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1 Introduction

As originally proposed by t’Hooft [1], the large N limit of SU(N) Yang-Mills (YM) theories

at fixed t’Hooft coupling is an approximation to the model of strong interactions. Being

simpler from an analytic point of view, it was hoped that it could lead to an understanding

of the properties of hadrons at low energies. Despite the fact that only a subset of Feynman

diagrams contribute in this limit, these initial hopes turned out to be too optimistic. Large

N YM theories are full of rich phenomena but complicated enough to resist a complete

understanding. In parallel, its interest has grown and extends much beyond its role as an

approximation to strong interactions. The t’Hooft limit appears as an important ingredient

in many recent developments, such as the connections of field theory with string theory

and/or gravitational interactions as in the AdS/CFT construction.

Given its interest, several authors have used lattice gauge theory techniques to study

the non-perturbative behaviour of YM theories in the large N limit (for a recent review

see [2]). This program is challenging, since the number of degrees of freedom that have to

be simulated in a computer increases with the rank of the group, making the simulations

more difficult with growing N . Alternatively, one can exploit the idea of volume reduction.
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The study of the Schwinger-Dyson equations of U(N) YM theories led to the conjecture

that gauge theories become volume independent in the large N limit [3]. Taking the idea

of volume reduction to an extreme, one can simulate a lattice with one single point. This

allows one to reach much larger values of N and can provide a more precise method of

determining the large N observables.

Attempts to produce a successful implementation of the volume independence idea

have lead to several proposals [4–12] after the original one was shown not to work [4] (see

also ref. [2] for a recent account). Our study here will focus on the twisted reduction

idea originally proposed by some of the present authors [5], but its scope applies to other

reduced models as well. In particular, the one-site twisted Eguchi-Kawai model(TEK) [6]

with fluxes chosen in a suitable range [7] has been tested recently in several works. There is

now strong numerical evidence that its results for various lattice observables coincide with

those of SU(N) gauge theories extrapolated to N → ∞ [13]. Furthermore, the tests have

also extended to physical quantities in the continuum limit such as the string tension [14]

or the renormalized running coupling [15].

In all the previous works a connection was established between the finite N corrections

of the twisted model and finite volume effects of the ordinary gauge theory. Typically N2

plays the role of the physical volume. Hence, in order to extract physical quantities with

small systematic errors, one should work at rather large values of N (O(1000)). These

types of simulations present their own challenges, which are sometimes very different to

the ones we are used to face in usual lattice simulations. The literature is somewhat scarce

and old (this will be reviewed in the next section). This serves as a motivation for the

present work, devoted to the analysis of the computational aspects of this one-site model.

We will present the different algorithms that can be used in the simulations, and numerical

tests of the correctness and efficiency of these algorithms.

We must conclude by mentioning that the interest of the reduced matrix models ex-

tends beyond their purely computational one. First of all, the methodology developed

here is useful for extensions of pure Yang-Mills theories such as the model with fermionic

fields in the adjoint representation with various types of boundary conditions [9, 16]. This

allows the study of a possible candidate for walking technicolor and the determination of

its anomalous dimensions [17, 18]. There are also other intriguing phenomena, such as a

stronger form of N -L scaling [19, 20], the emergence of new symmetries [10] or the connec-

tions with non-commutative space-time [21–24]. In summary, we are quite confident that

the methodology studied here will be useful for future researchers in the field.

2 Update algorithms for the one-site model

The action of the TEK model in d space-time dimensions is defined as a function of the

variables Uµ (µ = 0, . . . , d− 1) that are elements of the group SU(N) [6]

STEK[U ] = bN
∑
µ 6=ν

Tr
(

11− zµνUµUνU †µU †ν
)
, (2.1)
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where b can be interpreted as the inverse of the ’t Hooft coupling λ = g2N , and zµν is

given by

zµν = exp

(
2πinµν
N

)
, nνµ = −nµν , (2.2)

where nµν (called the twist tensor) are integers defined modulo N . The action eq. (2.1) is

just the Wilson action of an SU(N) lattice gauge theory defined on a one-site lattice with

twisted boundary conditions.

The partition function of this model is given by

Z =

∫
D[U ] exp {−STEK[U ]} , (2.3)

and in principle can be simulated with the usual Monte Carlo techniques like, for example,

the metropolis algorithm [25]. Nevertheless the most effective algorithms used to simulate

pure gauge theories [26–31], a combination of heatbath (HB) and overrelaxation (OR)

sweeps, cannot be applied directly to this model. The reason is that the action eq. (2.1)

is not a linear function of the links Uµ. The solution to this problem was discovered long

ago by Fabricius and Haan [32] and consists in introducing auxiliary normally distributed

complex N ×N matrices Q̃µν with µ > ν. The original partition function eq. (2.3) can be

written as

Z = N
∫
D[U ]D[Q̃] exp {−STEK[U ]} exp

{
−1

2

∑
µ>ν

Tr
(
Q̃†µνQ̃µν

)}
, (2.4)

where N is a constant. If we perform the change of variables

Q̃µν = Qµν − tµνUµUν − tνµUνUµ , tµν = eπinµν/N
√

2Nb , (2.5)

the partition function eq. (2.3) can be written as

Z = N
∫
D[U ]D[Q] exp

{
−STEKQ[U,Q]− 1

2

∑
µ>ν

Tr
(
Q†µνQµν

)}
, (2.6)

where1 the modified action STEKQ given by

STEKQ[U,Q] = −
∑
µ>ν

ReTr
[
Q†µν (tµνUµUν + tνµUνUµ)

]
(2.7)

is linear in the link variables Uµ.

