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Abstract: In the context of holographic duality with AdS3 asymptotics, the Ryu-

Takayanagi formula states that the entanglement entropy of a subregion is given by the

length of a certain bulk geodesic. The entanglement entropy can be operationalized as

the entanglement cost necessary to transmit the state of the subregion from one party to

another while preserving all correlations with a reference party. The question then arises

as to whether the lengths of other bulk curves can be interpreted as entanglement costs for

some other information theoretic tasks. Building on recent results showing that the length

of more general bulk curves is computed by the differential entropy, we introduce a new

task called constrained state merging, whereby the state of the boundary subregion must

be transmitted using operations restricted in location and scale in a way determined by the

geometry of the bulk curve. Our main result is that the cost to transmit the state of a sub-

region under the conditions of constrained state merging is given by the differential entropy

and hence the signed length of the corresponding bulk curve. When the cost is negative,

constrained state merging distills entanglement rather than consuming it. This demon-

stration has two parts: first, we exhibit a protocol whose cost is the length of the curve

and second, we prove that this protocol is optimal in that it uses the minimum amount of

entanglement. In order to complete the proof, we additionally demonstrate that single-shot

smooth conditional entropies for intervals in 1+1-dimensional conformal field theories with

large central charge are well approximated by their von Neumann counterparts. We also

revisit the relationship between the differential entropy and the maximum entropy among

locally consistent entropy density operators, demonstrating large quantitative discrepancy

between the two quantities in conformal field theories. We conclude with a brief discussion

of extensions and lessons.
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1 Introduction

Holographic duality (AdS/CFT correspondence) [1, 2] is an equivalence between a d-

dimensional conformal field theory (CFT) and quantum gravity with asymptotically anti-de

Sitter boundary conditions (AdS) in d + 1 dimensions. Since its discovery in 1997, it has
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been the focus of a massive body of research1 driven by diverse theoretical and phenomeno-

logical motivations. The AdS/CFT correspondence has been used to model a variety of

condensed matter systems, yielding new insights not apparent using the standard tech-

niques of field theory [5, 6]. On a more formal level, famous puzzles of quantum gravity,

including its unitarity and non-perturbative definition, have been addressed and arguably

solved by adverting to the field theory side of the duality (see, e.g. [7, 8]).

This paper focuses on another foundational application of the AdS/CFT correspon-

dence — the goal of understanding the fundamental constituents of space-time. Note that

the duality relates a lower-dimensional field theory to a higher-dimensional theory of quan-

tum gravity. The extra dimension is said to be emergent: on the field theory side it is not

directly visible, but becomes apparent only when we discuss an appropriate set of quan-

tities. In this way, the holographic duality is a toy model for how a geometric spacetime

may arise from an amorphous collection of quantum gravity degrees of freedom, which

lack an a priori spatial organization. In order to reap this benefit of holography, we must

understand quantitatively how the lower-dimensional field theory gives rise to the extra

dimension present in the gravitational space-time. The last years have made it increasingly

clear that the right language for this problem involves quantum information theory. The

conceptual link between information theory and the geometry of a holographic spacetime

is the subject of the present paper.

Until recently, the understanding of the extra dimension (usually called radial) in

holography had been mostly qualitative. It was understood early on that small distance

physics in the field theory controls large radial scales on the gravity side, a rule of thumb

known as the UV-IR connection [9]. Consequently, the radial scale was conjectured to be

related to a renormalization group (RG) scale in field theory [10–12]. But the RG scheme

implementing the radial evolution in gravity has never been explicitly identified (see [13,

14] for recent progress). The first truly quantitative advance — one whose consequences

continue to be explored — came in 2006. The Ryu-Takayanagi proposal [15, 16] posits that

areas of minimal surfaces on a static slice of anti-de Sitter space compute entanglement

entropies of spatial regions in field theory. To appreciate the significance of this proposal,

recall that a combination of entanglement entropies called mutual information bounds the

connected correlator of any two observables applied in two spacelike separated regions [17].

This means that entanglement entropies organize the correlations in a quantum state as a

function of distance or scale. In effect, the Ryu-Takayanagi proposal posits that the amount

of correlation up to a given scale µ0 in field theory can be represented in anti-de Sitter space

as a minimal surface, which spans different radial slices down to some minimal scale R0

that depends on µ0. Amazingly, this geometric representation is quantitatively accurate.

The Ryu-Takayanagi proposal underscores the centrality of information theory to the

emergence of a holographic spacetime. For example, it clarifies why spacetimes with

horizons correspond to mixed states of the field theory and why a black hole with two

asymptotic regions maps to the thermofield double state [18–20]. Moreover, in a thought

1With over 10,000 citations, ref. [1] is the most cited paper on the arXiv. See [3, 4] for pedagogical

introductions to the topic, including its applications to condensed matter physics.
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experiment in which we disentangle two regions of field theory by hand, the holographic

spacetime pinches off into disconnected components [21, 22]. (When more than two re-

gions are considered, however, mutual information can be zero between two connected

regions of spacetime [23].) More quantitatively, representing entanglement entropies with

minimal surfaces is automatically consistent with the strong subadditivity of entropy as a

consequence of the geometric properties of anti-de Sitter space [24]. Indeed, the strong sub-

additivity inequality plays a fundamentally geometric role in the holographic construction:

in the AdS3/CFT2 context, for instance, it underlies the triangle inequality in AdS3 [25]

and reduces the c-theorem in CFT2 to Lorentz invariance [26]. More intricate relations

among minimal surfaces have been used to identify special properties of states in holo-

graphic field theories, including the monogamy of mutual information [27]. This web of

connections has motivated several authors to conjecture that a spacetime should be iden-

tified with (or defined as) a geometric encoding of field theory correlations organized by

scale [21, 28–37]. If so, every geometric construct in a holographic spacetime should have

a meaning in information theory. The present paper interprets in information theoretic

terms one of the most basic geometric objects: the length of a convex curve.

We work primarily in pure, three-dimensional anti-de Sitter space, which is dual to the

vacuum of a two-dimensional conformal field theory. Some of our results are more general,

but we defer a discussion of the generality to section 6. A key technical fact borrowed

from [38] — and a starting point of our work — is that the length of a convex curve in

AdS3 can be written as a linear combination of lengths of minimal curves, that is geodesics.

By virtue of the Ryu-Takayanagi proposal, the latter compute entanglement entropies of

intervals in the dual CFT2. In consequence, the length of a convex curve can expressed as:

length

4G
=

∫ (
S
(
I(x)

)
− S

(
I(x) ∩ I(x− dx)

))
=

∫
S
(
I(x)− I(x− dx) | I(x) ∩ I(x− dx)

)
≡ Sdiff (1.1)

Here S(·) denotes the entanglement entropy and I(x) is a one-parameter family of boundary

intervals, each centered at x, which determine the shape of the curve in question. The

integral expressions in (1.1) were called differential entropy in [38]. Note that the second

line of (1.1) involves only conditional entropies in field theory. This suggests that the length

of a curve may be interpreted in information theory as the entanglement cost of a merging

task [39, 40]. Here we give a lightning review of state merging, deferring a more complete

discussion of this communication task to section 2.

Consider Alice and Bob each holding a system in an unknown state with density

matrices ρI and ρJ , respectively. The system J in Bob’s possession gives him some prior

information about the full state ρIJ . The minimum amount of quantum information Bob

needs from Alice to gain full knowledge of ρIJ is quantified by S(I|J) and the requisite

communication task is called state merging [39, 40]. Constrained merging, which plays a

central role in this paper, is a slight generalization of this task, in which Alice initially

holds subsystem I while Bob holds two subsystems, J and K. The goal is again to merge

the state on I in order to obtain the full state ρIJK . Now, however, Bob is only allowed to

use his prior knowledge of J and cannot take advantage of knowing K.
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To make this crude description of state merging more precise, we need to define and

quantify transfer of information. When we say that Alice wishes to send the state on

a CFT interval I to Bob, we mean that Alice, who manipulates the CFT from outside,

wishes to transfer the entanglement between I and Ic, the complement of I in the CFT,

to another system controlled by Bob. Because the key object being transferred is the

entanglement, classical communication is considered free. The cost refers to an inherently

quantum resource — the entanglement between Alice and Bob’s systems, which is used in

the process of sending the state. A natural choice of currency for quantifying the cost is

Bell pairs, which are initially shared by Alice and Bob.

One way for Alice to send the state to Bob is to compress the state on I to S(I) binary

degrees of freedom [41] and then to teleport them [42] to Bob. This will use up exactly

S(I) units of the entanglement currency. As such, sending the state gives an operational

meaning of the entanglement entropy and, by virtue of the Ryu-Takayanagi proposal, of the

length of a geodesic in AdS3. To make contact with (1.1), we now imagine that the merging

is done in steps indexed by x, such that both Alice and Bob may only act on interval I(x)

at step x. The details of this constrained merging protocol are given in section 2.2 A key

point is that the optimal cost of sending a state subject to the locality restrictions imposed

by the intervals I(x) is exactly the length of the curve given in (1.1). The proof of the

optimality of (1.1) is given in section 3. Section 4 establishes an important technical point

crucial to identifying the constrained merging cost with the differential entropy, specifically

that smooth min- and max- entropies are well-approximated in CFT’s with large central

charge by the von Neumann entropy.

From a geometric viewpoint, the intervals I(x) determine the shape of the bulk curve.

In a traditional view of the radial direction as an RG scale in field theory, we could think

of I(x) as determining a spatially dependent cutoff in the CFT. The present paper offers

an alternative view, which may serve as a gateway toward a quantitative formulation of

holographic RG. We think of I(x) as restricting the class of operators, which are available

to external agents manipulating the state. This can be viewed as a spatially dependent

restriction of the class of operators of the field theory, which excludes IR-sensitive ob-

servables. The restrictions may only increase the cost of sending a state; when we lift

the restrictions, the cost becomes the entanglement entropy. This gives an information

theoretic interpretation of the definition of a geodesic as the shortest curve connecting

two points.

2 Differential entropy and constrained state merging

In this section we focus on pure three-dimensional anti-de Sitter space (AdS3). Our re-

sults apply in other asymptotically AdS3 geometries and in higher-dimensional holographic

spacetimes, but they are subject to a number of technical caveats. We discuss the generality

of our results in section 6.

2The constrained merging protocol is relevant to closed curves with two endpoints on the asymptotic

boundary. To interpret the length of a closed convex curve, in section 2.6 we introduce its close cousin, the

constrained swapping protocol.
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We start with the metric on the Poincaré patch of AdS3:

ds2 = −R
2

L2
dT 2 +

L2

R2
dR2 +R2dx̃2. (2.1)

We assume that this geometry arises as the dual description of the vacuum state of a

conformal field theory (CFT) living on its asymptotic boundary — that is on an infinite

line cross time. We denote the transversal coordinate in the bulk as x̃, in contrast to x,

which we reserve for the spatial coordinate on the boundary.

