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ABSTRACT: For N-extended superconformal field theories in three spacetime dimensions
(3D), with 1 < A < 3, we compute the two- and three-point correlation functions of
the supercurrent and the flavour current multiplets. We demonstrate that supersymmetry
imposes additional restrictions on the correlators of conserved currents as compared with
the non-supersymmetric case studied by Osborn and Petkou in hep-th/9307010. It is shown
that the three-point function of the supercurrent is determined by a single functional form
consistent with the conservation equation and all the symmetry properties. Similarly,
the three-point function of the flavour current multiplets is also determined by a single
functional form in the A’ =1 and N = 3 cases. The specific feature of the N' = 2 case is
that two independent structures are allowed for the three-point function of flavour current
multiplets, but only one of them contributes to the three-point function of the conserved
currents contained in these multiplets. Since the supergravity and super-Yang-Mills Ward
identities are expected to relate the coefficients of the two- and three-point functions under
consideration, the results obtained for 3D superconformal field theory are analogous to
those in 2D conformal field theory.

In addition, we present a new supertwistor construction for compactified Minkowski
superspace. It is suitable for developing superconformal field theory on 3D spacetimes
other than Minkowski space, such as S x S? and its universal covering space R x S2.
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1 Introduction

One of the well-known implications of conformal invariance in d > 2 dimensions [1-4]
is that the functional form of the two- and three-point correlation functions of primary
fields is fixed up to a finite number of parameters.! In general, however, it is a nontrivial
technical exercise to determine explicitly the three-point functions of constrained tensor
operators, examples of which are the energy momentum-tensor or conserved vector currents.
The point is that such operators obey certain differential constraints and some work is
required in order to classify those functional contributions to the given three-point function,
which are consistent with all the constraints. Building on the theoretical ideas and results
that may be traced back as early as the 1970s (see, e.g., [5—10] and references therein),
Osborn and Petkou [11] presented the group-theoretic formalism to construct the three-

point functions for primary fields of arbitrary spin in d dimensions.?

They analysed in
detail the restrictions on the correlation functions imposed by the conservation equations
for the energy-momentum tensor and conserved currents, and the outcomes of their study
include the following conclusions: the three-point function of the energy-momentum tensor
contains three linearly independent functional forms for d > 3, while for d = 3 there are two
and for d = 2 only one.? The three-point function of vector currents contains two linearly
independent completely antisymmetric functional forms, which is in accord with the result
obtained in 1971 by Schreier [2]. In the d = 4 case, an additional completely symmetric
structure is allowed, which reflects the presence of anomalies [16]. In the same d = 4
case, the three parameters describing the three-point function of the energy-momentum
tensor were demonstrated [11, 16] to be related to two coefficients in the trace anomaly of
a conformal field theory in curved space.

When conformal symmetry is combined with supersymmetry, the story of the two- and
three-point functions of conserved currents described in [11, 16] has to be supplemented

'In the Euclidean case, these results follow from the following well-known mathematical observation.
For any three distinct points p1, ps and ps on the d-sphere S¢ = R? (J{oo}, there exists a conformal
transformation g € SOg(d + 1, 1) that maps these points to 0, (1,0,...,0) and oo, respectively. Here S is
understood to be the conformal compactification of Euclidean space R?, i.e. the set of all null straight lines
through the origin in R4""!. The above observation can be rephrased as the statement that there is no
conformal invariant of three points.

’In four dimensions, the three-point function of the energy-momentum tensor was first derived by
Stanev [12].

3In three dimensions, conformal invariance also allows parity violating structures for the three-point
functions involving either the energy-momentum tensor, flavour currents or higher spin currents [13, 14]
(see also [15]).



with a sequel, for there appear conceptually new fermionic conserved currents. In the
realm of supersymmetric field theories, the energy-momentum tensor is replaced with the
supercurrent [17]. The latter is a supermultiplet containing the energy-momentum tensor
and the supersymmetry current, along with some additional components such as the R-
symmetry current. Thus the supercurrent contains fundamental information about the
symmetries of a given supersymmetric field theory.

The supercurrent is the source of supergravity [18-20], in the same way as the energy-
momentum tensor is the source of gravity. For every superconformal field theory, the
supercurrent is an irreducible multiplet that may be coupled to the Weyl multiplet of con-
formal supergravity. For non-superconformal theories, the supercurrent is reducible and
contains the so-called trace multiplet which includes the trace of the energy-momentum
tensor. Different supersymmetric theories may possess different trace multiplets that cor-
respond to different off-shell formulations for supergravity.

For completeness, it is pertinent to recall the structure of (non-)conformal supercur-
rents in four spacetime dimensions (4D). The N = 1 conformal supercurrent [17] is a real
vector superfield JaB constrained by D? Jaﬁ- = 0 or, equivalently, DaJaﬁ- = 0. The sim-
plest non-conformal supercurrent was given by Ferrara and Zumino [17]; the corresponding
conservation equation is D4 op = DaT', where the trace multiplet 7' is chiral (see [21]
for a review). The Ferrara-Zumino supercurrent proves to be well defined on a dense set
in the space of N/ = 1 supersymmetric field theories. For recent discussions of the most
general 4D N = 1 non-conformal supercurrents, see [22-25]. The N' = 2 conformal super-
current [26, 27| is a real scalar superfield J constrained by DgDé‘j J = 0 or, equivalently,
D D}.J = 0, see [28] for more details. Numerous N = 2 supersymmetric theories are
characterised by the following conservation equation [28, 29]: D.{D%J = iT¥ + ¢Y.
Here the trace multiplets 7% = T7¢ = TT] and Y are linear and reduced chiral superfields?
respectively; ¢ = ¢/t = gi; is a constant iso-triplet that might be thought of as an ex-
pectation value of the tensor multiplet, one of the two supergravity compensators, see [29]
for the details.

Superconformal symmetry imposes additional restrictions on the structure of three-
point functions of conserved currents as compared with the non-supersymmetric case stud-
ied in [11, 16]. In 4D N = 1 superconformal theories, the three-point function of the
supercurrent is the sum of two linearly independent functional structures [30] as compared
with the three functional forms in the non-supersymmetric case [11]. The corresponding
coefficients a and ¢ were shown [30] to be related to those constituting the super-Weyl
anomaly in curved superspace studied theoretically in [31] and computed explicitly in [32]

5 The same conclusion holds for the three-point function of the

(see [21] for a review).
supercurrent in 4D N = 2 superconformal field theories [28], while N = 4 superconformal

symmetry is known to demand a = ¢. As concerns the three-point function of the flavour

4The linear superfield is constrained by DYTI®) = DgTj k) = 0, while the reduced chiral superfield obeys

°In his analysis [30], Osborn used the realisation of superconformal transformations in 4D AN = 1
Minkowski superspace described in [21]. Earlier works on superconformal transformations in superspace
include [33-36].



current multiplets, there exist two independent structures in the 4D N = 1 case [30] (as
compared with three in the non-supersymmetric case [11, 16]), while N" = 2 superconformal
symmetry allows only one [28].

The present paper is the first in a series devoted to the correlation functions of con-
served currents in A-extended superconformal field theories in three spacetime dimensions.
We start with a brief discussion of 3D conformal supercurrents and flavour current multi-
plets. The 3D N-extended conformal supercurrents have been described in [37] using the
conformal superspace formulation for AN -extended conformal supergravity given in [38].
For every N'=1,2..., the supercurrent is a primary real superfield of certain tensor type
and dimension, which obeys some conservation equation formulated in terms of covariant
derivatives. Denoting by D/ the spinor covariant derivatives of N-extended Minkowski
superspace R3I2V | the conformal supercurrents® for /¥ < 4 are specified by the following

properties:
SUSY Type || Supercurrent | Dimension Conservation Equation
N =1 Japy 5/2 D%Jopy =0
N =2 Jus 2 D% Jy5 = 0 (1.1)
N =3 Ja 3/2 D*J, =0
N =14 J 1 (DeDy ~ 16" Dt DE)J =0

For N > 4, the conformal supercurrent is a completely antisymmetric dimension-1 super-
field, JI/EL — JUJKL] gubiect to the conservation equation

4
DLJIKLP _ D([IIJJKLP] - 3D2JQ[JKL5P]1 . (1.2)

The above results follow from the analyses carried out in [37, 38]. Given an N-extended
superconformal field theory, it may be coupled to the Weyl multiplet of NV-extended con-
formal supergravity. In curved superspace, the supercurrent J (with its indices suppressed)
of the matter model with action Spyatter 1S

6Smatter

with H being an unconstrained prepotential for conformal supergravity. The latter has the
following index structure: Hngy for N'=1 [41], Hypg for N' = 2 [42, 43], H, for N' = 3 and
H for N' =4 [37, 38].7

The 3D N-extended flavour current multiplets constitute another family of primary
real superfields obeying certain conservation equations. For N' < 3, they have the following

5The 3D N = 2 supercurrents were studied in [39, 40].
"Using the harmonic superspace techniques [44], one may derive the N' = 3 and N = 4 prepotentials by
generalising the 4D A = 2 analysis of [28].



structure:

SUSY Type || Flavour Current | Dimension Conservation Equation
N=1 Lg 3/2 DL, =0
1.4
N=2 L 1 <Da1Di—%6”DKO‘D§)L:O (1.4)
N=3 L 1 DY L) — 1517 DE LK — g
In the N' = 4 case, there are two inequivalent flavour current multiplets, Lf;] and L7,
Each of them is described by a primary antisymmetric dimension-1 superfield, L'/ = —L/!,

which obeys the conservation equation
2
Dé[JK D([II[JK} 3D§[L[J5K]I . (1.5)

What differs between the two flavour current multiplets, Lfr‘] and L'/, is that they are
subject to different self-duality constraints
1

SlRLLEE =l (1.6)

The above results naturally follow from the known structure of unconstrained prepoten-
tials for the N-extended vector multiplets given in the following publications: [41, 45] for
N =1, [42, 45, 46] for N = 2, [47] for N = 3 and [48, 49] for N = 4.

The general group-theoretic formalism to construct the two- and three-point functions
of primary superfields in 3D N-extended Minkowski superspace was developed by Park [50],
as a natural extension of earlier 4D [30, 51] and 6D [52] constructions. Instead, we will re-
derive the two- and three-point superconformal building blocks, originally given in [50], by
making use of the 3D N-extended supertwistor construction of [53]. Such a re-formulation
makes it possible to apply the formalism for computing correlation functions on more
general (conformally flat) superspaces than the standard Minkowski superspace used in [50].

In this paper we study the correlation functions of conserved current multiplets in su-
perconformal field theories with N' < 3, while the case N' > 3 will be considered elsewhere.
The main outcomes of our study are as follows: for N/ < 3, the three-point function of
the supercurrent is determined by a single functional form consistent with the conservation
equation and all the symmetry properties. The same conclusion holds for the three-point
function of flavour current multiplets in the A/ = 1 and N/ = 3 cases. As concerns the
N = 2 case, two independent structures are allowed for the three-point function of flavour
current multiplets, but only one of them contributes to the three-point function of the
conserved currents contained in these multiplets. Thus the 3D superconformal story is
analogous to that in 2D conformal field theory.

In 3D N = 2 superconformal field theories, of special importance are contact terms
of the supercurrent and conserved current multiplets [54, 55]. Such contributions to cor-
relation functions are associated with certain Chern-Simons terms for background fields.
In this paper, we will concentrate on studying the correlation functions at distinct points
where the contact terms do not contribute.



Before we turn to the technical aspects of this paper, it is worth discussing one more
conceptual issue: the symmetry structure of extended supersymmetric field theories from
the point of view of “less extended” supersymmetry. Every N-extended superconformal
field theory is a special theory with (A — 1)-extended superconformal symmetry. It is
worth elucidating the structure of (A — 1)-extended supermultiplets contained in the N-
extended supercurrent or flavour current multiplet. To uncover this, we split the Grass-
mann coordinates 0% of N-extended Minkowski superspace M?2V onto two subsets: (i) the
coordinated 0%, with I=1,...,N —1, corresponding to (N — 1)-extended Minkowski su-
perspace MPI2ZV =1 and (ii) two additional coordinates #4,. The corresponding splitting of

MBIV , its bar-projection

the spinor derivatives D! is D£ and DY Given a superfield V on
onto M32N=1) is defined by V| := Vg, —o-

Consider the N' = 2 case. The spinor covariant derivatives D;i and D/av introduced
above, now become D, and D? respectively. The supercurrent Jop leads to the following

N = 1 supermultiplets:

Sap = Jasl, D*S,3=0; (1.7a)
Japy = iD{Jap| i D¥Japy =0. (1.7b)

Here J,3, is the N” = 1 supercurrent, while the additional superfield S, contains the U(1)
R-symmetry current (the #-independent component of S, 3) and the second supersymmetry
current (the top component of Sy3).

The N = 3 supercurrent .J, leads to the following N' = 2 supermultiplets:

Ro = Jul, DleR, =0 ; (1.8a)
Jap = DiJgl,  D'*Jag=0. (1.8b)

Here J,p is the N' = 2 supercurrent, while R, contains the third supersymmetry current
and two R-symmetry currents corresponding to SO(3)/SO(2).
Next, the N/ = 4 supercurrent J contains the following N/ = 3 supermultiplets:

~ a 1 PN N N
S:=J|, (D*D!- §5”DK“D§)S =0; (1.9a)
Jo = 1iD1J], Doy, =0. (1.9b)

Here J, is the N' = 3 supercurrent, while S contains the fourth supersymmetry current
and three R-symmetry currents corresponding to SO(4)/SO(3). Upon reduction to N' = 2
superspace, the scalar S generates two primary N = 2 superfields: (i) the scalar S|g,—o,
which is an N = 2 flavour current multiplet; and (ii) the spinor D3 S|s,—g, which is of the
type (1.8a).

Finally, we just mention the N — (N —1) decomposition of flavour current multiplets.
The N = 2 multiplet L leads to the following N" = 1 real supermultiplets:

S:=1; (1.10a)
Lo == iD%L] ; D%Ly, =0 . (1.10b)



Here L, is an N/ = 1 flavour current multiplet, and the real scalar S is unconstrained. The
N = 3 multiplet L' leads to an A/ = 2 flavour current multiplet L and a chiral scalar.

Therefore, if one studies N -extended superconformal field theories in (A —1)-extended
superspace, it is not sufficient to analyse the correlation functions of those currents which
correspond to the manifestly realised symmetries.

There is a remarkable difference between superconformal field theories and ordinary
conformal ones in diverse dimensions. For the action of the conformal group on (com-
pactified) Minkowski space, there is no conformal invariant of three points. The situation
is different in superspace. On (compactified) Minkowski superspace, the superconformal
group does not act transitively on the set consisting of triples of distinct superspace points.
As a result, there exist nilpotent superconformal invariants of three points. Such invariants
have been constructed by Park in diverse dimensions [50-52, 56].

This paper is organised as follows. Following [53], in section 2 we review the super-
twistor construction of A-extended compactified Minkowski superspace M32V . Minkowski
superspace MBIV originates as a dense open subset of MBI2V | 1t is shown that MB3I2V is a
homogeneous space for the superconformal group OSp(A/]4,R), while only the infinitesimal
superconformal transformations are well defined on MPI2V. Section 3 describes a differ-
ent isomorphic realisation for OSp(AN]4,R). Using this realisation, we construct a global
supermatrix parametrisation of M3I2V a5 well as a smooth metric on MPI2V | which only
scales under the superconformal transformations. The supertwistor formalism is used in
section 4 to derive all building blocks in terms of which the two- and three-point functions
of primary superfields are constructed. The general structure of the two- and three-point
functions of primary superfields is described in section 5 following [50]. The two- and three-
point functions for the supercurrent and flavour current multiplets in superconformal field
theories with A/ = 1, N' = 2 and N = 3 are computed in sections 6, 7 and 8 respectively.
Concluding comments are given in section 9.

We have also included several technical appendices. Appendix A gives a summary
of our 3D notation and conventions. Appendix B is devoted to the correlation functions
involving (anti)chiral superfields. Appendix C is concerned with the N' =2 — N =1
superspace reduction of the three-point functions for the N/ = 2 supercurrent and flavour
current multiplets. In appendix D we reduce to components the three-point function for
N =1 flavour current multiplets.

2 Supertwistor construction

In this section we describe the supertwistor construction of N-extended compactified
Minkowski superspace. Our presentation mostly follows the construction given in [53]
and inspired by [57] (see also [58]).

2.1 Supertwistors and the superconformal group

In three spacetime dimensions, the AN-extended superconformal group® is OSp(N4;R).
It naturally acts on the space of real even supertwistors and on the space of real odd
supertwistors.

8This supergroup was denoted OSp(N[2,R) in [53].