At this stage standard algorithms like heatbath and overrelaxation can be applied

to update the links. The Fabricius-Haan algorithm thus involves the updating of the

auxiliary variables followed by the link updates. We will describe below several updating

possibilities and show that the optimal algorithm only requires over-relaxation updates of

the links combined with the updating of the auxiliary variables.

1Note that the Jacobian of the change of variables eq. (2.5) is just one.
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2.1 Update of the link variables

The terms of the action that involve some link Uα are

Sα[Uα] = −Re Tr (UαHα) , (2.8)

where Hα is the sum of staples given by

Hα =
∑
ν 6=α

tανUνQ
†
αν + tναQ

†
ανUν , (2.9)

and we have defined Qαν ≡ Qνα for α < ν.

Each link Uα can be updated using a combination of heatbath and overrelaxation

updates. The heatbath updates are performed by projecting into SU(2) subgroups as

described in [26, 27, 32]. The overrelaxion updates can be implemented through sequential

SU(2) updates [28–31] or by performing an overrelaxation update of the whole SU(N)

matrix [8, 33].

2.1.1 SU(2) projections

We introduce SU(2) subgroups H(i,j) ⊂ SU(N) labelled by two integers (i, j) such that

i 6= j. An element A of the subgroup H(i,j) can be written as

A ∈ H(i,j) =⇒ Akl =

{
δkl k, l 6= i, j

akl otherwise
, (2.10)

with the 2× 2 submatrix akl being an SU(2) element.

The update of an SU(N) matrix proceeds by choosing a set S of these SU(2) subgroups

of SU(N) [25, 27]

S = {H1, . . . ,Hk} (2.11)

such that no subset of SU(N) remains invariant under left multiplication by S. This

requirement can be satisfied with k = N − 1 as follows

Sminimal =
{
H(i,i+1)

}
i=1,...,N−1

. (2.12)

However covering the full group requires order N steps of this kind. Hence, as experience

shows, it is more effective to choose S to be composed of all the N(N − 1)/2 subgroups of

this type

S =
{
H(i,j)

}
i<j

. (2.13)

If A ∈ H(i,j) is a matrix of the type eq. (2.10), it is easy to evaluate the one-link action

eq. (2.8)

Sα[AUα] = −Tr (aw) + terms independent of a . (2.14)

Here a and w/|w| are SU(2) matrices with w = Re(w̃0)+ iRe(w̃i)τi obtained from the 2×2

complex matrix given by

w̃ ≡ w̃0 + iw̃iτi =

(
W̃ii W̃ij

W̃ji W̃jj

)
, W̃ = UαHα . (2.15)

– 4 –
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A heatbath update [32] generates the matrix a with probability e−Sα . An overrelax-

ation update generates a by reflecting around the matrix w

a = (w†)2/|w|2 . (2.16)

In both cases the matrix A is then used to update the link Uα

Uα → AUα . (2.17)

We will call a sweep an update for each of the links by all of the SU(2) subgroups in

S (eq. (2.13)). A sweep therefore consists of the left multiplication of the link Uα by

k = N(N − 1)/2 matrices of the form eq. (2.10) for each α = 0, . . . , d− 1.

It is important to note that an overrelaxation update does not change the value of

eq. (2.14), and hence the value of the action STEKQ[U,Q] remains invariant.

2.1.2 U(N) overrelaxation

The authors of [8] proposed to perform an overrelaxation update of the whole SU(N)

matrix at once. The starting point is again the link Uα which we want to update according

to the probability density

P (Uα) ∝ exp (−ReTr [UαHα]) , (2.18)

where Hα is the sum of staples defined in eq. (2.9). The SU(N) overrelaxation step consists

of a proposed update of the form

Unew
α = WαU

†
αWα , (2.19)

where Wα is an SU(N) matrix that does not depend on Uα or Unew
α . The change is

accepted or rejected with probability P (Unew
α )/P (Uα). This is a valid update algorithm,

but its efficiency depends on the acceptance rate. To maximize it one should minimize the

change in the action caused by the proposed update. In fact, as we will see, if the link

variables were elements of the U(N) group, the procedure described in [8, 33] results in

an exact microcanonical update (i.e. the action STEKQ[U,Q] is unchanged by the update).

The construction is as follows. Given the singular value decomposition of the staple

Hα = XασV
†
α , (2.20)

where σ is diagonal and real, and X,V are U(N) matrices, we construct the matrix

Wα = VαX
†
α . (2.21)

This matrix is an element of U(N) by construction, and it is a straightforward exercise to

check that the action STEKQ[U,Q] is left unchanged by the transformation of eq. (2.19).

