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1 Introduction

The phenomenology of light flavor pseudoscalar mesons η and η′ provides a valuable window

on many important nonperturbative features of Quantum Chromodynamics (QCD). It

includes such important aspects as:

• The spontaneous breaking of chiral symmetry, which gives rise to the appearance of

the multiplet of light pseudoscalar mesons.

• The U(1)A anomaly of strong interactions, which gives mass to the singlet η0 in

NC = 3 QCD, even in the chiral limit.

• The explicit SU(3)-flavor symmetry breaking, due to the splitting ms 6= m̂ between

the strange and up/down quark masses (the isospin limit, where mu = md = m̂ and

the electromagnetic corrections are neglected, will be assumed all through the article).

• The 1/NC expansion of QCD in the limit of large NC , with NC the number of colors

in QCD.

The interaction between the pseudo-Nambu-Goldstone bosons (pNGBs) (π,K, η8) from

the spontaneous chiral symmetry breaking can be systematically described through a low-

energy effective field theory (EFT) based on SU(3)L × SU(3)R chiral symmetry, namely
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Chiral Perturbation Theory (χPT) [1, 2]. Following large–NC arguments [3–5], this ap-

proach was later extended, incorporating the singlet η0 into a U(3) χPT Lagrangian [6–14].

This combination of χPT and the 1/NC expansion provides a consistent framework which

addresses all the previous issues.

More precisely, in this article we show that this large–NC χPT framework yields an

excellent description of the η and η′ masses from lattice simulations at different light-quark

masses [15–19]. Constraints from phenomenological studies of ρ, ω, φ, J/ψ decays [20, 21]

and kaon mass lattice simulations [22, 23] are compatible and easily accommodated in a

joint fit. The problems arise when one tries to also describe lattice simulations for Fπ, FK

and FK/Fπ [22–24]. Nevertheless, the issue of these observables in χPT is known and has

been widely discussed in previous bibliography [25–29]. It constitutes a problem in its own

and it is not the central goal of this article. It is discussed for sake of completeness and to

show its impact in a global fit.

The η and η′ mesons not only attract much attention from the chiral community but

they have been also intensively scrutinized in lattice QCD simulations, where enormous

progresses have been recently made by different groups [15–19]. Varying the light-quark

masses m̂ and ms, both their masses and mixing angles have been extracted in the range

200MeV < mπ <700MeV. We will focus on the simulation points with mπ < 500MeV in

the present work. By observing the dependence of these observables with the light-quark

masses we will determine the χPT low energy constants (LECs) and further constrain the

theoretical models. At the practical level we have recast all m̂ dependencies in terms of

mπ and study the observables as functions of mπ. The η and η′ lattice simulations have

not been thoroughly analyzed in the chiral framework yet and it is the central goal of the

present work. However, the numerical uncertainties resulting from our analyses in this

work must be taken with a grain of salt as correlations between the different lattice data

points and other systematic errors are not considered here.

In addition to lattice QCD, there are also phenomenological studies of the η and η′

mixing, which has been extensively investigated in radiative decays of light-flavor vector

resonances ρ, ω, φ and J/ψ → V P, Pγ processes [20, 21, 30–36]. In these works, the modern

two-mixing-angle scheme for the η and η′ mesons, which was first advocated in refs. [10, 11],

was employed to fit various experimental data. The common methodology in these works

is that the two-mixing-angle pattern for the η and η′ is simply adopted to perform the

phenomenological discussion and the mixing parameters are then directly determined from

data. This is a bottom-up approach to address the η-η′ mixing problem and it is quite

useful for the phenomenological analysis. Contrary to the bottom-up method, it is also

very interesting to study the η-η′ mixing from a top-down approach in which one first

constructs the relevant χPT Lagrangian and then calculates the η-η′ mixing pattern and

parameters in terms of the LECs. In this case, one can predict the η-η′ mixing parameters

once the values of the unknown LECs are given. The present work belongs to the latter

category of top-down approaches.

Though the singlet η0 meson, which is the main component of the physical η′ state,

is not a pNGB due to the strong U(1)A anomaly, it can be formally introduced into χPT

from the large-NC point of view. The argument is that the quark loop induced U(1)A
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anomaly, which is responsible for the large mass of the singlet η0, is 1/NC suppressed

and hence the η0 becomes the ninth pNGB in the large NC limit [37–39]. Based on this

argument, the leading-order (LO) effective Lagrangian for U(3) χPT, which simultaneously

includes the pNGB octet π,K, η8 and the singlet η0 as dynamical fields, was formulated

in refs. [6–9]. Later on, a full O(p4) U(3) chiral Lagrangian was constructed in ref. [13]

and the discussion on the O(p6) unitary group chiral Lagrangian has been very recently

completed in ref. [40]. Subtle problems about the choice of suitable variables for the higher

order U(3) χPT Lagrangian in the large NC framework were analyzed in ref. [12].

The standard power counting employed in SU(2) and SU(3) χPT in powers of the

external momenta and quark masses [1, 2], is not valid any more in U(3) χPT, due to

the appearance of the large η0 mass. However, since the singlet η0 mass squared behaves

like 1/NC in large NC limit, the η0 mass can be harmonized with the other two expansion

parameters if one assigns the same counting to 1/NC , the squared momenta p2 and the

light quark masses mq. As a result of this, in order to have a systematic power counting,

the combined expansions on momentum, light quark masses and 1/NC are mandatory in

U(3) χPT [12, 13]. We will work in this combined expansion in our study and denote it

as δ expansion throughout the paper, where O(δ) ∼ O(p2) ∼ O(mq) ∼ O(1/NC). This

counting rule is different from the one proposed in ref. [41], where the η0 mass is counted

as O(1) and the infrared regularization method is employed to handle the chiral loops.

Some recent works in refs. [14, 42–45] have addressed the η-η′ mixing in the chiral

framework up to next-to-leading order (NLO). As an improvement, we will perform the

systematic study of the η-η′ mixing in the δ-expansion scheme up to next-to-next-to-leading

order (NNLO) and take into account the very recent lattice simulation data, which are not

considered in the previous works [14, 42–45]. In addition, we also simultaneously analyze

the mπ dependences of other physical quantities from lattice simulations, such as the axial

π,K decay constants and the mass ratio of the strange and up/down quarks, in order to

further constrain the χPT LECs.

This article is organized as follows. In section 2, we introduce the theoretical frame-

work and calculate the relevant physical quantities. In section 3, the phenomenological

discussions will be presented. Conclusions will be given in section 4. Further details about

the calculations up to NNLO are relegated to appendix A.

2 Theoretical framework

2.1 Relevant chiral Lagrangian

At leading order in the δ expansion, i.e. O(δ0), the U(3) χPT Lagrangian consists of three

operators

L(δ0) =
F 2

4
〈uµuµ〉+

F 2

4
〈χ+〉+

F 2

12
M2

0X
2 , (2.1)

where the chiral building blocks are defined as [1, 2, 12–14]

U = u2 = ei
√

2Φ
F , χ = 2B(s+ ip) , χ± = u†χu† ± uχ†u , X = log (detU) ,

uµ = iu†DµUu
† , DµU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ) , (2.2)
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with the pNGB octet+singlet matrix

Φ =




1√
2
π0 + 1√

6
η8 +

1√
3
η0 π+ K+

π− −1√
2
π0 + 1√

6
η8 +

1√
3
η0 K0

K− K
0 −2√

6
η8 +

1√
3
η0


 , (2.3)

and s, p, vµ, aµ being the external scalar, pseudoscalar, vector and axial-vector sources, re-

spectively. The coupling F appearing in eqs.(2.1) and (2.2) corresponds to the pNGB axial

decay constant in the large NC and chiral limits. The light quark masses are introduced

by setting (s+ ip) =diag{m̂, m̂,ms}, being m̂ the averaged up and down quark masses and

ms that of the strange quark.

Notice the structure of the LO Lagrangian in eq. (2.1): the first operator is ofO(NC , p
2)

type, the second one corresponds to the type of O(NC ,mq) and the last one stems from the

QCD U(1)A anomaly and is of O(N0
C , p

0) type, where U is counted as O(1),F 2 ∼ O(NC)

and M2
0 ∼ O(N−1

C ) in the classification O(N j
C , p

k,mℓ
q) of the EFT Lagrangian operators

in eq. (2.1). In the following, we will denote the chiral expansions in powers of squared

momenta p2 and quark masses mq simply as a generic expansion in p2.

The NLO U(3) chiral Lagrangian, i.e., O(δ), contains O(NC , p
4) and O(N0

C , p
2) oper-

ators. The relevant ones in our work read [12]

L(δ) = L5〈uµuµχ+〉+
L8

2
〈χ+χ+ + χ−χ−〉+

F 2 Λ1

12
DµXDµX − F 2 Λ2

12
X〈χ−〉 , (2.4)

with the dimensionless LECs’ scaling like L5, L8 ∼ O(NC) and Λ1,Λ2 ∼ O(N−1
C ).

At NNLO, i.e. O(δ2), there are three types of operators: O(N−1
C , p2), O(N0

C , p
4) and

O(NC , p
6). Their explicit forms read [13, 46]

L(δ2) =
F 2 v

(2)
2

4
X2〈χ+〉

+L4〈uµuµ〉〈χ+〉+ L6〈χ+〉〈χ+〉+ L7〈χ−〉〈χ−〉+ L18〈uµ〉〈uµχ+〉+ L25X〈χ+χ−〉
+C12〈hµνhµνχ+〉+ C14〈uµuµχ+χ+〉+ C17〈uµχ+u

µχ+〉
+C19〈χ+χ+χ+〉+ C31〈χ−χ−χ+〉 , (2.5)

where the first line corresponds to the O(N−1
C , p2) type, the second line is of the O(N0

C , p
4)

type and the last two lines are of the O(NC , p
6) type. The LECs carry the scalings

v
(2)
2 ∼ O(N−2

C ), L4, L6, L7, L18, L25 ∼ O(N0
C) and C12, C14, C17, C19, C31 ∼ O(NC). Notice

that we have only shown the operators at different δ orders in eqs. (2.1), (2.4) and (2.5)

that are pertinent to our present study, not aiming at giving the complete sets of operators.

The conventions to label the LO, NLO and NNLO operators in eqs. (2.1), (2.4) and (2.5)

follow closely the notations in refs. [12, 13, 46]. Unless it is explicitly stated, the LECs

will correspond to U(3) χPT and must not be confused with those in SU(3) χPT. The

matching between these two EFTs can be found in ref. [12]. The terms Lj are denoted

as βj in refs. [13, 14].

Comparing the U(3) and SU(3) theories one can observe that some terms have been

reshuffled in the δ expansion of the U(3) Lagrangian. For example, the Li=4,5,6,7,8 terms

are NLO in SU(3) χPT, but they are now split into NLO and NNLO in the δ expansion
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(see eqs. (2.4) and (2.5)). We have several additional new operators, namely the last one

in eq. (2.1), the Λi=1,2 in eq. (2.4) and the v
(2)
2 , L18, L25 terms in eq. (2.5), that are absent

in the SU(3) χPT case. Finally, the chiral loops start contributing at NNLO in the δ

expansion, while they appear at NLO in the conventional SU(3) case.

2.2 The η-η′ mixing at NNLO in δ expansion

Next we calculate the η-η′ mixing order by order in the δ expansion. In literature, there

are two bases to address the η-η′ mixing, namely the singlet-octet basis with η0 and η8, and

the quark-flavor basis with ηq and ηs. The relations between fields in these two bases are
(
η8
η0

)
=




√
1
3 −

√
2
3√

2
3

√
1
3




(
ηq
ηs

)
. (2.6)

In the large–NC limit where the U(1)A anomaly is absent, ηq and ηs are the mass eigenstates

and they are generated by the axial-vector currents with the quark flavors qq̄ = (uū +

dd̄)/
√
2 and ss̄, respectively. The two bases are related to each other through an orthogonal

transformation and provide an equivalent description for the η-η′ mixing.