An arbitrary supertwistor is a column vector

T:(TA):<%>, (T@):@g), a,B=12, I=1,....N. (21)

In the case of even supertwistors, Ty is bosonic and 17 is fermionic. In the case of odd
supertwistors, Ty is fermionic while 77 is bosonic. The even and odd supertwistors are
called pure. We introduce the parity function £(7T") defined as: e(T') = 0 if T is even, and
e(T) =11if T is odd. It is also useful to define

__Jo 4
47Y1 4

Then the components T’y of a pure supertwistor have the following Grassmann parities

o
1

e(Ta) =e(T)+¢e4 (mod 2). (2.2)
A pure supertwistor is said to be real if its components obey the reality condition
Ta = (—1)sMeatear, (2.3)

The space of complex (real) even supertwistors is naturally identified with C*V (R4V),
while the space of complex (real) odd supertwistors may be identified with CN1* (RV14).
Introduce a graded antisymmetric supermatrix

J=(J8) = (%) LT = (%) = (_?12 %2> , (2.4)

where 15 denotes the unit N' x A matrix. With the aid of J, we may define a graded
symplectic inner product on the space of pure supertwistors by the rule: for arbitrary pure
supertwistors 7" and .S, the inner product is

(T|S)y :=T*"T S, (2.5)
where the row vector 757 is defined by
77 = (T, —(—1)*DTy) = (Ty(—1)FDeatea) (2.6)

and is called the super-transpose of T'. The above inner product has the following symmetry
property

(|Ta)y = —=(=1)"=(12|Th)y, (2.7)

where ¢; stands for the Grassmann parity of 7;. If 7" and S are real supertwistors, then
applying the complex conjugation gives

TS} = —(SIT);s . (2.8)



By definition, the supergroup OSp(N|4;C) consists of those even (4|N) x (4|N) su-
permatrices

9="(94"), e(ga®)=ea+ep, (2.9)
which preserve the inner product (2.5) under the action
T =(Ta) = 9T = (94"Tp) . (2.10)

Such a transformation maps the space of even (odd) supertwistors onto itself. The condition
of invariance of the inner product (2.5) under (2.10) is

FHg=3, (¢)'p = (1actergpt (2.11)

The subgroup OSp(N[4;R) C OSp(N[4; C) consists of those transformations which preserve
the reality condition (2.3),

Ta = (—1)=Meatear, s (gT)a = (—1)FDEatea(gT) , . (2.12a)
This is equivalent to
gaB = (—1)Fassteag, B0 gt = 5T (2.12b)
In conjunction with (2.11), this reality condition is equivalent to
9 Ig=1. (2.12¢)
A dual supertwistor
7= (74 = (Z@,Zf) (2.13)

is a row vector that transforms under OSp(N[4; R) such that ZAT, is invariant for every
supertwistor T,

Z — 7'=2Zg', g€ OSpN|4R) . (2.14)

A dual supertwistor Z is even (odd) if Z4T is a c-number for every even (odd) supertwistor
T. Given a pure dual supertwistor Z, its super-transpose Z5T will be defined to be the
following column vector

(ZsT)A — (_1)6(Z)€A+€(Z)ZA , (215)

such that ZATy = (T5T) 4(Z5T)A.
The superconformal algebra osp(/N|4;R) consists of real supermatrices {2 obeying the
master equation

TI+JQ=0. (2.16)



The general solution of this equation is

A— %0112 b V27T
Q= —a | -AT+ 1ol || — V2T
iv2e | ivan | A
Ao — %U(Saﬁ bas V20a g
= —a™8 —X%+306% | — V2, |, (2.17)
iv2e” \ ivV2ng H Arg
At =0,  aP=d",  bys=bga, Arg=-Ay.

The bosonic parameters A\.”, o, aag, b and Asy, as well as the fermionic parameters
€*r = €% and 1a; = Ny in (2.17) are real.

2.2 Compactified Minkowski superspace

VBl2v

In accordance with [53], the compactified N -extended Minkowski superspace is de-

fined to be the set of all Lagrangian subspaces of R*V | the space of real even supertwistors.

R4W

We recall that a Lagrangian subspace of is a maximal isotropic subspace of RV, By

definition, such a subspace is spanned by two even supertwistors T* with the properties
that (i) the bodies of T and T? are linearly independent; (ii) they obey the null condition

(TT%)5=0; (2.18)

(iii) they are defined only modulo the equivalence relation

{T"} ~ {T"}, TH=T"E,*, EZecGL(ZR). (2.19)
Equivalently, the space MBIV can be defined to consist of rank-two supermatrices of
the form
F
P=(T"71)=|(G |, G'F=F'G+iY"T, (2.20)
ir

which are defined modulo the equivalence relation

F F=
P=|G| ~ | GE| =P, =ZeGL2R). (2.21)
iT iTE

Here F' and G are 2 x 2 real bosonic matrices, and T is a N x 2 real fermionic matrix. The
null condition (2.18) can be rewritten as

PP =0. (2.22)

It may be shown that the superconformal group OSp(N4;R) acts transitively on the

compactified Minkowski superspace. Thus M?32V

OSp(N|4;R) /G'p,, where Gp, denotes the isotropy group at a given two-plane Py € M3V,

can be identified with the coset space



2.3 Minkowski superspace

M3I2N

As discussed in [53], Minkowski superspace is identified with a dense open subset

Up of MB3I2NV spanned by supermatrices (2.20) under the condition

det FF #0 . (2.23)
Every null two-plane in MBI2V may be described by a supermatrix of the form
1y 60"
Pl 2 | = | —2 | =P, (2.24)

iv/26 iv/26,°
where the real matrix & is constrained by
-2l =200 — 2% =2%4+i0,%0,%, 18 =P, (2.25)

The points of M2V are naturally parametrised by the variables z4 = (x*,69).
Given a group element g € OSp(N|4;R), its action P — gP on the two-plane P(z) €

MBIZN can be represented as

1o 1o
g| =% |=|_=% [=(@2), Z(g; 2) € GL(2,R) (2.26)
iv26 iv26

provided the transformed two-plane, gP(z), belongs to MB312V | In general, this property
holds only locally, since Z(g; z) may become singular for certain group elements g (special
conformal transformations) and some spacetime points x.

Let us consider an infinitesimal superconformal transformation, g = 1 + k2, where &
is an infinitesimal parameter and  is given by (2.17). Then from (2.26) we derive

6k = a— \& — @\ 4+ od + &ba + 21670 — 21270, (2.27a)

A 1 - a A JON
00 = =01+ 500 + A0 + 6b — i — 20770 . (2.27b)

We see that the matrix elements in (2.17) correspond to a Lorentz transformation (\,?),
spacetime translation (a®?), special conformal transformation (bap), dilatation (o), Q-
supersymmetry (e/”), S-supersymmetry (1;5) and R-symmetry transformation (Azy).

MBIV can be identified with the homoge-

As pointed out in the previous subsection,
neous space OSp(N|4;R)/Gp,, where Gp, denotes the isotropy group at a given two-plane
Py € MB2V. Consider a special null two-plane Py € MB3I2V which corresponds to the origin
of MBIV | that is Py = P(z = 0). Its isotropy group Gp, is the subgroup of OSp(N|4;R)

generated by supermatrices (2.17) of the form:

A — %0]12 b \@ﬁT
W = 0 AT +101, || 0 . (2.28)
o | iv2p | A

,10,



The isotropy group Gp, consists of the followings supermatrices

Al Ab ||v245T

0 [(AHT 0 , AcGL(2,R), ReOW), (2.29a)
0|iv2Ri| R
where the 2 x 2 matrix b is constrained by
i) - BT = QiﬁTf] - bag = baﬁ + iT][anjg R bag = b@a . (2.29b)

As follows from (2.29), G'p, includes space reflections. Choosing i = 1 or ¢ = 3, let us
consider the following element of Gp,:

ag; 0 0
g=10/loi|| O , (2.30)
0] 0| Ty
with o; being the ¢-th Pauli matrix, det o; = —1. Associated with this group element is
the transformation on M32V
b & = o030, 0 = fo; , (2.31)

which is a reflection about one of the coordinate axes in two-space.

It is also seen from (2.29) that Gp, includes arbitrary R-symmetry transformations
from the group O(N) and not necessarily from its connected component of the identity,
SO(N), as discussed by [50].

A complement of the subalgebra (2.28) in osp(N]4;R) generates a subgroup of the

superconformal group consisting of all supermatrices of the form:
1q 0 0
s(ae) = | —a |12 | —vV2eT |, a=a+ieTe. (2.32)
iv2e| 0 | v

Such a supermatrix describes a spacetime translation (e = 0) and a @Q-supersymmetry
transformation (¢ = 0) when acting on M3?V,

The N-extended Minkowski superspace can be also realised as a homogeneous space.
The standard realisation is

MBIV = 3(3|N) /SL(2,R) (2.33)

where P(3|N) denotes the N -extended super-Poincaré group and SL(2, R) the spin group in
three spacetime dimensions. Every group element g € P(3|N) can uniquely be represented
in the form g = s(a, €) h(M), where

M 0 0
AM)=1 0 |(MHT| 0o |, MeSL2R). (2.34)
o] o |in
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Here the supermatrix h(M) describes a Lorentz transformation. The points of MPI*V can
be parametrised by the following coset representative

1, 0 0
s(z):=s(z,0) = | —& | La|[—v20T | . (2.35)
20 0| 1y

The @Q-supersymmetry transformation s(0,¢€) acts on MBI2V according to the law
s(z) = s(2') = s(0,€)s(z), and thus

2 = 2% L (0] + €J0F), 0 =07+ (2.36)
These results can be rewritten as
S =24 —idhQh A, (2.37)

where we have introduced the supersymmetry generators

0
I : m &) : B
Q,=1i—+ 0B 070, =1— 40703, . 2.38
et 189? (’7 ) BYr 189? Y8 ( )
From here we immediately read off the spinor covariant derivatives
0 0
Dl = 4 i(7™)ap 070m = == + 107 D, 2.39
a 89? 1(7 ) /3 I 89? 1 I ﬁ 9 ( a)

which anti-commute with the supercharges, {Dé, Qé } =0, and obey the anti-commutation
relations

{DL. D5} = 216" (v") a3 Om - (2.39b)
We introduce the 3D extension of the Volkov-Akulov supersymmetric one-form [64—66]
é=dae —2i0Td0 = di +iddTo —i9Tdo, eV =e. (2.40)

It is obviously invariant under the @-supersymmetry transformation (2.36).

2.4 Twin Minkowski superspace

The chart Up, which we have identified with Minkowski superspace, does not cover M3I2V

M3|2N

Another dense open subset Ug of consists of those supermatrices (2.20) which are

characterised by
detG #0 . (2.41)

Every null two-plane in Ug may be described by a supermatrix of the form

(] Yap
Pl 1o | =] 9% , (2.42)

iv2p ivV2p15
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where the real 2 x 2 matrix ¢ is constrained by

Y—9  =2p"p = Yoz =Yas tiP1aPI1s. Yas = Yo - (2.43)

One may think of Ugs as a twin of Up obtained by replacing the spacetime trans-
lations and @Q-supersymmetry transformations with the special conformal boosts and S-
supersymmetry transformations, respectively. The two-plane Py, which is the origin of Up,
is replaced with P, corresponding to y,3 = 0 and p;o = 0, the origin of Ug. The two-
plane Py is an infinitely separated point from the viewpoint of Up. The isotropy group
Poo, denoted Gp__, consists of the following supermatrices

A 0 0
—(A HTa (A HT | =24 HTeT | | AeGL(2,R), ReOW), (2.44)
V2RO | 0 | R

where a is defined in (2.32). The following one-form
e =dy —2iptdp, ey =énm (2.45)

is invariant under the S-supersymmetry transformations.
In the intersection of the two charts introduced, Up [ Ug, the transition functions are

gy=—-at,  p=-0x"'. (2.46)

The one-forms (2.40) and (2.45) are related to each other by the rule
o= (") e " (2.47)

The charts Ur and Ug are mapped onto each other by the superconformal transformation

(JLT_O‘] 1(1/) € OSp(N|4;R), (2.48)

where the matrix J is defined by (2.4).

The two charts Ur and Ug do not cover the compactified Minkowski superspace. It may
be shown [53] that the bosonic body of MBIV \ {Ux |JUg} is topologically S*. Additional
charts are required if we are interested in the global description of MBI2V | Instead of
introducing such additional charts, there is actually a better way out. It turns out that
there exists an isomorphic realisation for OSp(N|4;R) that is ideally suited for a global
description of M3V | Tt will be presented in the next section.

2.5 Alternative definition of compactified Minkowski superspace

We would like to introduce one more refinement of the formalism that will be rather useful
for the discussion in next sections. Following [53], we have defined the compactified N-
extended Minkowski superspace to be the space of null two-planes (through the origin) in
R4V However, every two-plane in R*V is a real two-plane in CAV , the space of complex
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C*V is described by a supermatrix P = (17, T5), where

even supertwistors. A two-plane in
the supertwistors 77 and 75 constitute a basis of the two-plane. This supermatrix is defined

modulo the equivalence relation

P ~ PE, ZeGL20C). (2.49)

The equivalent supermatrices define the same two-plane. A two-plane P in C*? is said
to be real if it possesses a basis Py consisting of real supertwistors, which means 778; =
PST. Given an arbitrary basis P of the real two-plane, it holds that P = Py=, for some
nonsingular matrix Z, and hence P’ ~ PsT. We will adopt this new point of view in what
follows. It allows us to define the compactified N -extended Minkowski superspace MBI2V

to be the space of all real Lagrangian subspaces of C*V| the space of even supertwistors.

3 Pseudo-unitary realisation of OSp(AN|4;R)

In this section we present a different isomorphic realisation for the superconformal group,
which allows us to construct (i) a global supermatrix parametrisation of M2V; and (ii)
a globally defined smooth metric, ds?, on M3V with the property that ds? only scales
under the superconformal transformations. The crucial feature of this realisation is that it
is suitable for developing superconformal field theory on 3D spacetimes more general than
Minkowski space, such as S x S? and its universal covering space R x S2. Our results in
this section are analogous to those for the supersphere S314 [59].

3.1 Algebraic aspects
The superconformal group possesses an alternative realisation based on the isomorphism
OSp(N]4;R) 2 U(2,2|N) (| OSp(N4; C) . (3.1)

Here the supergroup on the right consists of all even (4|N)) x (4|NV) supermatrices g con-
strained by

g'l
sT

g J

Q@ I«
I
e =

(3.2b)

where we have introduced

- (M) o <m> | 53)
0 —]lN 0 —]12
The condition (3.2a) defines the supergroup U(2,2|N). It should be pointed out that
for N' £ 4 the supergroup SU(2,2|N) is the N-extended superconformal group in four
spacetime dimensions, as defined in [28] (PSU(2,2[4) in the N' =4 case). In what follows,
the supergroup on the right of (3.1) will be denoted OSp(N|4;R)y .
The proof of (3.1) is based on considering the following correspondence

g — g:= UgU™?, g € OSp(N4;R), (3.4a)
T — T:=UT, (3.4D)
Z — Z:=2U", (3.4c)
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for every supertwistor 7" and dual supertwistor Z. Here the supermatrix U is defined by

(U] o 1 (L)
IU-(W . U= TRIED =U" . (3.5)

The symmetric 4 x 4 matrix U is unitary, UTU = UU = 14, and symplectic, UJU = .J.
Another important property is UJU ~! = —il. These properties have obvious counterparts
in terms of U:

UlU =14y, UIU=J, UIU'=-il. (3.6)
Of special importance for us will be the identity
U I=i]. (3.7)

The above properties of U imply that g defined by (3.4a) obeys the conditions (3.2), and
hence g € OSp(N[4;R)y, for every g € OSp(N]4;R), and vice versa.

Associated with the supergroup OSp(N|4; R); are two invariant inner products defined
as follows:

N
[

118, (3.8a)
s, (3.8b)

)y
)

for arbitrary pure supertwistors 7" and S.

I
I~

~
@
[
S

An important feature of the supergroup OSp(N]4;R)y is that one can define an in-
volution x that acts on the space of supertwistors and commutes with the superconformal
transformations. Associated with a pure supertwistor T is its star-image, x1', defined by

T’ = (x7)1J . (3.9)

Explicitly the map x acts as follows:

f 9
T=|g| — +«I=- f (3.10)
v (1)@

This shows that x(xT') = T', for every supertwistor 7.

3.2 Compactified Minkowski superspace

Let us see how the compactified Minkowski superspace is described within the supergroup
realisation introduced above. The null two-plane P € MSBN turns into P = UP. Since P
obeys the null condition P5TJP = 0 and is real, Pt = P5T, the two-plane P enjoys the two

null conditions

PP =0, (3.11a)
PTyp =0 (3.11b)
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The reality condition P = P5T turns into
(3.12)

pl=pTU2.
It may be seen that this reality condition preserves its form only under the real equivalence
transformations
P ~ P=, =Z e GL(2,R) . (3.13)
However, making use of the identities (3.6) and (3.7), it may be rewritten in a different
but equivalent form
«P ~ P, (3.14)
which does not change its form under arbitrary compler equivalent transformations
= e GL(2,0), (3.15)

P ~ PE,
see subsection 2.5. Thus, the compactified N-extended Minkowski superspace MBIV g
equivalently defined as the set of all two-planes in the space of even supertwistors CcAV
which obey (i) the null conditions (3.11); and (ii) the reality condition (3.14).

We can represent
(3.16)

B:

=1 1

where F' and G are bosonic 2 x 2 matrices, and the remaining A x 2 matrix A is fermionic.