The Ryu-Takayanagi proposal [15, 16] relates the entanglement entropy of an interval

I = (−a/2, a/2) in the CFT to the length of the spacelike geodesic, which asymptotes to

the endpoints of I:

S(I) ≡ S(a) =
c

3
log

a

µ
=

length of geodesic connecting x̃ = ±a/2 at R = L2/µ

4G
(2.2)

The quantity µ, which is a UV cutoff in the CFT, also defines an IR cutoff L2/µ on the

dual gravity side, which regulates the otherwise infinite length of the geodesic. Eq. (2.2)

relies on the Brown-Henneaux relation c = 3L/2G, which fixes the central charge of the

1+1-dimensional CFT in terms of the curvature scale L of the dual AdS3 in Planck units

(G is Newton’s constant) [43].

Ref. [38] (see also [25, 44–48]) showed how to use relation (2.2) to give a boundary

computation of the length of an arbitrary differentiable curve on a constant time slice in

geometry (2.1). Given a convex3 curve R = R(x̃), for every point x̃ one finds the geodesic

that is tangent to the curve at x̃. The endpoints of the geodesic lie on the asymptotic

boundary, so they select a boundary interval. We shall refer to this interval as I(x), where

x is the midpoint of the interval. Likewise, we denote the linear size of I(x) by aI(x).

Note that x depends on x̃ (the tangency point in the bulk) but is not equal to it. The

construction is illustrated in the case of a geodesic curve in figure 1a and a nongeodesic

curve in figure 2a.

The length of the curve is then given by the formula:4

length

4G
=

∫ (
S
(
I(x)

)
− S

(
I(x) ∩ I(x− dx)

))
=

∫
S
(
I(x)− I(x− dx) | I(x) ∩ I(x− dx)

)
≡ Sdiff (2.3)

Note that the integrand in (2.3), or rather the first nonvanishing term in its Taylor ex-

pansion, is a one-form, so the integral is well-defined. The right hand side was called

“differential entropy” in [38], because the integrand can be expressed in terms of dS/da.

For the purposes of this paper, however, it is most practical to work directly with ex-

pression (2.3), which involves conditional entropies. By definition, the conditional entropy

S(A|B) of two disjoint subsystems A and B is the difference S(AB)− S(B).

3With respect to metric (2.1). A curve is convex if none of the geodesics tangent to it intersect it again.
4For general open curves in the bulk of (2.1), the integral must be supplanted with boundary terms. We

concentrate on curves with endpoints at infinity, to which they are not relevant.
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To state our result, it is useful to introduce a little extra notation and discretize (2.3).

Let xj = −a/2 + j · a/N and define Aj = I(xj) − I(xj−1) (hinting at Alice) and Bj =

I(xj) ∩ I(xj−1) (hinting at Bob). Then (2.3) becomes:

length

4G
= lim

N→∞

N∑
j=1

[S (I(xj))− S (I(xj) ∩ I(xj−1))] = lim
N→∞

N∑
j=1

S(Aj |Bj). (2.4)

In order to interpret (2.4) suppose that two agents, Alice and Bob, each hold a system

described by a CFT, which they can manipulate from outside. For example, the system

may be a one-dimensional spin lattice at a quantum phase transition that is sitting in

Alice’s laboratory; Bob’s lab contains an isomorphic lattice. Initially Alice and Bob’s

systems are not entangled, i.e. their states factorize. Alice’s goal is to “teleport” [42] the

state of interval

I = ∪Nj=1Ij = ∪Nj=1Aj (2.5)

of her CFT to Bob.5 That is, using only Alice-Bob Bell pairs 1√
2
(|00〉+ |11〉) and classical

communication plus local operations (we discuss the locality constraints below), Alice and

Bob will prepare a state in Bob’s lab equal to Alice’s original state on I (up to isomorphism)

and purifying Ic, the complement of I in Alice’s system.

A crucial role in interpreting lengths of curves is played by the locality restrictions,

which constrain the type of operations Alice and Bob can perform. If we allow Alice and

Bob to each act on the whole of their respective intervals I, their task reduces to standard

teleportation [42], whose cost is famously given by the entropy of the state to be teleported,

S(I). We wish to consider a situation, in which Alice and Bob are subject to tighter locality

constraints. The procedure will act in N discrete steps and at the jth step Alice and Bob

are allowed to act only on their respective intervals I(xj). (N will ultimately be allowed

to go to infinity as the UV cutoff µ goes to zero and the central charge to infinity.) We

will consider all possible procedures that Alice and Bob could use to “merge” Alice’s I to

Bob, subject only to the prescribed constraints. (A mathematically precise definition of

constrained merging can be found in section 3.) Among all such procedures, the minimal

number of Bell pairs is asymptotically given by (2.4), the length of the curve in Planck units.

2.1 A geodesic: the cost of sending a state

We begin with the interpretation of the length of a spacelike geodesic gI . For definiteness,

suppose the geodesic subtends the interval I = (−a/2, a/2) on the boundary. According

to (2.2), the (IR-regulated) length of gI equals S(I), the (UV-regulated) entanglement

entropy of the interval I.

As a first step, we must find the set of intervals I(x) such that geodesics subtending

I(x) are tangent to gI . The task seems trivial, because at every point on gI the tangent

geodesic is gI itself. But this conclusion holds only in the bulk; on the asymptotic boundary

distinct geodesics become tangent to one another if their asymptotic endpoints coincide;

see figure 1. Thus, the sequence of intervals I(x) = (−a/2, a/2 + 2x) (for −a/2 ≤ x ≤ 0)

and I(x) = (2x − a/2, a/2) (for 0 ≤ x ≤ a/2) satisfies the tangency condition. (While we

5In the last line, we set A1 = I(x1) as a special case.
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a) b)

-

a

2

a

2

x

a

aIHxL

Figure 1. a) Geodesic gI , which subtends a boundary interval I (black) and geodesics, which are

tangent to gI on the boundary along with the corresponding boundary intervals I(x) (color). The

dashed geodesics contribute zero to integral (2.3). b) aI(x), the linear size of the interval I(x)

centered at x.

will use the notation of infinitesimals for simplicity, the reader should remember that we

are always describing discretized expressions and processes, both because the CFT has a

UV cut-off µ and because the procedure we implement will take place in finite steps.)

Let us consider the entanglement cost of merging I to Bob subject to the constraints

described above. For early values of j, corresponding to red and orange intervals in figure 1,

Alice and Bob are only permitted to act on the left side of I, while for blue and purple

intervals they can only act on the right. For xj = 0, however, corresponding to the full

length green interval, they have access to all of I. So Alice could simply compress the state

of I [41] in the xj = 0 step and teleport it to Bob, who would then decompress on his end.

At all other steps, Alice and Bob would do nothing. The entanglement cost, postponing

until later issues of single-shot versus von Neumann entropies and approximation, would be

S(I). This is, of course, the familiar interpretation of the entropy as the effective number of

Bell pairs required to faithfully compress and teleport the state of I without any constraints

at all.

2.2 A non-geodesic curve: the cost of sending a state with constrained merg-

ing

Now consider a smooth, convex curve R = R(x̃), which asymptotes to the endpoints ±a/2
of the interval I; see figure 2. We again start by finding the geodesics, which are tangent

to the curve at every −a/2 ≤ x̃ ≤ a/2. These geodesics select a sequence of boundary

intervals, which we denote J(x) to distinguish them from the intervals discussed in the

previous subsection. It will be useful to introduce a special notation for the size of the

interval J(x): we call this aJ(x). Note that for the geodesic we have aI(x) = a − 2|x|
for the function giving the lengths of the intervals I(x), as illustrated in figure 1. For our

nongeodesic curve R = R(x̃) that asymptotes to gI , aJ(x) has the following properties [25]:

1. It equals aI(x) outside a certain interval (xL, xR) ⊂ I.

2. It is everywhere differentiable, with −2 ≤ daJ/dx ≤ 2.

– 7 –
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a) b)

xRxL
x

a

aJHxL

Figure 2. a) A curve, which asymptotes to the geodesic gI . We have marked in color the geodesics

tangent to the curve and the boundary intervals J(x), which they subtend. b) a plot of aJ(x) —

the length of the intervals J(x) as a function of the centerpoint x. If the curve asymptotes to the

geodesic gI then aJ(x) must agree with aI(x) (shown for comparison in dashed gray) outside some

interval (xL, xR) [25].

An example of such an aJ(x) is shown in figure 2b. According to (2.3), the length of the

curve is given by:

length

4G
=

∫ x=a/2

x=−a/2
S
(
J(x)− J(x− dx) | J(x) ∩ J(x− dx)

)
= lim

N→∞

N∑
j=1

S(Aj |Bj), (2.6)

where now Aj = J(xj)− J(xj−1) and Bj = J(xj) ∩ J(xj−1).

In contrast to the geodesic case, for the nongeodesic curve of figure 2a, none of the

intervals J(xj) spans all of I. The simple-minded strategy of section 2.1 therefore cannot

succeed. Instead, Alice and Bob will act non-trivially in each interval J(xj). Specifically, in

the jth step, Alice will merge Aj to Bob. Since Aj ⊆ J(xj), Alice’s actions are consistent

with the constraint. Moreover, by the jth step, Bob will already have reconstructed the

entire interval ∪j−1
i=1J(xi), of which the rules give him access only to the portion intersecting

J(xj), namely J(xj−1) ∩ J(xj) = Bj .

The question becomes then, what is the cost of each incremental step? A celebrated

result in quantum information theory is that the number of Bell pairs required to merge

Aj provided Bob has access to Bj is S(Aj |Bj), again ignoring approximations for the time

being [39, 40]. By (2.6), the length of the bulk curve will therefore be approximated by

4G times the number of Bell pairs required to merge I to Bob, subject to the locality

constraints.

– 8 –
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For readers unfamiliar with state merging, it can be helpful to keep some simple ex-

amples in mind to motivate the appearance of the conditional entropy. If the state is a Bell

pair shared between A and a third system R, then merging A to Bob is just teleportation

of A and the cost in Bell pairs is indeed S(A|B) = S(A) = 1.

If the initial state is instead a GHZ state |ψ〉ABR = 1√
2
(|000〉ABR+|111〉ABR), however,

then Bob has a head start in the form of some correlation with Alice so the cost should

be reduced. In fact, since S(A|B) = S(AB) − S(B) = 1 − 1 = 0, merging should be

possible without any entanglement at all. Let’s see how this is done. Alice could measure

A in the basis |±〉 = 1√
2
(|0〉 ± |1〉). Conditioned on detecting outcomes |+〉 and |−〉,

the state on BR will be 1√
2
(|00〉BR + |11〉BR) or 1√

2
(|00〉BR − |11〉BR), respectively. Both

of these states are maximally entangled with R and can, therefore, be transformed into
1√
2
(|000〉A′B′R + |111〉A′B′R) by a local operation in Bob’s laboratory. Explicitly, in the

first case, Bob can apply the isometry |j〉B 7→ |jj〉A′B′ and in the second case, he can apply

|j〉B 7→ (−1)j |jj〉A′B′ . Since no Alice-Bob entanglement is consumed or produced by the

protocol, the cost is precisely zero.

The method used in the general case is in spirit of the GHZ example above and

involves performing a random incomplete measurement on A just fine-grained enough to

approximately destroy all correlation between R and A. The reader can consult [40] for a

detailed description.

