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1 Introduction

String theory encompasses at present some of the most promising candidates for a unified

description of the fundamental forces in nature. Four-dimensional remnants resulting from

the compactification of extra dimensions, provide a variety of Standard Model (SM) exten-

sions which very often contain — in addition to the SU(3)×SU(2)×U(1) gauge group — a

hitherto unobserved very weakly interacting sector involving further gauge invariances [1–

4]. The derivation of effective theories with such symmetry properties opens a portal for

the insertion of hidden degrees of freedom whose realization in nature might be linked to

the abundant dark matter and dark energy of our universe [5–8]. Determining the extent

to which these outcomes adjust to a realistic description of the latter subject is a funda-

mental task in particle physics. Mainly, because it could not only reveal why other puzzles

in the SM lack a satisfactory theoretical explanation but could also validate the building

blocks on which it relies. Notably, with respect to the charge quantization, as of today it is

still not clear whether or not it represents a fundamental principle. Indeed, the conclusion

resulting from some effective scenarios is that this might not be the case once the hidden

sector includes an extra U(1) symmetry and the respective paraphoton [9–12] or hidden-

photon field — minimally coupled to very light particles under the same U(1) group — is

kinetimatically mixed with the visible electromagnetic sector. It is precisely the diagonal-

ization of this term what allows us to predict carriers with unquantized electric charges.

In this context, a presumably feeble interaction leads to introduce Mini-Charged Particles

(MCPs) [13–16], a concept which often arises in many branches beyond the SM [17–19].

Quantum Electrodynamics (QED) ammended with the incorporation of the hidden-

photon field and very light MCPs, acquires a source of quantum fluctuations which could
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induce nonlinear interactions in the electromagnetic field as those mediated by virtual

electron-positron pairs [20, 21]. Because of this fact, its phenomenology can be modified

and experiments in strong-external fields — searching for elusive phenomena such as bire-

fringence and dichroism of the vacuum [22–24], discrepancies in the Coulomb law [25, 26]

or the generation of visible photons from these hypothetical degrees of freedom [27, 28] —

can become illuminating tools for testing their occurence in nature. Inspired by this fact,

several laboratory-based experiments searching for signatures of MCPs, paraphotons and

axionlike particles have been carried out. Indeed, on the basis of the mentioned optical

properties of the polarized vacuum, collaborations such as BFRT [29], PVLAS [30, 31],

BMV [32], and Q & A [33] have performed high-precision polarimetric measurements on

a low-energy photon beam which traverses a magnetic field region. Likewise, based on

the idea of photon regeneration, many “Light Shining Through a Wall” experiments have

been put forward [34–42], but in none of these setups a weakly interacting sub-eV particle

has been detected so far. Instead, the range of the unknown particle masses and coupling

constants has been constricted.

Currently, the record for the most stringent bounds on MCPs parameters [e. g., relative

charge parameter ǫ . 10−14 for masses below a few keV] result from arguments related to

stellar cooling [43] which are not observed in Horizontal Branch stars. This exclusion limit

is, nonetheless, somewhat arguable since the inclusion of macroscopic parameters such as

the density and the temperature of the star might attenuate it significantly [44, 45]. Such

observations motivate the interest in laboratory searches, ideally, with enough sensitivity

as to compete with the astrophysical bounds. However, due to technical limitations, the

laboratory tests via polarimetry and “Light Shining Through a Wall” do not yet reach this

goal. The main difficulty stems from a presumably feeble coupling between these particles

and the magnetic field |BBB| . 105 G, which can be effectively extended up to distances

on the order of L ∼ 1 km by using high-finesse interferometry. So, to make manifest the

existence of such degrees of freedom, a significant improvement in the field strength as well

as in the mentioned techniques are required. Meanwhile, the upper limits derived from the

outcomes of the cited experimental collaborations remain many orders of magnitude bigger

than the astrophysical one. While a new generation of “Light Shining Through a Wall”

experiments might overcome this obstacle [46–48], there is a real demand for new theoretical

efforts toward the search of complementary scenarios where potential improvements in the

bounds of parameters of these dark matter candidates can be achieved [49–51].

Despite the disadvantage introduced by their limited temporal and spatial extensions,

the prospect of finding stringent limits on the weakly interacting sub-eV particles’ attributes

by using high-intensity laser fields is becoming a subject of interest [52–58]. Firstly, because

the field strengths attained from these powerful sources are much higher than the static ones

frequently used in experiments driven by dipole magnets |BBB| ∼ o[104−105] G; and secondly,

because the oscillating nature of laser fields introduces — apart from the profile of the wave

amplitude and its polarization — the field frequency as an additional characteristic. As

a consequence, the processes occuring inside these kind of backgrounds are typified by

thresholds and resonances related to the exchange of energy between the quantum fields
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and the classical laser wave. In connection, a diversity of processes involving a frequency

shift of probe beams are predicted to occur leading to introduce novel detection techniques

such as the Raman spectroscopy [53, 57]. Indeed, some phenomenological studies in this

direction are pointing out that the nonobservation of these inelastic scattering waves could

allow us to limit the parameter space of axionlike particles and MCPs in regions for which

the current laboratory-based experiments establish less stringent sensitivities.

Clearly, investigations of this nature are also stimulated by ongoing projects such as

the Extreme Light Infrastructure (ELI) [59] and the Exawatt Center for Extreme Light

Studies (XCELS) [60]. The — so far inaccessible — field strengths to be attained in these

high-intensity laser facilities |BBB| ∼ o[1011−1012] G offer a genuine opportunity for studying

the low energy sector of particle physics as well as for observing — among other hitherto

undetected nonlinear QED phenomena [61–66] — the spontaneous production of electron-

positron pairs [67–69]. While this constitutes a very strong motivation, the first estimates of

the upper bounds resulting from operating facilities such as the Petawatt High-Energy Laser

for heavy Ion eXperiments (PHELIX) [70] and the Laboratoire pour l’Utilisation des Lasers

Intenses (LULI) [71] might turn out to be competitive in the search for MCPs and even more

promising than those derived from ELI and XCELS parameters. This has already been

predicted theoretically for axionlike particles [58]. The main reason behind this finding lies

in the fact that these contemporary systems — although operating at moderate intensity

I ∼ o[1014−1016] W/cm2 — deliver relatively long pulses τ ∼ o[ns]. For axionlike particles

the relevant combination Iτ2 ∼ o[1014 − 1016] W ns2/cm2 increases the sensitivity in

polarimetric experiments when compared with the outcomes resulting from the ELI and

XCELS parameters at which the temporal lengths τ ∼ o[fs] significantly compensate the

beneficial aspects introduced by the expected high intensities I ∼ o[1025 − 1026] W/cm2

[Iτ2 ∼ o[1013 − 1014] W ns2/cm2].

Against this background, the present work aims to provide a first estimate on the

exclusion limits for MCPs and massless paraphotons, resulting from plausible polarimetric

setups utilizing the field of a circularly polarized laser wave of long temporal length. To

this end, we first determine how the vacuum refraction indices and the photon absorption

coefficients that follow from the vacuum polarization tensor mediated by fermionic MCP

pairs are modified by a hidden-photon field. We find that the birefringence and dichroism

of the vacuum are quite pronounced in a vicinity of the first photo-production threshold.

Our analysis reveals that — at moderate laser intensities — high-precision polarimetric

experiments might be sensitive probes of these hidden degrees of freedom. Parameters of

the aforementioned laser facilities are used for establishing upper bounds on the respective

parameter spaces. The role played by a paraphoton field is analyzed via a comparison

with a model in which the existence of MCPs only is assumed. For both scenarios is

found that the most stringent exclusion limit occurs at the lowest threshold mass; this one

being determined by a certain combination of the laser frequencies and dictated by energy

momentum balance of the photo-production of a pair of minicharged particles. An analysis

of the signal’s dependence on the laser attributes as well as the on the unknown parameters

is also included.
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2 Loop-induced photon-paraphoton oscillations

2.1 Kinetic mixing and effective action

So far there are no experimental evidences which indicate a violation of any fundamen-

tal principle of QED. Hence, we will consider the most simple renormalizable Lagrangian

density that includes both an electromagnetic field aµ(x) and a hidden vector field wµ(x)

but preserves the Lorentz invariance, the spatial parity, the temporal reversibility and the

charge conjugation symmetry. Furthermore, we wish to guarantee the gauge invariance

of the involved fields and avoid the proliferation of an additional charge labeling the ele-

mentary standard-model particles. In order to satisfy these two conditions, we deal with a

theory invariant under a U(1) × U(1)−gauge symmetry group and assume that the inter-

action between both Abelian sectors occurs through a kinetic-mixing term characterized

by a completely arbitrary dimensionless parameter χ0. With these details in mind, the