All updates referred to as ORN in the rest of this paper use this method.

The algorithm is applicable to one-site models directly because for them there is no

difference between the U(N) and SU(N) gauge models. This is obvious since any possible

phase factor eıαµ of the links Uµ cancels in the evaluation of the action eq. (2.1). Moreover

– 5 –
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1: for α = 0, d− 1 do

2: Generate d− 1 auxiliary variables Qαµ according to eq. (2.5);

3: Compute the Staples Hα according to eq. (2.9);

4: Update Uα using HB/OR2/ORN;

Algorithm 1. Update algorithm for one site models.

if the observables of interest are center-invariant (i.e. any Wilson loop-like quantity), the

phases also do not play any role in the evaluation of these observables. This statement can

be made explicit in the partition function by introducing another set of real variables αµ
uniformly distributed in (0, 2π) and writing the probability measure as

1

(2π)d

∏
µ

dαµ . (2.22)

After the change of variables Uµ → eıαµUµ, the action of the SU(N) TEK model transforms

into that of the U(N) TEK model. We stress that this is a particularity of the one-site

model, and in that in general SU(N) and U(N) gauge theories on the lattice differ by a

O(1/N2) contribution.

Given that here we are concentrating on one-site lattice models we will stick to the

previously defined microcanonical U(N) overrelaxation update for the rest of this paper.

However, for models in which not all directions are fully reduced the equivalence of SU(N)

and U(N) models does not apply. For the sake of the readers we will develop upon the

SU(N) case in the appendix A.

2.2 A new update algorithm for the one-site model

Monte Carlo algorithms for these type of models consists of two elements: the update of the

auxiliary Qµν matrices followed by any combination of the possible updating procedures

described in the previous section: heat-bath (HB), SU(2) overrelaxation steps (OR2) and

U(N) overrelaxation steps (ORN).

The new update algorithm that we will propose and analyze numerically in this paper

can be written in a few lines (algorithm 1 with only over-relaxation updates). It requires

generating d(d−1) auxiliary matrices per sweep combined with only overrelaxation updates

for the link update. Despite the absence of any HB update this is a valid algorithm since

it satisfies detailed balance and ergodicity. The latter is proven in the next subsection.

Since in the one-site model the over-relaxation updates are applied to the action

STEKQ[U,Q], it is the value of this action that is unchanged by over-relaxation updates, but

the original action of the TEK model STEK[U ] does change by the combination of intro-

ducing the auxiliary variables and performing an over-relaxation sweep. The situation has

some similarities with the HMC algorithm, where one also introduces auxiliary variables

(the random momenta), and performs an update that leaves the Hamiltonian unchanged.

– 6 –
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2.3 Ergodicity of over-relaxation updates

Here we will prove that the generation of the auxiliary variables followed by an overrelax-

ation update allows to reach the full space of unitary matrices with non-zero probability.

The key ingredient in the proof is that the mapping from the auxiliary matrices to the

staples Hα, eq. (2.9), is a surjective map from the space of complex N ×N matrices onto

itself, except in some exceptional situations. If we consider one particular direction α,

we have

Hα =
∑
ν 6=α

tανUνQ
†
αν + tναQ

†
ανUν , (2.23)

which is a linear map of vector spaces. To show surjectivity it is enough to consider only one

term ν in the previous sum. Dropping indices for that case, the transformation becomes

H = tUQ† + t∗Q†U , (2.24)

where t∗/t = z = exp(2πın/N). Surjectivity amounts to invertibility of this transformation,

which implies that the kernel should vanish. By means of invertible transformations this

problem maps onto the invertibility of the following transformation:

Q′ = P (Q) = Q+ zU †QU . (2.25)

This can be easily shown using the basis in which U is diagonal with eigenvalues eıδa , where

the previous expression reads

Q′ab =
[
1 + ze−ı(δa−δb)

]
Qab . (2.26)

Thus, the map has a well defined inverse whenever the expression in parenthesis does not

vanish for any values of the indices a,b. Vanishing can only occur if z = −1 (since in this

case Q′aa = 0) or in a set of zero measure (i.e. when two different eigenvalues of U obey

some special relation). So that, except for the z = −1 case which will be commented later,

the transformation can reach an arbitrary N ×N complex staple matrix.

Let us summarize. We first introduced the auxiliary variables Q̃µν with Gaussian

probability. Then we performed a shift to obtain the Qµν variables. Thus, all sets of

non-zero measure will have a non vanishing probability. By the previous proof we showed

that, except for the exceptional cases mentioned earlier, this will induce a probability

distribution in staple space given by Borel and strictly positive measure (i.e. every non-

empty open subset on the space of N×N matrices has a positive measure). The next step,

explained below, will be to show that both OR2 and ORN updates can then produce an

arbitrary U(N) matrix with a non-zero probability.