2.3 Geodesics revisited: merging scale-by-scale

Let us return to the geodesic case in order to study in more detail how the entanglement

entropy is recovered from the differential entropy formula.

If we substitute the sequence of intervals from figure 1b into (2.3), we obtain:

Sdiff =

∫ x=0

x=−a/2

(
S
(
I(x)

)
− S

(
I(x− dx)

))
= S

(
I(0)

)
− S

(
I(−a/2)

)
= S(I) (2.7)

This is because for −a/2 ≤ x ≤ 0 we have I(x− dx) ⊂ I(x); for 0 ≤ x ≤ a/2 the integrand

in (2.3) vanishes because there I(x) ⊂ I(x − dx), so Aj = ∅. The term I(−a/2) acts as a

UV regulator; it reproduces (2.3) exactly if we cut off the integral at x = −a/2 + µ/2.

In the notation that S(I) = S(a), (2.7) can be written as:

Sdiff =

∫ x=0

x=−a/2

(
S(a+ 2x)− S(a+ 2x− 2dx)

)
=

∫ aI=a

aI=0
S(daI |aI − daI) = S(a) (2.8)

Changing the variable of integration to aI = a + 2x highlights the way in which the

differential entropy formula recovers ordinary entanglement entropy. It assembles it from

successive pieces, which incorporate the entanglement at incrementally larger scales.

According to the rules of constrained merging, in the geodesic case it is permissible for

Alice to send the interval I to Bob all at once, as described in section 2.1. She is not required

to, however. Instead, she could use the incremental procedure described for general curves

in section 2.2 and the cost would be the same. In the incremental procedure, she starts

out by sending Bob the most ultraviolet data on I — the state of the smallest sensible

– 9 –



J
H
E
P
0
6
(
2
0
1
5
)
1
5
7

interval tucked at the left endpoint of I, where “smallest” means roughly comparable to

the UV cutoff in the CFT, in a sense that will be made precise in section 4. In the next

steps, she will send data necessary to recover the state on successively larger intervals. If

Bob has the state on I(x− dx), the number of ebits necessary for him to recover the state

on I(x) is S
(
I(x)

)
−S

(
I(x−dx)

)
= S

(
I(x)− I(x−dx) | I(x−dx)

)
, which is the integrand

in (2.7). The vanishing of the integrand in (2.3) for 0 ≤ x ≤ a/2 expresses the fact that

once Bob has the state on I(x = 0) = I, there is nothing more to learn and thenceforth

the cost is zero.

2.4 Minimality of geodesics: the most efficient merging protocol

This perspective is also helpful for interpreting the length of the nongeodesic curve of

figure 2. Because aJ(x) = aI(x) for x < xL, as shown in the righthand side of the figure,

the incremental protocol for the nongeodesic curve will begin in exactly the same way as

for the geodesic, sending the most UV information near the point −a/2 first and then the

data required to reconstruct the state of successively longer intervals (−a/2, x). Once the

interval reaches I(xL), however, the protocols diverge. In the nongeodesic case, Alice and

Bob are constrained to act over shorter distances than in the geodesic case so they cannot

access the IR information as efficiently. The result is an increased entanglement cost in the

merging protocol, which matches the difference in length between the two curves.

This gives an information theoretic interpretation of the definition of the geodesic as

the shortest path between two points. Any other curve with the same endpoints as gI
will select a different aJ(x), which corresponds to a constrained merging protocol. Any

restriction imposed on the merging protocol can only increase the cost of communication.

Consequently, any other path connecting the same endpoints on the boundary is longer

than a geodesic.

To see this algebraically, we first need to obtain an analogue of (2.8) for the non-

geodesic case:

Sdiff =

∫ x=a/2

x=−a/2

(
S
(
aJ(x)

)
− S

(
aJ(x) + aJ(x− dx)

2
− dx

))

=

∫ x=a/2

x=−a/2
S

(
aJ(x)− aJ(x− dx)

2
+ dx

∣∣∣ aJ(x) + aJ(x− dx)

2
− dx

)
=

∫ x=a/2

x=−a/2
S

(
daJ + 2dx

2

∣∣∣ aJ(x)− daJ + 2dx

2

)
(2.9)

With the formula in hand, subtract (2.8) from (2.9). After changing variables to

rI(x) = x+ aI(x)/2 and likewise for J and then relabelling them both r, we obtain:

∆(length)

4G
=

∫ r=a/2

r=−a/2
S
(
dr
∣∣∣ āJ(r)− dr

)
−
∫ r=a/2

r=−a/2
S
(
dr
∣∣∣ āI(r)− dr)

=

∫ a/2

−a/2
dr

(
dS(a)

da

∣∣∣
a=āJ (r)

− dS(a)

da

∣∣∣
a=āI(r)

)
≥ 0, (2.10)
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aJHrL

aIHrL

aIHxL�2

aJHxL�2

r

Figure 3. The way to read off āI,J(r) from the plot of aI,J(x)/2.

where āI(rI(x)) = aI(x) and likewise for J . Reading off āI,J(r) is illustrated in figure 3;

note that āI(r) = r + a/2. The inequality follows from the concavity of entropy since

āJ(r) ≤ āI(r).
To make this argument, we have implicitly assumed that the incremental merging

protocol described here — one whose entanglement cost is Sdiff — is the most efficient

one possible given the constraints. We have sketched how to achieve the cost Sdiff , but we

have not yet proved its optimality. Doing so is the purpose of section 3. Assuming the

result, however, we find a remarkable new addition to the holographic dictionary. The Ryu-

Takayanagi formula states that the entropy of a boundary interval I is the length of the

shortest bulk curve starting and ending at the endpoints of I.6 Entropy can be interpreted

as the minimal number of qubits required to compress a state [41] and, therefore, the

minimal entanglement cost required to teleport it. We have demonstrated that those two

minimizations, over bulk curves and boundary teleportation procedures, are effectively

equivalent. Non-minimal length convex curves define constrained boundary state merging

tasks whose optimal entanglement costs are the lengths of the curves themselves.

2.5 Orientation reversal and negative length — the “cost” of purifying a state

In fact, formula (2.3) computes the signed length of an oriented curve. A detailed expla-

nation of this can be found in [25]; see also [48]. The orientation of the curve is natural

from the viewpoint of the merging protocol: it is decided by the direction of the flow

of information.

To understand this, return to the geodesic gI drawn in figure 1. In section 2.3 we

considered a stepwise merging protocol, in which Bob constructs the state on an interval

I of size a from successive pieces received from Alice. Bob starts with the UV sector and

builds up to the scale a. But we can consider the opposite situation, in which Bob initially

holds the state on Ic, the complement7 of I. Now Alice will send Bob the information

6More generally, one uses the shortest bulk curve homologous to I.
7This discussion applies directly to pure states of the CFT. When the state of the CFT is mixed, such

as the thermal state dual to a black hole spacetime, Ic must be replaced by the total system which purifies

I. For example, if we describe the thermal state as the thermofield double state of the composite system

CFT⊗C̃FT, then Bob holds Ic ∪ C̃FT.
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about the purifier system I. She will again do so piecewise, this time starting from the

data about the largest scale a that is inaccessible to Bob and zooming down to the UV.

In the unconstrained merging protocol, Bob will use his full knowledge of the previously

received state to merge each incoming chunk of information. To track his progress, we can

use the intervals I(x) from figure 1a, except now starting from x = 0 up to x = a/2. This

is convenient for comparison with section 2.3, because it corresponds to complementing

Bob’s state from the left endpoint of the interval I at x = −a/2 to the right endpoint at

x = a/2, i.e. in the direction of increasing x. (Of course, Alice could send Bob data about

the interval I starting from the right endpoint, in which case the I(x) with −a/2 ≤ x ≤ 0

would be natural.) Overall, prior to step x Bob holds the state on I(x − dx)c while after

step x he knows the state on I(x)c. The cost of this step in the merging protocol is

S
(
I(x)c

)
− S

(
I(x− dx)c

)
= S

(
I(x)

)
− S

(
I(x− dx)

)
, (2.11)

where we assume that the global state is pure. Adding up the cost of all steps, we get:∫ x=a/2

x=0

(
S
(
I(x)

)
− S

(
I(x− dx)

))
= S

(
I(a/2)

)
− S

(
I(0)

)
= −S(I) (2.12)

The “cost” of purifying a given mixed state is apparently negative! What this means is

that rather than requiring an investment of Bell pairs, state merging produces Bell pairs

as a side effect [39].

For readers unfamiliar with state merging, another simple (in fact, trivial) example may

again be helpful. Suppose that Alice and Bob share the state |ψ〉AB = 1√
2
(|00〉AB+ |11〉AB)

and that Alice wishes to merge A to Bob, who holds B. The objective is to prepare a state in

Bob’s laboratory identical to |ψ〉AB. The key point in this case, as compared to the merging

examples in section 2.2, is the absence of a third system R. In general, the Alice-Bob

merging procedure is required to maintain all the correlations with outside systems like R.

In the absence of such systems, there are no correlations to preserve. Therefore, a perfectly

good merging protocol is for Bob to prepare the state |ψ′〉 = 1√
2
(|00〉A′B′ + |11〉A′B′) in his

own laboratory, without any help from Alice. The initial state |ψ〉AB is left untouched so at

the end of the merging protocol Alice and Bob share 1 Bell pair. This is exactly as it should

be: for |ψ〉AB, we have S(A|B) = −1 so instead of consuming a Bell pair, Alice and Bob

return one. In more realistic situations, the state initially shared between Alice and Bob

will be mixed. In that case, negative cost merging amounts to entanglement distillation:

the extraction of good Bell pairs from noisy entanglement using only local operations and

classical communication [49, 50].

Can (2.12) be interpreted as a differential entropy? Above we switched the roles of I(x)

and I(x)c. If we substitute the complementary intervals in the definition (2.3), we obtain:∫ (
S
(
I(x)c

)
−S
(
I(x)c∩I(x−dx)c

))
=

∫ (
S
(
I(x)

)
−S
(
I(x)∪I(x−dx)

))
≡ Sdiff (2.13)

We take this to be the definition of the differential entropy under reversal of orientation [25,

44, 48]. This extension is sensible and necessary. Recall that the intervals I(x) are defined

by the requirement that the geodesics subtending them are tangent to the bulk curve. But
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this definition is ambiguous: if a family I(x) satisfies it, so does I(x)c. This ambiguity

is fixed by a choice of orientation on the curve. Augmenting the definition by (2.13)

makes it covariant under orientation reversal, whose boundary counterpart is to take the

complement of each set I(x).

Does this amendment make the definition ambiguous? Yes, but only up to a sign.

Given a curve R = R(x̃) that subtends a boundary interval I, select a family of inter-

vals I(x). We can now compute the length of the curve using formula (2.3) or using

formula (2.13). One computes the number of Bell pairs required by Bob to learn the state

on I starting from nothing while the other computes the number of Bell pairs that can be

extracted as Bob purifies his initial state on Ic. They always give opposite answers, because

S
(
I(x)

)
− S

(
I(x) ∪ I(x− dx)

)
= −

(
S
(
Ĩ(x)

)
− S

(
Ĩ(x) ∩ Ĩ(x+ dx)

))
(2.14)

for the family of intervals Ĩ(x) = I(x)∪I(x−dx), which is equivalent to I(x) when dx→ 0.