Then the null condition (3.11a) tells us that

F'F -GG =ATA . (3.17)
In conjunction with the fact that the supermatrix P has rank two, this condition implies
that det I # 0 and det G # 0, see [57] for the proof. As a result, making use of the
equivalence relation (3.15) allows us to bring every two-plane P € M2 {6 the form

h
P~ | 12 (3.18)
¢
Now, the null conditions (3.11a) and (3.11b) turn into
hih — 1, = ('¢, (3.19a)
ht —h =icTc¢. (3.19b)
Moreover, the reality condition (3.14) gives
h=h', (3.20a)
(= —iCch™". (3.20b)
312\

The relations (3.18)(3.20) provide a global supermatrix parametrisation of M
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Consider the bosonic body M of compactified Minkowski superspace Mgp]\/’ which is
obtained by switching off the Grassmann variables ¢ and is described by a 2 x 2 matrix
h defined by h := h|c—. As follows from (3.19), its properties are h'h = 15 and AT = h.
The general solution of these constraints is

h=e¥ (a]12 + iboy + iCO’g) . A+ +E =1, (3.21)
for real parameters ¢ and a, b, ¢ parametrising, respectively, S' and S?. We also have
el? (a]lg + iboy + ica;;) = elletm) ( —aly —iboy — iCO’g) ,
and thus compactified Minkowski space M is (S x S?)/Zs.

3.3 Superconformal metric

As shown in the previous subsection, every null two-plane P & M?’BN is uniquely rep-
resented in the form (3.18) for some matrices h and ( constrained according to (3.19)
and (3.20). This means that, given a group element g € OSp(N[4;R)y, it acts on P as

h h
g2 | =[12]elgh <),  »lgh () eCL2C), (3.22)
¢ ¢
for some nonsingular matrix (g, h, (). Explicitly, if we represent g in the block form
AlBl~y
g=|1C D] | €0SpN|4R)y, (3.23)

Apl| R

then h’ and (’ are seen to be fractional linear functions of h and ¢,

h' = (Ah + B+~¢)(Ch+ D +6¢)7 1, (3.24a)
("= Mh+p+ROCh+D+60), (3.24b)

and ¢(g,h,() = Ch + D + 6¢. By construction, (g, h,() is nonsingular for every group
element g € OSp(NV|4;R)y.
Cartan’s one-form

£:=PdP = hidh - ¢ld¢, &l =-¢ (3.25)

takes its values in the superalgebra osp(N|4;R)y and possesses the superconformal trans-
formation law

E = & =(pH) ey, (3.26)

where the shorthand notation ¢ = (g, h,() has been used. We can introduce a super-
interval

1
ds? := 7 deté, (3.27)
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which is a globally defined tensor field over MV, It follows from (3.26) that ds® only
scales under the superconformal transformations,

ds?> — ds?|det |72 . (3.28)

In the Minkowski chart, it may be seen that the variables h and ( are expressed in
terms of the superspace coordinates as

h=—i(ly —iz) (1o +iz)™",  ¢=20(1y+iz)"". (3.29)
A direct calculation of £ gives the following expression:
E =21y —izT)te (1 +iz) 7L, (3.30)
where é is the supersymmetric one-form (2.40).

3.4 Pseudo inversion

Consider a particular superconformal transformation

oo | 0O 0
F=|0 -0 0 |cospWisR)y, F=1yy, (3.31)
0] 0 || Ta

where o9 is the second Pauli matrix. It acts on M3|2N as follows
h/ = —0‘2h0‘2, C/ = —CO'Q . (3.32)

In the real realisation of the superconformal group, the supermatrix (3.31) turns into

0 |—€| O
F=U'FU=| -0 0 | €0SpNV|4R),  &:=(cap) = —ioa. (3.33)
0 |0 1n

Its action on the two-plane P(z) defined by (2.24) is

1,
FP(z) = eld e E(z) = P(Z)=(2), E(z)i=ex . (3.34)
V203 et
This leads to
@ =—zt  0=0x" (3.35a)
or, equivalently,
& =—a', 0=-0z"". (3.35b)
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Let ¢ = 1 4 k€0 be an infinitesimal superconformal transformation, where x is an
infinitesimal parameter and 2 is an arbitrary element of the superconformal algebra
osp(N|4;R) given by (2.17). In Minkowski superspace, its action is given by eq. (2.27).
It is an instructive exercise to check that the transformation F(1 + x€)F generates the
following infinitesimal transformation:

e+ @AY — ok 4+ Zad + 207 0 + 2 @eTH, (3.36a)
o 1 - o - - .
ONT — 500 + A0+ 0aw + @ + 210 et . (3.36b)

8«
Il
¢

o

+
4] +

¢
Il
=«

As compared with g = 1+ k€2, the transformation F(1+k)F swaps the spacetime transla-
tions and special conformal boosts, as well as the Q-supersymmetry and S-supersymmetry
transformations. It also changes the sign of the scale parameter o.

The transformation F has properties analogous to those of the superinversion (i.e.,
a supersymmetric extension of the conformal inversion), see e.g. [21] for the 4D case.
However, the restriction of F to compactified Minkowski space is a transformation that
belongs to the connected component of the identity of the conformal group, and thus it
differs from the 3D conformal inversion

A1

=z, (3.37)

which belongs to the other component of the conformal group. This is why it is appropriate
to call F “pseudo inversion.” The transformation (3.35) was called “superinversion” in [50].
Our consideration shows that this terminology is somewhat misleading. An extension of
conformal inversion (3.37) is unclear to us.

3.5 Fibre bundles over compactified Minkowski superspace

Fibre bundles over MS‘QN, such as compactified harmonic/projective superspaces in three
spacetime dimensions [53], can be obtained by generalising the construction of subsec-
tion 3.2 to include odd supertwistors.” Odd supertwistors are destined to parametrise
fibres over M3|2N. In the unitary realisation of the superconformal group, given an odd
supertwistor X, it is defined by the following two conditions:

e it is orth?\%onal to the even supertwistors T which form a basis of the null two-plane
P e M , with respect to the inner products (3.8a) and (3.8b),

(T"2);=0, (TVZ)pr=0; (3.38)

e it is defined modulo the equivalence relation
Y ~ X+T"a,, (3.39)

for arbitrary a-numbers a, (i.e. odd elements of the Grassmann algebra).

90Our approach here is inspired by the construction of compactified harmonic/projective superspaces
with Lorentzian signature given in [53, 57-59]. These papers built on earlier works [60-62].
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If the null two-plane P is chosen in the form (3.18), then imposing the first null
condition (3.38) and making use of the equivalence relation (3.39), the odd supertwistor
may be brought to the form

—i¢Tw
¥ = 0 , (3.40)

v

with v = (vy) being a bosonic N-vector. Here we have used the reality conditions (3.20).
It is important to point out that the second null condition (3.38) also leads to the same
explicit expression (3.40) for ¥. Thus the space of odd supertwistors at P may be identified
with CV.

As simple examples of fibre bundles over MWN, we can consider odd supertwistor
Grassmannians & (m, \'), where m may take values from 1 to A/. By definition, the points
of &(m, ) are described by m odd supertwistors St with i = 1,...,m, such that (i) the
bodies of Xt are linearly independent; and (ii) the supertwistors 3¢ are defined modulo the
equivalence relation

I~ X9t 2€GL(m,C) . (3.41)
In this paper, we are mostly interested in the m = N case, for which X! may be chosen in
the form:
—i(T
o=E...x¥)=|_0 |. (3.42)
Y

In the remainder of the paper, we use the real realisation of the superconformal group
described in section 2.1. In this realisation, only one of the two null conditions (3.38)

remains,

(T*E);=0. (3.43)
We recall that for every point z in Minkowski superspace, the supermatrix P = (T, 7?)
can be chosen as

1o
P)=|_—2 |, &=2+10"6. (3.44)
iv/20

Therefore, instead of the representation (3.40), now every odd supertwistor ¥ from the
fibre at P(z) can be brought to the form:

0
= | =v20Tu | (3.45)

v
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Finally, the expression (3.42) turns into

0
O()=(3,,... v\ = | —v20" | (3.46)
Iy

4 Two-point and three-point building blocks

Here we derive those two- and three-point functions of superspace coordinates which are
building blocks for the correlation functions of primary superfields. An alternative deriva-
tion was given by Park [50].

As is seen from (3.44) and (3.46), the coset representative s(z), defined by (2.35),
is built from the supermatrices corresponding to the even two-plane P(z) and the odd
N-plane O(z) according to the rule

0
5() = (P(2), Py 0(2)),  Poo= 12| . (4.1)
0

Here P, denotes the null two-plane corresponding to the origin of the chart Ug C MBIV ,

see subsection 2.4. The two-plane P, is an infinitely separated point from the viewpoint
of an observer living in Minkowski superspace.

4.1 Infinitesimal superconformal transformations

For our subsequent analysis, it is advantageous to recast the superconformal transformation
laws of P(z) and O(z) in terms of the coset representative (4.1). Before discussing the
transformation of s(z), we first point out that the infinitesimal transformation z4 — 24 +

524, with 624 given by (2.27), can be rewritten as
A= = 1t = (Y Vagly . 807 = €5, (4.2)
where £ denotes a first-order differential operator
€= €A (:)Da = €0 + E D) = ~ 1670 + €D, (43)
The components of this operator are as follows:
¢ = — X 2% — 220 4 o2 4 4ie\*0Y) + 2iA;,05607 + 2727 5
+ib\ 2062 — ibaﬂe"'e? — dinp,a"@0)) + 2092 (4.4a)
£ = e — \00 + %ae? + Arg0S + bay @07 + 175210005 — 6752°) . (4.4b)

Following the terminology of [21], the supervector field ¢ is called a conformal Killing
supervector field. It may equivalently be defined [53] as the most general solution to the
equation [¢, D!] o Dg , and therefore

(&, DL = ~(DAED) D] = 2P (2)D} + AV (2)D] — So(=)DL (15)
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Here the coefficient functions in the right-hand side read

1
N

and may be thought of as the parameters of local Lorentz, R-symmetry and scale trans-

1 1
Mapl() = =Dl AV(2) = 2D, o(2) = DT = 3087, (46)

formations, respectively. The explicit calculation of these parameters gives

AB(z) = AB _ grlepd) _ %baﬂewh +2in*0? | (4.72)
A[J(Z) = A5+ 41”7%&]]& + Qibaﬁe?ag , (47b)
0(2) = 0 + bagar® + 210901, . (4.7¢)

Under the infinitesimal superconformal transformation associated with €, eq. (2.17),
the even two-plane P(z) and the odd N-plane O(z) vary as {P(z) = P(2+dz) — P(2) and
€O0(2) = O(z + 62) — O(z), respectively. These variations are computed by the rule!”

1
OP(2) = €P(2) + P(2)(A() - 50()12) (4.80)
Q0(z) = £0(2) + O(2)A(2) + P(2)V27" (2) , (4.8b)

where we have introduced the z-dependent S-supersymmetry parameter

i
M1a(2) = Nra — basb; = —§D£a(z) . (4.9)

As concerns the coset representative (4.1), it follows from first principles that

Qs(z) =&s(2) + s(z)w(z2), (4.10)

for some supermatrix w(z) belonging to the isotropy subalgebra (2.28). Making use of (4.8),
the explicit form of w(z) is

)‘a’g(z) - %50/8‘7(2) bap \@ma(Z)
w(z) = 0 —X%(2) + £6%g0(2) 0 : (4.11)
0 | iV2n15(2) | Ars(z)

4.2 Two-point functions

By construction, it holds that PST(2)JP(z) = 0 and P51 (2)JO(z) = 0. Consider two
different superspace points z; and z2. Then we can define two-point functions

P () IP(22) = & — @0 + 21070y = &40, @01 = —21y (4.12a)
PST(Zl)JO<22) = \/i(él — ég)T = \/iéifz, égl = —élg . (4.12b)

Making use of (2.25), #12 and élg can be rewritten with explicit spinor indices as follows:

2 = (21 — 29)*? + 2101965) — 169,07, | (4.13a)
Oor = (01— 02)7 . (4.13b)

0The index structure of the matrices A(z), A(z) and 77(z) in (4.8) is the same as in (2.17).
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According to (4.8), the above two-point functions transform semi covariantly under the
superconformal group

~ 1 1
] = (5070 =A%) ) o + o] (0700 - M) (4140)

~ 1
505, = (25aﬁa(zl) - Aaﬁ(zl)) Oy — iy nip(22) + Ars(22)055, . (4.14b)
Here the variation § is defined by its action on an n-point function ®(z1,...,2,) to be
- n
0B(21, .. 20) = ¥ & ®(21,. ., 20) - (4.15)
i=1

We note that the definitions (4.12) can be recast in terms of the coset representa-
tive (4.1) by introducing the following two-point supermatrix [50]

S(z1,22) := (5(21))* T Js(22) . (4.16)

Using the transformation law of s(z), eq. (4.10), we read off the superconformal transfor-
mation of S(z1, 22)

58(21,22) = —w(zl)STS(zl,zg) — S(z1,22)w(z2) . (4.17)
Let us introduce the following objects

Lo
w1y = —itr(wmw?g) = —*33?25%12045, (4.18a)

. T12 L2
Ty = ———, (ex)” = 12, (4.18b)
12 \/W 12

with € = (e45). Using (4.14) it is easy to check that x15? transforms only under local scale
transformations while &, varies only with the local Lorentz parameters

dx1p? = (0(21) + 0(22)) 122, (4.192)
dzfy = =X (1) 2]y — 259 M () . (4.19D)

Thus, they will naturally appear as two-point building blocks in the correlation functions
of primary superfields to be studied in the next sections.
Since the two-point function a:‘ff has the symmetry property

x5 = —al;, (4.20)
it can be divided into the symmetric and antisymmetric parts
i
xy =%y + §5a591227 012” = 07901270 - (4.21)

The symmetric part is nothing but the bosonic component of the standard two-point su-
perspace interval
:L"ff = (21 — 29)%" + 210%05} . (4.22)
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We stress that both x?f and x‘f‘f are invariant under supersymmetry while only the latter
transforms covariantly under the superconformal group according to (4.14).

To introduce one more important building block, we point out that the pseudo inversion
F acts on P(z) by the rule (3.34). One may also work out the action of F on O(z). These
results allow us to compute the action of F on the coset representative (2.35)

Fs(z) = s(2)h(F;2), (4.23)

where h(F;z) is a supermatrix from the isotropy group G'p,. The latter supermatrix is of
the type (2.29) with the following block matrix elements:

A=ci, b=—-z"1'  p=0"", (4.24a)
R =1y —2i0z~'97 . (4.24b)

The N x A matrix R is orthogonal, R*R = 1, and unimodular, det R = 1.
Let us denote the two-point analog of the matrix (4.24b) as uj2. It is defined by

uip = Iy + 21@125&{5@?2 (425)
and has the properties
ulpury = Ly,  detup=1. (4.26)

The sign difference in the right-hand sides of (4.24b) and (4.25) follows from the fact that
19 has the symmetry property

By — &1y = —2i015015 (4.27)

which differs by sign from (2.25).

Here the inverse matrix :?:1_21 is expressed in terms of &1 as

oy = — 212 (4.28)
2= :

With the use of (4.14) one can check that this matrix transforms as

Suly = A (2 )uly) — ulf AR () (4.29%)
or, equivalently,
—(&y + fzg)u{g‘] + AIK(zl)u{(Q‘] — ug(AKJ(zQ) =0. (4.29b)

This shows that u!J is an invariant tensor two-point function of the superconformal group
(compare with the transformation law (5.1) describing a primary superfield). Therefore
this object will naturally appear in correlation functions of primary superfields with O(N)
indices.
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4.3 Three-point functions

Given three superspace points z1, z3 and z3, we construct the following three-point functions

Xl = —a:2_11§:23w13 s él :iQ_ é ﬁ:gllélg, (4.30&)
X, = —T3y m31x211 ) O, = 5 é £f21921 ) (4.30b)

The structures in (4.30b) and (4.30c) follow from (4.30a) by applying cyclic permutations
of superspace points. This is why it suffices to study the properties of (4.30a).

With the use of (4.14) one can check that X; and ©; transform as tensors at the
superspace point z; and scalars at zo and z3,

0X 105 = A (21) X 175 + X1ay N 5(21) — 0(21) X 105 , (4.31a)
~ 1
561@[ = <)\aﬁ(zl) - 26aﬂ0(21)> 915[ + A[J(Zl)@lja . (4.31b)
Thus, they turn out to be essential building blocks for correlation functions of primary
superfields.
Let us consider the squares of the structures in (4.30a)
X2 = tuw(X,XT) = oz 0? = 0,0 (4.32)
1 -— 2 T 1 1) — 113122113132 ) 1 17/VY1la - .

The variations of these objects involve only the parameter of local scale transformation
6X 12 =20(21)X12, 00} =—0(2)07. (4.33)

As a consequence, the combination [50]

Neet (4.34)

is a superconformal invariant and the superconformal symmetry can fix the form of corre-
lation functions only up to this combination.
The two-point function (4.13a) has the following distributive property

a:23 = ccz’6 +xfy —2i0500,% . (4.35)
As a consequence, the three-point functions (4.30a) obey
e X 145 =107 . (4.36)

Hence, similar to the two-point function (4.21), the decomposition of the three-point func-
tion X ‘1)‘6 into symmetric and antisymmetric parts reads

i
~20501,  Xiag = X1pa - (4.37)

X1ag = Xiag — 5
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Given the symmetric object X1, we construct a vector by the standard rule, X1, =
—%’yﬁ'f Xia3, and introduce analogs of the covariant spinor derivative (2.39) and the corre-
sponding supercharge operator

0 . 3 0 . 0 3 O
DI - m g Y I —i 7 m sg_Y ) 4.
1) 89(111 + 170(,8@1 8X{” ) Q(l)a 16@?1 + ’7045@1 8X{n ( 38)
They obey standard anticommutation relations
arm D
{Dé, Dé} - {qu Qé} = 215[‘17&58)(77” ’ (439)

where we omit the subscript (1) labeling the superspace point.
There are various identities that involve the three-point functions X;,3 and ©;, at
different points, e.g.,

X
X2’

/ ! _ )
xS Xspgxy’ = —(X7h)Pe 01,23 X 355 = ui3 04, . (4.40)

These relations allow us to prove the following properties of three-point functions (4.30c)

I J -1 IJ I =1 1JJ
D(l)aei%ﬁ = T Ty384%13 » D(1)7X3a6 = 21213, U13 O35,
I J -1 . IJ I =1 IJod
D(Q)Oz@?)ﬁ = w23ﬁa'u23 s D(Z)’}/X?’aﬁ = 21w23ﬂwu23 @3a . (441)

Here D{i)a is the conventional covariant spinor derivative (2.39) which acts on the super-
space coordinates at the point z;.