Lagrangian density turns out to be [5–8]1

L = − 1

16π
fµνf

µν − 1

16π
hµνh

µν − 1

8π
χ0fµνh

µν + ehj
µ
hwµ, (2.1)

where fµν = ∂µaν−∂νaµ and hµν = ∂µwν−∂νwµ refer to the corresponding field tensors; jµh
and eh is the hidden current and gauge coupling respectively associated with hypothetical

particles charged under the extra U(1) symmetry. The explicitly expression of jµh depends

on the nature of the hidden matter sector. Hereafter we suppose that it is determined

by Dirac fermions. The kinetic mixing in eq. (2.1) can be diagonalized by changing the

hidden gauge field to another basis wµ → wµ − χ0aµ. After having used the sequence of

redefinitions aµ → (1− χ2
0)

−1/2aµ and χ0 → χ(1− χ2
0)

1/2 we end up with

L = − 1

16π
fµνf

µν − 1

16π
hµνh

µν + ehj
µ
hwµ − χehj

µ
haµ. (2.2)

Manifestly, the last term defines an interacting vertex which links the hidden matter sector

and the electromagnetic field. As a consequence, the hypothetical particles acquire an

electric charge under the visible U(1)-gauge field given by

qǫ ≡ ǫe = −χeh. (2.3)

Since χ is an arbitrary number, the parameter ǫ — which acccounts for the potentially

small coupling strengh in units of the electron charge e — is not necessarily an integer

number. For small values of χ ≪ 1, one finds that |ǫ| ≪ 1 due to which the weakly

interacting charge carriers are called MCPs.

It is opportune to emphasize that the hidden-photons can, in general, acquire a mass

term ∼ m2
γ′wµw

µ through the Higgs mechanism leading to a break down of the initial hid-

den U(1)−symmetry [5–8]. With the change of basis that brings the kinetic-mixing term to

a diagonal form, the visible photons become massive particles ∼ χ2m2
γ′aµa

µ and the result-

ing Lagrangian density L is no longer gauge invariant. The aforementioned transformation

1From now on “natural” and Gaussian units with c = ~ = 4πǫ0 = 1 are used.
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creates, in addition, a massive-mixing term ∼ −χm2
γ′aµw

µ which can drive the photon-

paraphoton oscillations. However, we are motivated to investigate such a phenomenon

mediated by a loop diagram of MCPs rather than the previous tree level case. To this end

we will suppose that the loop-contributions are dominant in the conversion process as well

as in the dispersion relations. In such a situation, the hidden mass term can be ignored,

the original U(1) × U(1)-symmetry is preserved and the Lagrangian density in eq. (2.2)

becomes the starting point of further considerations.

We shall assume throughout that the charged particles involved in eq. (2.2) are coupled

to a circularly polarized monochromatic plane-wave

A
µ(x) = aµ

1 cos(κx) + aµ
2 sin(κx) (2.4)

by the standard minimal-coupling scheme so that the following Lagrangian density

Lext = −χehj
µ
hAµ (2.5)

must be added to L [eq. (2.2)]. The external field in eq. (2.4) is chosen in the Lorenz gauge

∂A = 0. Therefore, the wave four-vector κ
µ = (κ0,κκκ) and the constant vectors along

the polarization directions aµ
i (with i = 1, 2) satisfy the relations κai = 0, κ2 = 0, and

a2
1 = a2

2 ≡ a2.

The equations of motion that follow from the combination of eqs. (2.2) and (2.5) can

be used to determine the effective action as it follows from a Legendre transform of the

generating functional of the connected Green’s functions. The integro-differential ansatz

which allows us to reach this aim is known in the literature [72–75]. Its application to the

problem under consideration leads to express the gauge sector of the generating functional

of one-particle irreducible Feynman graphs in the following form

Γ[ΦΦΦ] =
1

2

∫

d4x d4x′ ΦΦΦT(x)DDD−1
(

x, x′
)

ΦΦΦ
(

x′
)

+ . . . , (2.6)

where the abbreviation + . . . stands for higher order terms in the small-amplitude gauge

fields. The inverse Green’s function DDD−1(x, x′) and the flavor field ΦΦΦ(x) involved in eq. (2.6)

are given by

DDD−1
(

x, x′
)

≡







D−1
µν;a (x, x

′) 1
4πΠµν;o (x, x

′)

1
4πΠµν;o (x, x

′) D−1
µν;w (x, x′)






and ΦΦΦ(x) =







aµ(x)

wµ(x)






, (2.7)

respectively. The diagonal components in DDD−1(x, x′) are the respective two-point proper

correlation functions associated with the fields aµ(x) and wµ(x). Explicitly,

D
−1
µν;i

(

x, x′
)

=
1

4π

(

�gµν − ∂µ∂ν
)

δ4
(

x− x′
)

+
1

4π
Πµν;i

(

x, x′
)

, i = a, w (2.8)

where � ≡ ∂µ∂
µ = ∂2/∂t2 − ∇2 and the metric tensor reads gµν = diag(+1,−1,−1,−1).

The off-diagonal terms in eq. (2.7) 1
4πΠµν;o(x, x

′) and the last contribution embedded in the

expression above, i. e., 1
4πΠµν;i(x, x

′) with i = a, w enconde the analytic structures of the
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Figure 1. Pictorial representation of the inverse Green’s function DDD−1(x, x′) in the one-loop ap-

proximation. The double lines represent the propagator of MCPs including the full interaction with

the external field. A single wavy line denotes the amputated leg corresponding to a small-amplitude

electromagnetic wave. Conversely, a double wavy line refers to the amputated leg associated with

a hidden-photon field. The unperturbated propagators — inverses of the leading order operators

in the right-hand-side of eq. (2.8) — are indicated by open blobs.

two-point irreducible Feynman diagrams. While the latter terms are responsible for pure

scattering processes,2 the former drives the photon-paraphoton oscillations. In such a case,

the physical propagating modes are certain mixtures of photon and hidden-photon states

resulting from the diagonalization of DDD−1(x, x′). The described forms of interactions are

determined by the causal Feynman propagator of the minicharged carriers in the external

field [Furry picture]. Because of this fact, a dependence on the strong electromagnetic

background is introduced.

Obviously, in the one-loop approximation, the dressed vertices are reduced to those

involved in the initial Lagrangian density [eq. (2.2)]. As a consequence, the inverse Green’s

function DDD−1(x, x′) acquires a simple diagramatic representation [see figure 1] and the ten-

sors driving the photon-paraphoton oscillations and the respective paraphoton scattering

process become proportional to Πµν;a(x, x
′) ≡ Πµν(x, x

′). Explicitly,

Πµν;o

(

x, x′
)

= − 1

χ
Πµν

(

x, x′
)

and Πµν;w

(

x, x′
)

=
1

χ2
Πµν

(

x, x′
)

, (2.9)

where eq. (2.3) has been used. The analytical properties of Πµν(x, x
′) do not differ from

the vacuum polarization tensor that arises in a pure QED context. Hence, an appropriate

replacement of the electron parameters (e, m) by the respective quantities associated with

an MCP (qǫ, mǫ) is enough for acquiring the necessary insights on the structural nature

of Πµν(x, x
′), and in the related forms of interactions [eq. (2.9)].

We conclude this subsection by obtaining the Dyson-Schwinger equations [72, 74, 75]

from the quadratic part of our effective action [eq. (2.6)]. In momentum space they read

k2aµ(k)−
∫

d4k′

(2π)4
Πµν

(

k, k′
)

aν
(

k′
)

+
1

χ

∫

d4k′

(2π)4
Πµν

(

k, k′
)

wν
(

k′
)

= 0, (2.10)

k2wµ(k)−
1

χ2

∫

d4k′

(2π)4
Πµν

(

k, k′
)

wν
(

k′
)

+
1

χ

∫

d4k′

(2π)4
Πµν

(

k, k′
)

aν
(

k′
)

= 0, (2.11)

provided that both Abelian fields are chosen in the Lorenz gauge kµaµ = 0, kµwµ = 0.

Note that so far, we have not made use of the precise form of the external wave [eq. (2.4)]

2For instance, Πµν;a contributes to photon-photon scattering.
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and therefore, the formulae above apply whatever be the nature of the background electro-

magnetic field. Furthermore, by ignoring the terms proportional to ∼ 1/χ, one can analyze

a model in which MCPs exist without the occurence of both: the kinetic-mixing term and

the hidden-photon field. Our study intends to establish comparisons between this pure

MCPs scenario and the full model described by eq. (2.10) and (2.11).