2.6 Closed curves: constrained state swapping

The preceding subsections consider the length of a convex curve with endpoints on the

boundary. Its information theoretic interpretation involves sending the quantum state on

the boundary interval lying between the curve’s endpoints, subject to constraints that

specify the shape of the curve. We now give a similar interpretation of the length of a

closed, convex curve in AdS3. This introduces several important differences.

First, we can only speak of closed convex curves in global AdS3 and not on the Poincaré

patch. The dual field theory now lives on a circle instead of a line. Our curves will be

given by R = R(θ̃) in coordinates

ds2 = −R
2 + L2

L2
dT 2 +

L2

R2 + L2
dR2 +R2dθ̃2 (2.15)

instead of R(x̃) in coordinates (2.1). Coordinate θ̃ is an angular coordinate with period 2π.

As before, we distinguish the bulk coordinate θ̃ from θ, which we reserve for the asymptotic

boundary. Following our earlier prescription, every point θ̃ on R = R(θ̃) determines an

interval J(θ) with center at θ and width aJ(θ), such that the geodesic subtending it is

tangent to the curve. Once more, we caution that θ depends on θ̃, but is not equal to it.

The construction is illustrated in figure 4a.

The second difference is that in contrast to the curves asymptoting to the boundary

that we considered before, a closed bulk curve does not select a boundary interval. In

consequence, the length of a closed curve does not compute the cost of sending the state

on any one interval. Instead, we now consider Alice and Bob, who control complementary

intervals on the CFT and wish to swap them. As before, the intervals J(θ) define a set of

locality constraints, which limit the type of operations Alice and Bob can perform. The

length of the closed curve is the total cost in Bell pairs for Alice and Bob to swap their

states completely.
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a) b)

Figure 4. a) The intervals J(θ) defined by a closed, convex curve in global AdS3. b) The inter-

vals (2.16)–(2.17) initially held by Alice and Bob. We have indicated J(θN ) and J(θ2N ) and the

bulk axis, which joins their centers.

Our protocol will be carried out in discrete steps. To index them, we define θj = πj/N

for j = 1, . . . , 2N . Initially, let Alice and Bob control the states on:

Alice : ∪Nj=1J(θj)− J(θ2N ) (2.16)

Bob : ∪2N
j=N+1J(θj)− J(θN ) (2.17)

A simple calculation in set arithmetic confirms that these intervals are complementary

provided that J(θN ) ∩ J(θ2N ) = ∅. In pure AdS3, this and the more general condition

J(θj)∩J(θj+N ) = ∅ follows directly from the concavity of the bulk curve. As a consequence,

note that Alice controls all of J(θN ) and Bob controls all of J(θ2N ). The intervals (2.16)–

(2.17) are illustrated in figure 4b.

Each discrete step consists of two parts. First, Alice sends to Bob the state on an

infinitesimal piece on one end of her interval, i.e. A1 = J(θ1) − J(θ2N ). Then Bob sends

to Alice the state on an infinitesimal interval on the other end, AN+1 = J(θN+1)− J(θN ).

Both state transfers happen via constrained state merging. This means that Bob (Alice)

can only use the operations on B1 = J(θ1)∩J(θ2N ) (respectively BN+1 = J(θN+1)∩J(θN ))

to merge the quantum state on A1 (respectively AN+1). For the Bob→Alice transfer, we

assume that J(θ1)∩ J(θN ) = ∅, so that Alice can utilize all operations on J(θN ) to decode

the message from Bob. At sufficiently large N this assumption is true for every convex

curve of finite size. At the end of this first step, the states controled by Alice and Bob are:

Alice : ∪N+1
j=2 J(θj)− J(θ1) (2.18)

Bob : ∪2N+1
j=N+2J(θj)− J(θN+1). (2.19)

We have used the periodicity in θ to rewrite θ1 = θ2N+1 in (2.19). Comparing with (2.16)–

(2.17), we see that these intervals are of the same form as before, except the indices that set

the interfaces between Alice and Bob have shifted by 1. Since both parts of the first step

were constrained state merging, Alice and Bob have paid an entanglement cost equal to

S(A1|B1) + S(AN+1|BN+1) . (2.20)
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To effect a full swap, we must shift the index of the interface by N , so we repeat the steps

outlined above N times. The total cost is the differential entropy
∑2N

j=1 S(Aj |Bj).

3 Optimality: minimization over all possible constrained merging strate-

gies

3.1 The need for an optimality proof

The goal of this article is to give an information theoretic interpretation of the length

of a convex spacelike curve. So far, what we have demonstrated is a boundary merging

procedure meeting a set of locality and scale constraints whose entanglement cost is the

length of the curve. Who is to say, however, that we should pay any attention to the cost

of that specific procedure? If we are to claim that the length of the curve is the cost of

merging Alice’s interval to Bob subject to the constraints, we need to be sure that there is

not some other way of achieving the same goal but at a reduced entanglement cost.

This is a crucial point. Consider the special case of the interpretation of the entropy

S(I) as the logarithm of the effective Hilbert space dimension, that is, the number of

qubits required to compress I.8 There are two halves to the interpretation. First, that

there exists a subspace of dimension 2S(I)+subleading containing nearly all the support of the

density operator and, second, that no significantly smaller subspace can do so. Indeed, if

there were a subspace of dimension 2S(I)/2 containing nearly all the support of the density

operator, the effective Hilbert space dimension would obviously be at most 2S(I)/2, not 2S(I).

In keeping with this credo, the purpose of this section is to complete the interpreta-

tion of the length of a curve by proving that no constrained merging procedure can have

entanglement cost less than Sdiff .

Throughout this section we will be discussing the properties of general constrained

merging protocols. In order not to create confusion, we will refer to the constrained merging

protocol described in section 2.2 as the greedy constrained merging protocol because at each

stage as much state as possible is merged from Alice to Bob.

3.2 Formal definition of constrained merging and statement of the theorem

First we need to formally define the permissible procedures. Write QE for the Hilbert space

(C2)⊗E and let HA ≡ HB ≡ ⊗x∈ZHx, with dimHx <∞ and only a finite number of x such

that dimHx > 1 . Let I ⊆ Z be a finite interval and I(x) ⊆ I itself be an interval for each

x, such that the left and right endpoints `(x) and r(x) of the intervals are non-decreasing

with x. Without loss of generality, let I = [1, N ] = {1, 2, . . . , N}. An E-ebit constrained

merging protocol consists of an N step procedure. HB is initially prepared in the fixed

product state |00 · · · 0〉B. Write D(H) for the density operators on H. Step x consists of

an A↔ B LOCC transformation

D(HAI(x) ⊗H
B
I(x) ⊗Q

A′
Ex ⊗Q

B′
Ex) −→ D(HAI(x) ⊗H

B
I(x) ⊗Q

A′
Fx ⊗Q

B′
Fx) (3.1)

8Technically, it is Hε
max(I) that is the effective Hilbert space dimension, but we will see in section 4 that

the two entropies are essentially interchangeable for a large c CFT.
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Figure 5. Intermediate stage in a constrained merging protocol. The top row depicts the interval

I = [L,R] with endpoints L and R. Step x of the protocol acts on interval I(x) = [`(x), r(x)], drawn

in the second row. Because r(x) is non-decreasing with x, the sites marked by the orange bar have

not yet been acted upon. The third row depicts the interval I(x + 1) = [`(x + 1), r(x + 1)]. Once

step x is complete, none of the sites indicated by the green bar will ever be acted upon again since

`(x) is non-decreasing with x. Therefore, after step x the reduced density operators corresponding

to the green marked sites on B and the orange marked sites on A should approximate the reduced

density operator of the target state |ψ〉.

in which the space QAEx ⊗ Q
B
Ex

is initially prepared as a maximally entangled state, with∑
x∈I(Ex − Fx) = E. (The spaces QA′Fx ⊗Q

B′
Fx

will be used to store entanglement distilled

by the merging procedure in the event that the cost is negative.)

LOCC stands for Local Operations and Classical Communication. The details of the

definition of LOCC are a bit complicated [49] but for the purposes of the optimality proof,

it suffices to know that any LOCC transformation of a density operator ρAB will have the

form ρAB 7→
∑

k Fk ⊗GkρABF
†
k ⊗G

†
k =:

∑
k pkσ

(k)
AB. The index k can roughly be thought

of as recording the outcomes of the measurements that were part of the procedure. LOCC

maps obey the inequality S(ρB) ≥
∑

k pkS(σ
(k)
B ) [49]. That is, they cannot cause the en-

tanglement entropy to increase on average. (They can, however, increase the entanglement

for individual measurement outcomes k.)

Given an initial state |ψ〉A ∈ HA, an E-ebit constrained merging protocol will produce

an ensemble (pk, σ
(k)
AB)k of final states. The protocol is said to have merging error ε if for

all |ψ〉 ∑
k

pk

∥∥∥σ(k)
B − |ψ〉〈ψ|B

∥∥∥
1
≤ ε. (3.2)

While this is an operationally sensible definition, it turns out that just requiring the merging

error to be small is not quite enough to ensure the optimality of Sdiff . Instead we will impose

a slightly stronger condition, namely that at each of the N steps of the protocol, those sites

of A that have never been acted upon, combined with those sites of B that will never be

acted upon again, are consistent with |ψ〉. This is a reasonable demand: at any given time

the interval I can be divided into three sections: the completed section, a portion under

construction, and an untouched section. We will require that the completed and untouched

sections be properly correlated. Formalizing that notion requires some further notation.

Let I = {L,L+1, . . . , R} =: [L,R] so that L and R are the left and right endpoints of I.

Likewise, let I(x) = [`(x), r(x)]. (We will also have occasion to make use of abbreviations
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Figure 6. Sequential merging error. The top line depicts the interval I = [L,R] and a set of

merging constraints in the form of intervals I(x) depicted as green ovals. The state to be merged

is a maximally entangled state shared between L and R, as illustrated in the second line. One way

to merge this state is for Bob to prepare a maximally entangled state between L and L+ 1 in the

first sequential merging step and then, in the subsequent steps, simply swap the information to the

right until a maximally entangled state is established between L and R. This procedure doesn’t

require any Alice-Bob entanglement and yet produces long-range entanglement in Bob’s lab. It is

prohibited by the sequential merging error condition because, while the final state is correct, the

intermediate state fails the sequential merging condition. The joint state of Bob’s L and Alice’s R

is not correct at the intermediate merging steps after L has been completed and before R has been

reached; they should be maximally entangled but instead they are product.

like [L, `(x+ 1))B to indicate the subsystem corresponding to ⊗x∈[L,`(x+1))HBx .) After the

step of the protocol acting on I(x), the interval (r(x), R] = {r(x) + 1, r(x) + 2, . . . , R}
remains untouched in both A and B. Similarly, the definition of constrained merging

implies that none of the remaining steps x+1, . . . , N will act on the [L, `(x+1)) subsystem

of B. See figure 5 for a visual depiction of these assertions.