2.3.1 ORN updates

Let us first study the case of an ORN update given by eq. (2.19). In this case we perform

the SVD decomposition of the staple matrix

H = XσV † (2.27)

– 7 –
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and update U according to

U →WU †W (W = V X†) . (2.28)

We only need to show that we can generate any W with non-zero probability. This is easily

seen recalling that we can write

H†H = (V σV †)2 , (2.29)

and except in a set of zero measure the matrix H is invertible. Now the map

GL(N,C)→ U(N)

H →W † = H/
√
H†H , (2.30)

is continuous and therefore the inverse map sends an open neighborhood of W ∈ U(N)

into an open neighborhood of H ∈ GL(N,C). Since the measure on GL(N,C) was strictly

positive (i.e. any non-empty open set has measure bigger than zero) we have a non-zero

probability of generating any U(N) matrix.

2.3.2 OR2 updates

An OR2 update consists in successive left-multiplication of the link matrix U by matrices

A(i,j) ∈ H(i,j). First let us show that the matrix A(i,j) is an arbitrary matrix of H(i,j). If

we call P(i,j) the projectors onto the subspace H(i,j), we have

A(i,j) = P(i,j)UHP(i,j) , (2.31)

and since H is arbitrary, so is UH and therefore A(i,j) is an arbitrary element of H(i,j).

The full update is given by successive multiplications

A =
∏
i<j

A(i,j) . (2.32)

Since both the multiplication and the projection to SU(2) are continuous, the application

H → A , (2.33)

is continuous. Moreover we cover all SU(2) subgroups of SU(N), and the map is surjective.

Therefore the inverse image of an open neighborhood of W ∈ U(N) is an open non-empty

subset on the space on matrices and again we have a non-zero probability of generating

any SU(N) matrix.

2.3.3 The singular case and partially reduced lattices

In a typical simulation of the TEK model, the singular case (z = −1) can only happen in

a very particular situation, since in the TEK simulations the rank of the group matrices

is usually taken a perfect square N = L2 and the twist tensor |nµν | = kL with k and L

co-prime. It is easy to see that these conditions imply that our singular case can only

happen with N = 4, k = 1.

– 8 –
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Nevertheless these are sufficient conditions for the algorithm to be ergodic, but not

necessary. In fact the previous proof shows something much stronger than ergodicity: that

with a single sweep we can go from any configuration to any other with non-zero probability.

We have performed some extensive simulations of the worst case (N = 4, k = 1) with

O(106) measurements, and found that both heatbath and over-relaxation thermalize to

the same values starting both from a cold or hot configuration, and expectation values are

consistent within errors. Moreover, we have not observed any significant dependence of the

autocorrelation time with the value of zµν that could indicate a loss of ergodicity.

In any case, if the reader is interested in simulating one of the exceptional situations

one can simply perform a heatbath sweep from time to time to mathematically guarantee

the correctness of the algorithm even in the singular case.

We also want to point out that the above proof of ergodicity also applies to lattices

in which at least two directions are reduced [34]. In this case the auxiliary variables are

introduced only for the reduced directions. Since at least one term in the computation of

the staples will have a contribution coming from the auxiliary variables, the staples will

also be arbitrary in this case, and our proof applies. The numerical study of this case will

not be covered in this work.

2.4 Frequency of the update for the auxiliary variables

In this subsection we will consider possible alternatives to algorithm 1 based on varying

the relative ratio between the frequency at which the auxiliary variables are generated

relative to the number of link updates per sweep. For the latter one can use either heat-

bath (HB) or over-relaxation (OR2 or ORN) steps. In this alternative approach, we also

alter the order in which generation and updates are performed. Thus, in this version (see

algorithm 2) one generates the full set of (d(d− 1)/2) matrices Qµν , and then performs n

link updates using any of the alternatives. The ratio of Q generations to link updates now

becomes d(d− 1)/2n instead of the d(d− 1) of algorithm 1.

It should be mentioned that our proof of ergodicity for overrelaxation updates does

not directly apply to these new algorithms. Here one cannot separate the problem into

independent directions and has to consider the full linear map from the vector space of

d(d− 1)/2 auxiliary Q matrices to the vector space of d staples. Notice, however, that for

the algorithm not to be ergodic, the map from a configuration to another must be singular

(i.e. with an almost anywhere vanishing Jacobian). Taking into account that these maps

are perfectly regular (i.e. look at eq. (2.30)), and that for d > 2 there are more auxiliary

matrices than links, we think that it is quite plausible that algorithm 2 with only OR

updates is ergodic as well. This is also supported by the numerical evidence that we have.

A formal proof might not be hard to find, but given our preference for algorithm 1, based

on the results given below, we did not make the effort to include it in the paper.

In conclusion, our comparison of the two alternative algorithms will be based on the

performance analysis that will follow.