2.2 Absorption and dispersion of small-amplitude waves

In the field of a circularly polarized wave [eq. (2.4)], the polarization tensor in momentum

space splits into two relevant terms:

Πµν
(

k, k′
)

= (2π)4δ4
(

k − k′
)

Πµν
0

(

k′
)

+
∑

j=+,−
(2π)4δ4

(

k − k′ + 2jκ
)

Πµν
j

(

k′
)

(2.12)

out of which the inelastic contribution — second term in eq. (2.12) — describes scattering

processes characterized by the simultaneous emission or absorption of photons of the high-

intensity laser wave upon the scattering event. The precise structure of Πµν
± (k′) is not

relevant for what follows. However, the part responsible for the elastic process — first term

in eq. (2.12) — deserves to be explained in some detail. This contribution is diagonalizable

by using a vector basis that manifests the underlying invariance properties of the vacuum

Πµν
0 (k) = −

∑

i=+,−
πiΛ

µ
i Λ

ν∗
i (2.13)

because the two relevant contributions are determined by transverse eigenstates of opposite

helicities kµΛ
µ
± = 0, subject to the normalization conditions Λ+Λ− = −1 with Λ±Λ± = 0

and Λ∗
± = Λ∓. Formally, there should occur two additional terms in the diagonal ex-

pansion in eq. (2.13). One of these ommited contributions turns out to be longitudinal

by construction ∼ kµkν , but owing to the gauge invariance property of the polarization

tensor Πµν
0 kν = 0, its corresponding eigenvalue vanishes identically. It is worth mentioning

that the previous statement is independent of any approximation used in the calculation of

Πµν . The remaining disregarded term is originally proportional to a transverse four-vector

Λµ
3 ∼ κ

µk2−kµ(kκ), its eigenvalue being proportional to k2 in the one-loop approximation.

The latter leads to a trivial dispersion equation k2 = 0 in which case Λµ
3 ∼ kµ becomes a

longitudinal vector that cannot be associated with a physical propagating mode [57, 76, 79].

The relevant eigenvalues π± = −(α3 ± iα1) [Πµ
0 νΛ

ν
± = π±Λ

µ
±] are unwieldy com-

plex functions determined by the form factors α1,3 introduced by Băıer, Mil’shtĕın and

Strakhovenko in ref. [76]. Accordingly, they are represented as twofold parametric inte-

grals which, in general, cannot be evaluated analytically. In fact, when the polarization

effects are tiny corrections to the free photon dispersion equation [k2 = w2 − kkk2 ≃ 0], the

inelastic contributions are strongly suppressed by energy-momentum conservation3 and one

3The partial production rates associated with the generation of an inelastic scattered wave accompanied

by a flip of polarization can be read off from the modulus square of the amplitudes that follow from the last

term in eq. (2.12) after integration over the final momentum space. Because of the associated Dirac deltas

δ4(k − k′ ± 2κ), the last operation leads to partial rates proportional to ∝ δ(|kkk| − |kkk ± 2κκκ| ± 2κ0). The

appearance of these final Dirac deltas is intrinsically connected with the monochromaticity of the strong

wave. The energetic balances imposed by them cannot be fulfilled in general, leading to vanishing rates.

For finite pulses the situation is somewhat different (details can be found in refs. [57, 77, 78]).

– 7 –
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finds that

π±(n∗, ξǫ) =
αǫ

2π
m2

ǫ

∫ 1

−1
dv

∫ ∞

0

dρ

ρ
Ω± exp

{

− 2iρn∗
(1 + ξ2ǫ )(1− v2)

[

1 + 2Aξ2ǫ
]

}

. (2.14)

While αǫ ≡ ǫ2e2 = ǫ2/137 denotes the fine structure constant relative to the MCPs,

n∗ = 2
m2

ǫ

(

1 + ξ2ǫ
)

kκ
with ξ2ǫ = −ǫ2e2a2

m2
ǫ

(2.15)

refers to the threshold parameter for the photo-production of a q+
ǫ q−

ǫ −pair.

The difference between each eigenvalue [eq. (2.14)] is originally introduced by the

functions Ω±:

Ω± = 2ξ2ǫ
1 + v2

1− v2
[

sin2(ρ)± 2iρA0

]

− 1 + exp(iy). (2.16)

Other functions and parameters contained in the above expressions, are given by

A =
1

2

[

1− sin2(ρ)

ρ2

]

, A0 =
1

2

[

sin2(ρ)

ρ2
− sin(2ρ)

2ρ

]

, y =
4n∗ξ

2
ǫ ρA

(1 + ξ2ǫ )(1− v2)
. (2.17)

With the change of variable (1− v2)−1 → 1
2 [cosh(t)+ 1] and the succeding identification of

the Hankel functions of second kind H
(2)
ν (z) = 2i

π exp[ i2πν]
∫∞
0 dt exp[−iz cosh(t)] cosh(νt),

the variable v is integrated out and the Πµν
0 −eigenvalues acquire the compact structures

π±(n∗, ξǫ) =
1

2
αǫm

2
ǫ

∫ ∞

0

dρ

ρ
Υ± exp (−iη) , (2.18)

where η ≡ ρn∗
(

1 + 2ξ2ǫA
)

/(1 + ξ2ǫ ) and the functions Υ± read

Υ± =
{

η
[

H
(2)
0 (η) + iH

(2)
1 (η)

]

− iH
(2)
0 (η)

}

[

2ξ2ǫ sin
2(ρ)± 4iξ2ǫ ρA0

]

+ η
[

H
(2)
0 (η) + iH

(2)
1 (η)

]

−ρn∗
[

H
(2)
0 (ρn∗) + iH

(2)
1 (ρn∗)

]

exp

[

2iξ2ǫ ρn∗A

1 + ξ2ǫ

]

. (2.19)

In order to pursue our analysis we seek the flavor-like solutions of the problem as

superpositions of tranverse eigenwaves with opposite helicities

aµ(k) = f+(k)Λ
µ
+ + f−(k)Λ

µ
− and wµ(k) = g+(k)Λ

µ
+ + g−(k)Λ

µ
−. (2.20)

Eqs. (2.12)–(2.20) are then inserted into eq. (2.10) and (2.11). As a consequence, the

problem defined by the latter formulae splits into two eigenproblems; each one associated

with a unique value of helicity as one can expect from the angular-momentum conservation

[

k2 − π±
1
χπ±

1
χπ± k2 − 1

χ2π±

][

f±(k)

g±(k)

]

= 0. (2.21)

Next, the leading terms in the diagonal elements are linearized according to the rule k2 ≃
2ωkkk(w − ωkkk) with ωkkk ≡ |kkk|, which is equivalent to reducing the order in the differential

versions of the equations of motion [eq. (2.10) and (2.11)] (see section 2.4). The dispersion
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relations are then established by setting the determinants of the resulting matrices to zero.

Explicitly, we obtain

w
(γ)
± = ωkkk +

π±
2ωkkk

and w
(γ′)
± = ωkkk +

π±
2χ2ωkkk

. (2.22)

Hereafter the symbols γ and γ′ label the dispersion laws associated with the physical modes

of visible and hidden-photon fields, respectively. Note that the contributions resulting from

the off-diagonal terms have been ignored because they provide corrections smaller by a

factor ∼ (ǫe)2e2h.

Owing to the non-hermiticity of the vacuum polarization tensor, its eigenvalues can

be decomposed in terms of their real and imaginary parts π± = Re π± + i Im π±. This

fact renders the dispersion relations [eq. (2.22)] complex functions too with w± = Re w±+

i Im w±. As a consequece, we can define the vacuum refractive indices n± = |kkk|/Re w± and

the corresponding absorption coefficients κ± ≡ −Im w± associated with each propagating

mode of the respective Abelian fields:

n± − 1 = − Re π±
2ω2

kkk

∣

∣

∣

∣

k2=0

=
Re α3 ∓ Im α1

2ω2
kkk

∣

∣

∣

∣

k2=0

, n
(γ′)
± − 1 =

1

χ2
(n± − 1) ,

κ± = − Im π±
2ωkkk

∣

∣

∣

∣

k2=0

=
Im α3 ± Re α1

2ωkkk

∣

∣

∣

∣

k2=0

, κ
(γ′)
± =

1

χ2
κ±,

(2.23)

where the decomposition π± = −(α3 ± iα1) has been used. Observe that the terms pro-

portional to the real and imaginary parts of α1 determine the degree of dichroism and

birefringence of the vacuum polarized by the external laser wave [eq. (2.4)], respectively.