Write (pk,x, σ
(k,x)
AB )k for the ensemble of states produced after completion of the x step

of the protocol. Given the notational complexity, let us begin with the special case in which

the protocol never generates entanglement so that Fx = 1 for all x. An E-ebit constrained

merging protocol is then said to have sequential merging error ε if for all initial states

|ψ〉 ∈ HA and x ∈ I,∑
k

pk,x

∥∥∥idB→A[L,`(x+1)) σ
(k,x)

[L,`(x+1))BA′B′∪(r(x),R]A∪(Ic)A
− |ψ〉〈ψ|Z\[`(x+1),r(x)]A

∥∥∥
1
≤ ε. (3.3)

The definition is quite subtle. Intuitively, it enforces the requirement that long-range

entanglement in |ψ〉 be transferred from Alice to Bob rather than just manufactured entirely

in Bob’s laboratory, as illustrated in figure 6. The analogous conditions for [L, `(x+ 1))B

and (r(x), R]A alone are in fact already consequences of the weaker definition (3.2). Small

sequential merging error imposes the additional requirement that the joint density operator

of [L, `(x + 1))B and (r(x), R]A, along with Ic, have the proper form. This ensures that

the correlations Bob arranges in his lab are with the (r(x), R]A sitting in Alice’s lab, not

some new state he will manufacture himself later on in the protocol.

Requiring (3.3) still leaves a great deal of freedom. In the case of a geodesic, for exam-

ple, it is flexible enough to be consistent with both the all-at-once strategy of section 2.1
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and the greedy merging scale-by-scale strategy of section 2.3. In addition, after step x,

the sites [`(x + 1), r(x)]B are permitted be in arbitrarily messy intermediate states very

different from the good approximations to ψ produced at that stage by either of those

merging protocols.

However, we will demonstrate that there is no advantage to be gained from all this

freedom: greedy constrained merging is optimal.

The definition in the case in which the protocol can generate entanglement requires

replacing (3.3) with

∑
k

pk,x

∥∥∥idB→A[L,`(x+1)) σ
(k,x)

[L,`(x+1))BA′B′∪(r(x),R]A∪(Ic)A
− |ψ〉〈ψ|Z\[`(x+1),r(x)]A ⊗ |Φ〉〈Φ|[L,`(x+1))A′B′

∥∥∥
1
≤ ε.

(3.4)

Here, |Φ〉[L,`(x+1))A′B′ is a product over x ∈ [L, `(x + 1)) of maximally entangled states∑Fx
j=1 |jj〉A′B′ . Thus, once the protocol has forever finished acting on some sites, the A′B′

portion of each of those sites must be left with high fidelity maximally entangled states of

Schmidt rank Fx.

Theorem 3.1 For any E-ebit constrained merging protocol with sequential merging error

ε < 1/4, the following inequality holds for every initial state |ψ〉:

E ≥
∑
x∈I

[
S (I(x))ψ − S (I(x) ∩ I(x− 1))ψ

]
− f(ε)

∑
x∈I

log dimHx, (3.5)

where f(ε) vanishes as ε→ 0.

3.3 Proof

To prove the theorem, begin by fixing an initial state |ψ〉 and an arbitrary E-ebit con-

strained merging protocol with sequential merging error ε. Again to keep notation rela-

tively simple, we will assume that the protocol never generates any entanglement (Fx = 1

for all x), the general case being a straightforward if cumbersome modification. We will

write S̄(J)Bx for the entropy averaged over reduced states on subsystem J of B that are

produced after the step of the constrained merging protocol acting on interval I(x).

There is an entanglement gain S̄(I(x))Bx − S̄(I(x))Bx−1 for the I(x) step of the protocol,

between the I(x) portion of B and its purification. Since the average entanglement entropy

cannot increase under LOCC, we must have

Ex ≥ S̄(I(x))Bx − S̄(I(x))Bx−1 (3.6)

and, therefore,

E =
∑
x∈I

Ex ≥
∑
x∈I

[
S̄(I(x))Bx − S̄(I(x))Bx−1

]
(3.7)

=
∑
x∈I

[
S̄(I(x))Bx − S̄(I(x+ 1))Bx

]
, (3.8)
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where we have set S̄(J)B0 = 0 to reflect that the initial B state is a pure product state and

have defined I(N +1) = ∅. As discussed above, after step x, the protocol has not yet acted

on (r(x), R] so S̄(I(x+ 1))Bx = S̄([`(x+ 1), r(x)])Bx . That allows us to write

S̄(I(x))Bx − S̄(I(x+ 1))Bx = S̄
(
[`(x), `(x+ 1))

∣∣[`(x+ 1), r(x)]
)B
x

(3.9)

where, as usual, S̄(J |K)Bx ≡ S̄(JK)Bx − S̄(K)Bx .

By the sequential merging condition,
∑

k pk,xεkx ≤ ε, where

εk,x =
∥∥∥idB→A[L,`(x+1)) σ

(k,x)

[L,`(x+1))B∪(r(x),R]A∪(Ic)A
− |ψ〉〈ψ|Z\[`(x+1),r(x)]A

∥∥∥
1
. (3.10)

Since these two density operators are close to each other, their purifications are related by

isometric Hilbert space transformations. The Hilbert space purifying the ψ mixed state is

obviously HA[`(x+1),r(x)]. The Hilbert space purifying the σ(k,x) mixed state, on the other

hand, is HA[L,r(x)] ⊗ H
B
Z\[L,`(x+1)). But outside of [L, r(x)], the state σ(k,x) is just |00 · · · 0〉

so the purification can be taken to be a state of HA[L,r(x)] ⊗H
B
[`(x+1),r(x)]. Using Uhlmann’s

theorem [51] and standard inequalities relating the trace distance and fidelity [52], we

conclude that there exists an an isometry taking HA[`(x+1),r(x)] to HA[L,r(x)] ⊗ H
B
[`(x+1),r(x)]

that maps |ψ〉 to a state f1(εk,x)-close to σ(k,x) where f1(εk,x) vanishes with εk,x.

But then

S
(
[`(x), `(x+ 1))

∣∣[`(x+ 1), r(x)]
)
ψ

≤ S
(
[`(x), `(x+ 1))B

∣∣[L, r(x)]A ∪ [`(x+ 1), r(x)]B
)
σk,x

+ f(εk,x) log dimH[`(x),`(x+1))B

≤ S
(
[`(x), `(x+ 1))B

∣∣[`(x+ 1), r(x)]B
)
σk,x

+ f(εk,x) log dimH[`(x),`(x+1))B . (3.11)

The function f(εk,x) also vanishes with εk,x. The first inequality holds thanks to the

existence of the isometry relating the two systems being conditioned upon and the Alicki-

Fannes conditional entropy continuity inequality [53], while the second inequality is an

application of strong subadditivity.

The function f is concave and, for ε < 1/4 also monotone, so∑
k

pk,xf(εk,x) ≤
∑
k

f(pkxεk,x) ≤ f(ε). (3.12)

Averaging (3.11) over k then summing over x finally gives∑
x∈I

S̄
(
[`(x), `(x+ 1))

∣∣[`(x+ 1), r(x)]
)B
x

≥
∑
x∈I

S
(
[`(x), `(x+ 1))

∣∣[`(x+ 1), r(x)]
)
ψ
− f(ε)

∑
x∈I

log dimHx

=
∑
x∈I

[S(I(x))ψ − S(I(x) ∩ I(x+ 1))ψ]− f(ε)
∑
x∈I

log dimHx

=
∑
x∈I

[S(I(x))ψ − S(I(x) ∩ I(x− 1))ψ]− f(ε)
∑
x∈I

log dimHx, (3.13)
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which completes the proof since we saw earlier that the first line was a lower bound on the

entanglement cost E. �

A few remarks are in order. The careful reader will have noticed that the theorem as

stated only applies to systems with finite dimensional constituent Hilbert spaces Hx. That

is manifestly not true for the Hilbert space of the CFT, even after imposing the UV cut-off

µ. Imposing the cut-off does, however, ensure that each of the entropies S(x) is finite. In

the limit of large central charge, therefore, we could compress the initial state |ψ〉 on each

of the lattice sites x ∈ I, disturbing the state by a total amount ε′. The compressed state

would sit inside a Hilbert space satisfying the hypotheses of the theorem. Moreover, any

constrained merging protocol with ε error for the original state would have error at most

ε+ ε′ for the compressed state by the triangle inequality. Therefore, Sdiff is indeed a lower

bound on the entanglement cost for constrained merging in the CFT.

4 Single-shot versus von Neumann entropies

So as not to complicate the presentation in section 2, we ignored two important issues.

First, in the preceding discussion the conditional von Neumann entropy was identified as

the entanglement cost in each of the N merging steps of the greedy constrained merging

protocol, but the cost in the single-shot setting appropriate for us here is in fact the smooth

conditional max-entropy Hε
max(Aj |Bj) [54]. Hε

max asymptotes to the von Neumann entropy

S(A|B) in the limit of many copies of a state, but our procedure is intended to act on a

single copy of the CFT state, so we must work with the max-entropy. Second, other

than in extremely simple cases, achieving the optimal merging cost requires allowing small

imperfections in the final state. Tracking the accumulation of those imperfections through

the multistep protocol will be important.

The definition of the smooth conditional max-entropy is somewhat complicated [54, 55]

and will not actually be necessary. We will only need the following two facts:9

1. For any ε > 0 and quantum state |ψ〉ABR, there exists a quantum state merging

protocol with entanglement cost

Hε4/169
max (A|B) + 4 log

(
1

ε

)
+ 2 log2 13 (4.1)

producing a state with density operator ρABR such that ‖ |ψ〉〈ψ| − ρ‖1 ≤ ε [54].

(In fact, if the cost is negative then the final joint state of ABR together with the

entanglement is ε-close to |ψ〉〈ψ| tensored with a perfect maximally entangled state.)

2. Hε
max(A|B) ≤ Hε2

max(AB)−Hε2/4
min (B) + const [55].

In light of these results, to get an upper bound on the entanglement cost of merging an

interval of the CFT it suffices to bound the smooth Hε
max(AB) from above and the smooth

9The statements in the literature have slightly different forms, because they are formulated in terms of

the “purified distance” instead of the trace distance. We have performed conversions in section C at the

expense of poorer scaling with ε.
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Hε
min(B) from below. The unconditioned min- and max- entropies are much simpler to

define and work with.

The smooth min- and max- entropies are defined as follows. Given a state ρ, consider

the set B(ρ, ε) of all σ with tr(σ) ≤ 1, σ ≥ 0, and ‖σ−ρ‖1 < ε. This set is relevant because

we want to determine the optimal resource cost, but without the unrealistic assumption

that the state ρ is perfectly transmitted. The smooth max-entropy Hε
max is then defined as

Hε
max(ρ) = min

‖σ−ρ‖1<ε
log(rank(σ)) , (4.2)

where the minimum is taken over B(ρ, ε). In essence Hε
max instructs us to truncate ρ to

its largest eigenvalues of total weight 1 − ε. In other words, we throw away the smallest

eigenvalues of ρ up to weight ε, but then we must transmit the remaining state in its

entirety since this is a single-shot protocol. Once more, we are allowed to ignore very rare

events, but once these events have been cut out of ρ, all the remaining states must be sent

to guarantee that the protocol succeeds in a single shot.