To make a comparison, the first thing to examine is the time needed to update the

auxiliary variables. Generating each auxiliary variable Qµν requires the generation of the

random matrix Q̃µν and two matrix multiplications (see eq. (2.5)). Since generating the

– 9 –
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1: Generate d(d− 1)/2 auxiliary variables Qµν according to eq. (2.5);

2: for i = 1, n do

3: for α = 0, d− 1 do

4: Compute the Staples Hα according to eq. (2.9);

5: Update Uα using HB/OR2/ORN;

Algorithm 2. Alternative update algorithm for one site models. As is discussed in the

text, keeping the auxiliary variables for many updates results in a worse performance.

random numbers requires O(N2) operations, while matrix multiplication requires O(N3)

operations, we will neglect the time needed to generate the variables Q̃µν .2 On the other

hand the computation of the staples attached to one link requires 2(d − 1) matrix multi-

plications in d dimensions. In particular for d = 4, each update of the auxiliary variables

requires one third of the time required to compute the staples. Moreover all of the previ-

ously described algorithms also require O(N3) operations. In practical situations, we have

measured that computing the staples takes about the same CPU time as an update sweep.

Although, the ratio of generations over link updates per sweep d(d−1)/2n is smaller for

the new algorithms, from the numerical point of view the gain is only marginal, since the

generation of the auxiliary variables takes O(10%) of the computer time of a typical update.

If from a practical point of view this approach results in a better algorithm is a more

complicated question, where autocorrelation times have to be taken into account. Clearly

the update of the auxiliary variables is crucial to achieve ergodicity, and therefore if one does

not update these variables frequently enough one might end up exploring a small region

of the space of configurations. This is nicely illustrated by looking at the thermalization

process (figure 1). As the reader can see, the expectation value seems to “plateau” very

fast in between the updates of the auxiliary variables. Note that if one looks at the

combination of introducing the auxiliary variables and n updates, the algorithm is actually

thermalizing to the correct value, and there is no loss of ergodicity. But the figure indicates

that performing n > 1 updates in between the introduction of the new auxiliary fields is

redundant and does not improve the thermalization at all.

Since the Markov operator is the same during thermalization as during equilibrium

updates, this suggests that autocorrelations might be significantly reduced only by the first

update after introducing the auxiliary fields. This is in fact the case, as the data of table 1

shows. We can see that the most efficient algorithm is our original proposal (algorithm 1),

and that keeping the same set of auxiliary variables does not help in decorrelating the

measurements.

2.5 Simulation algorithms and vectorization

Let us finally comment on a few points of the previously described algorithms. Lattice

simulations usually make use of massive parallel machines, but the simulation of one-site

2This is a good approximation for the values of N we consider. For example, when N > 400 the difference

between using different random number generators (RNG) becomes negligible even when one RNG is 2–5

times faster than the other.
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Figure 1. Comparison of the thermalization of the plaquette for N = 121, b = 0.36, k = 3 for

different frequencies of Q-updates. It is clearly beneficial during thermalization to update the

auxiliary valiables Q as frequently as possible.

Update algorithm 〈W (1, 1)〉 τint

Algorithm (1) 0.558093(26) 6.3(3)

Algorithm (2) with n = 1 ORN updates 0.558079(28) 7.3(4)

Algorithm (2) with n = 2 ORN updates 0.558044(30) 8.5(5)

Algorithm (2) with n = 5 ORN updates 0.558068(36) 12.4(1.4)

Table 1. 1x1 Wilson Loop average values and integrated correlation times for N = 121, b =

0.36, k = 3 with 2.5× 105 sweeps, for different frequencies of Q-updates. It is clear that doing more

ORN updates at fixed Q in fact makes the autocorrelations worse. The integrated autocorrelation

time is defined in eq. (3.2).

models is also challenging in this respect. The link variables Uα are dense matrices, and

a distributed approach seems unfeasible. Nevertheless one can make use of the vector or

multi-core structure of the CPU:

SU(2) projections. This update allows an easy vectorization. Some of the N(N − 1)/2

subgroups of the set S of eq. (2.13) can be updated in parallel. For odd N , there are

l = (N − 1)/2 SU(2) subgroups H(i,j) that can be updated simultaneously. In the

case of even N , there are l = N/2 subgroups that can be manipulated simultaneously.

For example, for N = 5, we have the following 5 sets of two subgroups that can be

updated simultaneously:

{H(1,2),H(3,4)}, {H(1,3),H(2,5)}, {H(1,4),H(3,5)}, {H(1,5),H(2,4)}, {H(2,3),H(4,5)}. (2.34)

Moreover the over-relaxation updates based on SU(2) projections do not need to gen-

erate any random numbers, something that might be convenient for parallelization.
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U(N) over-relaxation. The vectorization of the U(N) over-relaxation updates basically

requires writing an SVD routine that makes use of the vector/multi-core structure

of the CPU. Some LAPACK implementations have support for multi-threading, and

represent an alternative way to profit from the multi-core structure of the CPU.

3 Numerical comparison of algorithms

Since the purpose of any simulation is to compute the expectation values of some observ-

ables with the highest possible accuracy, the merit of an algorithm has to be evaluated by

comparing the uncertainties of some observables per unit of CPU time. There are only

two factors that have to be taken into account in our particular case: the CPU time per

update sweep, and the autocorrelations of the measurements.