As noticed in refs. [45, 47], when doing the loop calculations with η and η′, it is rather

cumbersome to work with the η0 and η8 states. The reason is that at leading order the

Lagrangian in eq. (2.1) gives the mixing between η0 and η8, and the mixing strength is

proportional to m2
K −m2

π, which in the δ expansion is formally counted as the same order

as the diagonal terms in the mass matrix for η0 and η8. As a result, the insertion of the

η0-η8 mixing in the chiral loops will not increase the δ order of the loop diagrams. This

makes the loop calculation technically much more complicated, as one needs to consider

the arbitrary insertions of the η0-η8 mixing in the chiral loop diagrams. Nevertheless,

refs. [45, 47] provide a simple recipe to handle this problem by expressing the Lagrangian

in terms of the η and η′ states which result from the diagonalization of η0 and η8 at leading

order in δ. The main difference is that the mixing between η and η′ is now at least a NLO

effect in δ, while the η0-η8 mixing was appearing at LO. The relation between the LO mass

eigenstates η̄ and η̄′ and the singlet-octet basis is given by the mixing angle θ:
(
η̄

η̄′

)
=

(
cθ −sθ
sθ cθ

) (
η8
η0

)
, (2.7)

with cθ = cos θ and sθ = sin θ. The LO mixing angle θ and masses of η and η′ are given

by the leading order Lagrangian L(δ0) in eq. (2.1) (see e.g. ref. [45]):

m2
η =

M2
0

2
+m2

K −

√
M4

0 − 4M2
0∆

2

3 + 4∆4

2
, (2.8)

m2
η′ =

M2
0

2
+m2

K +

√
M4

0 − 4M2
0∆

2

3 + 4∆4

2
, (2.9)

sin θ = −




√

1 +

(
3M2

0 − 2∆2 +
√
9M4

0 − 12M2
0∆

2 + 36∆4
)2

32∆4




−1

, (2.10)

with ∆2 = m2
K −m2

π. Here mK and mπ denote the LO kaon and pion masses, respectively.
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When higher order corrections are taken into account, the LO diagonalized η and η′

will get mixed again. Up to the NNLO, a general parametrization of the bilinear terms

involving the η and η′ states can be written as

L =
δ1
2
∂µ∂νη∂

µ∂νη +
δ2
2
∂µ∂νη

′∂µ∂νη′ + δ3 ∂µ∂νη∂
µ∂νη′

+
1 + δη

2
∂µη∂

µη +
1 + δη′

2
∂µη

′∂µη′ + δk ∂µη∂
µη′

−
m2

η + δm2
η

2
η η −

m2
η′
+ δm2

η′

2
η′η′ − δm2 η η′ , (2.11)

where the δ′is contain the NLO and NNLO corrections. Here these operators must be

understood as the terms of the effective action that provide the pseudoscalar meson self-

energies. The higher-derivative terms δj=1,2,3 in the first line of eq. (2.11) are exclusively

contributed by the O(p6) operator C12 in eq. (2.5), which belongs to the NNLO Lagrangian.

The remaining δ′is receive contributions from the NLO operators in eq. (2.4), the NNLO

ones in eq. (2.5) and the one-loop diagrams, which contribute at NNLO. Their explicit

expressions can be found in appendix A.

At leading order, there is only the mass mixing term from eq. (2.1) whereas at NLO and

NNLO one has to deal in addition with the kinematic mixing terms in eq. (2.11), apart from

the mass mixing. The physical states of η and η′ can be obtained from the perturbative-

expansion (δ-expansion) in three steps: as a first step, we eliminate the higher-derivative

terms through the field redefinitions of η and η′; then we transform and rescale the fields

resulting from the first step in order to write the kinematic terms in the canonical form; after

the preceding two steps, there is only the mass mixing term left, which is straightforward

to handle.

In the first step, we make the following field redefinitions for the η and η′ states

η → η + α1�η + α2�η
′ , η′ → η′ + α2�η + α3�η

′ , (2.12)

with the d’Alembert operator � ≡ ∂µ∂
µ. After some algebra manipulations, it is straight-

forward to obtain

α1 = −δ1
2
, α2 = −δ3

2
, α3 = −δ2

2
, (2.13)

so that the three higher-derivative terms in eq. (2.11) will be eliminated. Notice that the

α1,2,3 are NNLO, i.e., O(δ2). Substituting the field redefinitions from eq. (2.12) into the

general mixing structure in eq. (2.11) and keeping the terms up to NNLO, the resulting

bilinear Lagrangian reads

L =
1 + δη +m2

ηδ1

2
∂µη∂

µη +
1 + δη′ +m2

η′
δ2

2
∂µη

′∂µη′ +

[
δk +

δ3
2
(m2

η +m2
η′)

]
∂µη∂

µη′

−
m2

η + δm2
η

2
η η −

m2
η′
+ δm2

η′

2
η′η′ − δm2 η η′ . (2.14)

In the second step, we need to eliminate the kinematic mixing term in eq. (2.14),

and then to rescale the fields to have them in the canonical forms. This can be done
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perturbatively. In the final step, we take care of the mass mixing term. The last two steps

can be achieved through the following field transformations

(
η

η′

)
=

(
cos θδ − sin θδ
sin θδ cos θδ

)(
1 + δA δB
δB 1 + δC

)(
η

η′

)
, (2.15)

with η, η′ the physical states and

δA =
δη
2

+
m2

η δ1

2
−
δ2η,NLO

8
−
δ2k,NLO

8
,

δB =
δk
2

+
δ3
4
(m2

η +m2
η′)−

δη,NLOδk,NLO

8
− δη′,NLOδk,NLO

8
,

δC =
δη′

2
+
m2

η′
δ2

2
−
δ2
η′,NLO

8
−
δ2k,NLO

8
, (2.16)

where δη,NLO, δη′,NLO, δk,NLO stand for the NLO parts of the three quantities respectively.

We point out that δη, δη′ , δk receive both NLO and NNLO contributions, while δ1, δ2, δ3 are

only contributed by the NNLO effect, which is the C12 operator in eq. (2.5). Comparing

with the NLO results in eq. (15) from our previous paper [45], we have generalized the

expression to the NNLO case in the present eq. (2.15). Another way to treat the mixing

of pseudoscalar mesons in χPT was also previously studied in ref. [48] and applied to the

π0-η case up to the two-loop level.

In the practical calculation, it is more often to use the inverse of the relations in

eq. (2.15), where the perturbative expansion leads to

(
η

η′

)
=

(
1 + δ′A δ′B
δ′B 1 + δ′C

)(
cos θδ sin θδ
− sin θδ cos θδ

)(
η

η′

)
, (2.17)

with

δ′A = −δη
2

−
m2

η δ1

2
+

3δ2η,NLO

8
+

3δ2k,NLO

8
,

δ′B = −δk
2

− δ3
4
(m2

η +m2
η′) +

3δη,NLOδk,NLO

8
+

3δη′,NLOδk,NLO

8
,

δ′C = −δη
′

2
−
m2

η′
δ2

2
+

3δ2
η′,NLO

8
+

3δ2k,NLO

8
. (2.18)

The θδ appearing in eqs. (2.15) and (2.17) is determined through

tan θδ =
δ̂m2

m2
η′ − m̂2

η

, (2.19)
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with

δ̂m2 = δm2 − 1

2

[
δk +

δ3
2
(m2

η +m2
η′)

](
m2

η +m2
η′

)
+

1

8
δk,NLOδη,NLO

(
5m2

η + 3m2
η′

)

−1

2
δk,NLO

(
δm2

η ,NLO + δm2
η′
,NLO

)
+

1

8
δk,NLOδη′,NLO

(
3m2

η + 5m2
η′

)

−1

2
δm2,NLO

(
δη,NLO + δη′,NLO

)
,

m̂2
η = m2

η + δm2
η
−m2

η

(
δη +m2

ηδ1
)
+m2

ηδ
2
η,NLO +

3

4
m2

ηδ
2
k,NLO +

1

4
m2

η′δ
2
k,NLO

−δk,NLOδm2,NLO − δη,NLOδm2
η ,NLO ,

m̂2
η′ = m2

η′ + δm2
η′
−m2

η′

(
δη′ +m2

η′δ2

)
+m2

η′δ
2
η′,NLO +

1

4
m2

ηδ
2
k,NLO +

3

4
m2

η′δ
2
k,NLO

−δk,NLOδm2,NLO − δη′,NLOδm2
η′
,NLO ,

2m2
η = m̂2

η + m̂2
η′ −

√(
m̂2

η − m̂2
η′

)2
+ 4δ̂2

m2 ,

2m2
η′ = m̂2

η + m̂2
η′ +

√(
m̂2

η − m̂2
η′

)2
+ 4δ̂2

m2 , (2.20)

where δi,NLO stand for the NLO parts of δi.

In the phenomenological discussions, the popular two-mixing-angle parametrization in

the singlet-octet basis [10, 11] takes the form

(
η

η′

)
=

1

F

(
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

)(
η8
η0

)
. (2.21)

Combining eqs. (2.7) and (2.15), it is straightforward to derive the relations between

the four parameters in the two-mixing-angle scheme in eq. (2.21) and the χPT LECs:

F 2
8 = F 2

{[
cos(θ + θδ) + δB sin(θ − θδ) + δA cos θ cos θδ − δC sin θ sin θδ

]2

+
[
sin(θ + θδ) + δB cos(θ − θδ) + δA cos θ sin θδ + δC sin θ cos θδ

]2
}
,

F 2
0 = F 2

{[
− sin(θ + θδ) + δB cos(θ − θδ)− δA sin θ cos θδ − δC cos θ sin θδ

]2

+
[
cos(θ + θδ)− δB sin(θ − θδ)− δA sin θ sin θδ + δC cos θ cos θδ

]2
}
,

tan θ8 =
sin(θ + θδ) + δB cos(θ − θδ) + δA cos θ sin θδ + δC sin θ cos θδ
cos(θ + θδ) + δB sin(θ − θδ) + δA cos θ cos θδ − δC sin θ sin θδ

,

tan θ0 = −− sin(θ + θδ) + δB cos(θ − θδ)− δA sin θ cos θδ − δC cos θ sin θδ
cos(θ + θδ)− δB sin(θ − θδ)− δA sin θ sin θδ + δC cos θ cos θδ

, (2.22)

where the χPT LECs are implicitly included in θ, θδ, δA, δB and δC . Since θδ, δA, δB, δC ∼
O(δ) or O(δ2), at LO one has F8 = F0 = F and one mixing-angle θ8 = θ0 = θ.
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The relations between the physical η, η′ states and the quark-flavor basis is commonly

parametrized as

(
η

η′

)
=

1

F

(
Fq cosφq −Fs sinφs
Fq sinφq Fs cosφs

)(
ηq
ηs

)
. (2.23)

Combining eqs. (2.6), (2.7) and (2.15), it is straightforward to obtain the parameters in

eq. (2.23):

F 2
q =

2F 2
0 + F 2

8 − 2
√
2F0F8 sin(θ0 − θ8)

3
,

F 2
s =

F 2
0 + 2F 2

8 + 2
√
2F0F8 sin(θ0 − θ8)

3
,

tanφq =

√
2F8 cos θ8 + F0 sin θ0√
2F0 sin θ0 − F8 cos θ8

,

tanφs =

√
2F0 cos θ0 + F8 sin θ8√
2F8 sin θ8 − F0 cos θ0

, (2.24)

where at LO in the δ-expansion one has Fq = Fs = F and φq = φs = θid− θ, with the ideal

mixing θid = − arcsin
√
2/3.