The smooth min-entropy Hε
min is defined as

Hε
min(ρ) = max‖σ−ρ‖1<ε log λ−1

max(σ) , (4.3)

where λmax(σ) is the largest eigenvalue of σ. For the smooth min-entropy we are doing

a similar kind of truncation as with the smooth max-entropy, except that now we are

truncating the largest eigenvalues of ρ up to weight ε. The smooth min-entropy is then the

negative logarithm of the new largest eigenvalue after the truncation, which is a measure of

one’s ability to guess the quantum state correctly. As noted above, it plays an important

role in bounding the single-shot state merging cost.

If the state ρ were an equal weight mixture of M pure states, it would immediately

follow that both Hε
max and Hε

min are within ε of the von Neumann entropy log(M). In this

case the single-shot cost is the same as the asymptotic cost (as it should be). What we now

show is that, to leading order in the central charge c, the smooth min- and max- entropies

for an interval in a CFT are also given by the interval’s von Neumann entropy. Hence for

CFT intervals (with some care taken about the errors) we find that the single-shot cost

approximately reproduces the asymptotic cost.

To compute these smooth entropies, we use a formula found by Calabrese and Lefevre

for the eigenvalue distribution of an interval’s reduced density operator in either a vacuum

or thermal state of a 1+1 dimensional CFT [56]:

P (λ) =
∑
i

δ(λ− λi) = δ(λ− λmax) +
bΘ(λmax − λ)

λ
√
b log(λmax/λ)

I1(2
√
b log(λmax/λ)) , (4.4)

where b = Hmin(I) = − log(λmax) and I1 is a modified Bessel function of the first kind.

This formula is derived starting from the fact that the Rényi entropies of an interval I,

Sα(I) = 1
1−α log(tr(ρI)), are given by

Sα(I) =
1

2

(
1 +

1

α

)
S(I), (4.5)
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where S(I) is the von Neumann entropy. The limit α→∞ gives S∞ = Hmin, so b = S(I)/2.

Furthermore, conformal invariance fixes S(I) in the ground state to be

S(I) =
c

3
log

(
a

µ

)
, (4.6)

where a is the size of the interval I. Finally, it should be noted that for a given regulator, the

form (4.5) will be corrected due to irrelevant operators, but for our purposes the important

feature is that these corrections are expected to be subleading in c, the central charge.

Given that b ∝ c, the large central charge limit corresponds to the limit of large b.

Investigation of the limit b → ∞ reveals the distribution of eigenvalues of ρI to be well-

approximated by a tightly peaked Gaussian after a suitable change of variables, yielding

Hε′
min(I) = S(I)

(
1−O

(√
2 log(1/ε′)/S(I)

))
and

Hε′
max(I) = S(I)

(
1 +O

(√
2 log(1/ε′)/S(I)

))
. (4.7)

These estimates follow from a straightforward change of variables. Setting y(λ) =

2
√
b log(λmax/λ) ≥ 0, the distribution of eigenvalues becomes

P̃ (y) ≡ P (λ(y))

∣∣∣∣dλdy
∣∣∣∣ = I1(y), (4.8)

where we have neglected the δ function at λmax (dropping one eigenvalue makes no dif-

ference at large c). Large b corresponds to large y where I1 is well approximated by the

form I1(y) ≈ ey/
√

2πy. Thus, the distribution of eigenvalues is roughly exponential in the

y variable. The leading correction to the asymptotic behavior is given by

I1(y) =
ey√
2πy

(
1− 3

8y
+O

(
1

y2

))
, (4.9)

which is only a minor power-law correction.

The normalization
∑

i λi translates to the statement that∫ ∞
0

dyP̃ (y)λ(y) = 1, (4.10)

with λ(y) = λmaxe
− y

2

4b = λmaxe
− y

2

2S . The object P̃ (y)λ(y) at large y is well approximated by

P̃ (y)λ(y) ≈ ey√
2πy

λmaxe
− y

2

2S ≈ λmax
e−

(y−S)2

2S

√
2πS

(4.11)

where in the last step we replaced
√
y with

√
S (its central value) in the denominator, a mild

simplifying approximation. The final form of P̃ (y)λ(y) is thus a normalized Gaussian with

polynomial in (y − S) corrections (arising from subleading terms in I1 and the expansion

of y−1/2 about y = S):

P̃ (y)λ(y) = λmax
e−

(y−S)2

2S

√
2πS

(
1 +O

(
y − S
S

))
. (4.12)
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Once the tightly peaked nature of the Gaussian is taken into account, all subleading cor-

rections are O(S−1/2) or smaller.

To compute the smooth entropies with generic smoothing parameter ε′, the probability

distribution P̃ (y)λ(y) must be truncated to weight 1−ε′. Define ymin,max by the equations:

1− ε′ =

∫ ∞
ymin

dy
e−

(y−S)2

2S

√
2πS

(4.13)

1− ε′ =

∫ ymax

−∞
dy
e−

(y−S)2

2S

√
2πS

(4.14)

In (4.14) we assumed, up to corrections of order e−S , that y runs over the whole real line.

It follows from symmetry that ymin = S − δy and ymax = S + δy, where

δy(ε′) =

√
2S log

(
1

ε′

)
+ . . . (4.15)

The corrections may be bounded with elementary properties of the error function.

With erf(x) defined as

erf(x) =
2√
π

∫ x

0
dt e−t

2
(4.16)

it follows that:

1− ε′ = 1

2
+

1

2
erf

(
δy√
2S

)
. (4.17)

The asymptotic form of the error function is

erf(x) = 1− e−x
2

x
√
π

(
1 +O

(
1

x2

))
, (4.18)

so to leading order

e−
δy2

2S(
δy√
2S

)
2
√
π

= ε′. (4.19)

An upper bound on δy is obtained by neglecting the denominator on the l.h.s. , which gives

the estimate:

δy ≤

√
2S log

(
1

ε′

)
. (4.20)

The smooth max entropy is then the logarithm of the rank of the truncated state (the

number of eigenvalues), yielding

Hε′
max = log

(∫ ymax

0
dy P̃ (y)

)
≈ log

(∫ ymax

dy ey
)
≈ ymax = S +O(δy(ε′)). (4.21)
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Similarly, the smooth entropy is the logarithm of the largest remaining eigenvalue after

truncating the largest eigenvalues, so

Hε′
min = − log(λ(ymin)) = − log(λmax) +

y2
min

2S
=
S

2
+

(S − δy)2

2S
≈ S −O(δy(ε′)).(4.22)

Pulling out a factor of S, the smooth entropies take the claimed form (4.7).

We now have the tools to bound the parameters required to achieve a cumulative error

of δ in an N -step constrained merging protocol. Each step should contribute an error of

at most δ/N , which means that ε′ = poly(δ/N) in (4.7) thanks to (4.1). The error term

in (4.7) is then

O

(√
logN + log 1/δ

c log aI/µ

)
, (4.23)

where aI is the length of the entire interval I. N must be allowed to go to infinity but

not so quickly as to invalidate the Rényi entropy formula (4.5). Choosing N = (aI/µ)γ for

0 < γ < 1 is sufficient, in which case taking the limit of vanishing UV cut-off µ implies that

the cost of each merging step is bounded above by the conditional von Neumann entropy,

with a multiplicative correction of order O(1/
√
c). The total entanglement cost of the

greedy constrained merging procedure is therefore precisely the differential entropy, up to

the same O(1/
√
c) corrections.

5 Differential entropy and Markov chains

From the point of view of the boundary field theory, the differential entropy is an en-

tropic function of a collection of reduced density matrices. In the first part of this work

we provided an information theoretic interpretation for differential entropy in terms of the

entanglement cost of a restricted communication task. However, there may be alternative

interpretations in terms of the entanglement entropy of a reconstructed global state. In

fact, it has been conjectured that the differential entropy is the maximum entropy among

all global states consistent with the marginals [38]. (In the reconstructability literature,

the reduced density matrices are referred to as marginals, a nomenclature we follow in this

section.) Arguments against this conjecture were first given in [57]. Recently, Kim and

Swingle showed that this conjecture is false by arguing that it does not apply to a global

pure state or subsystems with local modular Hamiltonians [58]. While their argument dis-

proves the conjecture, there remains an intriguing connection between differential entropy

and the problem of reconstructing the global state. Indeed, the greedy constrained merging

protocol is nothing but an operational way of reconstructing the global state by assembling

its marginals. We believe that density matrix reconstructability deserves further investi-

gation, as it may be relevant for thermal states or highly excited energy eigenstates [58].

Hence, we devote this section to the study of reconstructability and its intimate connection

with quantum Markov chains.

5.1 Reconstructability and Markov chains

Given a set of marginals, there can be many global states consistent with that local data

because local data need not fix long-range correlations. In fact, it is unlikely that the set
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of all consistent global states can even be characterized efficiently [59].10 Nevertheless,

all consistent global states should satisfy certain entropic inequalities. In particular, the

entropy of a consistent global state cannot be arbitrarily large. In the absence of further

information, the best guess for the global state is the state that maximizes global entropy;

we denote this state by ρmax.

Suppose we are given a set of local density matrices {ρIj} for the intervals {Ij}. If the

Ij do not overlap, then the subadditivity of entropy requires that

S(ρ) ≤
∑
j

S(ρIj ) (5.1)

for any global state ρ consistent with the marginals. The product state ⊗jρIj saturates

the above inequality and is therefore equal to ρmax. Eq. (5.1) also suggests a strategy for

moving beyond this simple situation. The quantity
∑

j S(ρIj )−S(ρ), which quantifies “un-

necessary” correlations in ρ, is nothing other than the relative entropy S(ρ‖ρmax) provided

ρ is consistent. This relative entropy measure of deviation from the maximum entropy

consistent state generalizes naturally to the case of overlapping intervals.

Reconstructing the global state from local data is much more interesting when regions

overlap. The density matrix of two overlapping regions A and B always satisfies the strong

subaddivity of entropy:

0 ≤ I(A−B : B −A|A ∩B) ≡ S(A) + S(B)− S(A ∩B)− S(A ∪B), (5.2)

where I(A−B : B−A|A∩B) is the conditional mutual information. Eq. (5.2) is saturated

if and only if the quantum state decomposes into a quantum Markov chain A − B →
A∩B → B−A [61, 62]. Informally, that means that there exists an incomplete projective

measurement of A∩B leaving the state invariant but such that A−B and B−A factorize

conditioned on the measurement outcome. In other words, all correlations between A−B
and B −A are classical correlations mediated by A∩B. (See appendix A for more precise

statements.)

In analogy with the case of nonoverlapping intervals in which ρmax was the state

saturating (5.1), in the general case it would be natural to expect ρmax to saturate (5.2).

Any consistent state saturating strong subadditivity is uniquely determined from the local

data according to the prescription

log ρA∪B = log ρA + log ρB − log ρA∩B. (5.3)

(Equality in (5.3) is in fact a necessary and sufficient condition for the saturation of strong

subadditivity [63].) This equation gives a prescription for writing down ρA∪B that will

always yield a positive semidefinite Hermitian operator. In general, however, ρA∪B need not

have unit trace. When it does not, ρmax will necessarily fail to saturate strong subadditivity.