After having introduced the auxiliary variables, and transformed the action in a lin-

ear function of the links, one can use different updating methods: heatbath (HB) and

over-relaxation (OR2) based in the projection onto SU(2) subgroups and the U(N) over-

relaxation (see algorithm 1). Since all three sweep methods have to compute the same

staples and generate the same auxiliary variables Amdahl’s law puts a limit on the theo-

retical improvement that one sweep method can have over the others.

In principle OR2 sweeps are very simple and do not require to evaluate any mathe-

matical function like cos, log, . . . , but we have observed that the CPU time for a HB sweep

is essentially the same as the CPU time required for an OR2 sweep.

The case of ORN is more difficult to evaluate, and depends crucially on the implemen-

tation of the SVD decomposition. With the standard BLAS/LAPACK implementation, the

time per sweep is roughly the same as the time required for an HB/OR2 sweep (faster for

N > 300, slightly slower for small values of N). But we have observed that some LAPACK

implementations of the SVD decomposition (like intel MKL) run up ×10 faster for large

N . This is mainly due to the fact that the prefetching of data and block decomposition

used by many BLAS/LAPACK efficient implementations actually sustain the manifest O(N3)

scaling of the algorithm up to very large values of N (when the matrices are actually several

hundreds of MB in size).

In any case all these update methods scale like O(N3), and hereafter we will assume

that the three updating methods (HB/OR2/ORN) have the same cost per sweep. This re-

duces the question of the most efficient algorithm to the one that decorrelates measurements

faster. Nevertheless the reader should keep in mind that if an efficient implementation of

BLAS/LAPACK is available for the architecture they are running, there might be a saving in

CPU time.

To make the comparisons we have chosen different observables. Firstly Wilson loops

of different sizes; W (1, 1), W (3, 3) and W (5, 5). These are the classic observables that have

been used in the past for several studies.

Secondly, smeared quantities that are known to have large autocorrelation times. In

particular quantities derived from the gradient flow have been used to test how the slow

modes of algorithms decorrelate [35]. We will consider the renormalized coupling λTGF [36]

as defined for the TEK model in ref. [15]. We will tune b for various values of N , such

that λTGF ' 23, and hence the physical volume (a
√
N) is kept approximately constant.
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This will allow us to study how the autocorrelation time of a physical quantity scales as

we approach the continuum limit.

Measuring flow quantities is very expensive for the case of the TEK model. Compared

with a typical update, the integration of the flow equations can consume O(105) times more

computer time. This is easy to understand if one takes into account that the measurement

involves the computation of O(104) times the exponential of a matrix. Usually it is not

a huge problem to measure these observables with a high accuracy, since the observables

have a very small variance and one can easily run many parallel replicas. But in order

to measure autocorrelation times we actually need to collect at least O(100τint) measure-

ments on the same Monte Carlo chain. Since τint can easily go up to 200, this task is

actually very difficult. We address this difficulty in two ways. First we measure the flow

quantities frequently enough to actually measure the correlation between the data, but not

too frequently. We aim at measuring integrated autocorrelation times of the order of 10.

The values that we will present for τint are then computed by scaling with the number of

updates in between measurements. Second we use a large step size to integrate the flow

equations. We use the third order Runge-Kuta integrator described in the appendix of [37],

with a step size of ε = 0.05. We explicitly checked the size of the systematic error in the

measured coupling due to the numerical integration on several configurations for each value

of N . In all cases the size of this relative error on the measured coupling was below 0.005%,

moreover this error decreased with increasing N , so the systematic error due to the large

integration step size is negligible compared to our O(0.5%) statistical errors.

3.1 Comparison of link update algorithms and scaling

Our Monte Carlo simulations produce correlated estimates of the observables of interest.

The correlation between measurements can be quantified by τint. We follow the notation

and conventions of [38] and define the autocorrelation function of the observable O as

ΓO(t) = 〈(O(t)−O)(O(0)−O)〉 , (3.1)

were the simulation time t labels the measurements and O is the average value of our

observable of interest, we have

τint =
1

2
+
∞∑
t=1

ΓO(t)

ΓO(0)
. (3.2)

In practical situations the sum eq. (3.2) has to be truncated after a finite number of

terms W that defines our summation window. Since the autocorrelation function ΓO(t)

decays exponentially fast for large t, estimates of τint will be accurate as long as W is

large compared with the slowest mode of the Markov operator. In this work we find it

is sufficient to simply truncate the sum when the estimate of τint shows a plateau in W

(see figures below), but other situations may require more sophisticated techniques (see for

example [39]).