2.3 Insights into previous studies of the η-η′ mixing

In the previous subsection we have performed the full computation of the mixing up to

NNLO in the δ expansion. It is interesting to make a brief summary of the assumptions

made in previous works, where plenty of mixing formalisms have been proposed to address

the η-η′ system [14, 30, 42–45, 49, 50]. In ref. [49], only the lowest order in the quark

masses and 1/NC , i.e. the LO contributions in the δ expansion, were taken into account.

Even though it provided a reasonable first approximation, it failed to give an accurate

description of the experimentally observed mass ratio m2
η/m

2
η′ . The O(p2) contributions

were studied up to NLO in 1/NC in ref. [50] (including the terms in eq. (2.1) and Λ1 and

Λ2 in eq. (2.4)), perfectly explaining the experimental value of m2
η/m

2
η′ . However, it turned

out to be inadequate to give a proper value for the η-η′ mixing angle. On the other hand,

the authors in refs. [42–44] went up to NLO in the p2 expansion but keeping just the LO in

1/NC (including the terms in eq. (2.1) and L5 and L8 in eq. (2.4)). Both the η-η′ mixing

angle and the ratio FK/Fπ were qualitatively reproduced in this case. The full set of NLO

contributions in the δ-expansion (i.e., the effects up to NLO both in 1/NC and p2) was

analyzed in ref. [14], together with the mixing angle and the π,K, η and η′ axial-vector

decay constants. In ref. [45], the contributions from the tree-level resonance exchanges and

partial NNLO effects, e.g. the loop diagrams, were considered for the masses of η and η′.

In this work, we generalize the discussions up to the full NNLO study in the δ-expansion

and confront our theoretical expressions with the very recent lattice simulation data and

the phenomenological inputs from the two-mixing-angle scheme.

Reference [30] introduced a quark-model inspired approach to the η-η′ mixing, which is

commonly referred as the FKS formalism and used in many phenomenological analyses [51].
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The essence of the FKS formalism is the assumption that the axial decay constants in the

quark-flavor basis takes the same mixing pattern as the states

(
F q
η F s

η

F q
η′ F

s
η′

)
=

(
cosφ − sinφ

sinφ cosφ

)(
Fq 0

0 Fs

)
, (2.25)

where the decay constants are defined as the matrix elements of the axial currents

〈0|Aa
µ(0)|P (k)〉 = i

√
2F a

Pkµ , (a = q, s;P = η, η′) ,

Aq
µ =

1√
2

(
ūγµγ5u+ d̄γµγ5d

)
, As

µ = s̄γµγ5s . (2.26)

From another point of view, the pattern of eq. (2.25) employed in the FKS formalism

relies on the assumption that there is no mixing between the decay constants of the flavor

states ηq and ηs. In the χPT framework, the physical masses and decay constants can be

obtained from the bilinear parts of nonet fields in the effective action with the correlation

function of two axial currents. Since the correlation function is the second derivative with

respect to the axial-vector external source aµ, and aµ always appears in the Lagrangian

together with the partial derivative ∂µ as shown in eq. (2.2), the absence of the mixing

for the ηq and ηs decay constants in eq. (2.25) implies that there are no kinematic mixing

terms for the quark-flavor states ηq and ηs in the FKS formalism. In fact, the assumption

in ref. [42] is in accord with the FKS formalism. This can be simply demonstrated by

expanding the chiral operators considered in refs. [42, 43], i.e. those in eq. (2.1) and L5, L8

in eq. (2.4), up to quadratic terms in ηq and ηs.
1 No kinematic mixing terms for the ηq and

ηs fields result from these chiral operators. This also confirms the finding in ref. [44] that

only when the NLO of 1/NC operator is excluded the FKS formalism is recovered with

their chiral Lagrangian calculations.

Since general terms up to NNLO in δ expansion are kept in our discussion, unlike in

the previous works [14, 42–45, 49, 50] where different assumptions, such as the preference

of the higher order p2 and 1/NC effects, are made, it is important and interesting for us to

justify these assumptions in later discussions.

2.4 Masses and decay constants of pion and kaon up to NNLO in δ expansion

The NLO expression of the pion decay constant in the δ expansion reads

Fπ = F

(
1 + 4L5

m2
π

F 2

)
, (2.27)

or, up to the precision considered, one can also use the physical Fπ in the expression inside

brackets,

Fπ = F

(
1 + 4L5

m2
π

F 2
π

)
. (2.28)

1Our L5 and L8 operators correspond to the Λ2 and Λ1 terms in refs. [42–44], respectively. The Λ term

in the previous references corresponds to our Λ2 operator in eq. (2.4). The Λ term, though introduced from

the beginning in these references, is dropped in their later discussions, since it is 1/NC suppressed.
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The differences between eqs. (2.27) and (2.28) are NNLO effects. We mention that at a

given order there is always ambiguity in choosing the renormalized quantities in the higher

order expressions. In contrast, there is formally no ambiguity in the expressions in terms

of the quantity F , which is the pNGB axial decay constant in the chiral and large NC

limits. For example, if we limit our analysis up to NLO, formally, it is equally good to use

Fπ or FK in the denominators of the NLO part in eq. (2.28), since the difference is beyond

the NLO precision. A typical solution in the chiral study is to express the quantities, such

as mπ, Fπ,mK , FK , in terms of the renormalized Fπ in the higher order corrections, as

done in the two-loop calculations in SU(3) χPT [52]. We follow this rule throughout the

current work to estimate the uncertainty due to the truncation of the δ expansion when

one works at a given order in perturbation theory. We mention that the notation of m2
π in

the above equations stands for the renormalized pion mass squared and the leading order

mass squared is denoted by m2
π. Notice the LO pion mass squared m2

π is the one that is

linear in the quark masses. The expressions relating m2
π and m2

π will be discussed below.

Similarly up to NNLO, we can either use F or Fπ in the NLO and NNLO expressions

for other quantities such as FK and the δi’s in eq. (2.11). In the NNLO expressions, the

difference between using F or Fπ in the denominators is a next-to-next-to-next-to-leading

order effect (N3LO). Since in this work we study lattice simulation data up to pion mass

of 500MeV, the convergence of the chiral series is expected to be much slower than that in

the physical case with mπ = 135MeV. Therefore it is a priori not trivial to judge whether

the two approaches–using 1/F 2 and 1/F 2
π– are numerically equivalent or the lattice data

prefer one of them. Indeed in ref. [53], it is already noticed that to use F or Fπ could cause

some noticeable effects. We will use the difference between both approaches as an estimate

of the truncation error at a given order in δ.

We take the pion decay constant as an example to illustrate the differences of using

F and Fπ in the higher order expressions. Using F in the higher order corrections, its

expression reads

Fπ = F

[
1 + 4L5

m2
π

F 2
+ 4L4

m2
π + 2m2

K

F 2
+ (24L2

5 − 64L5L8)
m4

π

F 4
+ (8C14 + 8C17)

m4
π

F 2

+
A0(m

2
π)

16π2F 2
+
A0(m

2
K)

32π2F 2

]
. (2.29)

The one-point loop function A0(m
2) is calculated in dimensional regularization within the

MS − 1 scheme [1, 2] and it reads

A0(m
2) = −m2 ln

m2

µ2
, (2.30)

with the renormalization scale µ fixed at 770MeV throughout. Using eq. (2.27) to replace

F by Fπ in the NLO and NNLO corrections, the resulting form is

Fπ = F

[
1 + 4L5

m2
π

F 2
π

+ 4L4
m2

π + 2m2
K

F 2
π

+ (56L2
5 − 64L5L8)

m4
π

F 4
π

+ (8C14 + 8C17)
m4

π

F 2
π

+
A0(m

2
π)

16π2F 2
π

+
A0(m

2
K)

32π2F 2
π

]
. (2.31)
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In the δ expansion, the expressions for a physical quantity with F or Fπ in the higher order

chiral corrections differ only for the L5Lj=5,8 and L5Λj=1,2 terms, since the differences by

replacing F by Fπ are originated from the NLO expressions of Fπ in eq. (2.28) and we only

retain terms up to NNLO in this work. It is clear that the difference between eqs. (2.29)

and (2.31) is the L2
5 term. Notice that in the δ expansion scheme, the terms like L5L4 are

N3LO and will be dropped throughout the article.

The corresponding expression for the kaon decay constant when one uses F to express

the NLO and NNLO corrections reads

FK = F

[
1+4L5

m2
K

F 2
+ 4L4

m2
π+ 2m2

K

F 2
+ (24L2

5−64L5L8)
m4

K

F 4
+ 8C14

2m4
K−2m2

Km
2
π+m

4
π

F 2

+8C17
m2

π(2m
2
K−m2

π)

F 2
+

3A0(m
2
π)

128π2F 2
+

3A0(m
2
K)

64π2F 2
+

3c2θA0(m
2
η)

128π2F 2
+

3s2θA0(m
2
η′)

128π2F 2

]
. (2.32)

On the other hand, expressing the NLO and NNLO contributions in terms of Fπ yields

FK = F

[
1 + 4L5

m2
K

F 2
π

+ 4L4
m2

π + 2m2
K

F 2
π

+ 8L2
5

3m4
K + 4m2

Km
2
π

F 4
π

− 64L5L8
m4

K

F 4
π

+8C14
2m4

K − 2m2
Km

2
π +m4

π

F 2
π

+ 8C17
m2

π(2m
2
K −m2

π)

F 2
π

+
3A0(m

2
π)

128π2F 2
π

+
3A0(m

2
K)

64π2F 2
π

+
3c2θA0(m

2
η)

128π2F 2
π

+
3s2θA0(m

2
η′)

128π2F 2
π

]
. (2.33)

The expanded expression for the ratio of FK/Fπ in terms of F up to NNLO in δ

expansion, takes the form

FK

Fπ
= 1 + 4L5

m2
K −m2

π

F 2
+ 8L2

5

3m4
K − 2m2

Km
2
π −m4

π

F 4
+ 64L5L8

m4
π −m4

K

F 4

+16C14
m4

K −m2
Km

2
π

F 2
+ 16C17

m2
Km

2
π −m4

π

F 2

−5A0(m
2
π)

128π2F 2
+
A0(m

2
K)

64π2F 2
+

3c2θA0(m
2
η)

128π2F 2
+

3s2θA0(m
2
η′)

128π2F 2
. (2.34)

When expressing the previous result in terms of Fπ, it reads

FK

Fπ
= 1 + 4L5

m2
K −m2

π

F 2
π

+ 8L2
5

3m4
K + 2m2

Km
2
π − 5m4

π

F 4
π

+ 64L5L8
m4

π −m4
K

F 4
π

+16C14
m4

K −m2
Km

2
π

F 2
π

+ 16C17
m2

Km
2
π −m4

π

F 2
π

−5A0(m
2
π)

128π2F 2
π

+
A0(m

2
K)

64π2F 2
π

+
3c2θA0(m

2
η)

128π2F 2
π

+
3s2θA0(m

2
η′)

128π2F 2
π

, (2.35)

which differs from eq. (2.34) in the L2
5 term.