Given a function f(X3,03) depending on the objects (4.30c) one can prove the fol-
lowing differential identities

D(Il)wf(Xfi’ O3) = m1_31¢wU{3JD(Jgo){f(X3, O3) (4.42a)
Dy, f(X3,03) = i@y, us3 Q5 f(X3,03) - (4.42b)

Note that on the left of these identities there are standard covariant spinor derivatives (2.39)
while on the right there are generalized derivative and supercharge given in (4.38). The
above properties (4.42) will be important in the next sections.

Using the relations (4.40) one can also check that the object (4.34) is invariant under
permutations of superspace points,

o? O3 o2
1“2 _ Y3 (4.43)
VX2 VX2 VX3P
Finally, we introduce the following three-point functions
IJ IK, KL, LJ IJ IK, KL, LJ IJ IK, KL, LJ
Ui = uyp ugz ugy , Uy = upz uzy ups Uz = uzy uiy ug3 (4.44)

which have simple transformation properties. One may see that U{’ transforms as an
O(N) tensor at superspace point z

SUL = ANE ()UK — UFEAKY (2) (4.45)
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By construction, the matrix Uj is orthogonal, U U; = 1,7, and unimodular, det U; = 1.
It can be expressed in terms of the three-point functions (4.30c¢)

ol xj"ef
Ui’ = o1 12101 (X716, = 61 - 21% (4.46)
1
Analogous results hold for Us and Us.
The matrices Us and Us are related to U; as
Ul =l URtgy U =R (447

These properties will be useful in checking the invariance under permutations of superspace
points of correlation functions of superfields with O(N) indices.

5 Correlation functions of primary superfields

Consider a superfield @ﬁ(z) that transforms in a representation 7' of the Lorentz group
with respect to its index A and in a representation D of the R-symmetry group O(N)
with respect to the index Z. Such a superfield is called primary of dimension ¢ if its
superconformal transformation law is

0% = —60% — qo(2) @4 + A (2)(Map) AP0% + Ay (2)(RY)F 707 . (5.1)

Here ¢ is the conformal Killing supervector (4.3), and the z-dependent parameters o(z),
A8 (2) and Aj;(2) associated with ¢ are given in (4.7). The matrices M,5 and R!” are the
Lorentz and O(N) generators, respectively.

In the non-supersymmetric case, the formalism to construct the correlation functions
of primary fields in conformal field theories in diverse dimensions was developed in [11]
(see also [16]). In four dimensions, this approach was generalised to A/ = 1 superconformal
field theories formulated in superspace in [30] (see also [56]) as well as to higher N [51].
The correlation functions of primary superfields in three and six dimensions were studied
in [50] and [52], respectively. Here we briefly review the 3D formalism of [50] as it will be
employed further for constructing correlation functions of conserved current multiplets in
3D superconformal field theories.

The two-point correlation function of the primary superfield @ﬁ and its conjugate @“I“
is fixed by the superconformal symmetry up to a single coefficient ¢ and has the form

TP (e219) D* 7 (u12)
(x122)7

(D4(21)8F(22)) = ¢ (5.2)
provided the representations 7" and D are irreducible. The two-point functions 122, Z19
and w12 are defined in eqgs. (4.18) and (4.25), respectively, and € = (g43). The denominator
in (5.2) is fixed by the dimension of ®.

Let ®, U and II be primary superfields (with indices suppressed) of dimensions ¢,
q2 and g3, respectively. The three-point correlation function for these superfields can be
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found with the use of the ansatz

T 4,5 (ed13) TP 4, (edo3) DVE 5, (u13) D2 7, (ug3)
(;1:132)‘11 (;13232)(12

x HYW2 R (X 5,03, Us) | (5.3)

(@5 (21) TR ()T (23)) =

where nggjﬁi is a tensor constructed in terms of the three-point functions (4.30)
and (4.44). The functional form of this tensor is highly constrained by the following
conditions:

(i) It should obey the scaling property
HPR (X, 00,U) = (W) B2 0 gJRE(X,0,U),  VAeR\{0} (5.4)

in order for the correlation function to have the correct transformation law under the
superconformal group.

(i) When some of the superfields ®, ¥ and II obey differential equations such as the
conservation conditions of conserved current multiplets, the tensor H gjgjﬁi is con-
strained by certain differential equations as well. In deriving such equations the

identities (4.42) may be useful.

(iii) When two of the superfields ®, ¥ and II (or all of them) coincide, the tensor H
should obey certain constraints originating from the symmetry under permutations
of superspace points, e.g.

(@7 (21) 95 (22)11g (23)) = (—1) (5 (22) 7 (21T (23)) (5:5)
where ¢(®) is the Grassmann parity of ®5'.

These constraints fix the functional form of the tensor H (and, hence, the three-point
correlation function) up to a few arbitrary constants.

The procedure described reduces the problem of computing thee-point correlation func-
tions to deriving the single function H subject to the above mentioned constraints. In the
next sections we will apply this procedure to compute the two- and three-point correlation
functions of the supercurrents and the flavour current multilpets in superconformal field
theories with 1 < A < 3.

6 Correlators in A/ = 1 superconformal field theory

To start with, we give an example of a classically N' = 1 superconformal field theory. It is
described by n primary real scalar superfields ¢ of dimension 1/2 with action

1 .

S = /d3xd29{2Dag5- Do + iA(@- @)2} , (6.1)

with A a coupling constant. This action is invariant under the superconformal transforma-
tion 1

5F = 65— 50()F . (62)
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The supercurrent of this model [67] is

Jupy = i(gé’- D093y @ — 3D (o awz) . (6.3)
The flavour current multiplet reads
Jo =i(7 - S"Dag ~ Dag-3°F), (6.4)

where 3% denotes the generator of the flavour O(n) group. One may check that the cur-
rents (6.3) and (6.4) transform as primary superfields under the superconformal group
and obey the corresponding conservation laws given in (1.1) and (1.4) on the equations of
motion for .

A natural generalisation of (6.1) is the most general off-shell 3D N = 1 superconformal
sigma model given in [53].1}

6.1 N =1 flavour current multiplets

In N = 1 supersymmetric field theory, the flavour current multiplet is described by a
primary real spinor superfield L, of dimension 3/2 (with its flavour index suppressed)
which transforms under superconformal group as

0Lo = —ELg — ga(z)La + 27 (2)Lg (6.5)

and obeys the conservation equation
DL, =0. (6.6)

Let us assume that the superconformal field theory under study has several flavour
current multiplets L%, with a the flavour index. According to the general formula (5.2),

the two-point function of such operators is fixed up to one real coefficient axr—1,

56%120[5
(x122)%

assuming that the flavour group is simple. With the relation (4.20) it is easy to see

(L& (21)LY(22)) = ian—1 (6.7)

that (6.7)7 obeys the right symmetry property under the permutation of superspace points,
<Lg(zl)L%(z2)> = —<L%(22)LZ(21)>. Next, using the explicit expression for 2,5 given
in (4.13a), one may check that (6.7) respects the conservation condition (6.6)

DY (La(21) L (22)) =0,  z21# 2. (6.8)

Consider now the three-point correlation function <Lg(zl)Lg(z2)L,&Y(23)>. Since the
superspace coordinates do not carry any flavour group indices, the dependence of the
correlation function on @, b and ¢ should factorise in the form of an invariant tensor of the
flavour group, which is completely antisymmetric, f3¢ = £1ab o1 completely symmetric,

" On-shell superconformal sigma models in three dimensions were proposed in [68-70].
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dabe = (@) These tensors are defined in terms of the generators £2 of the flavour group

as follows - )
(27, 58 = iftbene, g = ({37, 20159 . (6.9)

In principle, the correlator may be a sum of two terms, one of which is proportional to f&l_’é
and the other to d%¢. In four dimensions, contributions with d?¢ arise as a consequence of
anomalies. In three dimensions, gauge theories are anomaly-free. Therefore, it is natural
to expect that the part of (L2 (zl)L%(zg)Lf;(z;;)) with d% should vanish as it was observed
in the non-supersymmetric case studied in [11]. Nevertheless, here we start by considering
the most general expression for the correlation function including contributions of both
types, with f3%¢ and d®°, and then show that the latter vanishes upon imposing all the
relevant constrains.

According to the general formula (5.3), we have to look for the three-point correlator

in the form

— T — xXr oaoz’a: / EL_E o' B’ Fz_E o' B’
(L8 () Lh(20) LS () = gty o (o H (X5, ©3) + d™ H{y (X3,09))

(93132)2(:13232)2 f) (d)
(6.10)
where the tensors H (0}5 ;) should obey the following scaling property:
HEPH (X, 00) = AP H (X, 0) . (6.11)

(fd) (f.d)

Recall that the superfield L% is Grassmann odd. Hence, the correlator (6.10) changes
its sign when we interchange any pair of superfields in it, e.g.

(L (22) L (21) L5 (28)) = —(La(=1) L (=) L5 (23)) - (6.12)
This equation imposes the following constraint on the tensors HP (f. d)

~XT —0)=-H"(X,0). (6.13)

HO(-XT —0)=H(X,0), HX o

0 ) @ (
The most general expressions for these tensors subject to the constraints (6.11)
and (6.13) read
B B B B
HEY =1 el H, 7_1Zd HiyY (6.14)

n

where ¢, and d,, are some real coefficients and

oy _ €007 sy - X007 ooy _ X0 L EIX IO 45,
= x2 0 (N2 = x3 7 (N3 X3 L
5 0
H(Oégiv — w’ HOf’Y = 67 + 6 , By %. (6.15Db)
X (d)2 X2 (d)3 X3

Recall that we use the notation in which X2 = —lXaﬁXaﬁ and Xk = (X2)k/2,
Note that there is no need to add one more addmisible structure <=5 X s (X0 XP1e)
to the list (6.15a), since it is linearly dependent of the others,

X0F 4 X" = 2XPQ7 + A1 X1Q, + T XPrO, . (6.16)
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To fix the values of the coefficients ¢,, and d,, in (6.14) we have to take into account
the conservation condition (6.6),

DEyy (L8 (21) L (22) LE (2)) = 0 . (6.17)
Making use of (4.42a), this equation imposes the following constraint on the tensors H (O}B J):

DoH({) =0 (6.18)

Here D,, is the generalized covariant spinor derivative defined in (4.38). The equation (6.18)
leads to the following constraints on the coefficients ¢, and d,,:

c1 =0, co+c3=0; dy =3dy, d3=0. (6.19)

To find further constrains on the coefficients, we recall that the correlation function
changes its sign if we swap any two superfields in it, e.g.,

(L3(21) Lj(22) LS (23)) = —(L5(23) Ls(22) LG (21)) - (6.20)
Using the identities (4.40), we find the following corollaries of (6.20):

X x32pp/w31 o (x13 )aa Hglflzl)a ( XlTa —01)

b
X3tz

H ) (X5,03) = (6.21)

o

where the right-hand side should be taken with the plus sign for H(y and with minus for
Hgy. The constraints (6.21) are satisfied under the conditions

c1 =0, co4+c3=0; di=—dy, d3=0. (6.22)

Thus, from (6.19) and (6.22) we see that all d-coefficients vanish, d,, = 0, and therefore

I—I(ozg7 = 0. Furthermore, only one independent coefficient remains among c¢,, which we
denote by by—1 = ¢a = —c3. Our final expression for the correlator (6.10) is

a b c abe T13aa’T2384" '3
<La(zl)L%(z2)L'y(23)> f abe W (f)ﬁ»y(Xg,eg) (6.23&)

HE(X,0) = AT (x0T - HX ey - X P0y) . (6.23D)

The superfield operator L%(z) contains an ordinary conserved flavour current L% (x)
as its linear in @ component,

25 =DoLj|, Lis=~msLl, OMLE =0, (6.24)

where | indicates that we have to set # = 0. From (6.23) we can extract the three-point

function (L% )L%ﬂ,( 2)LZ ,(x3)) by the rule:

aa’ (

(L& (21) Ly g (22) LS/ (23)) = —D(1)aDays Digyy (L3 (21) LY (22) LS (23))| . (6.25)
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It is instructive to compare the flavour current correlation function (6.23) with the corre-
sponding non-supersymmetric expression found in [11]. After a straightforward but lengthy
calculation (see appendix D for the technical details) we find

- _ - abe .,
(LG, (21) L) (w2) L (x3)) = Qf 55 L (213) Ly (023)8™ " 1 (X3) (6.26)
T12°T23%T13
Here we have defined

2T,

Imn(x) = TNhmn — ;r; - 5 (6273‘)
Ty Ty

X X, X X X - X
b (X) = by =By ek T Sk — S (6.27c)

According to (D.17), the coefficients b; and by are given in terms of b= as follows
b1 = bg = 3b_/\/:1 . (628)

This is the same result as the one obtained in [11] except for the fact that the two coefficients
b1 and b, which were completely independent in the non-supersymmetric case, are now
equal to each other due to supersymmetry.

As pointed out in [13], in 3D conformal field theories an additional parity violating'?
structure can arise in the three-point correlator of flavour currents,

- — Xy XP X, XP X XP

(6.29)

However, this structure does not appear upon the ' = 1 — N = 0 reduction of our
result (6.23) and, hence, it is not consistent with supersymmetry. The same conclusion
holds in all cases considered below in this paper. Specifically, the correlators of both flavour

current multiplets and supercurrents contain only parity even contributions.!?

6.2 N =1 supercurrent
The N = 1 supercurrent is described by a primary symmetric third-rank spinor Jyz, =
J(apy) of dimension 5 /2, which obeys the conservation law

D Jpzy = 0. (6.30)

This conservation equation is invariant under the superconformal transformation of J,g-,
which is 5
0
0Japy = —EJapy — §U(Z)Ja/3,y + 320 (2)Jy)5 - (6.31)

12The parity transformation in question is ™ — —z™. The correlator of three flavour currents acquires
a minus sign under this transformation.

130ne way to check whether a given contribution is even or odd under parity is to reduce it to the A" =0
case to see whether or not it contains an €,.np tensor. This is easy to see from the general structure of
the supersymmetric result without performing the reduction in detail. We will not discuss details of the
reduction of our results to ' = 0 in other sections of this paper.
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According to the general discussion in section 5, the two-point function of the super-
current is given by

! ! !
(a CE1256 T19,7 )

(2122)?

It is easy to show that the two-point function (6.32) has the right symmetry property under
the change of superspace points, (Jogy(21)Jargry (22)) = (Jarpryr(22) Japy(21)), and satisfies

T12a

(agn(21) 7P (z2)) = iex (6.32)

D?l)<Jaﬁ’y(zl)Ja’B’7’(z2)> =0, 21 # 2. (6.33)

Similarly, we can write the most general form for the three-point function that is con-
sistent with the superconformal symmetry. Let us denote by A = (a, @/, &) a symmetric
combination of the three spinor indices, J4 = Jya/a. Then

T R(x13)T° (¢
(Ja(z1) () Je (23)) = fgm(m;;f (523(2)33>HRSC<X3, 03) | (6.34)
Explicitly,
TR (x) = m(a”a:a/plmau)p” (6.35)

and the function'* H p0(X,0) = Haaram), (8881, (vv'~) (X, ©) should satisfy the scaling
property
Hapc(N2X,00) = A\ °Hype(X,0) . (6.36)

If we exchange the first and the second superspace points z; <+ 2y it follows that
X3 —» —X ;f, ©3 — —O3. Since the supercurrent .J,g, is Grassmann odd the correla-
tion function (6.34) has to change the sign under z; <> z2, A <> B. It implies that the
function H 4pc(X, ©) has to satisfy

Hape(—X",-0) = —Hpac(X,0) . (6.37)

The three-point function (6.34) now has the right symmetry property under z; <+ z9, but
it does not necessarily has the right symmetry under z; <+ z3 and zo < z3. Additionally,
the function H4pc(X,©) is constrained by the conservation law (6.30). Upon the use of
the identity (4.42a) the latter is translated to

Dy HOP1o' B "6 (X @) =0 . (6.38)

Now our aim is to find the most general solution for H. The standard approach used
in 4D superconformal field theories with A" = 1 [30] and N = 2 [28] is based on writing
the most general ansatz in terms of X and © consistent with the symmetries and the
scaling property (6.36) and constrain it by the conservation law (6.38). However, because
of a large number of tensorial indices it appears to be inefficient as such an ansatz would
require to analyse quite a considerable number of possible terms. Hence, we will take a
slightly indirect route.