The former phenomenon is closely associated with the different amount of pairs of MCPs

produced by each propagating mode. In the field of the wave, the production thresholds

are determined by the condition n > n∗ [see eq. (2.15)] with n denoting the minimal num-

ber of photons from the strong wave that kinematically allows the multiphoton process

k + nκ → q+
ǫ + q−

ǫ . Note that the previous relation leads to a condition mǫ 6 mn which

depends on the threshold mass

mn ≡
√

1

2
nkκ − ǫ2m2ξ2, (2.24)

with ξ2 = −e2a2/m2 refering to the usual laser intensity parameter with m being the

electron mass. Clearly, eq. (2.24) provides real threshold masses whenever the condition

nκk/(2m2ξ2) > ǫ2 is satisfied. Close to the lowest thresholds of pair production of MCPs

[n∗ ∼ 1] the chiral birefringence and dichroism properties of the vacuum are predicted to

be considerably more pronounced than in the cases asymptotically far from it [n∗ → ∞ and

n∗ → 0], at which the vacuum behaves like a nonabsorbing isotropic medium [57]. In the

following our attention is focused on the simple cases in which one or two photons from the

strong wave [n = 1, 2] are absorbed, i. e., the limits of the two (k + κ) and three-photon

(k + 2κ) reactions. Contributions of higher thresholds [n > 2] are beyond the scope of

this work. This is partially motivated by the fact that for ξǫ < 1 the photo-production

rate at higher thresholds scales as R n ∝ ξ2nǫ [66, 80], which provides an evidence that the

production of q+
ǫ q−

ǫ pairs by means of the absorption of several photons from the external

wave is less likely to occur.
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2.3 Spectral decomposition at ξǫ < 1

The integrands which define the Πµν
0 −eigenvalues are functions of the variable η = n∗ρ(1−

∆) with ∆ = ξ2ǫ
(1+ξ2ǫ )

sin2(ρ)
ρ2

. In the region of interest [ξǫ < 1], this factor is much smaller than

unity and the respective Taylor expansions of the integrands lead to a sum of contributions

coming from the threshold points. To show this we first consider the lowest order terms

with respect to ∆. Once the integral representations of the remainig Hankel functions

H
(2)
0,1(ρn∗) are used [see below eq. (2.17)], we can exchange the order of integration and first

integrate over ρ.4 The real parts of the resulting integrands turn out to be discontinous

functions at n∗ = 1 and determine the leading order terms of the absorption coefficients.

After having integrated out the remaining integration variable, they read

κ+,1 =
αǫm

2
ǫξ

2
ǫ

4ωkkk

{

1− v4
1

2 (1 + ξ2ǫ )
ln

(

1 + v1
1− v1

)

+ 2v1

(

1− 1− v2
1

2 (1 + ξ2ǫ )

)}

Θ[v2
1 ], (2.25)

κ−,1 =
αǫm

2
ǫξ

2
ǫ

4ωkkk

{(

2 +
1− v4

1

2 (1 + ξ2ǫ )

)

ln

(

1 + v1
1− v1

)

− 4v1

(

1 +
1− v2

1

4 (1 + ξ2ǫ )

)}

Θ[v2
1 ]. (2.26)

Here Θ[x] represents the unit step function, whereas v1 = (1−n∗)
1/2 is closely connected to

the relative speed of the final particle states when only one photon of the intense laser wave

has been absorbed;5 hence the use of the lower index 1. We emphasize that eqs. (2.25)–

(2.26) provide nonvanishing contributions whenever the MCP mass mǫ is smaller or equal

to the first threshold mass m1 =
(

kκ/2− ǫ2m2ξ2
)1/2

, corresponding to n∗ 6 1.

In contrast to the previous case, the imaginary parts of the π±-integrands are con-

tinuous functions which define the leading terms of the vacuum refractive indices. The

explicit expressions of these optical entities are difficult to obtain. Asymptotic expressions

for n∗ ≪ 1 and n∗ ≈ 1 can be found but both cases have restricted validity in comparison

to eqs. (2.25)–(2.26). Because of this reason, we have opted to express them as parametric

integrals:

n± − 1 ≃ ±αǫm
2
ǫξ

2
ǫ

2πω2
kkk

∫ 1

0
dv

{

[

1− 2̺

n∗

(

1∓ n∗
1 + ξ2ǫ

)]

ln

(

1 + ̺

|1− ̺|

)1/2

∓
[

1− 2̺

n∗
(1∓ n∗) +

2̺2

1 + ξ2ǫ

(

1∓ 2
(

1 + ξ2ǫ
)

n∗

)]

ln

(

|̺|
√

|1− ̺2|

)}

, (2.27)

where ̺ ≡ ̺(v, n∗) = n∗(1− v2)−1 is a function of both the integration variable v and the

threshold parameter n∗.

Equation (2.27) deserves further analysis. To simplify it, we only keep the quadratic

proportionality on ξǫ in n± − 1 focusing on the Born approximation [ξ2ǫ ≪ 1]. As a

consequence, the behavior of the integrand of n± as v → 0 [̺ → n∗] turns out to be

v→0−−−→ − [1∓ 2n∗] ln

(

1 + n∗
1− n∗

)1/2

±
[

1± 2n∗ − 2n2
∗
]

ln

(

n∗
√

1− n2
∗

)

. (2.28)

4The procedure outlined here shares several similarities with the method applied by the authors in [57],

particularly in those issues associated with the integrations over the variable ρ. The reader interested in

the details of such operations may find it helpful to refer to the aforementioned reference.
5In the center-of-mass frame, when n photons from the laser field are absorbed, the relative speed

between the final particles is given by |vvv rel| = |vvv
q−
ǫ

− vvv
q+
ǫ

| = 2vn with vn = (1− n∗/n)
1/2.
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Conversely, when v → 1 the function ̺ → ∞ and the integrand associated with n± tends

to ±1. The situation is different at v →
√
1− n∗ < 1 with n∗ ∈ (0, 1), i. e., ̺ → 1, since

the derivation of π± relies on integrals tabulated in ref. [81], which apply whenever ̺ 6= 1,

for further details see [57]. Therefore, this singularity is actually not reached and, in a

neighborhood of this point the integrand of n± behaves as ∼ 1
2(1± 1∓ 2

n∗
) ln |1− ̺|. Note

that, due to the exclusion of the aforementioned point, the integral over v in eq. (2.27) must

be understood as a Cauchy principal value. However, if n∗ & 1 the square root of 1 − n∗
is an imaginary quantity. As a consequence, there is no singularity within the integration

region 0 6 v 6 1 and — in contrast to eqs. (2.25)–(2.26) — the leading order terms of the

vacuum refractive indices turn out to be dominant, even when the contributions resulting

from higher thresholds are taken into account.

Of particular interest for us are the corrections to eqs. (2.25)–(2.26) which result from

the absorption of two photons from the strong wave. To determine them we assume that

1 < n∗ ≤ 2, so that the ξ4ǫ−correction due to two-photon reaction (k+κ) is excluded. With

this detail in mind we go one step further in the ∆-expansion of eqs. (2.18)–(2.19). We

then find that the real parts of the integrands associated with the three-photon reaction

(k+2κ) are, in general, discontinuous functions at the point where n∗ = 2 . Following the

procedure described above we obtain

κ±,2 =
αǫm

2
ǫξ

4
ǫ

4ωkkk(1 + ξ2ǫ )

[

F1(v2) + 2
1− v2

2

1 + ξ2ǫ
F2(v2)± F3(v2)

]

Θ
[

v2
2

]

, (2.29)

where v2 = (1− n∗/2)
1/2 defines the relative speed between the produced minicharges [see

footnote 4], whereas the functions Fi(v2) with i = 1, 2, 3 are given by

F1(v2) = v2
(

1 + v2
2

)

−
(

1− v2
2

)2
arctanh(v2), (2.30)

F2(v2) =
1

12
v2

(

15v4
2 − 4v2

2 − 3
)

+
1

4

(

1 + v2
2 + 3v4

2 − 5v6
2

)

arctanh(v2), (2.31)

F3(v2) = −1

3
v2

(

6v4
2 − 7v2

2 + 3
)

+
(

1− 3v4
2 + 2v6

2

)

arctanh(v2). (2.32)

The above formulae allow us to determine the asymptotic expression of κ±,2 as n∗ → 2−, i.

e., when the particles are created in the center-of-mass frame almost at rest [v2 ∼ 0]. In this

limit the functions Fi(v2) are dominated by cubic dependences on v2 and the absorption

coefficients approach to κ±,2 ≈ αǫm
2
ǫξ

4
ǫ v3

2 (8∓1)/[12ωkkk(1+ξ2ǫ )]. Conversely, when n∗ → 1+,

i. e., [v2 → 1/
√
2], we find the asymptotes κ±,2 ≈ αǫm

2
ǫξ

4
ǫ (0.4 ∓ 0.1)/[4ωkkk], provided the

condition ξǫ ≪ 1 holds. The asymptotic behavior of κ±,1 was derived previously and can

be found in ref. [57]

Finally, we recall that the imaginary part of the polarization tensor is associated with

the production rate of a q+
ǫ q−

ǫ pair through the optical theorem. Within the accuracy to

the second order with respect to the radiative corrections, the total creation rate R of a

q+
ǫ q−

ǫ pair from a photon — averaged over the polarization states Λµ
± — is fully determined

by the absorption coefficients [57]. Explicit polarization operator approaches to the rate

associated with the two-photon reaction may be found in separate papers (see refs. [79]

and [82]). In the limit of ξǫ ≪ 1 it was obtained that R 1 ∝ ξ2ǫ . When inspecting eq. (2.29)
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one can easily establish that the average rate for producing a q+
ǫ q−

ǫ pair in a three-photon

reaction is R 2 ∝ ξ4ǫ , a fact which verifies the last comment in section 2.2.