The pion squared mass up to NNLO is given by

m2
π = m2

π +m2,NLO
π +m2,NNLO

π , (2.36)
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with

m2
π = 2Bm̂ , (2.37)

m2,NLO
π =

8(2L8 − L5)m
4
π

F 2
, (2.38)

m2,NNLO
π =

8(2L6 − L4)m
2
π(2m

2
K +m2

π)

F 2
− 64(L2

5 − 6L5L8 + 8L2
8)m

6
π

F 4

−16(2C12 + C14 + C17 − 3C19 − 2C31)m
6
π

F 2
+
m2

π(c
2
θ − 2

√
2cθsθ + 2s2θ)A0(m

2
η)

96π2F 2

+
m2

π(2c
2
θ + 2

√
2cθsθ + s2θ)A0(m

2
η
′ )

96π2F 2
− m2

πA0(m
2
π)

32π2F 2
. (2.39)

When expressing the renormalized mπ in terms of Fπ, the only differences are the L5L8

and L2
5 terms in eq. (2.39) and the other parts are the same as in eq. (2.36) with the

explicit replacement of F by Fπ in eq. (2.27). Therefore we only give the different parts

for simplicity when expressing in terms of Fπ and they read

m
2,(Fπ), L5L8 ,L

2
5

π =
128(4L5L8 − L2

5)m
6
π

F 4
π

. (2.40)

The mass squared for kaon up to NNLO is provided by

m2
K = m2

K +m2,NLO
K +m2,NNLO

K (2.41)

with

m2
K = B(m̂+ms) , (2.42)

m2,NLO
K =

8(2L8 − L5)m
4
K

F 2
, (2.43)

m2,NLO
K =

8(2L6 − L4)m
2
K(2m2

K +m2
π)

F 2
− 64(L2

5 − 6L5L8 + 8L2
8)m

6
K

F 4

−32C12m
6
K

F 4
+

32C31m
6
K

F 2
+

16C17m
2
Km

2
π(−2m2

K +m2
π)

F 2

−16C14m
2
K(2m4

K − 2m2
Km

2
π +m4

π)

F 2
+

48C19m
2
K(2m4

K − 2m2
Km

2
π +m4

π)

F 2

−
[c2θ(3m

2
η +m2

π) + 2
√
2cθsθ(−2m2

K +m2
π)− 4m2

Ks
2
θ]A0(m

2
η)

192π2F 2

−
[−4c2θm

2
K + 2

√
2cθsθ(2m

2
K −m2

π) + (3m2
η
′ +m2

π)s
2
θ]A0(m

2
η
′ )

192π2F 2
. (2.44)

When expressing eq. (2.41) in terms of Fπ, the differences are the L5L8 and L2
5 terms in

eq. (2.44) and the new expressions are

m
2,(Fπ), L5L8 ,L

2
5

K = −64L2
5m

4
K(m2

K +m2
π)

F 4
π

+
128L5L8m

4
K(3m2

K +m2
π)

F 4
π

. (2.45)

Notice that the masses of pion and kaon appearing in NLO and NNLO parts in the above

equations correspond to the renormalized quantities, instead of their LO expressions. In

addition, this gives the quark mass ratio relation ms/m̂ = 2m2
K/m

2
π − 1.
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When performing the chiral extrapolation of the lattice data, instead of the renormal-

ized m2
K as in the previous equations, it is convenient to use the LO kaon mass squared in

the higher order corrections. In this way, we do not need to iteratively solve eq. (2.41) in

order to give the value of mK for a given mπ. The result in terms of mK in the NLO and

NNLO expressions becomes

m2,Lat
K = m2

K +m2,Lat−NLO
K +m2,Lat−NNLO

K , (2.46)

with

m2,Lat−NLO
K =

8(2L8 − L5)m
4
K

F 2
, (2.47)

m2,Lat−NNLO
K =

8(2L6−L4)m
2
K(2m2

K+m2
π)

F 2
+
64(L2

5−2L5L8)m
6
K

F 4
− 32C12m

6
K

F 4
+
32C31m

6
K

F 2

+
16C17m

2
Km

2
π(−2m2

K +m2
π)

F 2
− 16C14m

2
K(2m4

K − 2m2
Km

2
π +m4

π)

F 2

+
48C19m

2
K(2m4

K − 2m2
Km

2
π +m4

π)

F 2

−
[c2θ(3m

2
η +m2

π) + 2
√
2cθsθ(−2m2

K +m2
π)− 4m2

Ks
2
θ]A0(m

2
η)

192π2F 2

−
[−4c2θm

2
K + 2

√
2cθsθ(2m

2
K −m2

π) + (3m2
η
′ +m2

π)s
2
θ]A0(m

2
η
′ )

192π2F 2
. (2.48)

When expressing eq. (2.46) in terms of Fπ, the differences are the L5L8 and L2
5 terms in

eq. (2.48) and the new expressions are

m
2,Lat,(Fπ), L5L8 ,L

2
5

K =
64L5(L5 − 2L8)m

4
K(m2

K −m2
π)

F 4
π

. (2.49)

When confronting with the lattice data, we only consider the simulated points with

the physical strange-quark mass, i.e. the lattice ensembles that when extrapolating to the

physical pion masses lead simultaneously to physical kaon masses. In this case, we can

express the LO kaon mass squared as

m2
K=B(mPhy

s + m̂) = B(mPhy
s +m̂Phy)−Bm̂Phy+Bm̂ = m2,Phy

K − m2,Phy
π

2
+
m2

π

2
, (2.50)

where m2,Phy
K and m2,Phy

π can be obtained through eqs. (2.36) and (2.41) by substituting

the physical masses of π,K, η, η′ in the NLO and NNLO expressions. For m2
π, which varies

in the lattice simulation, we can extract its value by using eq. (2.36). In this case, mπ in

eq. (2.36) takes the value from lattice simulation, and mK ,mη,mη′ , which only appear in

the NNLO part, can be approximated by their LO expressions.

In the above discussions, we have distinguished the situations of using 1/F 2 and 1/F 2
π

in the higher order corrections for various observables. Similarly, we can also generalize

the discussions by replacing the renormalized masses (mπ and mK) with the LO ones (mπ

and mK) in the higher order corrections. We take the observables Fπ and FK as examples

to illustrate the differences. The renormalized mπ and mK have been used in eqs. (2.29)
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and (2.32) for Fπ and FK with 1/F 2 in the higher order terms, respectively. After replacing

mπ and mK in eqs. (2.29) and (2.32) with their expressions in terms of the LO masses mπ

and mK through eqs. (2.36) and (2.41) respectively, the corresponding expressions are

found to be

Fπ = F

[
1+4L5

m2
π

F 2
+4L4

m2
π+2m2

K

F 2
−8L2

5

m4
π

F 4
+(8C14+8C17)

m4
π

F 2
+
A0(m

2
π)

16π2F 2
+
A0(m

2
K)

32π2F 2

]
,

(2.51)

FK = F

[
1 + 4L5

m2
K

F 2
+ 4L4

m2
π + 2m2

K

F 2
− 8L2

5

m4
K

F 4
+ 8C14

2m4
K − 2m2

Km
2
π +m4

π

F 2

+8C17
m2

π(2m
2
K−m2

π)

F 2
+

3A0(m
2
π)

128π2F 2
+
3A0(m

2
K)

64π2F 2
+

3c2θA0(m
2
η)

128π2F 2
+
3s2θA0(m

2
η′)

128π2F 2

]
. (2.52)

As in the discussion of 1/F 2 versus 1/F 2
π up to the NNLO precision, the expressions for

a specific observable by using the renormalized masses mπ,mK and the LO mπ,mK only

differ in the terms like LiLj , being Li and Lj the NLO LECs in eq. (2.4). This can be

clearly seen when comparing eqs. (2.29) and (2.51). E.g. the differences caused by using the

renormalized masses and the LO ones are the L2
5 and L5L8 terms, apart from the explicit

replacement of mπ and mK by mπ and mK respectively. Similar rules are also applied to

eqs. (2.32) and (2.52).

To replace mπ,mK by mπ and mK in the NLO and NNLO corrections in eq. (2.36),

the only changes happen for the LiLj terms and the corresponding new expressions read

m
2,(mπ ,mK ,F ), L5L8 ,L

2
5 ,L

2
8

π =
64L5(L5 − 2L8)m

6
π

F 4
. (2.53)

In principle, we should also present the results expressed with the LO masses mπ,mK

and the renormalized decay constants Fπ, FK , which can be straightforwardly obtained

by substituting the relations in eqs. (2.36) and (2.41) into the corresponding observables.

We consider the expressions given in terms of the renormalized masses and 1/F 2 as our

preferred ones in this work. The reason to choose the renormalized masses is for practical

purpose, since in lattice simulations the different observables are typically given as functions

of the renormalized m2
π. Also most of the chiral studies choose to express the quantities

with the renormalized masses in the higher order corrections, such as in refs. [52, 53].

Following this rule we consider the results with the renormalized masses and 1/F 2
π as an

estimate of systematic errors due to the truncation of the δ expansion when one works at

a given order in perturbation theory. While for the case with the LO masses, we shall also

comment the results in the following numerical discussions.

3 Phenomenological discussions

The big challenge in the present general discussions on the η-η′ mixing is the determination

of the unknown LECs in eqs. (2.1), (2.4) and (2.5). The recent lattice simulations on the

light pseudoscalar mesons provide us valuable sources to constrain these free parameters.

The considered lattice simulations include themπ dependences of the masses of η, η′ [15–19]
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and kaon [22, 23], and the π,K decay constants [22, 23] and their ratios [24]. Moreover,

relevant phenomenological results and experimental data will be also included to constrain

the LECs.

Since we do not consider the isospin violating effects, we will take the values for the

physical pion and kaon masses in the isospin limit from ref. [54], where the corrections from

the electromagnetic contributions are removed,

mπ = 135.0 MeV , mK = 494.2 MeV . (3.1)

These values will be used in later chiral extrapolations, while for the physical masses of η

and η′ and the decay constants of pion and kaon, we will take their world-average values

from ref. [55].

In order to show the results step by step, we present the discussions in the following

sections split in three parts: we consider fits performed at leading order, next-to-leading

order and next-to-next-to-leading order.

3.1 Leading-order analyses

At leading order, the η-η′ mixing is described by one free parameter, namely the singlet η0
massM0 in eq. (2.1) and the explicit expressions for the masses and mixing angle are given

in eqs. (2.8), (2.9) and (2.10). At this order, the π,K decay constants are degenerate and

given by their chiral and large NC limits, i.e. Fπ = FK = F . Therefore we shall not take

the lattice simulations of the decay constants into account for the LO discussion as they

clearly show the need of higher order corrections for a suitable description. Also at leading

order, F will not enter the masses and mixing angle, as shown in eqs. (2.8), (2.9) and (2.10).

As a result of this, we do not need to distinguish the two situations with F or Fπ discussed

previously in the expressions of different observables. Apart from the lattice simulation

data, we also fit the physical values of the η and η′ masses. Nonetheless, fitting the physical

masses with the experimental precision at the level of several hundred-thousandth is too

ambitious. Since the ultimate goal of the present work is the NNLO study, the ballpark

estimate of our theoretical uncertainty, starting from the N3LO part, should be around

3%. This value is obtained from the general rule that each higher order correction in δ

expansion, either the SU(3)-flavor breaking or the 1/NC effect, is around 30%. In fact,

the estimated three-percent uncertainty is also similar to the typical error bars reported

in many lattice simulations, in the range from 3 − 10% [15–19]. Consistently, we assign a

1% uncertainty to the physical values of mη and mη′ in the fits.