We now move on to comparing the three different update algorithms, HB, OR2 and

ORN. In table 2 we show the results from the three update methods of Wilson loop mea-

surements at N = 49 with 2 × 106 updates for each. Similarly table 3 and figure 2 show
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b = 0.36 〈W (1, 1)〉 τint

HB 0.55690(4) 14.9(3)

OR2 0.55694(3) 8.7(2)

ORN 0.55698(3) 7.2(1)

Table 2. Wilson Loop average values and integrated correlation times at N = 49, k = 1 for the

three different update methods.

b = 0.36 〈W (3, 3)〉 τint

HB 0.032373(15) 30(2)

OR2 0.032401(13) 20(2)

ORN 0.032390(11) 16(1)

b = 0.50 〈W (5, 5)〉 τint

HB 0.0424222(104) 10.4(4)

OR2 0.0424268(78) 6.0(4)

ORN 0.0424213(76) 5.5(2)

Table 3. Wilson Loop average values and integrated correlation times at N = 289, k = 5 for the

three different update methods.
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Figure 2. Integrated autocorrelation time estimates as a function of the window size (see eq. (3.2))

for the 3x3 Wilson Loop at N = 289, b = 0.36 (left), and the 5x5 Wilson Loop at N = 289, b = 0.50

(right). Different symbols correspond to different updates (HB/OR2/ORN). We take τint as the

plateau value.

Wilson loop measurements at N = 289 with 6 × 105 updates for each. All the update

methods give observables which are in agreement within errors, and the OR updates result

in observables with about half the integrated autocorrelation time of the HB update. How-

ever, despite the increased computational complexity of the ORN method compared to the

OR2 method, it does not result in a significantly smaller integrated autocorrelation time.

Figure 3 shows the integrated autocorrelation time of λTGF for N = 121 for the three

update algorithms. We see the same results as for the Wilson loop observables; OR updates

have around half the τint of HB updates, with little difference between OR2 and ORN. Since

we have tuned the physical volume to be constant, we can repeat these measurements at

different values of N to determine how the integrated correlation time scales as a function

of the lattice spacing a, using the relation
√
N = L/a. The results are listed in table 4 for

the three update methods, and τint as a function of a−2 is shown in figure 4.
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HB OR2 ORN

N b k λTGF τint λTGF τint λTGF τint

100 0.358 3 22.3(1) 142(11) 22.3(1) 74(4) 22.0(1) 65(6)

121 0.360 3 22.8(2) 160(16) 22.8(1) 91(8) 22.6(1) 68(6)

169 0.365 4 24.3(2) 224(20) 24.2(2) 139(15) 24.3(2) 104(9)

225 0.372 4 21.8(1) 367(32) 21.9(1) 167(14) 21.8(1) 134(12)

324 0.375 5 24.2(2) 426(53) 24.1(2) 214(23) 24.0(2) 195(20)

Table 4. λTGF ' 23 average values and integrated correlation times at each N for the three

different update methods.
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Figure 3. Integrated autocorrelation time estimates as a function of the window size (see eq. (3.2))

for the Twisted Gradient Flow coupling vs W , for λTGF ' 23 at N = 121, b = 0.36, c = 0.30. OR

updates are significantly better than HB, with no significant difference between OR2 and ORN. We

take τint as the plateau value.

The generic expectation in normal lattice simulations is for a local update to behave

like a random walk, and so for τint to scale like a−2. A priori it is not clear that this

should also apply to the TEK model, since in this case a “local” update of a single gauge

link actually involves all the degrees of freedom in the lattice. It turns out however that

all three update methods exhibit the same critical scaling as one would expect for a local

algorithm, namely τint ∼ a−2, as can be seen in figure 4.

4 Conclusions

We have studied several simulation algorithms for one-site lattice models. In particular we

have focused on the TEK model, which is relevant in the context of the large N expansion

of gauge theories and has recently been used to compute many interesting properties of

SU(∞) gauge theories [14, 15, 17, 18].

Following Fabricius and Haan [32] we introduce auxiliary variables to make the action

a linear function of the links, and study several link-update algorithms. Up to now all
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Figure 4. Integrated autocorrelation time τint vs N = (L/a)2, at fixed physical volume, λTGF ' 23.

All three updates appear to scale with the same critical exponent τint ∼ a−2.

authors included a combination of heat-bath steps and overrelaxation steps in their algo-

rithms. However, we show that this is not necessary, since once the auxiliary variables are

updated, overrelaxation alone suffices to make the algorithm ergodic. This is in contrast

with the usual lattice gauge theory, where over-relaxation sweeps produce microcanonical

movements and are therefore not ergodic.

Regarding the over-relaxation updates, we study two kinds. First the one based in

the projection over SU(2) subgroups (OR2). Second we study the OR method over the

whole group as proposed in [8, 33] (ORN). Indeed, we realize that for one-site models the

algorithm does not change the value of the action, making a Metropolis accept/reject step

unnecessary. This is due to the equivalence of U(N) and SU(N) groups for these models.

Finally, we perform a performance comparison between the different alternatives. We

show that, at different values of N for different observables, overrelaxation sweeps decor-

relate faster than heatbath sweeps (τOR
int /τ

HB
int ' 1/2). We see no big differences in terms of

autocorrelation times between the two possible overrelaxation methods (OR2 and ORN).