2.4 Conversion probability and polarimetric observables

The linearization used in the derivation of eq. (2.22) is also a convenient simplification

for solving the initial system of differential equations [eqs. (2.10) and (2.11)]. It turns

out to be appropriate to seek for solutions in the form of plane waves ∼ eikkk·xxx−iωkkkt. This

fact allows us to approximate the Laplacian involved in the equations of motion [see be-

low eq. (2.8)] by a first order differential operator according to the rule ∂2/∂t2 + kkk2 =

(i∂/∂t+ |kkk|) (−i∂/∂t+ |kkk|) ≃ 2ωkkk (−i∂/∂t+ ωkkk). As a consequece, the boundary con-

ditions on the derivatives of both gauge fields can be ignored and the problem under

consideration reduces to solve the equation

− i
∂

∂t







f±(kkk, t)

g±(kkk, t)






=







w
(γ)
±

1
2χωkkk

π±

1
2χωkkk

π± w
(γ′)
±













f±(kkk, t)

g±(kkk, t)






. (2.33)

We stress that the diagonal elements of the matrix in eq. (2.33) are the dispersion relations

given in eq. (2.22).

The solution of the above equation can be written as a superposition of eigenvectors

of the linearized version of eq. (2.21). In fact, by introducing the mixing angle ϕ ≡
arctan

(

χ
1−χ2

)

we find

[

f±(kkk, t)

g±(kkk, t)

]

=
C
(γ)
±

√

1 + tan2(ϕ)

[

1

tan(ϕ)

]

e−iw
(γ)
±

t − C
(γ′)
±

√

1 + tan2(ϕ)

[

tan(ϕ)

−1

]

e−iw
(γ′)
±

t.

(2.34)

The constants C
(γ,γ′)
± are determined by supposing an experimental setup which starts —

at t = 0 — without a hidden-photon field but with an incoming electromagnetic probe

beam of finite amplitude f±(kkk, 0) = [4π/(2ωkkk)]
1/2. With this idea in mind, we obtain a

system of algebraic equations for C
(γ,γ′)
± , whose solutions allow us to express the flavor-like

components as

f±(kkk, t) =

√

4π

2ωkkk
A±(kkk, t)e

−iωkkkt and g±(kkk, t) =

√

4π

2ωkkk
B±(kkk, t)e

−iωkkkt, (2.35)

where — in the limit of weak-mixing χ ≪ 1 and ϕ ≃ χ — the wave amplitudes A±(kkk, t)

and B±(kkk, t) approach to the following expressions

A±(kkk, t) ≈ exp

{

i(n± − 1)ωkkkt+ iχ2 sin

(

n± − 1

χ2
ωkkkt

)

exp

(

− 1

χ2
κ±t

)

−κ±t− χ2

[

1− cos

(

n± − 1

χ2
ωkkkt

)

exp

(

− 1

χ2
κ±t

)]}

, (2.36)

B±(kkk, t) ≈ χ

{

exp

(

− 1

χ
κ±t

)

− cos

(

n± − 1

χ2
ωkkkt

)

+ i sin

(

n± − 1

χ2
ωkkkt

)}

, (2.37)

with n± and κ± given in eq. (2.23).
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The modulus square of B±(kkk, t) gives us the conversion probability, which turns out

to be intrinsically associated with the exponentials responsible for the damping of the

corresponding electromagnetic waves due to the photon-paraphoton oscillations

Pγ±→γ′
±
(τ) ≃ χ2

{

1 + exp

(

− 2

χ2
κ±τ

)

− 2 exp

(

− 1

χ2
κ±τ

)

cos

(

n± − 1

χ2
ωkkkτ

)}

. (2.38)

Observe that this formula has been evaluated at the pulse length t = τ of the external

laser wave [eq. (2.4)]. Interestingly, it resembles the probability of conversion resulting

from a setup in which a constant magnetic field drives the photon-paraphoton oscilla-

tions [11, 12]. Note that eq. (2.38) is characterized by an oscillatory pattern which tends to

be exponentially suppressed as the pulse length τ of the laser wave is much larger than the

characteristic time of the transition process ∼ χ2κ−1
± . In such a case, eq. (2.38) asymptoti-

cally approaches Pγ±→γ′
±
(τ) ≃ χ2. Conversely, when the attenuation factors ∼ κ±τ/χ

2 and

the trigonometric argument (n± − 1)ωkkkτ/χ
2 are much smaller than unity, the probability

of conversion reduces to

Pγ±→γ′
±
≈ 1

χ2

[

(n± − 1)2ω2
kkk + κ2±

]

τ2. (2.39)

It is worth mentioning that this expression coincides with the outcome resulting from

perturbation theory when the Abelian fields in eq. (2.6) are canonically quantized. In this

context, the probability amplitude of the photon-paraphoton oscillation can be read off

directly from the off-diagonal elements in eq. (2.7). Within the accuracy to the second

order with respect to the radiative corrections, it is explicitly given by

Te(i)k′,e(f)k =
i

χ

e
(f)
µ Πµν(k, k′)e

(i)
ν

2V (ωkkk′ωkkk)
1/2

. (2.40)

Here V denotes the normalization volume, whereas e
(i)
µ and e

(f)
µ are the initial and final

polarization states, respectively. We suppose the former to be associated with visible

photons [eq. (2.20)] so that e(i) = Λ±. In contrast, the respective polarizations of the final

hidden U(1)−gauge states are chosen as e(f) = Λ∗
±. We insert these and the expression

for the polarization tensor [eq. (2.12)] into the eq. (2.40). Consequently, the probability

amplitude becomes

Tγ±→γ′
±
= − i

χ

π±
2V ωkkk

(2π)4δ4
(

k′ − k
)

. (2.41)

Next, the modulus squared of this formula is integrated over the momentum of the final

hidden-photon field. Such a procedures allows us to write the conversion probability as in

eq. (2.39), provided the usual interpretation of the interacting time τ ≡ 2πδ(0) is used,

where the occurence of a vanishing argument in the Dirac delta is a direct consequence of

the energy conservation in the process.

We want to conclude this section by deriving the potential observables in an optical

experiment assisted by the field of a circularly polarized plane wave. To this end we

emphasize that, in this kind of background, the vacuum behaves as a chiral medium rather

than an uniaxial material. In correspondence, the polarization plane of an incoming linearly
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polarized probe beam undergoes a rotation ϑ(τ) due to the relative phase difference between

the propagating (helicity) modes [eq. (2.35)]:

|ϑ(τ)| ≈ 1

2

∣

∣

∣

∣

(n+ − n−)ωkkkτ + χ2 sin

(

n+ − 1

χ2
ωkkkτ

)

exp

(

− 1

χ2
κ+τ

)

− χ2 sin

(

n− − 1

χ2
ωkkkτ

)

exp

(

− 1

χ2
κ−τ

)
∣

∣

∣

∣

≪ 1. (2.42)

As such, the interaction with the strong field of the wave transforms the outgoing probe

beam into an elliptically polarized wave. In our context, the degree of ellipticity ψ(τ) is an

outcome of both the absorption of visible waves via the production of pairs of MCPs and

their conversion into hidden-photons. Hence, it is determined by the difference between

the attenuation coefficients of the visible circular modes [eq. (2.35)]. Explicitly,

|ψ(τ)| ≈ 1

2

∣

∣

∣

∣

(κ− − κ+)τ + χ2 cos

(

n+ − 1

χ2
ωkkkτ

)

exp

(

− 1

χ2
κ+τ

)