The value of the singlet mass M0 from the LO fit is

M0 = (835.7± 7.5)MeV . (3.2)

The physical masses for the η, η′ and their LO mixing angle θ from the fit are found to be

mη = (496.4± 1.3)MeV , mη′ = (969.8± 5.8)MeV , θ = −18.9◦ ± 0.3◦ . (3.3)

The resulting plots can be seen in figure 1. We verify that if the physical masses are

excluded in the fit, M0 = 813 ± 11MeV results. If we only include the physical masses

– 16 –



J
H
E
P
0
6
(
2
0
1
5
)
1
7
5

m
as
s/
G
ev

m 2/Gev2

 ETMC
 UKQCD
 RBC/UKQCD
 HSC
 EXP

Figure 1. The masses of η and η′ from the LO fit. The left most two points correspond to the

physical masses. The remaining lattice simulation data are taken from refs. [18, 19] (ETMC), [17]

(UKQCD), [16] (RBC/UKQCD), [15] (HSC), where we only take into account the simulation points

with mπ < 500MeV. The shade area surrounding each curve stands for the statistical uncertainty

from the fit.

and exclude the lattice simulation data in the fit, M0 = 859± 11MeV is obtained. These

determinations of M0 lie within the broad range summarized in ref. [51] and are quite

close with the commonly used values of M0 = 850MeV [51]. Taking into account the large

uncertainties of the lattice simulation data, specially for mη′ , and the concise formalism of

the LO mixing, it is impressive that the lattice simulation data can already be qualitatively

described with the LO analysis, as shown in figure 1. This also indicates that the higher

order mixing effects can only give moderate corrections to the masses of η and η′.

Nevertheless, in order to describe the lattice data more accurately, specially the η

masses, the chiral corrections beyond the leading order are needed. For the physical

masses, it has also been shown that the LO description fails to explain the mass ratio

of η and η′ accurately enough [49]. Therefore it is essential to generalize the discussions to

NLO and NNLO in order to achieve a precise description both for lattice simulations and

physical data.

3.2 Next-to-leading order analyses

At next-to-leading order, in addition to the parameter M0 at leading order, there are five

additional free parameters: the decay constant F at chiral and large NC limits, and the

four NLO LECs L5, L8, Λ1 and Λ2 in eq. (2.4). At this order, as well as at next-to-
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next-to-leading order, one can rewrite the chiral expansion of the observables in various

equivalent ways up to the perturbative order in δ under consideration. In the following

discussion, we will perform two types of fits: one using F in the theoretical NLO and NNLO

expressions and the other employing Fπ, as discussed in section 2.4. Since the differences of

the theoretical expressions used in the two types of fits are beyond the considered precision,

the variances of the outputs from the two fits can be considered as systematic errors from

the theoretical models by neglecting higher order contributions. In the following, we will

explicitly present the fit results by using F in the theoretical expressions, which is the

most straightforward option, as discussed in section 2.4. The outputs of the fits with the

theoretical formulas expressed in terms of Fπ will be used to estimate the systematic errors:

the difference between the central values of the two types of fits will be used to estimate

the truncation uncertainty due to working just up to a given order in the δ-expansion,

providing the second error for each quantity in the following tables.

In refs. [42–44], it is argued that at each chiral order, the leading NC effects are

dominant, or in other words that the Λ1 and Λ2 terms are assumed to be much less

irrelevant than the L5 and L8 terms in the NLO δ expansion. This assumption has been

more or less confirmed when focusing on the masses of η, η′ and the LO mixing angle

at the physical points [42–44]. In ref. [45], the local higher order LECs were estimated

by the tree-level resonance exchanges and it was found that with those LECs Λ2 seems

to be more important than Λ1 when focusing on the physical masses for η and η′. It is

interesting to check how these assumptions work when including the lattice simulations and

the phenomenological results of the two-mixing-angle parameters, which are not considered

in refs. [42–45]. Different sets of fits to the lattice data and phenomenological inputs from

the two-mixing-angle scheme are performed either by fixing Λi=1,2 to zero or releasing their

values, in order to reexamine the assumptions. Interestingly we do not find qualitative

changes between the fits with fixed Λi=1,2 = 0 and the ones with free values for these

parameters. This tells us that indeed the Λ1 and Λ2 terms do not significantly improve the

fit results, even after taking into account the lattice simulations. Nevertheless, we find that

these two terms are quite important to reproduce the phenomenological mixing angles θ0
and θ8 in the fits whereM0 is fixed at its LO value. IfM0 is released in the fits we find that

including Λ1 and Λ2 improves the descriptions of mη′ from lattice simulations. Therefore,

we will not further discuss fits with Λ1 and Λ2 set to zero in the following. Instead, we

focus on the results given in table 1 with all the four NLO LECs in the fits, namely L5,

L8, Λ1 and Λ2 in eq. (2.4).

For the parameter M0, we take two strategies to estimate its value in NLO analysis.

In one of them we fix M0 = 835.7MeV from its LO determination (NLOFit-A) and in the

other case we free its value for the NLO fit (NLOFit-B). These two NLO fits are given in

table 1. The first error bar for each fitted parameter corresponds to the statistical one from

the fits and the second error bar is estimated from the variation of the fits between those

using F and Fπ in the NLO (and later also NNLO) theoretical expressions. From the two

fits shown in table 1, one can see that releasingM0 in the fits barely changes the fit quality

with respect to the cases when its value is fixed, although there are slight variations in the

determinations of M0 and Λ2.
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Concerning the results of the LECs in table 1, the resulting values for F from the two

fits are quite compatible and close to the physical pion decay constant. For Λ1 and Λ2,

their values are poorly known in literature and it is helpful to compare our values with the

following estimate for their ranges: we take the LO determination M0 = 835.7MeV, and

we then separately include the Λ1 and Λ2 terms in the η-η′ mixing and vary their values

to obtain new results for mη and mη′ with the physical mπ. Since the Λ1 and Λ2 terms are

NLO 1/NC effects, it is reasonable to assume that their corrections to m2
η or m2

η′ should be

at most around 30% of the LO results. In this way we can set up conservative and rough

estimates for the ranges of Λ1 and Λ2, which are found to be

|Λ1| < 0.4 , |Λ2| < 0.7 . (3.4)

The resulting magnitudes of Λ1 in our fits are tiny and consistent with zero, as shown

in table 1. For the parameter Λ2, our determinations lie within the ranges estimated in

eq. (3.4). Its value, specially the one from NLOFit-A, is close to the one used in ref. [56],

where the mixing was discussed at next-to-leading order. However the determinations for

Λ2 in table 1 become much more precise than those given in refs. [45, 47], where the lattice

simulations for mη and mη′ are not included, indicating the usefulness of incorporating

the lattice data in the U(3) χPT study. Our determinations of L5 and L8 are in good

agreement with the leading NC predictions from resonance chiral theory [57], the SU(3)

one-loop results in refs. [1, 2] and the one-loop resonance chiral theory determination for

L8 [58, 59]. But the values here are clearly larger than those from the recent two-loop

determinations [26, 27], the results from Kπ scattering in the scalar channels [60], and the

one-loop resonance chiral theory estimates for L5 [29]. The discrepancies of L5 and L8,

comparing with the recent two-loop determinations [26, 27], can be eliminated once the

O(p6) LECs are taken into account, as we will show in the NNLO discussion.

The values of the parameters in the two-mixing-angle scheme and the mass ratio of

strange and up/down quarks resulting from the fits are given in table 2. Similarly, the

first error bar for each quantity is the statistical error and the second one corresponds to

the systematic error, which is obtained in the same way as the one in table 1. Notice that

these inputs have already been satisfactorily reproduced in NLO analyses.

The other quantities in the fits are presented in figures 2, 3, 4 and 5, together with the

lattice simulation data and the experimental inputs. We find that the final outputs from

NLOFit-A and NLOFit-B are quite similar, so only the plots from NLOFit-B are given

explicitly. The shaded area surrounding each curve corresponds to the statistical error

band for each quantity. In figure 2, we show the resulting figures from NLOFit-B for the

masses of η and η′. In figures 3, 4 and 5, we show the corresponding plots for m2
K , Fπ,K

and FK/Fπ as functions of m2
π, respectively.

3.3 NLO fits focusing on the masses

In this section, we present another kind of NLO fits by focusing on the masses of η, η′,K

and excluding the decay constants Fπ, FK and their ratio. This kind of discussion is well

motivated, since it is known that the NNLO corrections in δ counting, such as the LEC
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NLOFit-A NLOFit-B

χ2/(d.o.f) 481.2/(76-5) 477.7/(76-6)

M0 (MeV) 835.7* 767.3±31.5±32.3

F (MeV) 92.1±0.2±0.6 92.1±0.2±0.6

103 × L5 1.45±0.02±0.30 1.47±0.02±0.29

103 × L8 1.00±0.07±0.10 1.08±0.05±0.04

Λ1 0.02±0.05±0.06 -0.09±0.08±0.02

Λ2 0.25±0.06±0.02 0.14±0.07±0.03

Table 1. Parameters from the NLO fits. The meaning of different notations to label different fits

are explained in detail in the text. In the row of M0, the columns with 835.7* denote the fit results

by fixing the value of M0 from its LO determination. The first error bar for each parameter is the

statistical one given by the fits and the second one corresponds to the systematic error. The way

to estimate the systematic error is explained in detail in the text.

Parameters Inputs NLOFit-A NLOFit-B

F0 (MeV) 118.0 ±16.5 104.9±2.9±0.3 99.7±3.6±1.6

F8 (MeV) 133.7 ±11.1 113.2±0.3±4.4 113.5±0.3±4.2

θ0 (Degree) -11.0 ±3.0 -7.2±2.1±1.3 -10.6±2.4±0.1

θ8 (Degree) -26.7 ±5.4 -21.5±2.2±3.9 -25.4±2.6±2.3

ms/m̂ 27.5 ±3.0 22.6±0.8±0.6 21.9±0.6±1.2

Fq (MeV) 106.0± 11.1* 94.1±1.9±1.7 90.6±2.4±0.4

Fs (MeV) 143.8± 16.5* 122.3±1.2±5.1 120.9±1.2±5.5

θq (Degree) 34.5± 5.4* 40.4±3.1±3.6 35.0±3.7±1.6

θs (Degree 36.0± 4.2* 39.9±1.7±2.2 37.2±1.8±1.1

Table 2. The outputs from NLO fits. Notice that Fq, Fs, θq and θs are not the phenomenological

inputs in the fits, since they are related to F0, F8, θ0 and θ8 through eq. (2.24). The phenomenolog-

ical values for the mixing parameters are taken from ref. [21] and we triple the error bands here in

order to make a conservative estimate. The input of ms/m̂ is taken from the FLAG working group

in ref. [54] and we assign the 10% error bar as done in ref. [26]. For the error bars of each quantity,

the first one corresponds to the statistic error and the second one is for the systematic error, which

are explained in detail in the text.

L4, are important to simultaneously describe Fπ and FK [26–28]. But this LEC is absent

in NLO study. We have also provided another independent confirmation on this finding in

figure 4, where one can see that the decay constants of pion and kaon are poorly reproduced

at next-to-leading order in δ expansion. When only focusing on the η, η′ and K masses and

the ratio ms/m̂ at next-to-leading order the parameter F can not be resolved, because it

always appears in the form L5/F
2 or L8/F

2. We will fix its value to F = 90MeV, close to

the values given in table 1. For the mixing parameters we consider the mixing angles of θ0
and θ8, but exclude the constants F0 and F8. This is because F0 and F8 are dependent on

the parameter F and should be determined together with Fπ and FK . For simplicity in later

discussion, we call the fits performed in this section as the mass-focusing type throughout.
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Figure 2. The masses of η and η′ from the NLO and NNLO fits. The left most two points corre-

spond to the physical masses. The remaining lattice simulation data are taken from refs. [18, 19]

(ETMC), [17] (UKQCD), [16] (RBC-UKQCD), [15] (HSC), where we only take into account the

points with mπ < 500MeV. The shaded areas around the black solid and red dashed lines stand

for the statistical error bands from the NLOFit-B and NNLOFit-B fits, respectively. The meaning

of notations for different lines are explained in detail in the text.