10Given a set of local density matrices, just verifying their consistency is already QMA-complete, the

quantum computing version of NP-complete [60]. Here, however, we know in advance that local states are

consistent.
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The neighboring regions in the formula for differential entropy, I(x) and I(x − dx),

have significant overlap. In this case, the conditional mutual information computed for a

2D CFT is negligible:

S(I(x)) + S(I(x− dx))− S(I(x) ∩ I(x− dx))− S(I(x) ∪ I(x− dx)) = O(dx2). (5.4)

Therefore, one might hope that the maximum entropy consistent global state could be

found by a repeated application of (5.3) using the local data. Assuming the saturation

of strong subadditivity for all neighboring regions and iterating (5.3) over all j defines an

operator σ satisfying

log σ =
∑
j

(
log ρIj − log ρIj∩Ij−1

)
, (5.5)

which we call the Markov operator. In those cases when σ is normalized, it defines a state

consistent with the marginals whose only long-range correlations are purely Markovian.

A key observation is that if the global state is a pure state |Ψ〉, then the formula for

the differential entropy in (2.4) is nothing but the relative entropy of |Ψ〉 with respect to σ:

Sdiff = S
(
|Ψ〉〈Ψ|

∥∥σ) = S(σ), (5.6)

as can be verified by a simple calculation. If σ were properly normalized, this would have

constituted a proof for the conjecture that the differential entropy is the entropy of the

maximum entropy consistent state.

In appendix D we demonstrate that on a line (without periodic boundary conditions)

tr(σ) ≤ 1. This inequality is saturated in the special case where all ρIj and ρIj∩Ij−1

commute. Therefore, the Markov operator σ in this case is the consistent global state with

maximum entropy, and its von Neumann entropy is the differential entropy.

5.2 Markov operator in conformal field theory

In this section, we show explicitly that the Markov operator σ corresponding to marginals

of size R in the vacuum of a 1+1-dimensional conformal field theory does not have unit

trace. We thereby give a quantitative refutation of the conjecture that the entropy of the

maximum entropy consistent state is Sdiff . We will show that the maximum entropy state

consistent with marginals of size R in the vacuum has entropy at most 2/3 of Sdiff .

The reduced density matrix of a region A of size 2R in a 1+1-dimensional conformal

field theory on a line is [64]

ρA = exp

(
−2π

∫
dx
R2 − x2

2R
T00(x)

)
. (5.7)

As we saw in the previous section, the sufficient condition for differential entropy to

be the entropy of a consistent state is that reduced density matrices on different intervals

commute. Naively, it appears that reduced density matrices should commute because they

are functions of only one operator, T00. However, it is well known that in field theory equal-

time commutators of symmetry currents need not be zero [65]. In particular, in relativistic
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field theories the so-called Schwinger term quantifies the amount by which stress tensors

fail to commute:

i[T 00(x), T 00(y)] =
(
T 0k(x) + T 0k(y)

)
∂kδ(x− y). (5.8)

According to (5.5), knowledge of the reduced density matrices in (5.7) is sufficient

to directly compute the Markov operator. In appendix B we find σ for a collection of

marginals of size R in a CFT on a line to be

σ = C exp

(
−
∫
dx

4πR

3
T00(x)

)
, (5.9)

which is proportional to the thermal state at temperature T = 3
4πR . The identity Sdiff =

S(|Ω〉〈Ω|‖σ) fixes the value of C when the global state is the vacuum |Ω〉:

Sdiff = −〈Ω| log σ|Ω〉 = − logC +
4πR

3

∫
dx 〈Ω|T00|Ω〉 = − logC. (5.10)

Therefore,

σ = ρTZT e
−Sdiff = ρT e

cL
6R
− cL

8R = ρT e
− cL

24R , (5.11)

where ρT and ZT are the thermal state and partition function at temperature T = 3
4πR ,

respectively. In this case, ZT = eSthermal/2 = ecL/(8R), and Sdiff = cL
8R .

Consider ρmax, the maximum entropy consistent density matrix for the set of marginals

of size R. The relative entropy of this state with respect to σ is

S(ρmax‖σ) = Sdiff − S(ρmax) (5.12)

by direct substitution of the definition of σ into the formula for the relative entropy. How-

ever, as we have seen, σ = ρT e
− cL

24R . Using the nonnegativity of relative entropy then

leads to

Sdiff − S(ρmax) = S(ρmax‖ρT ) +
cL

24R
≥ cL

24R
. (5.13)

Therefore, there exists no consistent density matrix with an entropy that is near the dif-

ferential entropy; the largest entropy among all of them is at most 2/3 of Sdiff .

As a final remark, it is worth noting that the thermal density matrix at temperature

T = 3
4πR is not consistent with vacuum at scales smaller than 2R. In fact, the thermal

state at temperature T remains distinguishable from the vacuum in the large central charge

limit since S(ρT ‖‖Ω〉〈Ω|) = O(c).

6 Generalization to more curves and surfaces

Our discussion of the constrained merging protocol was given mostly for a convex curve

with endpoints on the boundary on a static slice of pure AdS3, which is dual to the ground

state of a 1+1-dimensional CFT. In fact, our interpretation of the length of a convex curve
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a) b)

Figure 7. a) A surface in Poincaré AdS4 built up from minimal surfaces anchored on a sequence

of boundary circles. Its area computes the entanglement cost of a constrained merging protocol. b)

A surface built up from a cycle of minimal surfaces. Its area computes the entanglement cost of a

constrained swapping protocol.

works for a broader class of curves and even extends to areas of some surfaces in higher

dimensions.

A key geometric fact underlying the scope of our results is that the area of any spacelike

convex surface in a holographic spacetime can be written in the form

areasurface = lim
N→∞

N∑
j=1

(areaAj∪Bj − areaBj ) (6.1)

for some family of sets Ij , where as before Aj = Ij − Ij−1 and Bj = Ij ∩ Ij−1 [45, 48].

This includes lengths of curves in asymptotically AdS3 spacetimes which do not lie on a

constant time slice [48]. The areas on the right hand side of (6.1) are of extremal surfaces

which asymptote to Aj ∪Bj and Bj . So long as these areas compute appropriate boundary

entanglement entropies, the total area on the left hand side becomes a sum of conditional

entropies:

areasurface = Sdiff = lim
N→∞

N∑
j=1

S(Aj |Bj) . (6.2)

For example, figure 7 depicts two surfaces on a static slice of the Poincaré patch of AdS4.

Their areas compute the entanglement costs of the constrained merging and constrained

swapping protocols discussed in section 2.

However, applying our results in more general settings is subject to a number of caveats,

which we discuss below.

Extremal but nonminimal surfaces. The surfaces appearing on the right hand side

of (6.1) are guaranteed to be extremal, but not necessarily minimal. In pure AdS spacetimes

and some excited geometries [66, 67] this distinction does not play a role. In generic

holographic spacetimes, however, more than one extremal surface may be anchored on the

same boundary region [68–70] and only one of them computes the entanglement entropy of

the said region. In discussions of the Ryu-Takayanagi proposal, the non-uniqueness of the

extremal surfaces came to focus with the introduction of the homology constraint, without

which the proposal gives incorrect answers for entanglement entropies of subregions in the

thermal state [68]. Another easy example of an extremal but non-minimal surface is a
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geodesic in the BTZ spacetime, which wraps around the black hole multiple times in a

spacelike analogue of gravitational lensing.

In order to interpret the area of a surface written in the form (6.1) as the cost of a

merging protocol (6.2), all surfaces on the right hand side must be minimal. It is difficult

to give a general characterization of bulk surfaces for which this is true; for a discussion of

this consult [45]. Here we content ourselves with some qualitative rules of thumb. The right

hand side of (6.1) typically involves extremal but nonminimal surfaces (a) if the surface

approaches a horizon, (b) if its extrinsic curvature is anywhere large, and / or (c) if it is

locally approximately radial. In addition, closed convex curves in higher dimensions always

involve nonminimal surfaces in (6.1).

It would be interesting to understand (6.1) in information theoretic terms also in

cases, where nonminimal surfaces make an appearance. A possible starting point was

given in [46], which studied the field theory meaning of the lengths of nonminimal surfaces

in the simplest setting: the conical defect geometry AdS3/Zn. The field theory state dual

to this geometry is an excited state, so the level spacing in its neighborhood is reduced

relative to the vacuum. Converting the level spacing into a length scale, we obtain a scale

larger than system size — a dynamical scale, which cannot be spatially realized in a single

copy of the system. In a certain technical sense, [46] associated nonminimal geodesics with

the physics of such extended, dynamical scales. Now recall that in section 2.3 we used

differential entropy to decompose entanglement — that is, a minimal surface — into scale-

specific components. This suggests that it may be possible to interpret (6.1) in information

theoretic terms in the general case, perhaps in terms of a communication task where Alice

transmits to Bob data about all scales in the theory, including scales larger than system

size, which are not captured by the entanglement entropy of any subregion.

Overlapping Aj’s. In the constrained merging protocol Alice sends data about succes-

sive regions Aj to Bob. This makes sense only if the sets Aj are disjoint. In more than 2+1

bulk dimensions this is not guaranteed. The large freedom in choosing shapes of boundary

regions Bj and Aj makes it possible to construct an example, where distinct Aj ’s overlap

even though the bulk surface is convex.

Non-convex regions. All our results pertain to convex surfaces. As explained in [25],

the differential entropy formula also computes lengths of nonconvex curves, but as a differ-

ence of two terms: integral (2.3) taken over the segments where the curve is convex minus

integral (2.13) taken over concave segments. Integral (2.13) showed up in section 2.5, where

we discussed orientation reversal and the negative “cost” of purifying an initial mixed state.

This suggests that an information theoretic interpretation of the length of a nonconvex

curve might involve a flow of information in both directions — from Alice to Bob and from

Bob to Alice. However, we have not yet succeeded in finding a well motivated quantum

communication task whose cost would be precisely the length of a nonconvex curve.

Technical proofs. To prove that the one-shot and von Neumann entropies coincide in

the large c limit, we used the eigenvalue distribution of the reduced density matrix of an

interval given in [56]. This eigenvalue distribution applies to an interval in the vacuum
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or in the thermal state of a 1+1-dimensional CFT. Consequently, the proof in section 4

is valid only for curves in pure AdS3 or in the BTZ spacetime. It would be surprising,

however, if analogous results did not hold in higher dimensions.

The optimality proof of section 3 applies to the constrained merging protocol. We

have not proven the optimality of the constrained swapping protocol, which is relevant to

closed convex curves in AdS3 and to higher-dimensional surfaces like that in figure 7b.

7 Summary of results

In this paper we have studied holographic theories of gravity, an important class of gravi-

tational models which enjoy an equivalent description as field theories. In the last years, it

has become increasingly clear that in these models the geometric structure of spacetime is

intimately related to quantum information theory. In order to clarify this relation, we have

given an explicit, information theoretic interpretation of one of the most basic geometric

quantities in spacetime: the length of a convex curve. This interpretation involves a certain

communication task in the dual field theory, whose details are encoded in the shape of the

curve. Our discussion was set in the context of pure AdS3, which is dual to the vacuum

of a 1+1-dimensional conformal field theory. Our findings generalize to varying degrees as

discussed in section 6.