− χ2 cos

(

n− − 1

χ2
ωkkkτ

)

exp

(

− 1

χ2
κ−τ

)∣

∣

∣

∣

≪ 1. (2.43)

As in the case of the conversion probability, the oscillatory pattern in both observables

is suppressed when very long pulses χ2κ−1
± ≪ τ are considered. The resulting asymp-

totes coincide with the standard results for the ellipticity and rotation in a pure MCPs

model [57]. However, the effects resulting from the photon-paraphoton oscillations could

be quite noticeable if the pulse length is much smaller than χ2κ−1
± and if it simultaneously

satisfies the condition τ ≪ χ2ω−1
kkk (n± − 1)−1. Then eqs. (2.42) and (2.43) approach

|ϑ(τ)| ≈
∣

∣

∣

∣

(n+ − n−)ωkkkτ +
1

4χ2
[(n− − 1)κ− − (n+ − 1)κ+]ωkkkτ

2

∣

∣

∣

∣

, (2.44)

|ψ(τ)| ≈
∣

∣

∣

∣

(κ− − κ+)τ +
1

4χ2

[

(n− − 1)2 − (n+ − 1)2
]

ω2
kkkτ

2 +
1

4χ2

(

κ2+ − κ2−
)

τ2
∣

∣

∣

∣

. (2.45)

Interestingly, the leading terms are increased by a factor two as compared to those asso-

ciated with the pure MCPs model. Such a feature provides an evidence that, in the limit

under consideration, the production of pairs of MCPs and the vacuum birefringence are

stimulated by the existence of a hidden-photon field.

3 Experimental prospects

3.1 Estimating the exclusion limits

Restrictions on the (ǫ,mǫ) plane can be established whenever in certain confidence levels

ψCL%, ϑCL%, neither rotation of the polarization plane [eqs. (2.42)] nor ellipticity of the

outgoing probe beam [eq. (2.43)] are detected. We note that, while experimental data

for the proposed setup do not exist yet, ellipticities and rotation angles can nowadays be

measured with an accuracy of about ∼ 10−10 rad in the optical regime [84].6 Hereafter, we

6An experiment to measure vacuum birefringence by probing a Petawatt optical laser [ξ ≫ 1] with a

x-ray free electron laser, has been proposed by the HIBEF consortium [85].
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give first estimates of the exclusion bounds resulting from the absence of the aforementioned

signals by taking the previous value as reference for the sensitivity parameters ψCL%, ϑCL%.

Accordingly, we have to solve the inequalities ψCL% > ψ(τ) and ϑCL% > ϑ(τ) but, due

to the very complicated dependence of ψ(τ) and ϑ(τ) on the unknown parameters of our

theory ǫ, mǫ and χ, no analytic solutions can be derived. Therefore, we rather determine

their bounds numerically. However, in doing so we should keep in mind that the application

of the expressions obtained so far requires an external laser field which approaches to our

monochromatic plane-wave model [eq. (2.4)]. In practice, the monochromaticity of the

high-intensity laser wave can be implemented as long as the laser-source emits a pulse with

an oscillation period T = 2πκ−1
0 much smaller than its temporal length τ , i. e., κ0τ ≫ 1.

Regarding the plane-wave character, it formally implies that the long-laser wave is infinitely

extended in the plane perpendicular to the propagation direction. However, in an actual

experimental realization, this condition can be considered as satisfied when the waist size

of the laser beam w0 is much greater than its wavelength [w0 ≫ λ0 with λ0 = 2πκ−1
0 ].

In order to satisfy both conditions, we choose, for our external laser field, the set of

parameters associated with the Petawatt High-Energy Laser for heavy Ion eXperiments

(PHELIX) [70], currently under operation at GSI in Darmstadt, Germany. We are par-

ticularly interested in the nanosecond frontend of PHELIX [w0 ≈ 100 − 150µm], since it

operates with an infrared wavelength λ0 ≃ 1053 nm [κ0 ≃ 1.17 eV] and can reach a peak

intensity I ≃ 1016 W/cm2, corresponding to a parameter ξ ≃ 6.4× 10−2 in a pulse length

τ ≃ 20 ns. In addition, we will study the results coming from the specification of the

long high-energy pulse of 400 J at the Laboratoire pour l’Utilisation des Lasers Intenses

(LULI) [71] — currently in operation at Palaiseau, France. Similarly to the previous exter-

nal source, we will focus ourselves on the nanosecond facility at LULI(2000) [w0 ∼ 100 µm],

which can operate with the same central frequency as PHELIX once its fundamental har-

monic is used. However, its pulse length is shorter τ ≃ 1.5−4 ns and its maximum intensity

is lower I ≃ 6×1014 W/cm2 [ξ ≃ 2×10−2]. Regarding the probe beam, we suppose that it

is an optical laser obtained by coupling out a tiny fraction of the external laser wave whose

intensity turns out to be much weaker than the intensity of the strong beam. We assume,

in particular, that the probe frequency can be doubled [ωkkk = 2κ0 = 2.34 eV] afterwards.

Observe that, with the above assumptions, the photo-production of an electron-positron

pair cannot take place. In the fields under consideration, the occurrence of a linear Breit-

Wheeler reaction would require probe photons with energy greater than the threshold value

ωkkk & m2
κ
−1
0 ≈ 10 GeV. As a consequence, no contribution other than the one induced

by the decay of the probe beam into MCPs pairs and its oscillation into a paraphoton is

expected in the dichroic effect [eq. (2.43)]. Therefore, an eventual detection of ellipticity

in the outgoing probe beam can be understood as a clear manifestation of physics beyond

SM. Furthermore, below the first pair production threshold [kκ ≪ 2m2] and for ξ < 1, the

birefringence of the pure QED vacuum is predicted to be extremely weak [57, 76]. Indeed,

the rotation of the polarization plane for spinor QED is given by

|ϑQED| ≈
2

315

α

π

(κk)3

m4ωkkk
ξ2τ. (3.1)
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Figure 2. Projected sensitivities for MCPs of mass mǫ and relative coupling constant ǫ derived

from the absence of signals in a plausible polarimetric setup assisted by a circularly polarized laser

field of moderate intensity. While the left panel provides the results associated with MCPs, the right

one shows the outcomes of the model including a hidden-photon field (γ′). In both panels the white

(LULI) and black (PHELIX) dashed lines correspond to the expression ξǫ = ǫmξ/mǫ = 1. The

picture in the left, includes the exclusion regions coming from various experimental collaborations

searching for rotation and ellipticity in a constant magnetic field such as BFRT [29], PVLAS [30, 31]

and Q & A [33]. However, the shaded areas in the upper left corner in the right panel result from dif-

ferent experimental collaborations dealing with the Light Shining Through a Wall mechanism. The

respective 95% confidence levels needed to reproduce these results are summarized in refs. [12, 34].

When evaluating this expression with the parameters of the nanosecond frontend of PHE-

LIX in a counter propagating geometry [kkk ‖ −κκκ], we find that its contribution |ϑQED| ∼
10−21 rad turns out to be extremely tiny in comparison with the reference sensitivity

∼ 10−10 rad to be used henceforth. That the pure QED effect is so tiny is important

for practical purposes, because it would allow for isolating polarization-dependent effects

stemming only from the self-interaction of the electromagnetic field in vacuum mediated by

hypothetical degrees of freedom. Therefore, also by sensing a rotation in the polarization

plane [eq. (2.42)] other than the predictions coming from QED, we can probe the existences

of our dark matter candidates.

The first estimates of the described settings are shown in figure 2 for the particular

situation in which the collision is head-on, i. e., kkk · κκκ = −ωkkkκ0. Our exclusion regions

are shaded in purple and red for PHELIX and in blue and green for LULI. We emphasize

that they are expected to be trustworthy when the bounds are below the respective dashed

line — white for LULI and black for PHELIX — corresponding to ξǫ = ǫmξ/mǫ = 1.

While the left panel displays the results coming from the pure MCP model, the discovery

potential including the paraphoton effects is shown in the right panel. Note that, in the

latter, the shaded regions were derived by considering the relation χ = ǫ, so that a direct

comparison with the pure MCP model can be established. In contrast to the left panel,

the one in the right does not show the sensitivity limits coming from the experimental
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searches of polarimetric signals. Instead, we have incorporated the upper bound obtained

from the ALPS collaboration [34] which — at the time of writing — turns out to be the

most stringent laboratory-based limit for MCPs in a model with massless paraphotons.