As in the previous section, we present the fits with F in the denominators of the

theoretical expressions (e.g. eq. (2.27)) and use the fits with Fπ to estimate the systematic

errors. For each case, we perform the fits either by fixing M0 at its LO determination

(NLOFit-C) or by freeing its value (NLOFit-D). The fitted parameters are given in table 3

and the ms/m̂ ratio and mixing angles are given in table 4. The resulting figures from

NLOFit-C and NLOFit-D are quite similar and we explicitly show one set of them, e.g.

NLOFit-D in figures 2 and 3 for the η(
′) and kaon masses, respectively.

A significant difference between the results in table 1 and the mass-focusing fits in

table 3 is that much larger statistical error bars are obtained in the latter case, especially

for the LECs L5 and L8, as they are constrained by fewer data. Likewise, there are large

systematic errors for the values of L5 and L8 in table 3, indicating a larger truncation

uncertainty due to higher orders. We do not see a significant improvement when freeing

the value of M0 in the fits.

3.4 Next-to-next-to-leading order analyses

From the NLO discussions in the previous two sections, we observe that the phenomeno-

logical results and the lattice simulations on η and η′ states can be reasonably reproduced.
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Figure 3. Kaon mass from the NLO and NNLO fits. The lattice simulation data are taken from

RBC and UKQCD [22, 23]. Only the unitary points simulated with the physical strange quark mass

are included. The shaded areas around the black solid and red dashed lines stand for the statistical

error bands from the NLOFit-B and NNLOFit-B fits, respectively. The meaning of notations for

different lines are explained in detail in the text.

NLOFit-C NLOFit-D

χ2/(d.o.f) 168.8/(44-4) 168.7/(44-5)

M0 (MeV) 835.7* 821.5±43.5

103 × L5 1.40±0.58±0.75 1.51±0.68±0.91

103 × L8 0.88±0.29±0.35 0.94±0.34±0.44

Λ1 -0.06±0.04±0.02 -0.09±0.11±0.09

Λ2 0.17±0.19±0.25 0.18±0.19±0.25

Table 3. Parameters from the mass-focusing NLO fits. The meaning of different notations to label

different fits are explained in detail in the text. F is fixed at 90MeV in these fits. The first error

for each parameter corresponds to the statistical one and the second error denotes the systematic

uncertainty. See the text for details.
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Figure 4. Pion and kaon decay constants from the NLO and NNLO fits. The left-most points

for Fπ and FK correspond to the physical experimental inputs. The remaining lattice simulation

data are taken from RBC and UKQCD [22, 23], where we have only included the unitary points

simulated with the physical strange quark mass. The shaded area around each curve stands for the

statistical error band from the fits. The meaning of notations for different lines are explained in

detail in the text.

Parameters Inputs NLOFit-C NLOFit-D

θ0 (Degree) -11.0 ±3.0 -10.6±2.4±3.3 -11.0±3.4±2.1

θ8 (Degree) -26.7 ±5.4 -25.3±2.4±4.4 -26.7±4.5±7.1

ms/m̂ 27.5 ±3.0 23.7±0.3±0.3 23.6±0.5±0.1

θq (Degree) 34.5± 5.4* 35.6±1.4±1.1 34.1±4.3±4.1

θs (Degree) 36.0± 4.2* 37.0±0.9±0.7 36.3±2.2±2.1

Table 4. The outputs from the mass-focusing NLO fits. See table 2 for the phenomenological

inputs. The first error for each quantity corresponds to the statistical one and the second error

denotes the systematic uncertainty. See the text for details.
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Figure 5. Ratio FK/Fπ from the NLO and NNLO fits. The left most point corresponds to the

experimental input. The remaining lattice simulation data are taken from ref. [24] (BMW). The

shaded area around each curve stands for the statistical error band from the fits. The meaning of

notations for different lines are explained in detail in the text.

This is an important improvement comparing with the LO study, since at this order we

only have the conventional one-mixing-angle formalism. The two-mixing-angle formalism

only shows up beyond LO. However, observing mK , Fπ, FK and their ratio in figures 3, 4

and 5, it is clear that the NLO analysis is still inadequate. We need to include higher order

contributions beyond NLO in order to further improve the descriptions. Moreover, the

chiral logarithms predicted by χPT at one loop start at NNLO in the δ expansion. Due to

their importance in other observables, we consider it is relevant to discuss the impact of

these chiral logs.

As in the NLO case, we perform two types of fits, using the NLO and NNLO theoretical

expressions given in terms of F and Fπ for various observables. We explicitly present the fit

results with F in the theoretical expressions and use the alternative fits expressed in terms

of Fπ to estimate the systematic errors, due to working up to NNLO in δ and neglecting

higher orders. According to the Lagrangian in eq. (2.5), eleven additional unknown LECs

appear at NNLO and there will be seventeen parameters in total for the NNLO study. At

the present precision of the lattice simulations and phenomenological inputs, it is impossible

to obtain sensible and stable fits if we free all of the seventeen parameters. Therefore, we

need to take other independent determinations for some of the LECs in order to proceed

the NNLO study.
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We mention that the state-of-art determinations of the O(p4) LECs in SU(3) χPT

suffer uncertainties from the many poorly known O(p6) LECs [26, 27]. Because of the

large number of barely known O(p6) LECs, it is rather difficult to get conclusive results in

the present two-loop SU(3) χPT studies [26, 27]. In the present work, there are five O(p6)

LECs, i.e. C12, C14, C17, C19, C31, in eq. (2.5) and we cannot make precise determinations

of these Ci parameters here. Maybe when taking into account the scattering data, one

can make more stringent constraints on the Ci LECs in U(3) χPT. But this is beyond

the scope of current work. Instead we take the Ci values from the Dyson-Schwinger-like

approach given in ref. [61], where all of the O(p6) Ci at leading NC are predicted. In order

to show the dependences of the final results on the Ci values, we also perform other fits by

using their updated determinations [62]. Like in ref. [26], we multiply the O(p6) Ci from

refs. [61, 62] by a global factor α and consider α as a free parameter in the fits. In this

way, we partially compensate the large uncertainties of the Ci parameters.

For the operators proportional to v
(2)
2 , L18 and L25 in eq. (2.5), they are not present in

SU(3) χPT and purely contribute to the η-η′ mixing, being irrelevant to the pion and kaon

observables. Since the η-η′ mixing parameters have already been satisfactorily described

in the NLO fits, we do not further include v
(2)
2 , L18 and L25 at NNLO study.2 Their

inclusion in the present analysis tend to make the fit unstable. Clearly studying more

η(
′) related observables it would be possible to extract these parameters but this is out of

the reach of the present analysis. A global fit is too unconstrained, being unstable and

producing values of the latter couplings compatible with zero within uncertainties. Then

we are left with three O(N0
C , p

4) operators: L4, L6 and L7, which have corresponding parts

in SU(3) χPT. Since U(3) and SU(3) χPT contain different dynamical degrees of freedom,

the corresponding LECs from the two theories can be different. A typical example is

the L7 parameter in SU(3) χPT, which is demonstrated to be dominated by the singlet η0
state [1, 2]. Since in U(3) χPT the singlet η0 has been explicitly introduced, the value of L7

in this theory can be totally different from L
SU(3)
7 in SU(3) case. While for otherO(p4) LEcs,

such as Li=4,5,6,8, the differences between U(3) and SU(3) χPT are not expected to be as

large as the L7 case, since they do not receive the tree-level contributions from the η0 state.

Another subtlety to take into account is that mη and mη′ appear in the chiral loops

and, at the same time, the final expressions of mη and mη′ depend on the these loops

as well. In order to avoid making the complicated iterative procedure to obtain the η-

η′ mixing parameters, we use the LO formulas for mη and mη′ in the chiral loops. The

differences caused by this simple treatment and the strict iterative procedure are beyond

the NNLO precision in δ expansion, since the chiral loops themselves are already NNLO.

Our simple solution is also justified by the fact that the LO description of mη and mη′ is in

qualitative agreement with the lattice simulation data, as shown in section 3.1. Since the

2Indeed, in this work M0 and v
(2)
2 only enter in the mass Lagrangian in eq. (2.14) explicitly. They

always appear combined in the effective form M2
0, eff = M2

0 + 6v
(2)
2 (2m2

K + m2
π), which is the parameter

we are actually extracting. The contribution v
(2)
2 could be singled out through the study of the η0η0 → ππ

scattering. However we point out that the anti-correlation between M0 and v
(2)
2 in general can not be

recovered in the present numerical fits, due to the presence of far too many parameters in the problem and

the large uncertainties of the lattice simulation data, specially for the determinations of mη′ .
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qualitative agreement between the LO formulas and the lattice simulation data requires

the value of M0 to be around 835.7MeV, as given in eq. (3.2), we fix M0 = 835.7MeV

in the following discussions. This also helps to stabilize the NNLO fits, with its many

free parameters. Other useful criteria to discriminate reasonable fits are the a priori ranges

estimated in eq. (3.4), since the fits with large magnitudes of Λ1 and Λ2 imply unphysically

large corrections to the η-η′ mixing parameters and the breakdown of the δ expansion. In

the following we only present the fit results that are consistent with eq. (3.4).

With all of the above setups, the values of parameters from the NNLO fits are sum-

marized in table 5. The fits labeled by NNLOFit-A and NNLOFit-B correspond to using

different values of the O(p6) LECs. For NNLOFit-A, the Ci values are taken from ref. [61]:

C12 = −0.34 , C14 = −0.83 , C17 = 0.01 , C19 = −0.48 , C31 = −0.63 , (3.5)

which are given in units of 10−3GeV−2. For NNLOFit-B, we take their updated O(p6) Ci

values from ref. [62]:

C12 = −0.34 , C14 = −0.87 , C17 = 0.17 , C19 = −0.27 , C31 = −0.46 , (3.6)

in the same units as before.

It is clear that the parameters resulting from fits with different Ci inputs slightly

differ from one another. We remind that the first error bar for each parameter in table 5

corresponds to the statistical one directly from the fits and the second error bar stands

for the systematic one, which is estimated, as usual, from the variation of the parameter

from the NNLO fits with the theoretical expressions in terms of F and those expressed as

functions of Fπ.

At NNLO, one has the contributions from the chiral loops and the O(p6) LECs, which

make our determinations in table 5 closer to the recent two-loop results of the SU(3) χPT

LECs, comparing with the NLO determinations in table 1. Some typical trends of the values

of parameters from the NLO study in table 1 to the NNLO one in table 5 are summarized

now. The axial-vector decay constant F at leading NC and chiral limit is reduced at

NNLO, which is mainly due to the inclusion of L4. Our conclusion is based on the fact that

strong correlations between F and L4 always appear, which has been confirmed in previous

study [28, 29]. For L5 and L8, we find that their values are obviously reduced compared to

the NLO determination and become closer to the two-loop results in ref. [27]. As mentioned

in the former reference, the discussions in the two-loop SU(3) χPT are sensitive to the value

of the 1/NC suppressed LEC L4. The present study provides an independent determination

for this parameter and for the 1/NC suppressed LEC L6 as well. We mention that our

determinations of L4 have opposite signs with respect to that in ref. [27], which may be

the source of the smaller F obtained in that reference. Notice that the present values of

L4, L5, L6, L8 are rather compatible with the combinations of 2L8−L5 and 2L6−L4 given

in ref. [63]. Fit solutions with larger Λ1 and Λ2 than those in eq. (3.4) (out of the a priori

range (3.4)) are discarded: they are not considered as reasonable physical solutions and

will not be discussed any further. According to the values of α in the two fits, it seems

that our study somewhat prefers smaller magnitudes of the O(p6) LECs than those from
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the Dyson-Schwinger approach given in refs. [61, 62] and also prefers a global change of

sign with respect to eqs. (3.5) and (3.6). We have investigated the impact of fitting α but

releasing one of the O(p6) LECs as an independent parameter (e.g., C14), but no definitive

conclusion could be extracted. These puzzles cannot be resolved here and it is definitely

interesting and necessary to further investigate the values of the O(p6) LECs in the future.

