π2ω̃
µbnµab + π3u

a∇a (aµnµ)

+ π4u
aabKab + π5∇a (ω̃µanµ) + π6u

a∇aK + π7u
a∇bKb

a

+ s̃
(
v1 ãαω̃

ανnν + v2 P
ν
α∇βω̃βαnν

)
,

(C.12)
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where the last line above is due to the frame change (A.4). Here the transport coefficients

πi are only functions of T since we have restricted it to the surface. As the analysis

of [4] shown, in a generic situation only 5 of the πi coefficients are independent but when

stationarity is imposed, only 3 are independent [19]. Furthermore, the analysis of the

remaining structures has largely been done in [14] but because of the presence of the bulk

fluid and parity odd transport, we have

Tabsur = χHab+(χ+χE)uaub+α1KPab+α2a
µnµPab+α3`

µnµPab+α4PacPbdKcd , (C.13)

T abρ(2) = ϑ1Habnρ + ϑ2u
aubnρ , (C.14)

J as = sua + γ1Ku
a + γ2a

µnµu
a + γ3`

µnµu
a + γ4u

bKb
a + γ5ω̃

µanµ + γ6ε
abcubac . (C.15)

It is worthwhile keeping in mind that all the 12 surface transport coefficients are only

functions of T .42 Comparing with the work in [14] for a free membrane, we note that the

terms α2, α3, ϑ2, γ3, γ5, γ6 were not present. As mentioned in section B, when the bulk

pressure P vanishes at f = 0, then according to (2.20), the scalars K and aµnµ are not

independent and hence we need to include α2 and γ2. Consequently, we must also include

the coefficient ϑ2. Removing it would require, as discussed in section B, considering an

extra term in Tabsur of the form P |f=0Pab. The term γ6ω̃
µanµ is a consequence of the

presence of the bulk degrees of freedom. For stationary configurations, it may be replaced

by a term of the form Pac ubKb
c at the leading order; however, we must include it as a

separate terms since they differ at higher orders.43 Finally, the coefficients α3, γ3, γ6 are

well known in the context of parity odd fluids in 2+1 dimensions [26] and, as noticed in [26],

γ3 and γ6 are not independent. Due to the freedom of adding to (C.15) a total derivative

term of the form ∇b
(
α̃εabcuc

)
for an arbitrary α̃, shifting the coefficients γ3 → γ3 − α̃ and

γ6 → γ6 + T∂T α̃− α̃, then only the linear combination

γ7 = T
∂γ3
∂T

+ γ6 − γ3 , (C.16)

is invariant under this shift. The surprisingly simple form of (C.13) can be obtained

from (3.11) by bringing it to the Landau frame.

Given these structures, we now impose the entropy conservation equation (C.3) and,

using (3.21), obtain an expression of the following form

∇aJ as − J
µ
s(0)nµ|f=0 = β1ΘK + β2Θaµnµ + β3u

b∇aKa
b + β4u

aabKab + β5u
a∇aK

+ β6u
a∇a (aµnµ) + β7σ

abKab + β8ω̃
µbnµab + β9∇b

(
ω̃µbnµ

)
+ β10Θ`

µnµ . (C.17)

We note here that the effect of the last line of (C.12) is cancelled by the force term (C.11).

Close inspection of (C.17) leads us to conclude that all terms involved are linear in fluid

42We could have added other terms to J as such as terms proportional to aa and va, however, these terms

would be required to vanish at the end and hence, for simplicity, we have not considered them.
43We do not consider terms which vanish for stationary configurations, upto the order we are keep tract of.

In principle, such terms should be considered as well but it is possible to show that they do not contribute

to the analysis of the entropy current of stationary configurations.

– 37 –



J
H
E
P
0
6
(
2
0
1
6
)
0
1
5

data. Since we must set the r.h.s. of (C.17) to zero, according to (C.3), then all βi coeffi-

cients must individually vanish, i.e., we must require that βi = 0 , ∀ i = 1, . . . , 10. We can

solve these constraints in terms of ϑi, γi and the external force coefficients πi leading to

α4 = γ4T , γ5 = π5 , γ2T = π3 + ϑ2 , γ1T = π6T − ϑ1 , γ4T = π7T + 2ϑ1 ,

α1T
−1 = γ1 −

∂γ1
∂T

s
∂T

∂s
, 2

∂ϑ1
∂T

= π4 + γ4 +
∂γ4
∂T

T ,

∂γ5
∂T

T = −π2 , α3T
−1 = −γ7T

∂T

∂s
,

α2T
−1 = −π1 −

(
2
∂(ϑ1 − ϑ2)
T∂T

+
∂(γ2 − γ4)

∂T

)
s
∂T

∂s
+ γ2 − 2

ϑ2
T

.