“Here and below we sometimes use a comma to separate various groups of indices.

— 33 —



First, let us trade a pair of spinor indices of H for a vector index in each triple. That
is, we write
HO BB YT = (Yo' (y VBB (Y0 ek (6.39)
Note that eq. (6.39) is not quite correct as it stands because the left-hand side is fully
symmetric in each triple while the right hand side is symmetric only in (¢/, &), (5',5")
and (7/,7"). For eq. (6.39) to make sense, we have to make sure that the antisymmetric
part in (a, '), (8,8) and (,') vanishes on the right hand side. That is, we have to
impose the following conditions on H™An:k

(Ym)as HO™ PR =0, (7) gs HO™ K = 0, () ye HO™ P = 0 (6.40)
From (6.38) we still have the conservation law
Do HO™ Pk — ¢ (6.41)
Since H is Grassmann odd and since
0°0°e7 =0, (6.42)

it follows that H must contain only linear ©-terms. Then eq. (6.41) is equivalent to two
independent equations

O™k = (6.43a)
0% (V) as O HO™ 0 = 0 . (6.43b)

Let us decompose H™ 7% into symmetric and antisymmetric parts in the first and second

pair of indices
gombnak — prlampn)ak o prlam.pnlak (6.44)

In our subsequent analysis, it is more convenient to view H as a function of X™ rather
than of X*?. Then it is easy to see from eqs. (6.37) that H (™7 has to be an even
function of X™ while H*"5":7% has to be an odd function. Since even and odd func-
tions cannot mix in the conservation law (6.43a), (6.43b) H(em:An)ak and frlom.fnlak
must satisfy (6.43a), (6.43b) separately. This means that we can consider H (®7-0m)7k
and H@m-8n17% independently.

First, we will consider the case of H(@mfn)

7% Due to its symmetry properties, it is
the sum of four possible terms:

1. Hl(Oémﬁ")»’Yk — gaﬁeyA[mn],k ,
9 HQ(am,ﬁn)»’Yk _ 8&6(,}/71)’76@63[7%71],19,7“ ,
3. H?()am,ﬁn),'yk _ (,yp)aﬁ@'yc(mn),k,p7

4. Hiamﬁn)ﬂk _ (,yp)aﬁ(,YT)V(s@éD(mn),k,p,r .
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Here we use the fact that every symmetric in (o, ) matrix is proportional to a gamma-
matrix. We also indicated that the matrices A and B are antisymmetric in (m,n) and
C and D are symmetric. The tensors A, B, C, D depend on X" and are symmetric
under X™ — —X"™. Now we will impose the conditions (6.40) as well as the conservation
law (6.43a), (6.43b). To begin with, we will impose 9o H(*"f"):7% = (. Then it is easy to
see that

A[mn]vk e 0’ B[mn]zkzr — 07
nprD(mn)vkvpvr — O’ grqu(mn)7k7pvr + ’r]qqlc(mn)’k’ql — 0 . (6'45)

Hence, H£amvﬁ”)"yk — Héam,ﬂn),’yk = 0.

Upon imposing (6.40) we obtain

C(mn),k,p _ C(mnp),k:

)

plmmkepr _ pymnp).(kr) %gqunqq,(;(mnp),q’ 7

i CPIE — () Ty DR (KT) — ) Ner DUPLET) — 0 (6.46)

That is we find two symmetric traceless tensors C(""P)k and Dmnp).(kr) — Qubstituting
now (6.46) into (6.45) we find that C(™):k and D(m)(h7) are related to each other as
follows

1 / /
nprD(m"p)’(kr) + iekpqnpp,nqq,c(mnp b = ), (6.47a)

Py gy D)) clmna) %Cmnm,q - %nqknptc(mnp»t — 0. (6.47D)

Quite remarkably, eqs. (6.47) allow us to fully solve for D(P):(k7) in terms of C'(m7P)F,

In order to do this we will decompose C(™"P)% and DmP):(k7) into irreducible components.
To understand which irreducible components are relevant it is convenient to trade each
vector index for a pair of spinor ones. Since C")k and D(mnp)(k7) are symmetric and
traceless they become equivalent to symmetric tensors C(@1--@6):(8182) and plea--ae),(Br-..fa)
Hence, C contains irreducible components (that is, totally symmetric tensors) of rank 8, 6,
4 and 2, whereas D contains irreducible components of rank 10, 8, 6, 4 and 2 (note that
neither C' nor D contains the rank 0 representation since the number of o and S indices
is different). Now let us recall that all irreducible components must be even functions
of X*8. This means that irreducible tensors of rank 10, 6 and 2 must vanish since they
contain an odd number of X%, Therefore, in both C' and D only irreducible components
of rank 8 and rank 4 can contribute. Going back to the vector indices, let us denote the

§mnpk) and Cémn)

irreducible components of C' as C and the irreducible components of D

as ngnp %) and Démn). By construction, all these tensors are symmetric and traceless.
It is not hard to construct explicit decompositions of C(™P)k and Dmnp).(k7) into the

irreducible components. The decomposition of C'™):k reads

C(mnp),k _ Cfmnpk’) + npkcémn) + nnkcémp) + nmkcénp)
+77mnC?EPk) 4 nmpcé”k) + nnpc?gmk) . (648)
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Here we have taken into account that C'""P):F is symmetric in (m,n,p). Recalling now
that it is also traceless (see eq. (6.46)), 1, CP)1F = 0, gives

mn 2 mn
s >:_5c§ ) (6.49)

Similarly, we have the following decomposition of D("7P):(kr)

D(mnp),(kr) _ EmkSnSS/T(np)’r’sl _I_gnksnSS/T(mp),r,s/ +€pk5n88/T(mn),r,s/

+€mTSnss/T(np),k,S/ + €nrs’r]SS/T(mp)’k75, + Eprsnss,T(mn)vkys/ , (650)
where T(P):: ig given in terms of Dgnp rs) and Dénp ) by
T = D) DE) 4o D) 4 DY) (6.51)

Recalling that D(m0):(k7) ig traceless in each group of indices relates

2 pgmm) (6.52)

D:())mn) _ -

Let us point out that symmetry allows us to add in (6.51) terms of the form n”sDip ")+
npsDim) + nTSDénp ) with some symmetric traceless tensors Di"p ) and Dénp ), However,
it is straightforward to show that such terms will cancel when we substitute them
in (6.50) and, hence, they can be ignored. Substituting the irreducible decomposi-
tions (6.48), (6.49), (6.50), (6.51), (6.52) into (6.37) yields the solution

piwrs) = 3 gt plew) L) (6.53)
10 8
Thus, the tensor D is fully determined in terms of C.
Finally, let us consider the equation (6.43b) which involves the derivative with respect
to X. It is possible to show using (6.47) that (6.43b) is equivalent to a pair of simple
equations

8mc(mnp),k =0, amD(mnP)»(kT) =0. (654)

Now we are ready to construct an explicit solution. It is enough to consider C/(mnp):k
since D(mmp).(kr) ig fully expressed in terms of it. Using the symmetry in (m,n,p), the
scaling property (6.36) and the fact that it is an even function of X we have the following
most general ansatz

C(mnp),k _ % |:77mn77pk + nmknnp + nmpnnk:| _1_% [nmnXpXk + UmenXk + nanka
+-< [n”kaX” otk xTmXP nm’fX"Xp} 4L xmxnypyk (6.55)
X5 X7
Here we adopt the vector notation X? = X,,X™ and a, b, ¢, d are some coefficients.
Imposing 7, C™P)* = 0 gives ¢ = —5a, d = 10a — 5b. Imposing 8,,C™™)k = () gives
b = 3a, d = —10b — 5¢. Thus, we obtain that there is only one independent coefficient
which we choose to be a and the remaining three coefficients are given by

b=3a, c=d=-ba. (6.56)
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At this step it is convenient to give particular values to a,b, ¢, d, say
a=1, b=3, c=d=-5. (6.57)

Then, the free parameter, which we denote as dar—1, will show up as an overall coefficient
in the final answer for the correlation function presented below.
It is now straightforward to compute T("P):rs (and, hence, D(m”p)’(k”). Using
eqs. (6.51), (6.52), (6.53) and the explicit form of C""P)* in (6.55), (6.56) we obtain'®
1y XPXS PP X" X5 — P X" X*®  3X"XPX"X*
5[ X5 i X7 ] '

Trphrs — (6.58)
As the last step, one can check that with 7(")"5 given by (6.58) the differential constraint
Dy D) (k1) — (0 from eq. (6.54) is indeed satisfied. Thus, we have shown that H(@m8m):7k
is fixed by symmetries and by the conservation law up to an overall coefficient dar—1.

In a similar manner we can consider the antisymmetric part H™f77%  Fortunately,
the consideration is much simpler. It is not hard to show following the same logic as above
that already imposing 9, H@™ P77k = 0 and eq. (6.40) sets Hl@mfnlak — (.

To summarise, we have shown that the three-point function of supercurrents in AV = 1
superconformal theories is fixed up to one overall coefficient dar—1. The explicit form of
the function H*™#"7% is given by

HO™ Pk (X,0) = idp—y | ()P OTCTPIE %(’Yp)aﬁ(’Yr)ws(a(sgqunqq’C(mnp)’q/
+(7p)* ()50 DD | (6.59)

The tensors C"P)k and Dm7P)(k7) are given by (6.55), (6.57) and (6.50), (6.58), respec-
tively.

Obviously, the correlation function (6.34) changes its sign under permutation of the
superspace points z; and z3 with the simultaneous swap of indices A and C

(Ja(21)JB(22)Jc(23)) = —(Jc(z3)IB(22) S A(21)) - (6.60)

As a consequence, the tensor H should obey the following equation

1 ! ! ! / !
H X. 0 « —1 « —1 « 0% 7.
0410420437,31,32/5’37717273( 3,03) = X 332,5° (:1313 Jau 1(m13 Jas "2 (T 3 Jas 3 T13 ' T13 Py,

’ B/6 6/6 B/é‘
X @137, 215" X 35,8, 013 X 35,8,15 X 3555
T
XHAA _Xl ,—@1) . (661)

47481 8484 ot aya
However, it appears to be very difficult to check that the tensor (6.59) obeys this equation
because of its complicated structure. Alternatively, in appendix C we demonstrate that
the expression (6.59) can be derived as a result of reduction of the N' = 2 supercurrent
correlation function which will be computed in subsection 7.2. This will prove that (6.59)
obeys the required property (6.61).

15 An explicit calculation of T("")™* also gives additional terms containing n"*, nP® or n"*. However, all
such terms will cancel when we substitute them into the expression for D)+ jp (6.50) and, hence,
they can be ignored. It is analogous to the cancellation discussed below (6.52).
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7 Correlators in N/ = 2 superconformal field theory

We start with an example of a classically NV = 2 superconformal field theory. It is described
by n primary chiral scalars ® (viewed as a column vector) of dimension 1/2, D,® = 0, and
their conjugate antichiral superfields ®f with action'®

S = /d3xd29d2§c1>fq> + {)\/d?’mdzﬁ(@T@)Q —i—c.c.} . (7.1)

Here X is a dimensionless coupling constant. The supercurrent of this model is [39, 40]
Jop = 2D, @' Dy ® + %[D(Q,Dﬁ)}(@cb) : (7.2)

The action is obviously O(n) invariant. The corresponding flavour current multiplet is
L= 3T, (7.3)

with X% being the generator of the flavour O(n) group. It is not difficult to check that on-
shell the currents (7.2) and (7.3) obey the N' = 2 conservation equations in (1.1) and (1.4),
respectively. In the free case, A = 0, the action is U(n) invariant; the corresponding flavour
current multiplet is given by (7.3), in which X% now stands for the generator of the U(n)
group. The free model is trivially superconformal at the quantum level.

A natural generalisation of (7.1) is the most general off-shell 3D N' = 2 superconformal
sigma model given in [53].17

7.1 N =2 flavour current multiplets

The N = 2 flavour current is described by a primary scalar L of dimension 1, which means
that its superconformal transformation is

0L =—¢L—o(z)L . (7.4)
This transformation law is uniquely fixed by requiring the conservation equation
1
(Da(lDi) — 25”DQKD§> L=0 (7.5)
to be superconformal.

As in the NV = 1 case, we assume that the N' = 2 superconformal field theory under
study has a set of flavour current multiplets L% associated with a simple flavour group. Since

Y5For the action (7.1) and the associated conserved current multiplets (7.2) and (7.3), we have employed
the complex basis for the superspace Grassmann coordinates introduced in appendix B. In the remainder
of this section, the real basis for the superspace Grassmann coordinates will be used.

"For target spaces with U(1) isometries, 3D supersymmetric sigma models may be formulated in terms
of Abelian vector multiplets described in terms of gauge invariant field strengths. In the A" = 2 case, the
field strength of a vector multiplet is a real linear superfield. The N = 2 superconformal sigma models
formulated using real linear superfields were studied in [40, 71].
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the superfields L? carry neither spinor nor R-symmetry indices, their two-point correlation

function is simply
~ : yab
(LY(21)L7(22)) = an=2— (7.6)
12
where apn—o is a free coefficient. It is straightforward to check that this correlator is

symmetric, (L%(z1)LY(22)) = (LP(22)L%(21)), and respects the conservation equation (7.5),

a(l 7 1 o a 5

Our next goal is to work out the most general expression for the three-point function
(L%(21)L?(29)L%(23)) compatible with all the physical requirements. According to (5.3),
we have to make the ansatz

5 1

(L7 (21) L (22) L¥(23)) = [/ H (1) (X5, 03) + A Hiyp (X3,05)| , (78)

13%x232

where f2%¢ and d®° are antisymmetric and symmetric invariant tensors, respectively. Both

functions H(y and H g4 should have the same scaling property
H(f.a)(A* X, 20) = A\ H 1,4(X,©) (7.9)

and obey the conservation condition
1
<D"‘(I D) — 551 JpeKpKk ) Hipay=0. (7.10)

The latter constraint is obtained from (7.5) with the use of (4.42a).

The correlation function (7.8) is invariant under exchange of the superspace points z;
and 2o and the flavour indices @ and b. As a consequence, the functions H, () and H g are
constrained by

Hip(-XT,-0)=—H;(X,0), Hygy(-X",-0)=Hy(X,0). (7.11)
The general solutions of the equations (7.9), (7.10) and (7.11) prove to be

i€[J@éXaﬁ@é
X3 ’

= 1
H(d)(X,@) = b'/\/’zgf . (712)

Hip)(X,0) = by—s N

Here byr—2 and BN:Q are two real coefficients. One can also check that the functions Hp
and H g obey the equations

Hip(—X1,-61) = —215° X3°H(5)(X3,03), (7.13a)
Higy(—XT1,-61) = 213> X3* H(g) (X3, 03), (7.13b)

which are corollaries of the following symmetry property

(L(21) L (22)L%(23)) = (L%(23) L*(22) L7 (1)) - (7.14)

-39 —



Finally we point out that the functions (7.12) can be rewritten in terms of the covariant
object X o5 with the use of (4.37)

iE[J@aI@‘an
H;(X,0) = by— 7 < (7.15a)
- 1 1 e

In verifying eq. (7.15a), the N' = 2 identity 5”@5@%@2 = 0 may be useful. We point
out that the expression in parentheses in (7.15b) involves the square of the superconformal
invariant (4.34).

It should be stressed that the appearance of the d-term in the flavour current correlation
function (7.8) is a novel feature which distinguishes the N' = 2 superconformal field theories
from the A/ = 1 ones considered in section 6.1 and from non-supersymmetric ones studied
in [11]. In contrast to the four-dimensional theories, in three dimensions this part of
the correlation function cannot be considered as an anomaly induced contribution. To
understand the role of this part of the correlation function it would be interesting to
consider some examples of N = 2 theories in which this contribution is non-trivial.'® We
leave this issue for further studies.