The various plots from the NNLO fits are shown in figure 2 for mη and mη′ , figure 3

for mK , figure 4 for Fπ and FK , and figure 5 for the ratio FK/Fπ, together with the

NLO results and the lattice simulation data and experimental inputs. The shaded area

surrounding each curve represents the statistical error band. The figures from NNLOFit-B

are compatible with those from NNLOFit-A within the uncertainties, so we only show the

results for the former in figures 2, 3, 4 and 5.

In addition, to demonstrate the effects by using the LO masses in the higher order

corrections, instead of the renormalized ones, we explicitly show the results for mη and mη′

expressed in terms of the LO masses mπ,mK and 1/F 2 in figure 2, with the lines labeled

as NNLOFit-B-mπ,K . The values of the LECs when plotting these lines are exactly the

same as those from the NNLOFit-B column in table 5. In this way, one can directly see

the differences due to the N3LO truncation uncertainty caused by using the renormalized

masses and the LO ones at the NNLO level. According to figure 2, we conclude that the

differences for mη and mη′ caused by using different types of masses in the higher order

corrections are rather within the statistical uncertainties from the fits and therefore the

differences should be perfectly compatible within the total uncertainties after taking into

account the systematic ones in table 5. We verify that similar conclusions are obtained for

other cases. In order not to overload the plots in other figures, we shall not explicitly show

the results given in terms of mπ and mK .

From figures 2, 3, 4 and 5, we observe, when compared with the curves of the NLO

study, slight improvements in the reproduction of the masses for η, η′ and significant ones

for mK , Fπ, FK and the ratios of FK/Fπ. Moreover the χ2 for the NNLO fits are greatly

reduced compared with χ2 for the NLO ones, indicating that the NNLO corrections are im-

portant at the present level of precision and essential to simultaneously describe the lattice

simulation data and experimental inputs of the light pseudoscalar mesons π,K, η and η′.

4 Conclusions

In this article we have performed a thorough study on the η-η′ mixing, and axial-vector

decay constants for the pion and kaon, up to next-to-next-to-leading order in δ expansion

within U(3) chiral perturbation theory. We have carried on a detailed scrutiny and discus-

sions of our results, which have been carefully compared to other works in literature for

the η-η′ mixing. A general mixing formalism, including the higher-derivative terms and

kinematic mixing cases, has been addressed in detail. The connections between the mixing

parameters from the popular two-mixing-angle scheme and the low energy constants from

chiral perturbation theory have been established, both for the singlet-octet basis and the

quark-flavor basis.
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NNLOFit-A NNLOFit-B

χ2/(d.o.f) 212.4/(76-9) 231.9/(76-9)

F (MeV) 81.7±1.5±5.3 80.8±1.6±6.1

103 × L5 0.60±0.11±0.52 0.45±0.12±0.78

103 × L8 0.25±0.07±0.31 0.30±0.06±0.30

Λ1 -0.003±0.060±0.093 -0.04±0.06±0.13

Λ2 0.08±0.11±0.20 0.14±0.10±0.40

103 × L4 -0.12±0.06±0.19 -0.09±0.06±0.23

103 × L6 -0.05±0.04±0.02 0.03±0.03±0.02

103 × L7 0.26±0.05±0.06 0.36±0.05±0.12

α -0.59±0.09±0.18 -0.76±0.08±0.44

Table 5. Parameters from the NNLO fits. In all of these fits, M0 is fixed at 835.7MeV from its

LO determination. The meaning of different notations to label different fits are explained in detail

in the text. The first error bar for each parameter corresponds to the statistical one and the second

error denotes the systematic uncertainty. See the text for details.

The considered quantities, including the masses of η, η′ and K, the quark mass ratio

of ms/m̂, the parameters in the two-mixing-angle scheme and the π,K decay constants

have been confronted with recent lattice simulations and phenomenological inputs. We find

that the next-to-leading-order fits yield satisfactory descriptions for the masses of the three

pseudoscalar mesons as functions of m2
π and the four mixing parameters (F0, F8, θ0, θ8),

producing in addition reasonable values of low energy constants. Nonetheless, when the

π and K decay constants are included together with the masses and mixing parameters

in the fits, the next-to-leading-order analyses are inadequate and it is necessary to step

into the next-to-next-to-leading-order study. Using the O(p6) LECs determinations from a

Dyson-Schwinger-like approach [61, 62] multiplied by a global factor, we are able to achieve

a reasonable description for all of the physical quantities considered above and the resulting

values for the leading NC O(p4) low energy constants L5 and L8 turn to be compatible with

the very recent two-loop determinations in ref. [27]. Therefore we conclude that the large

NC U(3) chiral perturbation theory offers a concise theoretical framework that is able to

simultaneously reproduce accurately the general η-η′ mixing and to provide sophisticated

enough expressions to describe the chiral extrapolations of the π and K decay constants

and masses.

Our results are also useful for future phenomenological studies of different processes

involving η and η′. Combining eq. (2.21) or eq. (2.23) with table 6, one can directly find the

relations between the physical states η, η′ and the octet-singlet bases η8, η0 or the quark-

flavor bases ηq, ηs. These relations are consistent with the requirements from the recent

lattice simulations and phenomenology.

Finally, it is worthy to remark that some of the parameters in our best analysis

(NNLOFit-B) in table 5 have been determined with relatively small errors. For instance,
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Parameters Inputs NNLOFit-A NNLOFit-B

F0 (MeV) 118.0 ±16.5 108.0±1.5±3.6 109.1±1.3±5.9

F8 (MeV) 133.7 ±11.1 124.7±1.2±8.7 126.5±1.2±11.8

θ0 (Degree) -11.0 ±3.0 -6.8±1.1±2.6 -6.8±0.9±3.7

θ8 (Degree) -26.7 ±5.4 -26.8±1.1±0.2 -27.9±1.0±1.4

ms/m̂ 27.5 ±3.0 27.0±0.6±0.4 29.4±0.4±0.6

Fq (MeV) 106.0± 11.1* 92.8±1.1±1.2 92.7±1.0±1.0

Fs (MeV) 143.8± 16.5* 136.4±1.5±10.0 139.0±1.4±14.9

θq (Degree) 34.5± 5.4* 36.4±1.4±0.2 35.8±1.2±0.3

θs (Degree) 36.0± 4.2* 37.8±0.9±1.5 37.1±0.8±1.1

Table 6. The outputs from NNLO fits. See table 2 for the explanation of the phenomenological

inputs. The first error for each quantity corresponds to the statistical one and the second error

denotes the systematic one. See the text for details.

the NLO parameters Λ1,2, which are fitted up to O(N−2
C ) in the NNLO analysis, become

Λ1 = −0.04± 0.06± 0.13 , Λ2 = 0.14± 0.10± 0.40 . (4.1)

The NNLO fit also determines some U(3) NNLO couplings with relatively high precision.

NNLOFit-B yields

103 × L4 = −0.09± 0.06± 0.23 , 103 × L6 = 0.03± 0.03± 0.02 ,

103 × L7 = 0.36± 0.05± 0.12 . (4.2)

Even though the error estimates in the present article must be considered with some cau-

tion, as some lattice systematic uncertainties escape our control, this hints the potentiality

of this U(3) χPT framework. We hope these results may encourage future lattice analyses

along this line.
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A Higher order corrections to the η and η
′ bilinear terms

In the following we provide the explicit expressions of the δi’s in eq. (2.11). When expressing

the results in terms of F , they take the form

δ1 =
32C12

3F 2

[
c2θ(4m

2
K −m2

π) + 4
√
2cθsθ(m

2
K −m2

π) + s2θ(2m
2
K +m2

π)
]
, (A.1)

δ2 =
32C12

3F 2

[
c2θ(2m

2
K +m2

π)− 4
√
2cθsθ(m

2
K −m2

π) + s2θ(4m
2
K −m2

π)
]
, (A.2)

δ3 = −64C12

3F 2
(m2

K −m2
π)
(√

2c2θ − cθsθ −
√
2s2θ

)
, (A.3)

δη =
8L5[c

2
θ(4m

2
K −m2

π) + 4
√
2cθ(m

2
K −m2

π)sθ + (2m2
K +m2

π)s
2
θ]

3F 2
+ s2θΛ1

+
c2θA0(m

2
K)

16π2F 2
+

8L4(2m
2
K +m2

π)

F 2
+

8L18sθ[2
√
2cθ(m

2
K −m2

π) + (2m2
K +m2

π)sθ]

F 2

+
64L5(L5 − 2L8)[c

2
θ(4m

4
K −m4

π) + 4
√
2cθ(m

4
K −m4

π)sθ + (2m4
K +m4

π)s
2
θ]

3F 4

+
16(C14 + C17)

3F 2
[c2θ(8m

4
K − 8m2

Km
2
π + 3m4

π) + 8
√
2cθm

2
K(m2

K −m2
π)sθ

+(4m4
K − 4m2

Km
2
π + 3m4

π)s
2
θ] , (A.4)

δη′ =
8L5[c

2
θ(2m

2
K +m2

π) + 4
√
2cθ(−m2

K +m2
π)sθ + (4m2

K −m2
π)s

2
θ]

3F 2
+ c2θΛ1

+
s2θA0(m

2
K)

16π2F 2
+

8L4(2m
2
K +m2

π)

F 2
+

8L18cθ[cθ(2m
2
K +m2

π) + 2
√
2(−m2

K +m2
π)sθ]

F 2

+
64L5(L5 − 2L8)[c

2
θ(2m

4
K +m4

π) + 4
√
2cθ(−m4

K +m4
π)sθ + (4m4

K −m4
π)s

2
θ]

3F 4

+
16(C14 + C17)

3F 2
[c2θ(4m

4
K − 4m2

Km
2
π + 3m4

π) + 8
√
2cθm

2
K(−m2

K +m2
π)sθ

+(8m4
K − 8m2

Km
2
π + 3m4

π)s
2
θ] , (A.5)

δk = −16L5(m
2
K −m2

π)(
√
2c2θ − cθsθ −

√
2s2θ)

3F 2
− cθsθΛ1

+
cθsθA0(m

2
K)

16π2F 2
− 8L18[

√
2c2θ(m

2
K −m2

π) + cθ(2m
2
K +m2

π)sθ +
√
2(−m2

K +m2
π)s

2
θ]

F 2

−128L5(L5 − 2L8)(m
4
K −m4

π)(
√
2c2θ − cθsθ −

√
2s2θ)

3F 4

−64(C14 + C17)m
2
K(m2

K −m2
π)(

√
2c2θ − cθsθ −

√
2s2θ)

3F 2
, (A.6)

δm2
η
=

16L8

3F 2
[c2θ(8m

4
K − 8m2

Km
2
π + 3m4

π) + 8
√
2cθm

2
K(m2

K −m2
π)sθ

+(4m4
K − 4m2

Km
2
π + 3m4

π)s
2
θ]

+
2

3
sθ[2

√
2cθ(m

2
K −m2

π) + (2m2
K +m2

π)sθ]Λ2
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+
1

16π2

{
1

18F 2

[
c4θ(16m

2
K − 7m2

π) + 4
√
2c3θ(8m

2
K − 5m2

π)sθ + 12c2θ(4m
2
K −m2

π)s
2
θ

+16
√
2cθ(m

2
K −m2

π)s
3
θ + 2(2m2

K +m2
π)s

4
θ

]
A0(m

2
η)