(C.18)

In the case of no external forces πi = 0, no parity odd terms and the bulk pressure at

the surface vanishing P |f=0 = 0, these constraints reduce to those in [14], while, instead,

if we have parity odd terms and require no bending corrections ϑ1 = ϑ2 = 0, hence only

α3, γ3, γ6 remain, then this reduces to the result of [20, 26]. There are a total of 10 relations

in (C.18) relating the 6 surface transport coefficients α1, α2, α3, α4, ϑ1, ϑ2 to the 7 external

coefficients πi and the 6 entropy current coefficients γi. Of these relations, 3 of them

recover relations between bulk transport coefficients which were already known from a

bulk analysis [4]. Specifically, these are the second relation in the first line, the second

relation in the second line and the first relation in the third line of (C.18). From the 7

remaining relations, 6 of them determine the transport coefficients α1, α3, α4 in terms of the

transport coefficients ϑ1, ϑ2 and the external coefficients πi while the remaining relation,

namely the second relation in the third line of (C.18), relates the transport coefficient α3

with the linear combination γ7 defined in (C.16) in terms of the entropy current coefficients

γ3, γ6 as observed in [20, 26]. Therefore, all surface coefficients appearing in (C.13)–(C.15)

are determined in terms of the 3 transport coefficients α3, ϑ1, ϑ2 and 3 independent πi
coefficients, as expected, since it is indeed the number of independent scalars in both the

partition function (3.4) and the action (3.18).

Furthermore, from the partition function analysis, a total of 28 constraints were ob-

tained in (3.16). From the analysis of appendix B, we have obtained a total of 14 constraints

from (B.8), (B.11) and (B.14). However, as explained in appendix B the coefficients v17
and v27 may be removed by the transformation (B.3) and constitutes 2 of the 28 con-

straints in (3.16). The fact that (3.11) is not in the Landau gauge adds 9 extra constraints.

Therefore, we have that 28-14-2-9=3, which is exactly the number of constraints that we

have obtained from an entropy current analysis.

C.1 Comparison with the action and the partition function

We now compare the constraints obtained in (C.18) with the results obtained from the

action (3.18) and the partition function (3.4). We begin by comparing (C.12) with the

general form of the entropy current introduced in [4]. Using the notation of [19], the

entropy current up to second order, and ignoring the first order corrections which vanish

in equilibrium, can be written as

Jµs(0) = s̃ũµ +∇ν
(
A1

(
ũµ∇ν T̃ − ũν∇µT̃

))
+∇ν

(
A2T̃ ω̃

µν
)

+A3

(
R̃µν − 1

2
gµνR̃

)
ũν
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+
(
A4ũ

ν∇νΘ̃ +A5R̃+A6R̃
µν ũµũν +B1ω̃

2 +B2Θ̃
2 +B3σ̃

2 +B4∇ν s̃∇ν s̃
)
ũµ

+ 2B4s̃Θ̃∇µs̃+
(

Θ̃∇µB5 − P λρ∇λũµ∇ρB5

)
+B6Θ̃ãµ +B7ãν σ̃

µν

+ s̃ nµ
(
v1 ãαω̃

ανnν + v2 P
ν
α∇βω̃βαnν

)
, (C.19)

where the last line above is, again, due to the frame change (A.4). Since we are dealing

with stationary configurations for which Θ = σµν = 0 we can ignore the terms involving

A4, B2, B3, B6, B7. We now contract this bulk entropy current with nµ and evaluate it at

the boundary f = 0 imposing the boundary conditions (1.14). We find,

Jµs(0)nµ|f=0 =

(
A1T −

∂B5

∂T
T −

(
A1 +

∂A1

∂T
T + 2TB4

(
∂s̃

∂T̃

)2
)
s
∂T

∂s

)
Θaµnµ

− T
(
A2 +

∂A2

∂T
T

)
ω̃µbnµab +A1Tu

µ∇µ (aµnµ)− ∂B5

∂T
TuaabKab

+A2T∇a (ω̃µanµ)−A3

(
ub∇bK − ub∇aKa

b

)
+ s̃

(
v1 ãαω̃

ανnν + v2 P
ν
α∇βω̃βαnν

)
.

(C.20)

Comparison of this with (C.12) we find read off

π1 = A1T −
∂B5

∂T
T −

(
A1 +

∂A1

∂T
T + 2TB4

(
∂s̃

∂T̃

)2
)
s
∂T

∂s
, π2 = −T

(
A2 +

∂A2

∂T
T

)
,

π3 = A1T , π4 = −∂B5

∂T
T , π5 = A2T , π6 = −A3 , π7 = A3 . (C.21)

By obtaining the bulk stress tensor and entropy current from the action (3.18) and going

to the orthogonal-Landau frame we obtain44

A1T = −2
∂P̃1

∂T
+ 2P̃3 , A2T = −2P̃2

T
, A3T = −2P̃1 ,

B4T = − 2

T

∂P̃1

∂T

(
∂T̃

∂s̃

)2

,
∂B5

∂T
= − 2

T

∂P̃1

∂T
.