7.2 N =2 supercurrent

The N = 2 supercurrent is described by a primary symmetric second-rank spinor J,3 =
J(ap) of dimension 2, hence its superconformal transformation is

5Ja5 = —£Ja5 — 2a(z)Ja5 + QA(QW(Z)JB)W . (7.16)

This transformation law is uniquely fixed by the condition that the supercurrent conserva-
tion equation
DY Jap =0 (7.17)

is superconformal.
According to the general prescription (5.2), the two-point function for the supercurrent
is given by

(7.18)

where cy—o is a real coefficient. It is not difficult to see that this correlator is symmetric,
(Jap(21)Jarpr(22)) = (Jarpr(22)Jap(21)), and respects the conservation equation (7.17),

D (Jap(21)Jarpr(22)) =0, 21 # 2. (7.19)

The most general expression for the three-point function for the supercurrent is

_ L13apT13a/p' L23B0L236" 0’ e
(Jaar (21)Jppr(22) Sy (23)) = @152 (@52 HPP0%(X3,03),  (7.20)

81t may be shown that both f- and d-terms are generated in the free model (7.1) with A = 0.
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where, by construction, the function H /’/’/’U”,W/(X , ©) obeys the symmetry property
qr'eo' (X,0) = Hereo) (X, 0) . (7.21)

Since both the supercurrent J,3 and H ao’,58'77" are Grassmann even, the three-point
function (7.21) has to be symmetric under the exchange z1 <> 23, o, o’ <> 3,3". Hence,
Hoo BB ' (X, ©) satisfies the following symmetry property

He P (xT @) = g e’ (X @) . (7.22)
In addition, H*#5"77" ig characterised by the scaling property
HOYBB (N2 X AQ) = AT P (X, 9) . (7.23)

With the use of eq. (4.42a), the supercurrent conservation condition (7.17) is translated to
the following equation for Fo<' 857

DL B (X 0) =0 . (7.24)

Just like in the problem of the three-point correlator for the N' = 1 supercurrent considered
in section 6.2, it is convenient to trade each pair of spinor indices for vector ones,

HOTY = () () ()7 T, (7.25)
where H™"P(X , ©) satisfies the same scaling property as (7.23) as well as
H™?(-XT —0)=H""(X,0) (7.26)

and
(v™) DL H (X, 0) = 0 . (7.27)

Unlike the N' = 1 case, now it is not hard to list all possible structures consistent with
the symmetry (7.26) and the scaling property (7.23). This makes the analysis considerably
simpler than in the previous section. Just like in the N' = 1 case, it is more convenient to
view H as function of X™ rather than X . Then the building blocks which can appear

in H are
1
lmn s  Emnp X" = _5(7m)aﬁXa/B ) X = Xme 5
i

Note that there is the following N = 2 identity
(00),02=0. (7.29)

Taking into account the symmetry property (7.26) and (7.23) we get the following general
expression for H:

Honp = AiHinp + Y BHigmnp + > CiHi pnnp (7.30)
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where A;, B;, C; are some coefficients and the tensors H; mnp, Himnp, Himnp are explicitly

given by
00 X X,(00
Hinp = W Homp = 771;((5)17
e XnX,(00), + X, X,(00)
3,mnp — X5 y
H _ mnp(©0)y + 17np(00)
47mnp - X3 Y
H — XanXqu(@Q)q H, _ nmnXqu((a@)q
5mnp — X7 ; 6,mnp — X5 )
X, X106 X, X106
H7 mnp = Tmp e ( )q;577np m XX )q ) (7.31)
1 = Emanr(@@>p - Emnr,«Xp(@@)T
1,mnp — T ’ H2,mnp - T ’
Emnp X (OO EmnrXp X' X1(©O
H37mnp = mnpr)ra H4,mnp = P X6 ( )q 5 (732)
X — X X — X
Hl,mnp - T ngnmp = > HZmnp = i mX477mp n@27
X — X
Hj oy = 2 mXS”mP ngt (7.33)

Note that H; ynp = HL(mn)p, Himnp = Hi,[mn]pa H; 1np = Hi,[mn}p‘

It is easy to realize that H; yunp, Himnp and H; ,p, do not mix in the equation (7.27)
and, hence, they must satisfy the conservation law independently. Let us now substi-
tute (7.31), (7.32) and (7.33) in (7.27). This equation will lead to two types of terms:
terms linear in © and terms proportional to ©3. Clearly, these terms must vanish sepa-
rately. Let us first consider the terms linear in ©. Using the identities

(")DLX™ = ™k — 101 (3,)5
(")3DLE* = 2(")36L,

(Ym)3DL(OO)n = ier MmnOF + ie1sEmnp(1*)FO (7.34)
it is straightforward to show that
Bi=By=B3=B;=0, C;=0C=0C3=0. (7.35)

Thus, Himnp and H; ;pnp can be ignored and we can concentrate only on H; .,y in
eq. (7.31). Substituting (7.31) in (7.27) and considering only the terms linear in O gives
the following constraints on the coefficients A;:

Al — Ay =0, A3—As=0, Ay—A;=0,
A1+ 4A44+ A7 =0, Ay+4A3+ A5+ Ag+ A7 =0. (7.36)

Similarly, concentrating on the terms cubic in ©, after straightforward but lengthy calcu-
lations we obtain the following system:

3A1+As+A3+6A4+As+2A7 =0, 3A1 + Ay — A3 —3A4 + Ag — A7 =0,
5A3+3A5 =0, 3A1+As+2A3+3A4+ A5+ Ag+A7=0. (7.37)
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To derive the system of equations (7.37), it is important to make use of the following N = 2
identity '
i

Oa1(00)n = 5(7m)o¢ﬁ®ﬁJ@251Ja (7.38)

which can easily be obtained by differentiating (7.29).
The systems (7.36) and (7.37) turn out to be consistent and can be solved in terms of
one independent coefficient which we choose to be A1 = A:

Ag=As = Ay = —5A, Ay=Ag=3A, Aj—=A. (7.39)

Thus, the three-point function of the supercurrent is fixed up to a single coefficient A.

Since the three-point function has only one overall coefficient, our result should possess
the right symmetry properties under the exchange z1 <> z3, 20 <+ z3. However, since the
final result is rather simple and contains only a few terms listed in (7.31), the symmetry
under, say, the z; <> z3 exchange is not hard to verify. The invariance of the three-point
function

(Jaar (21) I (22) Iy (23)) = (S (23) Jppr (22) Jaar (21)) (7.40)

implies the following equation'® on the tensor H

!~

'o,0! T _ 4y o yo' N oy .o
HPP77 (=X, —01) = X3 X7 ' XT Y TigaaTisva T xls’ Ti3-%137 5

x HPBoo' (X 3,03) (7.41)
Using the formulae (4.40) we can relate X3 with X; and ©3 with ©;
gey 1J By
1300/ T1385 X 3 I U13%1308X 5 O34
lap $134X32 ) la $132X32 ( )

It is now straightforward to substitute eq. (7.31) into (7.41) and verify that it is indeed
fulfilled if the coefficients A; satisfy (7.39). More precisely, eq. (7.41) constrains the coeffi-
cients A; as follows

Al—A4:O, 2A1—|—A2+A3:O, 241+ Ag+ A7 =0 . (743)

The system of equations (7.43) is weaker than the system (7.36), (7.37) and is contained
there. That is why the conservation law alone fully constrains the coefficients.

To conclude this section, we rewrite explicitly the final result for the tensor H in terms
of the objects (4.30):

Haalyﬂﬁ/ﬂ/'yl _ 1dN2{X2_3 [Ea(ﬁgﬂl)a/@'}@}/ + Ea(’ygry/)a/G?@g/ + 8:8('767/)39?‘@&0‘/} €IJ

1 / ! / / / / / / /
5 Bxex'efef +3x7 x'efe5 — sx° X7 6j6] | 7

1 / / / ! ’ / / / ! !’
+55 [55a(v57 Jo! x B8 | 5 BB xaa! g a(B ) Xw} X% 0Ll
5 1 ! / ! !
+§FX°‘°‘ XA X X 9l J} : (7.44)

Here we have denoted the overall coefficient by dar—o.

Due to the identity (7.29) it is trivial to rewrite (7.31) in terms of X rather than X.
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8 Correlators in N/ = 3 superconformal field theory

The off-shell N' = 3 superconformal sigma model in three dimensions proposed in [53] is a
nontrivial example of classically N' = 3 superconformal theories. Its formulation is based
on the projective superspace techniques [72-74] (see [75] for a review). An alternative
approach to describe off-shell N' = 3 hypermultiplets in three dimensions [76] is provided
by the harmonic superspace formalism [44, 77], see, e.g., [78] for the formulation of the
ABJM models [79] in A/ = 3 harmonic superspace. In the present paper, we will not discuss
the harmonic and the projective superspace formulations for the off-shell hypermultiplet
as it goes beyond our goals. Here we will simply provide examples of N/ = 3 supercurrent
and flavour current multiplets, and for this it suffices to consider a free on-shell massless
N = 3 hypermultiplet.?’ It is described by a primary superfield ¢’, and its conjugate g,
subject to the equation of motion [76]

DGk =0, (8.1)

which is the 3D N = 3 analogue of the famous 4D N = 2 hypermultiplet constraints due
to Sohnius [80]. Here DY is obtained from D! by replacing its isovector index with a pair
of isospinor ones by the general rule [53]
721 5 zi = (Z.&)d =21, Zi=0, (8.2)
V2
with & being the Pauli matrices. The hypermultiplet ¢ transforms in the defining repre-
sentation of SU(2), which is the double cover of the R-symmetry group SO(3). The SU(2)
indices are raised and lowered with the antisymmetric tensors £ and Eij, el2 = g9 =1.
Let us consider a system of n free on-shell hypermultiplets. It is described by a column
n-vector ' constrained by (8.1) and its conjugate qu" The supercurrent J, and a flavour
current multiplet L% are given by

—
Jo =iq] DY q;, (8.3a)
LY = qu(riZaqj), (8.3b)

where 2% is a flavour group generator. With the use of (8.1) it is possible to check that
the operators (8.3) obey the N' = 3 conservation equations given in (1.1) and (1.4). In the
SU(2) notation, these equations read

Dieg, =0, (8.4a)
DL = (8.4b)

We now turn to studying the correlation functions of the supercurrent and flavour
current multiplets in quantum N = 3 superconformal models.

20 Although the harmonic and the projective formulations for the free hypermultiplet differ off the mass
shell, they lead to the same on-shell superfield.

— 44 —



8.1 N =3 flavour current multiplets

The N = 3 flavour current multiplet is described by a primary real isovector L’ of dimension
1, which transforms under the superconformal group as

SLY = —¢L! — o(2)LF + A (2) L/ (8.5)
and obeys the conservation equation
1
p{r?) — g(s”DgfLK =0. (8.6)

Similar to the N' =1 and N/ = 2 cases, we assume that the N’ = 3 superconformal
field theory under study has a set of flavour current multiplets L% associated with a simple
flavour group. According to (5.2), the two-point correlator for these multiplets is

) _ by 1J
(L1(21) L7 (22)) = an=s——3

(8.7)

with some coefficient ap—3. It may be checked that this two-function is symmetric,
(L1%(21)L7%(29)) = (L7%(22)L'%(21)), and respects the conservation law (8.6),

D§§a<Lf>a(z1)LJ5(22)> 5KID(1)Q<LL@(Z1)LJ5(ZQ)> =0, zn#2n. (8.8)

For the three-point function (L1%(z1)L7?(25) L% (23)), we follow (5.3) and make the
ansatz

<LI&(Z )LJB(z )LKE(Z )> _ u{é u2J3J (deEHI’J’K<X o) )—i—daBEHI,J/K(X [a) )) (8 9)
1 2 3 - w132€l323 (f) 3, Y3 (d) 3, Y3 ] .

where f%¢ and d%° are antisymmetric and symmetric invariant tensors of the flavour group.

The functions H, (I J [g should obey the following scaling property

HIJE(NX,00) = \?Hl{ (X, 0) . (8.10)

The three-point function under consideration has to possess the symmetry property
<Lla(21)LJ5(z2)LK6(Z3)> _ <LJB(22)L16(Z1)LK6(23)>7 (8.11)
which implies the following constraints for H, (f.d)
B (X.0) = B X" 6), HINX0) = B X" e). (s

The most general solution of the equations (8.10) and (8.12) can be written as

[JK IJK IJK __ 1JK I1JK
Zb Hig Hp = D e + 3 duti{zy, (8.13)

— 45 —



where b,,, ¢, and d,, are some coefficients and the tensors H. (I d‘gf , H (I Jz])In( and ’H{ }])Ig are

LK 1L ALK LK cIKLBJL 4 _JKLRBIL
(1 —  x3 (d)2 = X2 )
IJL 2 IKLpJL | JKLRIL
IJIK 9 ALK@ IJIK 3 B + 9 B 2.
Hips =——a1 > HfY = e 0%; (8.14)
K IK K _lAILSLJK 4+ AJLGLIK
Hr = x H2 — 9 X3 ’
LK _151J€KMNAMN LK lAugKMNAMN
(N3 = 9 X3 ’ (N4~ 4 X5 ’
1L BKLg?2 1K g4
IJK _ IJK _ )
Hips =—5——x3 Hipe = =53 (8.15)
Q1K IK Q2 S K cIJL LK
Hr="x2 > 2= x2 ¢
/HIJK__EEIJK@6 HIJK__151J€KMNAMN62
Q1K 1 §IKJMN gMN | sJK .IMN gAMN o
(H5 — 9 X4 )
1 BIJcKMN gMN
1JK
Here we have introduced
Al =iel X, 077 = -4/ BlY.=el"el =B/ (8.17)
In principle, the set (8.16) could be extended by one more term
QK _ _EBIKgJMNAMN + BIKIMN gAMN (5.18)
N7 = 9 X4 ) :

which obeys both equations (8.10) and (8.12). However this term is linearly dependent of
the others,

IJK __ IJK IJK IJK
MHipr =MHipa +Hips — Hipe (8.19)

and therefore the list (8.16) is complete.

The tensor H(I]{)K in (8.13) is determined by two sectors with functions H(I]z])ff and
7—[([ J;])Ig . As will be seen further, these pieces should independently obey the constraints
imposed by the conservation condition and symmetry of the correlation function under the
permutation of superspace points.

With the aid of the identity (4.42a), the supercurrent conservation law (8.6) leads to

the following constraint on H ([ f] g

(DKL L crpm Mk
DYHY) " — 567 DY HY 0. (8.20)
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Computing the derivatives of the tensors (8.15) and (8.16) and substituting them in the
equation (8.20) we find the following constraints on the coefficients ¢,, and d,,:

all b; =0 ; (8.21a)
co = 2¢1 y c3 =1C1, Cs = —206, Cqy = —406 > (8.21b)
di=do=d3=ds =0, 2d5+dsg=0. (821C)

In deriving these equations we have used the following N = 3 identities:

1 1
olve’Pek1ete ), = —igaﬁ(a?@h@”gw - §gaV@2@Jﬁ@K%UK (8.22a)
1
_§€a§@2@J,3®K'\/€IJK ,
o' eje"fele k= 20°07 0 ¢ )k, (8.22b)

which are differential consequences of the more general ' = 3 identity
0% k0,050 =0 . (8.23)

As is seen from (8.21a), the part of the correlation function with the symmetric tensor

d¢ vanishes since H (] C‘IJ)K = 0. In the rest of this section we concentrate on the derivation

of the part of the flavour current correlator with the antisymmetric tensor fal_’é.
The three-point correlation function has to possess the symmetry property

(LT8(21) L7 (20) LI (23)) = (LX%(23) L7 (22) L1 (1)) . (8.24)

It imposes the following constraint on the tensor H, (I fJ)K

HIF (- XT,~01) = —a® Xs2ul L ufFUF WK HE T (X 5,03) (8.25)

as a consequence of (4.47). This equation gives additional relations among coefficients ¢;
and d;, which are:

C2 = 2C1 — Cs 2047 3 =10 265 4047 Ce = 1261 )
do=dg =0, ds = dy + 2dy . (826)

Comparing these equations with (8.21b) and (8.21c) we see that all coefficients d; vanish
while all ¢; can be expressed in terms of ¢; = bpr—3,

5
Cy = C3 = bj\/zg, Cq = 3C5 = —406 = ng:?H di =0. (827)

Taking into account these relations, we can rewrite the resulting expression for the tensor

H (I ];])K (8.13) in terms of the matrix (4.44). Our final result for the three-point function is

<LI&(Z )LJB(Z )LKE(Z )> _ f&BE u{?{ uéi?{ HI’J’K(X [a) ) (8 28&)
1 2 3 3313233232 (f) 3 3 .
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where

by—
H(I];])K _ /\;3 SIK LI LIK | (7IL_LJK
_i((;IJeKMNUMN 4 IMNGMN KT JMNMN I )

16

+%(UIJ€KMNUMN+51K€JMNUMN + §KMNGMNY | (8.28D)

Here we have used the following relation between the matrix U7 given by (4.46) and the
composites in (8.17)
Al BlIg2
1J _ gIJ
The three-point function (8.28) looks more complicated than its 4D N = 2 counter-
part [28]. The reason for that is the isovector notation used for the R-symmetry indices.
Switching to the isospinor notation, following the prescription (8.2), should simplify the

structure of the correlation function.

8.2 N = 3 supercurrent

The N = 3 supercurrent is described by a primary real spinor J,, of dimension 3/2, which
is characterised by the superconformal transformation law

0Jo = —EJ, — ;U(z)Ja + X’ (2)J5 (8.30)
and obeys the conservation equation

Dlej,=0. (8.31)

According to (5.2), the two-point correlation function for the supercurrent reads

. L12a03
Jal21), =ieny=3—55 s 8.32
(Ja(21)Jp(22)) = icn 3(m122)2 ( )
with cyr—3 a parameter. It is antisymmetric, (Jo(21)Jg(22)) = —(J5(22)Ja(21)), and re-
spects the conservation equation (8.31),
D(Ja(21)Jp(22)) =0, 21 # 2. (8.33)

In accordance with (5.3), the three-point correlator for the supercurrent has the form

L1300/ L2355 o' B!
o = ——=—""-H X3, , .34
(Ja(21)J5(22)J5(23)) (1522 (2522 +(X3,03) (8.34)
where H should have the following scaling property
HPY(N2X,\0) = \2H*(X,0) . (8.35)

Due to
(Jp(22)Ja(21)J5(23)) = —(Jal21)Jp(22) Jy(23)) , (8.36)
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the tensor H should obey the following symmetry property
HP(-XT —0) = —-H*(X,0) . (8.37)
The most general form for H compatible with the relations (8.35) and (8.37) is
HY"(X,0) = ;H(X,0), (8.38)
where ¢; are some coefficients and

Xaa’Xﬁ’B@é,@é/@fy(gIJK

Hfﬂ’Y(Xa 6) = X5 )

- XﬁO‘X“V@I@l{@K{:‘[JK
Hy B’Y(Xa 0) = _;25 ! )

By a xpB vrol olok

Hoz,B (X @) o (5”/X P+ 5'yXp )XM eu@yep EIJK

3 7 ’ - X5 5

5 x7Peleel ek Xxe'el e’k

H{"(X,0) = EIJK — < TeriK - (8.39)

b & b &
Here we have listed all linearly independent structures. Note that owing to the iden-
tity (8.23) there are no terms of order O(0°).