Also, included are the exclusion regions resulting from other experimental collaborations

dealing with the Light Shining Through a Wall mechanism such as BMV [41], BFRT [29]

and GammeV [36]. Observe that in the vicinity of the first threshold mass m1 ≈ 1.64 eV,7

the upper limits resulting from the search of the rotation angle are more restrictive than

those arising from the ellipticity. Nearby, the bounds are ǫ < 1.9× 10−6 for PHELIX and

ǫ < 6.5× 10−6 for LULI. Also, figure 2 verifies the statement given below eq. (2.24) about

the contribution of higher thresholds, since the picture covers a region including the second

threshold mass m2 ≈ 2.34 eV, at which the upper limit undergoes a relaxation.

In the right panel of this figure, we see that the projected sensitivities coming from the

plausible absence of signals in our LULI setup follow a path very similar to the one obtained

from the pure MCPs model for masses below the first threshold mass m1 ≈ 1.64 eV.

This fact manifests a dominance of the first contributions to the observables [eqs. (2.42)

and (2.43)] due to a plausible exponential suppressions of the paraphoton terms. Hence, we

deduce that in such a region, the characteristic times involved in the respective damping

factors of the waves χ2κ−1
±,1 turn out to be much smaller than the laser pulse lengths

τ ≫ χ2κ−1
±,1. However, for masses embedded in the range m1 < mǫ < m2, the upper

bounds resulting from LULI’s parameters are characterized by fluctuating patterns which

are absent in a pure MCPs scenario. The occurence of these trends is closely associated

with the photon-paraphoton oscillations. In contrast to masses below m1, the region in

which m1 < mǫ < m2 turns out to feature characteristic times χ2κ−1
± much larger than

(in the case of LULI) — or at least of the order of (in the case of PHELIX) — the pulse

lengths τ used. This is caused by the contributions coming from the second threshold

[eq. (2.29)] which become — in the region under consideration — the leading order term

in the absorption coefficients.

Actually, the dependence of the hidden gauge coupling eh introduces a certain level

of uncertainty. Figure 3 shows how the sensitivity limits for PHELIX might vary as eh
changes by an order of magnitude around the natural value eh = e.8 Observe that, these

variations are almost imperceptible for masses below the first threshold mass. However,

slight deviations in the exclusion bounds are displayed in a vicinity of the first threshold

and within the interval where the photon-hidden-photon oscillations are more pronounced.

Clearly, these first estimates indicate that experiments driven by long laser pulses of moder-

ate intensities might be sensitive in regions of the parameter space which are not excluded

by the outcomes of current laboratory-based collaborations such as PVLAS and BFRT.

Particularly, in a vicinity of the first threshold mass, the present upper bound might be

an order of magnitude more stringent than the one resulting from the PVLAS and ALPS

analyses.

7Note that for the laser parameters used here, the second contribution in the threshold mass [eq. (2.24)],

i.e. ǫ2m2ξ2 ∼ 10−3 eV2 is neglectable in comparison with the first term kκ/2.
8In this section and the remaining part of the paper, it must be understood that the symbol e refers to

the absolute value of the electron charge.
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Figure 3. Parameter space to be ruled out for MCPs in a model with paraphotons (γ′). The

expected exclusion limits have been obtained by assuming the absence of signals in a polarimetric

setup assisted by a circularly polarized wave associated with the nanosecond frontend of the PHELIX

laser. Here the projected sensitivities on the kinetic mixing parameter for various values of the

hidden coupling constant are displayed by contour lines [see legend].

Let us put the projected bounds displayed in figures 2 and 3 into perspective with

the constraints deduced from astrophysical and cosmological arguments which are, in-

deed, stronger [5–8]. For MCPs, the most stringent limits have been set from the absence

of anomalous stellar evolutions, presumably induced by the energy loss accompanied by

their emissions from the star. When considering this idea in the helium-burning phase of

Horizontal-Branch (HB) stars, the coupling strengh turns out to be bounded by [43]

ǫ ≤ 2× 10−14 for mǫ . keV. (3.2)

Less stringent limits have been found from the solar monitoring of neutrino flux. However,

the previous limitations may not be directly applicable to our results because their deriva-

tion relies on the assumption that the effective vertices [eq. (2.2)] which allow us to predict

phenomenological aspects in laboratory-based experiments, are equally valid in the stellar

context, where the momentum transfer & keV is substantially higher than the typical scale

associated with lab conditions ∼ µeV [21, 45]. A suitable comparison between the upper

bounds resulting from these scenarios would require to take into account the renormaliza-

tion effects of the coupling constants over the nine orders of magnitude which separate the

characteristic energy scales, otherwise notable uncertainties are introduced. The depen-

dence of the coupling strength on the momentum transfer of each production event might

attenuate the stellar cooling rate due to MCPs escape, leading to a less severe limit.

On the other hand, the study of the solar emission of hidden massive photons caused

by the kinetic mixing currently establishes the most restrictive bounds on the parameter

space (χ,mγ′) among the astrophysical arguments. Indeed, for paraphoton masses below

mγ′ ∼ 3 eV it has been determined that [88]

χ < 4× 10−12
(

eV/mγ′

)

. (3.3)

In contrast to the solar investigation, in the present study we have assumed that the vir-

tuality provided by the polarization tensor is stronger than the mass of the hidden-photon
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field. As one can read off from sections 2.1 and 2.2, this energy regime is characterized by

the condition mγ′ ≪ (π±/χ)
1/2. When evaluating this relation with the projected bound

resulting from PHELIX [χ < 2 × 10−6 at mǫ = m1], we find that mγ′ ≪ o[10−1 − 1]µeV,

for which eq. (3.3) leads to upper bounds less stringent than the values predicted in fig-

ures 2 and 3. It is worth observing that, for masses mγ′ . 10−8 eV, the sensitivity

limits found for χ are comparable and even stronger than those resulting from testing

the Coulomb law by Cavendish type experiments [25]. Particularly, in the mass sector

10−13 eV < mγ′ < 10−10 eV, the projected bounds are more stringent than those re-

sulting from the Cosmic Microwave Background9 and, if the paraphoton mass turns out

to be smaller than ∼ 10−15 eV, then our sensitivity limits might provide the best model

independent results on the mixing parameter χ, including the interplay of MCPs with

mǫ ∼ eV.

Besides, the fact that the astrophysical environment differs from the well controlled

laboratory conditions opens a portal for various suppression channels that might be active

in stellar objects but escape from our perception. Notably, we mention the mechanism in-

volving two paraphotons — one massless and one massive (mass mγ′) — minimally coupled

to dark fermions with opposite hidden charges [44]. It has been theoretically demonstrated

that, for typical values of HB stars, this configuration relaxes the astrophysical constraint

to ǫ < 4× 10−8([eV]/mγ′)2 provided that the “running” coupling strength corresponds to

the value given in eq. (3.2). Another vulnerable aspect to take into account is the plausible

dependence of the effective vertices on the environmental parameters such as density and

temperature of the star, both being higher than in laboratory-based experiments. Inves-

tigations in this direction have demonstrated that the astrophysical bounds are extremely

sensitive to these macroscopic quantities [45, 86, 87]. Indeed, they might actually suppress

the production of MCPs, this way attenuating the resulting limits.

3.2 Identification of promising scenarios

So far we have investigated the plausible situation in which no optical change is detected.

In this subsection, we shall examine the case where the induced ellipticity and rotation

of the outgoing probe beam — due to the vacuum polarization effects of MCPs and a

hidden-photon field — become manifest. In first instance, a measurement of the abso-

lute value of the aforementioned observable should be enough for finding the values of ǫ

and mǫ provided that only pure MCPs are realized in nature. However, with the inclu-

sion of the hidden-photon field the mixing parameter χ emerges and consequently, the

polarimetric measurements by themselves do not unambiguously determine the unknown

particle attributes. This situation might even become worse if other dark matter candidates

such as axion-like particles would exist as well at the energy scale relevant for MCPs and

paraphotons. Valuable information is however at our disposal: by investigating the signal

dependencies on the available experimental quantities such as the intense laser parameter ξ,

the temporal length τ and the wave length of the probe beam λ = 2πω−1 one can establish

the phenomenological differences that result from the models under consideration.

9A summary of astrophysical, cosmological and laboratory constraints for hidden photons, i. e., kinetic

mixing vs mass mγ′ , can be found in refs. [5–7].
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Figure 4. Dependence of the absolute value of the ellipticity |ψ| [upper panels] and rotation

angle |ϑ| [lower panels] on the intensity parameter ξ [left panel], pulse length τ [central panel] and

wavelength of the probe λ [right panel]. As a benchmark point we assume a massless hidden photon

field with kinetic mixing parameter χ = 5 × 10−7 and hidden coupling eh = e. In each plot the

remaining external parameters are kept at ξ = 6.4 × 10−2, τ = 20 ns, kkk ‖ −κκκ, λ = λ0/2 with

λ0 = 2πκ−1

0
= 1053 nm the wavelength of the intense laser field. Here the outcomes resulting

from a pure MCP model at mǫ = 0.1 eV are shown in red, whereas the respective patterns at

the first threshold mass m1 ≈ (kκ/2)1/2 are in blue. The curves in green and dotted black were

obtained by including the paraphoton field. They also correspond to the case in which the mass of

the minicharges are mǫ = m1 and mǫ = 0.1 eV, respectively.