+
(4m2

K −m2
π)(2c

4
θ − 2

√
2c3θsθ − 3c2θs

2
θ + 2

√
2cθs

3
θ + 2s4θ)

18F 2
A0(m

2
η′)

− [c2θm
2
π + 2

√
2cθ(−2m2

K +m2
π)sθ − 4m2

Ks
2
θ]

3F 2
A0(m

2
K)

+
m2

π(c
2
θ − 2

√
2cθsθ + 2s2θ)

2F 2
A0(m

2
π)

}

−16L25sθ[4
√
2cθm

2
K(m2

K−m2
π)+(4m4

K−4m2
Km

2
π+3m4

π)sθ]

F 2
+6(2m2

K+m2
π)s

2
θv

(2)
2

+
16L6(2m

2
K +m2

π)[c
2
θ(4m

2
K −m2

π) + 4
√
2cθ(m

2
K−m2

π)sθ + (2m2
K+m2

π)s
2
θ]

3F 2

+
16L7[8c

2
θ(m

2
K −m2

π)
2 + 4

√
2cθ(2m

4
K −m2

Km
2
π −m4

π)sθ + (2m2
K +m2

π)
2s2θ]

3F 2

+
256(L5 − 2L8)L8

3F 4

[
c2θ(8m

6
K − 4m4

Km
2
π − 4m2

Km
4
π + 3m6

π)

+4
√
2cθm

2
K(2m4

K −m2
Km

2
π −m4

π)sθ + (4m6
K − 2m4

Km
2
π − 2m2

Km
4
π + 3m6

π)s
2
θ

]

+
16(L5 − 2L8)Λ2sθ[2

√
2cθ(m

4
K −m4

π) + (2m4
K +m4

π)sθ]

3F 2

+
16(3C19 + 2C31)

3F 2

[
c2θ(16m

6
K − 24m4

Km
2
π + 12m2

Km
4
π −m6

π)

+4
√
2cθ(4m

6
K − 6m4

Km
2
π + 3m2

Km
4
π −m6

π)sθ

+(8m6
K − 12m4

Km
2
π + 6m2

Km
4
π +m6

π)s
2
θ

]
, (A.7)

δm2
η′

=
2

3
cθ[cθ(2m

2
K +m2

π) + 2
√
2(−m2

K +m2
π)sθ]Λ2

+
16L8

3F 2
[c2θ(4m

4
K − 4m2

Km
2
π + 3m4

π) + 8
√
2cθm

2
K(−m2

K +m2
π)sθ

+(8m4
K − 8m2

Km
2
π + 3m4

π)s
2
θ]

+
1

16π2

{
(4m2

K −m2
π)(2c

4
θ − 2

√
2c3θsθ − 3c2θs

2
θ + 2

√
2cθs

3
θ + 2s4θ)

18F 2
A0(m

2
η)

+
1

18F 2

[
2c4θ(2m

2
K +m2

π)− 16
√
2c3θ(m

2
K −m2

π)sθ + 12c2θ(4m
2
K −m2

π)s
2
θ

−4
√
2cθ(8m

2
K − 5m2

π)s
3
θ + (16m2

K − 7m2
π)s

4
θ

]
A0(m

2
η′)

− [−4c2θm
2
K + 2

√
2cθ(2m

2
K −m2

π)sθ +m2
πs

2
θ]

3F 2
A0(m

2
K)

+
m2

π(2c
2
θ + 2

√
2cθsθ + s2θ)

2F 2
A0(m

2
π)

}

−16L25cθ[cθ(4m
4
K − 4m2

Km
2
π + 3m4

π) + 4
√
2m2

K(−m2
K +m2

π)sθ]

F 2
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+6c2θ(2m
2
K +m2

π)v
(2)
2

+
16L7[c

2
θ(2m

2
K +m2

π)
2 + 4

√
2cθ(−2m4

K +m2
Km

2
π +m4

π)sθ + 8(m2
K −m2

π)
2s2θ]

3F 2

+
16L6(2m

2
K +m2

π)[c
2
θ(2m

2
K +m2

π) + 4
√
2cθ(−m2

K +m2
π)sθ + (4m2

K −m2
π)s

2
θ]

3F 2

+
256(L5 − 2L8)L8

3F 4
[c2θ(4m

6
K − 2m4

Km
2
π − 2m2

Km
4
π + 3m6

π) +

4
√
2cθm

2
K(−2m4

K +m2
Km

2
π +m4

π)sθ + (8m6
K − 4m4

Km
2
π − 4m2

Km
4
π + 3m6

π)s
2
θ]

+
16(L5 − 2L8)Λ2cθ[2

√
2sθ(−m4

K +m4
π) + (2m4

K +m4
π)cθ]

3F 2

+
16(3C19 + 2C31)

3F 2

[
c2θ(8m

6
K − 12m4

Km
2
π + 6m2

Km
4
π +m6

π)

−4
√
2cθ(4m

6
K − 6m4

Km
2
π + 3m2

Km
4
π −m6

π)sθ

+(16m6
K − 24m4

Km
2
π + 12m2

Km
4
π −m6

π)s
2
θ

]
, (A.8)

δm2 = −64L8m
2
K(m2

K −m2
π)(

√
2c2θ − cθsθ −

√
2s2θ)

3F 2

−2

3
[
√
2c2θ(m

2
K −m2

π) + cθ(2m
2
K +m2

π)sθ +
√
2(−m2

K +m2
π)s

2
θ]Λ2

− 1

288π2F 2

{[√
2c4θ(8m

2
K − 5m2

π) + c3θ(8m
2
K +m2

π)sθ + 3
√
2c2θ(−4m2

K +m2
π)s

2
θ

+4cθ(−5m2
K + 2m2

π)s
3
θ + 4

√
2(−m2

K +m2
π)s

4
θ

]
A0(m

2
η)

+
[
4
√
2c4θ(m

2
K −m2

π) + 3
√
2c2θ(4m

2
K −m2

π)s
2
θ + cθ(8m

2
K +m2

π)s
3
θ

+
√
2(−8m2

K + 5m2
π)s

4
θ + 4c3θsθ(−5m2

K + 2m2
π)
]
A0(m

2
η′)

+6[
√
2c2θ(2m

2
K −m2

π) + cθ(4m
2
K +m2

π)sθ +
√
2(−2m2

K +m2
π)s

2
θ]A0(m

2
K)

+9m2
π(−

√
2c2θ + cθsθ +

√
2s2θ)A0(m

2
π)

}

−6cθ(2m
2
K +m2

π)sθv
(2)
2 − 32L6(2m

4
K −m2

Km
2
π −m4

π)(
√
2c2θ − cθsθ −

√
2s2θ)

3F 2

+
16L25

F 2

[
2
√
2c2θm

2
K(m2

K −m2
π) + cθ(4m

4
K − 4m2

Km
2
π + 3m4

π)sθ

+2
√
2m2

K(−m2
K +m2

π)s
2
θ

]

−16L7

3F 2

[
2
√
2c2θ(2m

4
K −m2

Km
2
π −m4

π) + cθ(−4m4
K + 20m2

Km
2
π − 7m4

π)sθ +

2
√
2(−2m4

K +m2
Km

2
π +m4

π)s
2
θ

]

−512(L5 − 2L8)L8m
2
K(2m4

K −m2
Km

2
π −m4

π)(
√
2c2θ − cθsθ −

√
2s2θ)

3F 4

−16(L5 − 2L8)Λ2[
√
2c2θ(m

4
K −m4

π) + cθ(2m
4
K +m4

π)sθ +
√
2(−m4

K +m4
π)s

2
θ]

3F 2

−32(3C19 + 2C31)(4m
6
K − 6m4

Km
2
π + 3m2

Km
4
π −m6

π)(
√
2c2θ − cθsθ −

√
2s2θ)

3F 2
. (A.9)
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When expressing the above results in terms of Fπ from eq. (2.27), the terms with L2
5

and L5L8 can be different from the expressions in terms of F and the other parts remain

the same, apart from the obvious replacement of F by Fπ. Therefore, for the expressions

of δi expressed in Fπ, we only give the parts that are different from those in terms of F

δ
(Fπ),L2

5
η =

128L2
5

3F 4
π

[
c2θ(2m

4
K + 2m2

Km
2
π −m4

π) + 2
√
2cθsθ(m

4
K +m2

Km
2
π − 2m4

π)

+s2θ(m
4
K +m2

Km
2
π +m4

π)
]
, (A.10)

δ
(Fπ),L2

5

η′
=

128L2
5

3F 4
π

[
c2θ(m

4
K +m2

Km
2
π +m4

π)− 2
√
2cθsθ(m

4
K +m2

Km
2
π − 2m4

π)

+s2θ(2m
4
K + 2m2

Km
2
π −m4

π)
]
, (A.11)

δ
(Fπ),L2

5
k = −128L2

5(m
4
K +m2

Km
2
π − 2m4

π)(
√
2c2θ − cθsθ −

√
2s2θ)

3F 4
π

, (A.12)

δ
(Fπ),L5L8

m2
η

=
128L5L8

3F 4
π

[
c2θ(16m

6
K − 16m2

Km
4
π + 9m6

π) + 16
√
2cθm

2
K(m4

K −m4
π)sθ

+(8m6
K − 8m2

Km
4
π + 9m6

π)s
2
θ

]
, (A.13)

δ
(Fπ),L5L8

m2
η′

=
128L5L8

3F 4
π

[
c2θ(8m

6
K − 8m2

Km
4
π + 9m6

π)− 16
√
2cθm

2
K(m4

K −m4
π)sθ

+(16m6
K − 16m2

Km
4
π + 9m6

π)s
2
θ

]
, (A.14)

δ
(Fπ),L5L8

m2 = −1024L5L8m
2
K(m4

K −m4
π)(

√
2c2θ − cθsθ −

√
2s2θ)

3F 4
π

. (A.15)

In order to obtain the full expressions for the δi’s given in terms of Fπ one has to make

use of eq. (2.27) up to the precision required. Taking δk for example, its final expression

in terms of Fπ is

δk = −16L5(m
2
K −m2

π)(
√
2c2θ − cθsθ −

√
2s2θ)

3F 2
π

− cθsθΛ1

+
cθsθA0(m

2
K)

16π2F 2
π

− 8L18[
√
2c2θ(m

2
K −m2

π) + cθ(2m
2
K +m2

π)sθ +
√
2(−m2

K +m2
π)s

2
θ]

F 2
π

+
256L5L8(m

4
K −m4

π)(
√
2c2θ − cθsθ −

√
2s2θ)

3F 4
π

−128L2
5(m

4
K +m2

Km
2
π − 2m4

π)(
√
2c2θ − cθsθ −

√
2s2θ)

3F 4
π

−64(C14 + C17)m
2
K(m2

K −m2
π)(

√
2c2θ − cθsθ −

√
2s2θ)

3F 2
π

, (A.16)

which differs from eq. (A.6) in the L2
5 term. For δ1, δ2 and δ3, their expressions are the

same regardless of whether F or Fπ is chosen up to next-to-next-to-leading order.

For completeness, we also give the results in terms of the LO masses mπ and mK

and 1/F 2. Only the terms with LiLj , being Li and Lj the NLO LECs in eq. (2.4), will

be different, comparing with the expressions in terms of mπ and mK and the other parts
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remain the same, apart from the obvious replacement of the renormalized masses by the LO

ones. Therefore, we only give the parts that are different from those in terms of mπ, mK

and 1/F 2 and it turns out that in this case all of the LiLj terms for δη, δη′ , δk, δm2
η
, δm2

η′
, δm2

vanish.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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