Now we have to impose the constraint

DIHY =0, (8.40)

which follows from the conservation law (8.31). In deriving (8.40), the identity (4.42a) has
been used. At order O(0?) the equation (8.40) gives

—c1+2c0=0, c—c3=0, ¢c4=0, (8.41)
while collecting the terms of order O(0%) we find
—c1+2c9=0. (8.42)

In the derivation of these equations we have used the identities (8.22b). The general
solution of (8.41), (8.42) reads
Cq4 = 0, Cy = C3 = d/\[:3, C1 = 2d/\[:3, (8.43)
where djr—3 is a single free coefficient.
As a result, the tensor H*?7 has the following explicit form

dn=3
X 5

+XPexmele)ofe x +2XxX"P0l0]0 e k| . (8.44)

HP(X,0) = (05X + 69 XPP) XM 000N K

One can also check that this expression obeys the equation
H;wa(_X'll“7 —@1) = nga:’fé‘ wlgaa/wlljg Xgl,/pHa p#/(Xg, @3) s (845)
which is a consequence of the symmetry property

(Jy(23)Jp(22) Ja(21)) = —(Jal21)J5(22) 5 (23)) - (8.46)
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9 Concluding remarks

In this paper, we have demonstrated that for three-dimensional N-extended superconfor-
mal field theories with 1 < N < 3 each of the two-point and three-point functions for
the supercurrent is fixed by the symmetries and by the conservation law up to a single
overall coefficient. In particular, our results imply that each of the two- and three-point
functions for the stress-energy tensor in 3D superconformal theories are fixed up to one
coefficient. It is natural to expect that the coefficients in the two- and three-point func-
tions for the supercurrent are related to each other through a Ward identity just like in
4D (super)conformal theories [11, 30]. Although the required Ward identities may be de-
rived using the known prepotential formulations for 3D A = 1 supergravity [41] and 3D
N = 2 supergravity [42, 43|, we postpone the study of such a relation for future work. The
fact that such correlation functions are constrained up to an overall coefficient makes 3D
superconformal theories similar to the well-studied case of 2D conformal field theory.

We have also proved that the three-point function of the flavour current multiplets
is determined by a single functional form in the ' = 1 and N' = 3 cases. The specific
feature of the N/ = 2 case is that two independent structures are allowed for the three-point
function of the flavour current multiplets, but only one of them contributes to the three-
point function of the conserved currents contained in these multiplets. This is explicitly
demonstrated in appendix C.

As was shown in [13, 14], 3D non-supersymmetric conformal theories can have certain
odd parity contributions to three-point functions of the stress-energy tensors and flavour
currents. They do not exist for an arbitrary number of space-time dimensions but are a
specific 3D (and, perhaps, in general, an odd-dimensional) feature. Such terms do not
arise in free conformal field theories but can appear in interacting Chern-Simons theories
coupled to parity violating matter. Some general constructions of the parity violating terms
in A = 1 superconformal theories were later discussed in [81]. There it was shown that in
some examples correlators of conserved currents can also contain parity odd contributions.
In our approach we did not distinguish whether various allowed structures are even or odd
under parity. For N/ = 1,2,3 we always assumed the most general ansatz. Hence, our
analysis demonstrates that odd parity contributions do not appear in the supersymmetric
cases for both the flavour current and supercurrent correlators.?! This is explicitly proved
in appendix D for the A/ = 1 flavour current multiplets.

It is an interesting problem to generalise the present results to the superconformal
theories with A/ > 4 supersymmetry. This is also postponed for future work.

We hope that the techniques developed in our paper will be useful in the context of

generalised higher spin superconformal theories formulated on hyper-superspaces, see [82]
and references therein.

2Tt is not difficult to show that our results are in complete agreement with [81]. For example, the
correlator of three N' = 1 supercurrents corresponds to (Js/2J3/2.J3/2) in [81]. This correlator admits only
one parity odd structure respecting the proper symmetry under the permutation of the three points but
this structure is inconsistent with the conservation law.
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Recently, the so-called superembedding formalism in four dimensions [83-85|, which
was originally introduced by Siegel [86, 87| and fully elaborated in [58] under the name
bi-supertwistor formalism, has been applied to compute correlation functions of multiplets
containing conserved currents in 4D N = 1 superconformal theories [85, 88, 89].22 The
3D N-extended bi-supertwistor formalism was presented in [58]. It would be of interest
to apply this approach for an alternative computation of the correlation functions of the
supercurrent and flavour current multiplets derived in our paper. The results given in
section 3 might be useful for that.
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A 3D notation and conventions

We mostly follow the notation and conventions adopted in [53]. In particular, the
Minkowski metric is 7,, = diag(—1,1,1).
The spinor indices are raised and lowered using the SL(2, R) invariant tensors

0 —1 0 1
T (1 0 ) - (—1 0) » ETe =0 (A1)

by the standard rule:

P =g, by = eagt® . (A.2)

We employ real gamma-matrices, v,, := ((’ym)aﬁ ), which are expressed in terms of the
Pauli matrices as yg = —iog, 71 = 03, 72 = —o1. They obey the algebra

YmYn = Nmnl + Emnp’)/pa (AS)

where the Levi-Civita tensor is normalised as €912 = —gp15 = 1. The completeness relation

for the gamma-matrices reads
(Y")ap(ym )7 = (3405 + 35.05) - (A.4)

Here (7,,,)* and (7,5,)ap are obtained from v, = (7)o" by the rules (A.2).
Given a three-vector z,,, it can be equivalently described by a symmetric second-rank
spinor z,4 defined as

1

Tap = (’Ym)aﬁxm = TBa 5 Tm = _i(Vm)aﬁxaB . (A5)

2280 far, the thee-point function for the A" = 1 supercurrent originally computed by Osborn [30] has not
been re-derived within the superembedding approach.
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The same convention is adopted for the spacetime derivatives,

1

aaﬁ = (’Ym)agam, a171 = _i(ym)aﬁaaﬁ (AG)

such that
Omr"™ =6y, Dapa™® = —(6705 + 0267) - (A.7)

Note also that the square of a vector in terms of spinor indices reads

1
22 =", = ——a®P

2
B N = 2 correlation functions in chiral basis

The case N' = 2 is special since the R-symmetry group SO(2) is isomorphic to U(1), and
one can define a chiral subspace of the full superspace on which the superconformal group
OSp(2]4;R) acts by holomorphic transformations. This appendix is devoted to a brief
discussion of the correlation functions involving (anti)chiral superfields.

B.1 (Anti)chiral two-point functions

Instead of the real Grassmann coordinates #/% = (9%, 62%), we introduce new complex

variables,
1 1

V2 V2

which have definite U(1) charges with respect to the R-symmetry group. The corresponding

- (01 +i0%>), 4~ (01> —ig?) (B.1)

spinor covariant derivatives
1

V2

obey the anti-commutation relations

. _ 1 .
(DL—iD2),  Do=———=(D\+iD?) (B2)

Do =
V2

{Do,Ds} =0, {Dn, Dgt =0, {Ds, Dg}=—2i0ns, (B.3)

which guarantee the existence of a chiral subspace of the full superspace. The crucial
features of the chiral subspace are that (i) it is invariant under the N' = 2 super-Poincaré
group; and (ii) its bosonic y* and fermionic % coordinates are annihilated by the operators

D,. Its bosonic coordinate is
y? = % 4 2i9(*pP) . (B.4)

The superconformal transformation law of the real superspace coordinates, eq. (2.27),
implies that the superconformal group acts by holomorphic transformations on the chiral
subspace. The superconformal variations of the chiral coordinates y®* and 8% are

5y*? = P 4 4ie 9P — N P — 2N oyB 4y Pp s
+iy*10,7° +iy*10% 7, + 2iy?10%7, + iy 077, (B.5a)
1
50% = € — 0%\ + SO0 — A0 + Y7507 — y*Png + 1020 . (B.5b)
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The parameter A of U(1) R-symmetry is related to the SO(2) parameters Ary as Ajy =
ergA\, where £ is the antisymmetric tensor.
Let us consider the following @-supersymmetric two-point function

YD = (21 — 29)°7 — 2i0\°07) + 2101502 | (B.6)

which is chiral in its first superspace argument and antichiral in the other,

It is related to the two-point function (4.13a) as
vy = @y + 200000, (B3)
For its square we have
y122 = CC122 + iQ{g(w12)a56{§ + 5[J0{2a(m12)a,89i]26 . (BQ)

Using this formula, we get the conjugation rule for y19%:

Y122 = J12° = yn® (B.10)
One also finds the following useful identity for the product of 7122 and 122

y12’i12° = (®12°)* . (B.11)

Now, consider the orthogonal matrix ulJ given by (4.25) and transforming by the
rule (4.29). In this transformation, the matrix A;;(z) is antisymmetric, and thus has one
independent component which we denote by A(z),

A[J(Z) = E[JA(Z) . (B.12)
Given the matrix uly, we construct a complex scalar two-point function vyy
1 .
V12 = E(u{é + 181JU{2J) , (B13)
which transforms as
dvi2 = i(A(z1) — A(z2))v12 - (B.14)

Using the explicit expressions for the two-point functions (4.13a) and (4.25) it can be
shown that (B.9) and (B.13) are related to each other as

11122 = CB122012 . (B.15)

Aapplying (4.19) and (B.14), we find the transformation of (B.9) to be
oy12” = (o(21) + o'(22))n2” , (B.16)
where the chiral superfield o includes parameters of local scale and U(1) transforma-

tions [53]

o(z) =0(z) +iA(2), Dyo(z)=0. (B.17)

Thus (B.15) is a natural (anti)chiral generalisation of x15? which can serve as a building
block for correlation functions involving (anti)chiral superfields.
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B.2 N =2 correlation functions with (anti)chiral superfields

In this section, we consider some simple correlation functions which involve chiral and
antichiral primary superfields. First, we will consider a two-point correlator with chiral
and antichiral superfields, and then we will derive the general expression for the three-
point correlation function with chiral, antichiral and linear superfields.

Let ® be a chiral superfield of dimension ¢ with no spinor indices. Its superconformal
transformation reads

I0(2) = —€P(z) — qo(2)P(2), (B.18)

where o is given by (B.17). This transformation preserves chirality since o is chiral. Using
the two-point function (B.9) it is straightforward to construct the two-point correlator of
the chiral superfield ® and its conjugate ®,

C
(y122)1”’

where ¢ is an arbitrary coefficient. Owing to (3.38) this expression automatically possesses

(@(21)P(22)) = (B.19)

correct chirality properties with respect to both arguments and has the right transformation
rule because of (B.16).

As an example of a three-point function, we consider the correlator of a linear superfield
G, a chiral superfield ®® and an antichiral one ®®. Here the index a can be considered as
a flavour group index. In this case these superfields can be identified with N' = 2 superfield
components of the A/ = 3 flavour current studied in section 8.1. Assuming that all these
three superfields have dimension one, we look for the correlation function with the use of
the standard ansatz

<Ga(21)®5(22)(§5(23)> = [f&bEH(f) (Xg, @3) + daBEH(d) (Xg, @3)] s (BQO)

@13%y23°
where the functions H(; 4 should have the following homogeneity property
Hipgy(N* X, 00) = X\ H; (X, 0) . (B.21)

Using the identity (4.42a), the linearity of the superfield G, D?G® = D*G® = 0, turns
into the following equations for the functions H; 4

D?Hya) = D*Hya) =0, (B.22)
where 9 9 5 9
_ .28 5 Y9 o8
Dq 500 +1i0 X8 Dq 560 i0 axa8 - (B.23)

The objects O, and O, are expressed in terms of © by the rule (B.1). One can check
that the equations (B.23) being rewritten in terms of the derivatives D! are equivalent
to (7.10). Therefore the solution of (B.22) is

ic(f,d)l i€[J@éXa6®é

Hra) (X,0)= X + C(f,d)QT ) (B.24)

where c(y4)1 and c(y 4)2 are some complex coefficients.
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Obviously, the correlation function (B.20) obeys the reality condition

(G(21) " (22)8°(25))" = (G*(21) @ (23) 8" (22)) - (B.25)
The latter leads to the constraints for the functions H s 4):

2 2
L12 L12

Hip(=X3,-02) = == H(X3,03), Hg(—X;5,-02) =

wlg QH(d)(X?,,@?,) . (B26)

This equation implies the following reality properties of the constants c(; 41 and ¢z q)2
in (7.12)
CHL = Cpz =2y Cd1 = —Cars Gd2 = )2 - (B.27)

Finally, we have to take into account the chirality of the correlation function with
respect to the second argument

DeyoHfa)(X3,03) =0 . (B.28)

With the use of the identity (4.42b) the latter equation gives the following constraint to
the functions H; g)

_ ~ 0 0
Hirg(X,0)=0 0= —i—— — el | B.29
Q (f,d)( ) ) ) Q laea 7&6 aXm ( )
This equation is satisfied if the coefficients c(¢q)1 and ¢(s4)2 in (7.12) are related to each
other as

C(fan = 26(5,0)2 = 2¢(4,4) - (B.30)
As a result, each of the functions H(y) and H 4 has one free coefficient

. 2 eOLXPOL\ 2 o e0LXx"P0]
Hya) =ic(s,a) (X Txs | Tra{x T xs T X7 . (B.31)

Here we used the relation (4.37) to represent the function H in terms of covariant ob-
jects (4.30). Note that in (B.31) the coefficient c(y) is real while ¢(4) is imaginary.

C WN =2 — N =1 superspace reduction

This appendix is devoted to the N' =2 — N = 1 superspace reduction of the three-point
functions for the N' = 2 supercurrent and flavour current multiplets.

C.1 The supercurrent correlation function

As discussed in section 1, every N = 2 superconformal field theory is a special NV = 1
superconformal field theory. The A = 1 supercurrent .J,s, for this theory is related to
its V' = 2 supercurrent J,g by the first equation in (1.7b). As a consequence, the N' =1
supercurrent correlation function (6.34) appears as a result of the NN = 2 - N =1
reduction from (7.20)

(Jaarar (21) T (22) Ty (23)) = —1D3) o Dy s Dy (Jarar (21) T (22) Ty (23))] - (C.1)
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Recall that here the symbol | means that we have to set 62 to zero after computing the
derivatives. In this section we denote the values of the SO(2) indices I = 1,2 with boldface
font to distinguish them from indices of other types.

According to (6.34), the N/ = 1 supercurrent correlation function is expressed in terms
of the tensor Ho'e" B8 8" 7'7" (or H am.fnk if we trade the pairs of the spinor indices
into the vector ones by the rule (6.39)) which was found in the form (6.59) with the tensors
C and D given by (6.55), (6.57) and (6.50), (6.58), respectively. In its turn, the N' = 2
supercurrent correlation function is represented by the tensor H ao! 561’ given explicitly
by (7.44). In this section we will show that the former can be derived from the latter by
means of the equation (C.1).

To start with, we point out that the expression (7.44) for the tensor H' BB with

spinor indices converted into Lorentz ones can be rewritten as
H™F = —idy—y 4O 02 C"Pk (C.2)

where the tensor C"™"P** has the form

1
Cmnp,k _ F(nmnnkp + nmknnp + nnknmp) + %(Xkannp + Xnanmp + Xpanmn)
) )
—ﬁ(xmxnnp’f + X XPymE 4 XX PR — meX”XpXk . (C.3)

In the formula (C.2) the dependence on the Grassmann variables is only through the factor
’y;’,‘”@i@ﬁ while the rest is described by the tensor (C.3) which is a function of X. It is
interesting to note that (C.3) coincides with the similar tensor in egs. (6.55), (6.57) which
was encountered in section 6.2. As was already shown there, this tensor is symmetric and
traceless over the first three indices

Cmnp,k _ C(mnp)Jc 7 nmncmnp,k =0, (C4)
and obeys the differential equation
O C™MPR = (| (C.5)

where 0y, = MLM. We also showed in section 6.2 that the equations (C.4) and (C.5) define
the form of the tensor (C.3) uniquely, up to an overall coefficient.

Now we substitute the expression (7.20) for the A/ = 2 supercurrent correlation func-
tions into (C.1) and represent it in the following form

(Jaarar (21)Jppr g (22) Iy (23))

Zr 1ol L 1 11 151 L 1 511 NI T}
_ D2 2 2 13a/ p' L13a’ p"" L2356’ £235" o oo oo
=~ Piay 2150930 H v (X3, ©3))|

=A+B, (C.6)

where in these two terms A and B the derivatives are distributed as follows

‘m13 / /.’1,'13 i :1:23 / 111323 1 51! VBN7ESwEN}
A=i o’ p o'l p D2 D(2 p'o B o D(21)apr 0o ’Y"Y”’

3 2
x130 B8 T30
. L2330’ L2330 < 2 2 $13a'p'0313a"p”> 2 o ol
_ 280 (p2  p2 DLl ATl ) p2 - peletela Ll (L)
3 1 2 YA
230 B Wa™ 56 (2)8

.:B13 / /3}13 " //$23 / /$23 11 11 VBN/ES ]

B—; o p o' p B'o B o D2 D22 D21 gr'e'eld’ //’ ) (C.S)
21302936 @)y~ (2B (e R
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It is easy to see that the terms with the covariant spinor derivatives distributed in other
ways vanish since the expressions like D(zl)amlggg/ = —219%,8,55& die in the |-projection.
We will analyse the A and B sectors separately.