Figure 4 summarizes the behavior of the signals not only when the MCP mass coin-

cides with the first threshold mass mǫ = m1 ≈ (kκ/2)1/2 but also at mǫ = 0.1 eV. The

corresponding results associated with the pure MCP scenario are plotted in blue and red,

whereas the outcomes including the effects of a hidden-photon field are shown in green and

black dotted curves. All these results were derived by using the benchmark parameters of

the nanosecond frontend of PHELIX [ξ = 6.4 × 10−2, τ = 20 ns, λ0 = 1053 nm] and by

considering a probe beam with λ = λ0/2 colliding head on with the intense laser wave.

Generally speaking we find that both signals tend to grow with the increase of the external

laser attributes. At mǫ = 0.1 eV and small values of the intensity parameter ξ < 4× 10−2,

the dependencies of the ellipticity |ψ| [upper panels] and rotation angle |ϑ| [lower panels]

show slight differences between the pure MCP model and the scenario dealing with the

paraphoton effects. Precisely in this region the characteristic time of the transition process

∼ χ2κ−1
± becomes much bigger than the pulse length [τ = 20 ns] and the oscillatory pat-
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terns due to the photon-paraphoton oscillation alters the signal compared to a pure MCPs

model. Conversely, for values of ξ > 4×10−2, χ2κ−1
± turns out to be smaller than τ leading

to exponential suppressions of the hidden-photon effects described in section 2.4. A similar

behavior occurs for fixed ξ = 6.4 × 10−2 as the pulse length τ varies. Indeed, the central

panel in figure 4 shows that at mǫ = 0.1 eV and duration smaller than . 6 ns the signal

starts to be sensitive for hidden-photon effects since the characteristic time turns out to be

greater than the pulse length of the strong laser wave. Observe that, at mǫ = 0.1 eV, the

respective dependencies of the observables on the wavelength of the probe beam do not

reveal any differences. This is because, for the remaining benchmark parameters, the pure

MCP contributions turn out to be dominant.

The signal drastically changes at the first threshold mass. Here the minicharges tend

to be produced at rest [v1 → 0], and the leading order terms of the absorption coefficients

[eqs. (2.25) and (2.26)] decrease as κ+,1 ∝ v1 and κ−,1 ∝ o(v2
1 ), respectively [57]. Certainly,

at this point, the contributions coming from the second threshold, i.e. κ±,2 ∝ ξ4ǫ [see

eq. (2.29)] might also be important. Whatever be the dominant case, the main outcome

would be a noticeable increment in the characteristic times χ2κ−1
± , which can reach values

much larger than the corresponding pulse length τ . In such a situation, the damping factors

in eq. (2.43) can be approached by unity, the term associated with the pure MCP model

becomes negligible10 and the ellipticity follows a fluctuating pattern

|ψ(τ)| ≈ 1

2
χ2

∣

∣

∣

∣

cos

(

n+ − 1

χ2
ωkkkτ

)

− cos

(

n− − 1

χ2
ωkkkτ

)
∣

∣

∣

∣

. (3.4)

The outcomes displayed in the upper panel of figure 4 clearly highlight this trend. Ac-

cording to eq. (3.4), such a pattern is a direct consequence of the photon-paraphoton tran-

sitions, whose oscillation probabilities [eq. (2.38)] reduce to the expressions Pγ±→γ′
±
(τ) ≈

4χ2 sin2
(

µ2
±

4ωkkk
τ
)

with µ2
± = 2n±−1

χ2 ω2
kkk which resemble the one resulting from the massive

paraphoton theory [11, 12]. Regarding the behavior of the rotation angle [lower panel in

figure 4], the situation is slightly different. Based on similar arguments, we found that

eq. (2.42) approaches to

|ϑ(τ)| ≈ 1

2

∣

∣

∣

∣

(n+ − n−)ωkkkτ + χ2

[

sin

(

n+ − 1

χ2
ωkkkτ

)

− sin

(

n− − 1

χ2
ωkkkτ

)]∣

∣

∣

∣

. (3.5)

Here the occurrence of fluctuations is also assignable to the photon-paraphoton oscillations.

However, in contrast to our previous analysis, the standard result for a model without

paraphoton — first term in the above equation — remains important and even dominant

as the external parameters increase.

In figure 5, we plot the ellipticity and rotation of the polarization plane with respect

to the unknown parameters of the theory. Particularly, the left and right panels reveal how

the signals might change with the mixing parameter χ and the relative hidden coupling

eh/e. From the former we note that at mǫ = 0.1 eV the theory including a hidden-photon

field follows the path dictated by the pure MCPs model. Besides, a fast decrease in both

10 This is why the blue curve does not appear in the upper panels associated with the ellipticity.
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Figure 5. Dependence of the absolute value of the ellipticity |ψ| [upper panels] and rotation angle

|ϑ| [lower panels] on the kinetic mixing parameter χ [left panel], mass mǫ [central panel] and the

relative hidden coupling eh/e [right panel]. The same benchmark values of figure 4 — ξ = 6.4×10−2,

τ = 20 ns, kkk ‖ −κκκ, λ = λ0/2, λ0 = 2πκ−1

0
= 1053 nm — have been used.

signals can be observed for small values of χ. This trend is also manifest with respect to

eh/e at the same reference mass [black dotted curve]. Here, the outcome resulting from

the pure MCP scenario [horizontal red and blue lines] are not sensitive to variations of the

relative hidden coupling because the latter only arises within the framework of a hidden-

photon model. In both — left and right — panels, one recognizes the fluctuating patterns

[eqs. (3.4) and (3.5)] induced by the photon-paraphoton oscillations at the first threshold

mass m1 = 1.64 eV. It can be seen that the oscillations caused by the photon-paraphoton

coupling tend to be less pronounced as eh/e increases. The central panel of this figure

displays how both observables depend on the mass mǫ of MCPs. There, in blue and green

lines are indicated the reference values obtained for a fixed mass mǫ = m1. The ellipticity

resulting from this scenario clearly shows the discontinuity at the first threshold mass

discussed in section 2.3 and associated with the nature of the absorption coefficients. This

feature is smoothed when a hidden photon field is considered [see dotted black curve]. At

the first threshold, this observable is constant in both scenarios, with the particularity of

being extremely tiny in the pure MCPs model [see footnote 10]. Conversely, the dependence

of |ϑ(τ)| with respect to the mass mǫ follows a continuous path in both contexts and only

slight differences appear for masses above the first threshold massm1. This last observation

could be anticipated based on the analyses of our previous discussions.
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4 Conclusions

Accurate polarimetric techniques, searching for the birefringence and dichroism of the

quantum vacuum polarized by the field of a laser pulse, can be powerful probes for testing

some effective theories beyond SM. We have considered the particular situation in which

the external laser wave is circularly polarized and extended the results derived in ref. [57]

by incorporating the effects induced by paraphotons. In order to polarimetrically verify

the realization of the considered models it is essential to gain detailed information on their

respective phenomenologies. As such, one of the main goals of this work was to provide

features which can allow us to distinguish between the pure MCPs scenario and the coex-

istence of a hidden-photon field. Throughout, we noted that the possibility of exchanging

photons with the external wave renders the description of the problem more cumbersome

than in the case of a static magnetic field. These nontrivial properties, in conjunction with

the energy-momentum balance lead to the appearance of thresholds closely associated with

a hypothetical photo-production of pairs of MCPs, their masses being determined by the

frequencies of both laser fields. For ξǫ < 1 and near the first threshold, the chiral activity

of the “medium” turns out to be quite pronounced and the searches of very light MCPs

and hidden-photons by using polarimetric setups appear promising. In connection, the in-

duced ellipticity and rotation of the polarization plane of the probe beam were determined.

When evaluating such observables with the attributes of modern laser systems, stringent

sensitivity limits on the parameter spaces were found under the assumption of no signal

detection. These first estimates reveal that a laser wave with a long temporal length and a

moderate intensity might be an external-field source suitable for searching very light weakly

interacting particles with masses in the eV range. As such our outcomes agree with and

complement the results obtained in a previous investigation developed within the context

of axion-like particles [58].
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