Each algorithm has his own benefits. OR2 is simple and easy to vectorize. On the other

hand ORN might profit from a highly optimized routine for matrix operations, in partic-

ular the SVD decomposition. We conclude by studying the performance for computing

a renormalized quantity in the continuum limit, the twisted gradient flow renormalized

coupling. We see that the three tested link-update algorithms scale like a−2. Hence, none

of them has a better critical exponent.
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A SU(N) overrelaxation

Let us recall that the overrelaxation transformation takes the form:

Unew
α = WαU

†
αWα . (A.1)

For the U(N) case one takes Wα = VαX
†
α, where X and V are U(N) matrices obtained

from the SVD decomposition of the staple:

Hα = XασV
†
α . (A.2)

However, this transformation is not valid for SU(N) since

det[VαX
†
α] = e−iΦ 6= 1 . (A.3)

Following ref. [8], we will propose the SU(N) matrix

W ′α = VαDαX
†
α , (A.4)

where D = diag(eiθ1 , . . . , eiθN ), with the condition∑
i

θi = Φ mod 2π . (A.5)

The simplest way to implement the constraint would be to take θi = Φ/N , as done in

ref. [8]. This is then followed by an accept/reject Metropolis step as explained earlier. We

find this works reasonably well in practice, with an acceptance rate of ∼ 85% at b = 0.36

for a range of values of N from 81 to 1369, with no noticeable dependence on N , and with

higher acceptance rates at weaker values of the coupling.

As suggested in ref. [33], the acceptance rates can be improved by tuning the angles

θi to minimize the quantity ReTr [WαHα], i.e. choose θi such that

min
θi

{∑
i

σi cos(θi)

}
,
∑
i

θi = Φ mod 2π . (A.6)

Since the minimization has to be done preserving the constraint eq. (A.5), the best way is

to add a lagrange multiplier λ enforcing the condition in the minimization function:

min
θi

{∑
i

σi cos(θi) + λ

(∑
i

θi − Φ

)}
. (A.7)
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The equations for minimum lead to the solution

θi = arcsin
λ

σi
(A.8)

where the quantity λ satisfies the equation∑
i

arcsin
λ

σi
= Φ . (A.9)

The latter is a single transcendental equation, which can be solved by any standard tech-

nique, like Newton-Raphson. We have observed that this procedure converges very fast,

and in fact increases the acceptance rate to about ∼ 98%.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[7] A. González-Arroyo and M. Okawa, Large-N reduction with the Twisted Eguchi-Kawai

model, JHEP 07 (2010) 043 [arXiv:1005.1981] [INSPIRE].

[8] J. Kiskis, R. Narayanan and H. Neuberger, Does the crossover from perturbative to

nonperturbative physics in QCD become a phase transition at infinite N?, Phys. Lett. B 574

(2003) 65 [hep-lat/0308033] [INSPIRE].
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[16] A. González-Arroyo and M. Okawa, Twisted space-time reduced model of large-N QCD with

two adjoint Wilson fermions, Phys. Rev. D 88 (2013) 014514 [arXiv:1305.6253] [INSPIRE].
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[37] M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071

[arXiv:1006.4518] [INSPIRE].

[38] ALPHA collaboration, U. Wolff, Monte Carlo errors with less errors, Comput. Phys.

Commun. 156 (2004) 143 [hep-lat/0306017] [INSPIRE].

[39] ALPHA collaboration, S. Schaefer, R. Sommer and F. Virotta, Critical slowing down and

error analysis in lattice QCD simulations, Nucl. Phys. B 845 (2011) 93 [arXiv:1009.5228]

[INSPIRE].

– 20 –

http://dx.doi.org/10.1016/0370-2693(92)91972-C
http://dx.doi.org/10.1016/0370-2693(92)91972-C
http://inspirehep.net/search?p=find+J+Phys.Lett.,B288,166
http://dx.doi.org/10.1016/0370-2693(84)91502-8
http://dx.doi.org/10.1016/0370-2693(84)91502-8
http://inspirehep.net/search?p=find+J+Phys.Lett.,B143,459
http://arxiv.org/abs/hep-lat/0503041
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0503041
http://arxiv.org/abs/1010.1253
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1253
http://dx.doi.org/10.1007/JHEP07(2011)036
http://arxiv.org/abs/1105.4749
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.4749
http://dx.doi.org/10.1007/JHEP11(2014)101
http://dx.doi.org/10.1007/JHEP11(2014)101
http://arxiv.org/abs/1409.1445
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1445
http://dx.doi.org/10.1007/JHEP08(2010)071
http://arxiv.org/abs/1006.4518
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4518
http://dx.doi.org/10.1016/S0010-4655(03)00467-3
http://dx.doi.org/10.1016/S0010-4655(03)00467-3
http://arxiv.org/abs/hep-lat/0306017
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0306017
http://dx.doi.org/10.1016/j.nuclphysb.2010.11.020
http://arxiv.org/abs/1009.5228
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.5228

	Introduction
	Update algorithms for the one-site model
	Update of the link variables
	SU(2) projections
	U(N) overrelaxation

	A new update algorithm for the one-site model
	Ergodicity of over-relaxation updates
	ORN updates
	OR2 updates
	The singular case and partially reduced lattices

	Frequency of the update for the auxiliary variables
	Simulation algorithms and vectorization

	Numerical comparison of algorithms
	Comparison of link update algorithms and scaling

	Conclusions
	SU(N) overrelaxation