(C.22)

Moreover, obtaining the surface stress tensor and surface entropy current from (3.18),

setting it in the Landau frame and comparing it with (C.13) and (C.15) leads to

γ1T = −B̃3 , γ2T =2P̃3−B̃1−2T
∂P̃1

∂T
, γ3T =2B̃2 , γ4T =−2(P̃1−B̃3) , γ5T =−2P̃2 ,

γ7 = 2B̃2 −
∂B̃2
∂T

T , ϑ1 = 2P̃1 − B̃3 , ϑ2 = B̃1 , α1 = −B̃3 +
s

T

∂T

∂s

(
−B̃3 +

∂B̃3
∂T

T

)
,

α2 =

(
B̃1 − 2T

∂P̃1

∂T

)
+
s

T

∂T

∂s

(
2P̃3 − 2

∂P̃1

∂T
T − ∂B̃1

∂T
T − B̃1 + 2(P̃1 − B̃3)

)
,

44Note that this identification is different than the one in [19]. As explained below (C.5), this is because

we have added divergence free terms to the bulk entropy current obtained from the action to set it in the

form Jµs(0) ∝ ũ
µ.
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α3 =
s

T

∂T

∂s

(
2B̃2 −

∂B̃2
∂T

T

)
. (C.23)

One can easily check that (C.21)–(C.23) satisfy the constraints (C.18). We now turn

into the partition function analysis of section 3.3 and recast the relations (C.18) in terms

of the transport coefficients written in (3.11). First, taking the stress tensor (3.11), we

compute (C.13) using (3.23) and then set it in the Landau frame. We find the stress tensor

Tabsur = Pab
((

s̃11 +
t̃

2
− s

T

∂T

∂s
s̃21

)
aµnµ +

(
s12 −

t̃

2
− s

T

∂T

∂s
s̃22

)
K +

(
s13 −

s

T

∂T

∂s
s23

)
`µnµ

)
+ t̃ Pac PbcKcd , (C.24)

where we have defined

s̃11 = s11−
∂s14
∂T

T − s14 , s̃21 = s21 +
∂s24
∂T

T + s14 +2s24 , s̃22 = s22− s24 , t̃ = t+2s14 .

(C.25)

From here, upon comparison with (C.13) we read off

α1 = s̃11+
t̃

2
− s

T

∂T

∂s
s̃21 , α2 = s12−

t̃

2
− s

T

∂T

∂s
s̃22 , α3 = s13−

s

T

∂T

∂s
s23 , α4 = t̃ . (C.26)

Furthermore, from (B.2) we read off the components of T abρ(2) ,

ϑ1 = s14 , ϑ2 = s14 + s24 . (C.27)

Again, we can check that (C.24)–(C.27) satisfy the constraints (C.18).

D Few useful relations

Under a time independent diffeomorphism xµ → xµ + εµ(xi) the background metric Gµν
and the gauge field Aµ transform as

δGµν = −(∇µεν +∇νεµ), δAµ = −(∇µενAν + εν∇νAµ) . (D.1)

As was noted earlier an equivalent description is to consider the background fields as

σ, ai, gij for the metric and A0, Ai for the gauge field. Here we list out how these

background fields transform under the time independent diffeomorphism written above

δσ = −εi∂iσ , δai = −∂iε0 − ak∂iεk − εk∂kai , δgij = ∇iεj +∇jεi ,
δA0 = −εi∂iA0 , δAi = −εk∇kAi −∇iεkAk .

(D.2)

The fluid configurations discussed in section 4 were in 2+1 dimensional flat space

spanned by coordinates (t, r, φ) with a metric

ds2 = −dt2 + dr2 + r2dφ2 . (D.3)

We would like to change coordinates to (t, r, φ̃), such that t, r remains unchanged but

φ̃ = φ− ωt . (D.4)
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In terms of coordinates (t, r, φ̃), the metric in (D.3) becomes

ds2 = − 1

γ2
(dt− r2ωγ2dφ̃)2 + dr2 + r2γ2dφ̃2 . (D.5)

Now comparing with (1.1) we obtain the corresponding background fields as given below

e2σ =
1

γ2
, aφ̃ = −r2ωγ2 , ar = 0 , gφφ = r2γ2 , grr = 1 . (D.6)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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