The specific results are:

Section 2: the exhibition of a protocol for merging the state of a boundary interval from

Alice to Bob at an entanglement cost equal, to leading order in the CFT central

charge, to the length of a bulk curve starting and ending at the endpoints of the

interval. In each step of the protocol, Alice and Bob act only in subintervals of the

boundary determined by the geometry of the bulk curve. These constraints provide

a precise operational implementation of the UV-IR relation.

Section 3: a proof that, subject to appropriate locality constraints on Alice and Bob’s ac-

tions, the entanglement cost is optimal: no procedure meeting the locality constraints

can use less entanglement. The minimal constrained merging cost is, therefore, the

length of the curve. Together, the protocol and optimality proof add a new entry

to the holographic dictionary: convex bulk curves are in one-to-one correspondence

with constrained boundary merging tasks whose optimal costs are the lengths of the

curves themselves. From the information theory point of view, the optimality proof

characterizes the rates achievable in “streaming” state merging protocols [71].

Section 4: a demonstration that the smooth conditional min-entropy in a 1+1 dimen-

sional CFT with large central charge c is well approximated by the conditional von

Neumann entropy. As a consequence, the error terms by which the length of the

curve and the entanglement cost of the communication protocol differ, vanish in the

limit of large c.
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Section 2.6: an analogous protocol for closed bulk curves, in which case Alice and Bob

are required to swap their boundary intervals. There is at the moment, however, no

matching optimality proof.

Section 5: a quantitative refutation of the conjecture that the length of the bulk curve

is the maximum entropy among all boundary states matching certain consistency

criteria. This demonstration complements an earlier refutation [58]. Detailed CFT

calculations combined with the structure theory of quantum Markov chains reveals

that the entropy of the maximally entropic consistent state is at most 2/3 of the

differential entropy.

While these results establish a clear information theoretic interpretation for the length

of a curve in AdS3, they leave open a number of questions. We have only worked to

first order in the central charge, which we assumed was large. Quantum gravity effects

typically enter as corrections to this leading order behavior, so it would be interesting to

compare those corrections with more detailed calculations of the constrained merging cost

to see if there is agreement. Likewise, the constrained merging interpretation proposed

here depends on being able to arrange the boundary intervals in sequence, a requirement

that breaks down for non-convex curves in AdS3 and generically in higher dimensions.

Therefore, finding an appropriate generalization of constrained state merging remains a

challenge. Limitations aside, our interpretation provides a quantitative operational way of

associating a bulk curve to a set of boundary degrees of freedom, helping to illuminate the

meaning of holographic renormalization group flow.
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A Saturation conditions for strong subadditivity of entropy

Consider three disjoint systems A, B and C. Strong subadditivity is the statement that

0 ≤ S(AB) + S(BC)− S(B)− S(ABC)

= S(A|B)− S(A|BC)

= I(A : BC)− I(A : B) = I(A : C|B). (A.1)

Theorem A.1 The following statements are equivalent: [61, 63, 72]

• ρABC saturates strong subadditivity; i.e. I(A : C|B) = 0.
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• log ρABC = log ρAB + log ρBC − log ρB.

• ρABC = ρ
1/2
ABρ

−1/2
B ρBCρ

−1/2
B ρ

1/2
AB.

• The Hilbert space of B decomposes into orthogonal sectors, each admitting a de-

composition into left and right degrees of freedom: HB = ⊕iHbiL ⊗ HbiR such that

ρABC =
∑

i piρAbiL
⊗ ρbiRC .

B Markov operator in conformal field theory

In this appendix we compute the Markov operator σ in (5.5) built from marginals of size

2R(x) in the ground state of a 1+1-dimensional conformal field theory on a line. The

coordinate x is the spatial direction of the field theory. We have access to all marginals

living on intervals J(x) = (x−R(x), x+R(x)).

Consider a lattice of N sites at xi = iL/N for some infrared cut-off L. Our starting

point is the vacuum density matrix of a region of size 2R(xi) centered at xi in a 1+1-

dimensional conformal field theory [64]:

ρJ(xi) = C exp

(
−
∫ xi+R(xi)

xi−R(xi)
dx fR(x, xi) T00(x)

)
,

fR(x, xi) = 2π
R(xi)

2 − (x− xi)2

2R(xi)
. (B.1)

The Markov operator σ is defined in (5.5) to be

− log σ =
∑
i

(
log ρJ(xi) − log ρJ(xi)∩J(xi+1)

)
=
∑
i

(∫ xi+R(xi)

xi−R(xi)
dx fR(x, xi)T00(x)

−
∫ xi+R(xi)

xi−(R(xi+δ)−δ)
dx fR(xi,xi+1)(x, xi,i+1)T00(x)

)
+ c,

where δ = L/N , Ri,i+1 = (R(xi) +R(xi + δ)− δ)/2 and xi,i+1 = xi + δ/2 + (R(xi)−R(xi +

δ))/2.

Expanding to the first order in δ gives

− log σ =
∑
i

∫ xi−(R(xi+δ)−δ)

xi−R(xi)
dx fR(x, xi)T00(x)

+
∑
i

∫ xi+R(xi)

xi−(R(xi+δ)−δ)
dx
(
fR(x, xi)− fR(x,xi)(x, xi,i+1)

)
T00(x) + c

=
∑
i

πδ

2

∫ xi+R(xi)

xi−(R(xi+δ)−δ)
dx

(
1− x− xi

R(xi)

)2

(1−R′(xi)) T00(x) + c. (B.2)
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Here, we have used the identities

∂RfR(x, xi) = π

(
1 +

(x− xi)2

R2

)
,

∂xifR(x, xi) = 2π
(x− xi)

R
. (B.3)

In the limit δ → 0 the sum over intervals becomes an integral over xi, and the expression

for the Markov operator simplifies to

− log σ =
π

2

∫ L

0
dxi

∫ xi+R

xi−R
dx

(
1− x− xi

R(xi)

)2

(1−R′(xi)) T00(x) + c

=

∫ L

0
dx β(x)T00(x) + c, (B.4)

where β(x) =
∫ x+R
x−R dxi

(
1− x−xi

R(xi)

)2
(1−R′(xi)). We find σ to be proportional to a thermal

density matrix with local temperature β(x). For intervals of constant size R(xi) = R the

Markov operator is the thermal state at temperature 3
4πR :

σ = Ce−
4πR

3
HCFT , (B.5)

for some constant C.

C Smooth entropy conversions

The recent literature on single-shot entropies [54, 55, 73] usually defines smoothing with

respect to the purified distance P (ρ, σ) instead of the trace distance T (ρ, σ) = ‖ρ− σ‖1 +

|tr(ρ)−tr(σ)| that we have elected to use here (the extra term is required when considering

non-normalized states). Thanks to the inequality [73]

T/2 ≤ P ≤
√
T , (C.1)

approximate conversion between the two forms is straightforward. Let H̃ be the symbol

for entropy smoothed with respect to P rather than T . From (C.1) and the definition of

smoothing, we immediately find

H̃
√
ε

max ≤ Hε
max, H̃ε

max ≥ Hε/2
max and H̃

√
ε

min ≥ H
ε
min. (C.2)

Since [55]

H̃ε
max(A|B) ≤ H̃ε/2

max(AB)− H̃ε/4
min(B) + const, (C.3)

we can conclude that

Hε
max(A|B) ≤ Hε2

max(AB)−Hε2/4
min (B) + const. (C.4)

Likewise, the merging bound (4.1) was originally stated in terms of −H̃ε2/13
min (A|R) [54]. The

virtue of the purified distance, however, is that it obeys a convenient relationship between
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min- and max-entropies: for a pure state |ϕ〉ABR, semidefinite programming duality can

be used to show that −H̃ε2/13
min (A|R) = H̃

ε2/13
max (A|B) [73]. The latter is bounded above by

H
ε4/169
max (A|B) by (C.2).

In fact, the purified distance can be computed in our setting. Given two positive

operators ρ and σ with at least one of them normalized, the purified distance P (ρ, σ) is

defined in terms of the fidelity F (ρ, σ) as

P =
√

1− F 2 (C.5)

with

F = ‖
√√

ρσ
√
ρ‖1. (C.6)

Supposing that ρ is the (normalized) density operator of a given interval and σ is its

truncation, it follows that [ρ, σ] = 0 which vastly simplifies the fidelity. In this case

F = ‖√ρσ‖1 = ‖σ‖1 = 1− ε, (C.7)

where the first equality is the definition, the second follows from the fact that ρσ = σ2,

and the final equality is part of the definition of σ. Plugging this form into P yields

P (ρ, σ) =
√

1− F 2 =
√

2ε− ε2 =
√

2ε(1 +O(ε)), (C.8)

and since T (ρ, σ) = ‖ρ − σ‖1 + |tr(ρ) − tr(σ)| = 2ε the upper bound in (C.1) is almost

saturated.

D Norm of the Markov operator

Theorem D.1 Consider a global state ρ on a line and its marginals on a set of intervals

Ij that we denote by ρIj . Assume that for all j, Ij is to the right of Ij−1, that is

∀j : ∅ 6= Ij ∩ Ij−1 = Ij ∩ (∪j−1
i=1 Ii). (D.1)

Then,

tr exp

∑
j

log ρIj − log ρIj∩Ij−1

 ≤ 1. (D.2)

If all ρIj and ρIj∩Ij−1 commute, then the inequality is saturated.

Consider the first three intervals I1, I2 and I3. Since log ρ is a Hermitian and bounded

operator for all intervals we have [74]

trσ12 ≡ exp (log ρI1 + log ρI2 − log ρI2∩I1)

≤ tr

(∫ ∞
0

ρI1(ρI2∩I1 + xI)−1ρI2(ρI2∩I1 + xI)−1dx

)
= tr

(∫ ∞
0

ρI2∩I1(ρI2∩I1 + xI)−1ρI2∩I1(ρI2∩I1 + xI)−1dx

)
= tr ρI2∩I1 = 1. (D.3)
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The inequality is saturated if ρI1 , ρI2 and ρI1∩I2 commute. Since σ12 is also bounded and

Hermitian, we can rewrite the same inequality for log σ12, log ρI3 and log ρI2∩I3 to find

trσ123 ≡ exp (log σ12 + log ρI3 − log ρI3∩I2)

≤ tr

(∫ ∞
0

σ12(ρI3∩I2 + xI)−1ρI3(ρI3∩I2 + xI)−1dx

)
= tr

(∫ ∞
0

σ12(ρI3∩I2 + xI)−1ρI3∩I2(ρI3∩I2 + xI)−1dx

)
= trσ12 ≤ 1, (D.4)

with the equality condition that ρI3 , ρI2 and σ12 commute. Repeating this inequality N

times we find that the trace of the Markov operator is less than 1:

trσ ≡ tr exp

log ρI1 +
N+2∑
j=2

log ρIj − log ρIj∩Ij−1

 ≤ 1. (D.5)

The inequality in (D.5) is an equality if all ρIj and ρIj,j−1 commute. On a circle there is

an extra term in the exponent of σ with a negative sign. Unfortunately, we do not know

how to generalize our argument to apply to this case.
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