We begin by considering the A term. Using the explicit expression for x, eq. (4.13a),
we find

2 2 w13a’p’x13a”p” . .Ep"yga’awl?)a”p”+5p”'y€a”aw13a’p’ .$13a'ya313a’p’x13a”p”
Digyy Dty 2138 =2 x138 ol x138 ’
x€Tr ! 1 L 11 11 EFI~nERI BRI H//—i—E//S//:U /- €Xr x€Tr ! 10 11 11
D(23),YD(22)/3 2330 6235 o |:21 o/yep L1380 60 ~yEB" L2368 o +6i 238y4L233 08 138" 0 .
To3 23 23
(C.9)
Next, with the use of (4.42) we get
_ I13
D(21)aHmnk:| _ (xlgl)papszmnk’ _ ml:gﬂ IDZpHmnk‘ 7
Lo L23
DR HH = () s @ HPE| = S5 e (©.10)
Now we substitute (C.9) and (C.10) into (C.7) and apply simple identities like
1
S = 33 (@230 Tagry — @235, 2350) (C.11)
to represent the A sector of the supercurrent correlation function in the form
- w13a’p’w13a”p”$13ap $2350w23610/w235//011 pplp”,O'O',O'”
A= i o ey n(X3,05),  (C.12)
where
Hz)f)’a",ﬁﬁlﬁ”v’ywﬁ _ 6(5r(yéD2aHala”’£/éH)'y’y” + 65'(YQD25H2/2//)’B/B//'y”y”| ) (013)

Here the symmetrisation involves only the underlined indices.

We stress that the covariant spinor derivatives D2 in the expression (C.13) act only on
the Grassmann variable ©2 and do not hit the X-dependent tensor C"™"P* since the action
of the covariant spinor derivative on any combination of X™ is proportional to ©2 which
dies in the |-projection. Hence, after converting pairs of spinor indices into vector ones and
using identities with three-dimensional gamma-matrices (A.3), (A.4), the expression (C.13)

can be rewritten in the form
H(Oé‘:)”bﬂn,’yk _ id/\/':2 [ o 6(,7p)a6@'ycmnp,k o (,Yp)aﬁ(,yr)vzs@(snpp/nqq/nrr/ (4Ep/q/r10mnq,k
+enP'd gmar'k | g’ omap'k | gma'd! canr’k y gma'r! cand'ky)(CL14)

where ©5 = ©}. The first term here coincides (up to the factor —6) with the correspond-
ing term in (6.59). To match the other terms we need to consider also contributions to
HemPk from the B part given by (C.8).

In the B sector of the correlation function we need to compute three covariant spinor
derivatives of the tensor (C.2),

2
Dy

3)7D(22)5D(21)O¢Hmnk| = i(m531)06(mf31)paD(23)y[Qgpg + u33 Q;D;Za + ul3 QgD;]Hmnﬂ .

(C.15)

— 57 —



In this expression, u33 and u?1 are components of the matrix (4.25) which appear in (C.15)
owing to the identities (4.42). The factor (253 )7 5(% 13 )”a in the right-hand side of (C.15)
is the right one which is required to form the expression (6.34). Now we have to analyse
the remaining piece of this expression.

Using the explicit expressions (4.38) for Q2 and DZ the first term in the right-hand
side of (C.15) can be rewritten as

D23)-Y Qgszmnk:‘
0 0 0 0 0 0
_ N2 2u 20 02 mnk
= Don 19 gxen 5oz + ™ g pezr ~ O axr sz

0 0 0 0 0 0
1 1
= [(@3)"y — (x23)"5] <8XJM 9020 + DX 9020 X D02

>Hmnk\ . (C.16)

To get the last line we used the fact that in the |-projection only those terms survive
in which the derivative D(zg)7 acts on ©2* and produces the factor [(z3 )", — (253 ), ].
However, the latter structure is non-covariant in the sense that it cannot be expressed
solely in terms of X, and ©Z. Indeed, using the identity (4.35) and the definition of
X305 (4.30), we represent the factor [(z 3 )", — (zo3 )*,] in (C.16) as

_ _ . € L _
(53131)a6 - (%31)045 = —X3ap + 1%52933 + 21(m131)au9’1l391§2(m321)z/6 . (C.17)

The last two terms here are non-covariant. Therefore, they must cancel against similar
terms coming from the last two terms in (C.15)

0 0
D 3)7[,&21 QIDZ + UIIQZDI]Hmnk| — 2@y 8@10 662[) mnk
. — v 0 0 v 0 0 mn
_21[($231)'YH953®1 oXov m + (m13 )’Yﬂe/i%@l oxrv 8@20—]H k| . (018)

To prove the cancellation of non-covariant terms we have to use the fact the tensor H is
linear in ©! and can be represented in the form H = ©1h*, for some h*. Here we suppress
all indices of the tensor H as they do not play role in this consideration. Then, using the
explicit expression for O (4.30), we observe that the non-covariant terms have the same
structure and cancel against each other

03, 02,

o1 1

1(3313m - w23,w)@,:!£h’i = —iXguH + ( 2 33137,-;‘9'1{3 + w2375923> hy
To3

0 62 1
2:1:23’\/“0/213@11/@ h* = — (:I}123 237#953 23 137#61{3))
13
14 9 1%
221y, 01,0 OLh" = — <a:1%33 23053 + 22 m13w9/f3) h (C.19)

Thus in the expression (C.15) only covariant terms remain

0 0 0 0
2 mnk| __ i(.— 1
D( 3)y D( )/3D(1)06H | = 1(m23 ) 5(:1:13 ) a (2@7 0010 HO2p + X7 HX P HO21

o 0 o 0
_XH _ XYM mnk
X oxon goze N gxom 8@20>H - (C-20)
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To summarise, the B part of the correlation function (C.8) can be represented in

the form

:B13 / /,’313 1" //{1313 {1323 .’1’,‘23 / /CC23 11 511 /1
B— a’p a’p ap BoL23p'c B pree'p”, oo'o” (X3, 03) (C.21)
x13® x93® (B) e ’

where the tensor H(py, after converting the pairs of spinor indices into the vector ones, is
expressed in terms of the derivatives of (C.2) as follows

[ L0 0 o 0
Hip)™ k= < 901002 T ox,, 902

o 0 O 9N\ ,mm
+XW(9XO¢M8@§_XW@XQ,38@E)H “l- (€22

Now we substitute here the tensor H™"* in the form (C.2) and compute the derivatives
over the Grassmann variables. As a result, with the use of identities with three-dimensional
gamma-matrices (A.3), (A.4), we find
HEXBW)LWBTLN’C = idy— 2[(7p)a5@70mnp,k _ 3( ) ﬂ(,yr)'yp@pgq Cmnq, (023)
() (4 ) P01 X IO CTIE — (17)8 (7,)79 2 X PO
+(yP)“ of ’yl)w@paqst sCmnak + (") ( ")1PO e gor X 10,C™" k}

In deriving this expression we have also used the simple relation

(
(

Xlalcmnp,k _ 73Cmnpak’ (0.24)

which reflects the fact that the tensor C' is homogeneous of degree —3 with respect to X,,.

The final result of computing the correlation function of N’ = 1 supercurrent is given
by the sum of the tensors (C.14) and (C.23). It can be represented in the form similar
o (6.59):

Hom Pk — _5idy_g (ﬁéﬁgvcmnnk + Vgeﬁpygégép(mn),k,pm> ’ (C.25)
where
1 / / ! /
D(mn),k,p,r _ g(qurnqq’ cmna k + Enqknqq’ ™ rt + Enqrnqqlcmq p,k + gmqpnqq/ c nr,k
+5mqrnqqlcq/np,k + 6lsr)(lascvmnp,k + 5qplnqq/Xl8rCmnq/,k
—eWPlyy XTO,CTN R lary L X, gPCn Y (C.26)

Our final task is to match the tensor (C.26) with the last two terms in (6.59). A
straightforward comparison is rather complicated and we will give an indirect proof. For
this we will show that (C.26) satisfies all the same equations as D)% from section 6.2.

First, one can show that (C.26) is symmetric and traceless in (m,n,p) (though this

symmetry is not manifest)

D(mn),k,p,r _ D(mnp),k,r ’ nmnD(mnp),k,r —0. (027)
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(mnp) 7k77‘

Now we split D in (C.26) into the symmetric and antisymmetric parts in (k, 7).

Using the explicit form of the tensor C™"* in (C.3) one can show that
€qunkk’nrr’D(mnp)7k/’T, — (™M 7 nkrD(mnp),k‘,T‘ —0. (C28)
This implies that D2}k can be written as follows

plmnp) ke _ py(mnp),(kr) %Equnqq,cmnp,q' ey D) (C.29)

We see that the antisymmetric part in eq. (C.29) precisely agrees with that of the tensor
D(mmp)kT in section 6.2, see eq. (6.46). We are now left to match the symmetric part
D(mnp),(kr)

To continue, we contract (C.26) with 7, and &,,4 to obtain
e DIIRT — g DRk o omnd k= ) (C.30)
which, using (C.29), imply (6.47). Finally, using egs. (C.3), (C.4), (C.5) we find that
D DmONET _ g plmn. ) _ g (C.31)

As a result, we found that D(mP):(k7) gatisfies exactly the same equations as in sec-
tion 6.2. On the other hand, we have shown in section 6.2 that these equations allow us to
fully solve for D in terms of C' and such a solution is unique. Since the tensor C in (C.2)
coincides with the one from section 6.2 we conclude that (C.26) is the same as D)k
found in section 6.2. This completes our proof.

As a byproduct of the above computations, we find that the coefficients in the three-
point functions of A/ =1 and N = 2 supercurrents derived in the sections 6.2 and 7.2 are
related to each other as

dn=1 = —Hdp—2 . (C.32)

C.2 The flavour current correlation function

The N = 2 — N = 1 superspace reduction of the flavour current correlation functions
given by (7.8) and (6.10) goes the same way as in the previous section. Therefore here we
mention only the essential details of this derivation.

Recall that the A/ = 1 flavour current multiplet L, appears as a component of the
N = 2 flavour current superfield L as in eq. (1.10b). Hence, the corresponding relation for
the correlation functions reads

(L(21) L (22) L% (23)) = —iD3, D% 5Dy (L (21) LY (22) L7(23)) (C.33)

where | means that we set #2 = 0 at each superspace point. Recall that the N' = 2
flavour current correlation function (7.8) consists of two parts which include tensors f‘iz"?
and d®¢ and both functions H, () and H g are non-trivial, see (7.15). One could expect
that the corresponding NV = 1 correlator appearing in (C.33) may include both such parts.
However, as we will show further, the part with the symmetric tensor d3% vanishes upon
this reduction and does not contribute to the A/ = 1 flavour current correlator.
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Substituting (7.8) into (C.33) we represent the latter as a sum of the two pieces

(La(21)La(22) Ly (23)) = (A () + Bp)) + A" (A() + Ba)) » (C.34)
where
Apa) = ﬁgz (D(z) D(2)ﬂ ! )D(zl)aH(f,d)(X37@3)
33. <D<2 1 Dla : >D<2>5H<f,d>(X37@3>!a
23 13
Braq) = mpé)pé)ﬁpa)amﬂd)(X3,@3)\ . (C.35)

The functions H(; 4 are given in (7.12).
In the A part, we apply the following equations:

1 . L2383 1 . L23
2 2 o ¥ N ~

Dy Plp g2l =850 Dy Dljag ol =27 - (C-36)

Then using analogs of the equations (C.10), we represent the A sector in the form

_ 1300 ®2368 o'
Aga) = S - H(A f,d)'y(XB,@:s) (C.37)
where
(83 « o 41 o o

H{Y) = 279D Hipy + 27 D¥ H )| = bz 5 (77 X0, + 7°X°6,),  (C.38)
Hz)‘ﬁ’;) — 28“//3])20‘}[(6[) —+ 25704’])25H(d)| =0. (C38b)

Now we consider the part B in (C.35). Computation of this piece goes similarly to the
analysis given in the previous section. Indeed, the equations (C.15)—(C.20) remain exactly
the same with the only modification that we have to discard the indices m,n,k in the
tensor H. Thus, we can immediately write down the analog of (C.21):

L13aa/ L2388 170/
Bpa) = WH(QB fd)v(X?n 03), (C.39)
where
af _ 1 0 0 0 o o o
e = ( %9000z T x0T N ox,, 967
o 0
—Xngx., a0z Jual- C.40
abrop aeg) vl (C.40)

Substituting the function (7.12) into (C.40) and computing the derivatives we find

Hip = bv=255 L (10X°P07 — 4X™6° — 4XP1ee
—672XPP0, — 6:7PXPQ ), (C.41a)
HEy =0 (C.41b)
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The equations (C.38b) and (C.41b) show that the N' = 1 flavour current correlation
function does not receive contributions with the symmetric tensor d2°,

HO¢57 HOéﬁV

ad) T Hpa

The other part with the antisymmetric tensor faba is non-trivial. It is given by the sum of
the expressions (C.38a) and (C.41a)

Haﬂ’}/ — Haﬁ’Y

aBy
5 a5 T

(B.f)
21 (03 (0% e (0% [0
50X T —2xef —2xP0~ — 10X, — 7P XQ,) . (C.43)

Finally, applying the identity (6.16), the tensor (C.43) can be brought to the form

= by=25=

Hma@_WQ

5 (onB@v owXﬁp@p _ éﬂvXOcp@p)

X

= by_p g (XPOT — T XPPO, — IX0E,) . (C.44)

X3
Comparing the last expression with (6.23) we conclude that the coefficients bar—1 and bar—o

are related to each other as
ban=1 = 2by=2 . (C.45)

D Component reduction

The correlation functions of the energy-momentum tensor and flavour currents originate
as components in the f-expansion of the correlation functions for the supercurrent and
flavour current multiplets, respectively. In this section, we consider a particular example
in which we demonstrate how to derive the correlation function of the flavour current from
the corresponding superfield correlator obtained in section 6.1.

We start with the N' = 1 flavour current correlator in the form (6.10). Substituting
the latter into (6.25), we represent the correlation function as a sum of two pieces

(Lo (1) Lo (@2) L5 (w3)) = A+ B, (D-1)

where

5,_5:1: a’al’! xTr 1311 o/ B!
A = pabeZlBalal (D(S)WD(2),6’ 2500 )D(l)aH 7 (X5, 03)

m134 213234
767&:236,18” T13a/ 1
It (D<3>7D<1>a - >D<2>5H°‘ 7 (Xs,0)], (D.2)
abc L13a/ a//$2313/5// O/15//
——————— D3, D2sD 1) H (X3,03)] . D.3
= I Tyt PrP@sPaa ™y (X5, 03) (D.3)

In the A sector, we compute the derivatives of the objects 13 and xos3 using their explicit
form (4.13a),

130/ ! 2i
D(S)’YD(l)Oé wlc;j | = $136 ($13aa”x13a"y + xl?)a'yxl?;a’a”) )
To38/ 8 21
D(3)7D(2)B m234 | = 6 (mggﬁﬂ//ngﬂ/,y + m2357m235/5u) . (D4)
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With the use of (4.42), the derivatives of the tensor H in (D.2) can be written as

11311 13 1311 131 wggﬁ 11311
Dy H*?" | = —?;‘2"2)9}[“ B, DgysHY | = ??);’DPHQ . (D.5)

Substituting (D.4) and (D.5) into (D.2) we represent the A part in the form

_ L13apT13a/ p' 23B0L23B' 0’ ,abe rrpp 00"
A= H /(X3), D.6
2135930 f A4 (X3) (D.6)
where
Y77 oy = —4i87DPHP?).) — 416D HE | (D.7)

The symmetrisation here involves only the underlined indices.
Consider the B part given by (D.3). Similarly as in egs. (C.15) and (C.16), we find

D3y, Di2ys D)o HY P = i(35)7 (273 ) 0Dy, QoD HY P

9 9 . 0 0 9 DN sy
— (1o (2 —1Yp _ o'
= i@ )7s(@1s ) o Xy <8X0u ger * axXem 067 ~ axr 8@#) =P (D8)

Here we used an analog of the identity (C.17) in which all Grassmann variables vanish.
Substituting (D.8) into (D.3) we represent the B part of the correlation function in the form

L13apT13a/ p' L23B0L238' 0" ,abe rypp 00"
B = 6 6 f H(B) ! (X3) s (Dg)
T137T23

where

Hygy| . (D.10)

g 0 g 0 g 0
— _iXH _
Higypp o0ty = 71X5 (aX 7h00r | OXPH 007 | OXP a@#>

Now we substitute the tensor (6.23) into (D.7) and (D.10), and after computing deriva-
tives, we find

Hyp 00!y = H(A)pp’ywﬂw’ + H(B)ppﬁw’,w’

3ba—1 by=1

= TXPUXPIU/X'YY/ — 7

—5X o (exo1€pry + Eqpr€aty) + Xpp (Ex0€0ry — 26401€0y1)

[Xp/g/(gfyagp'y’ + 8’)/PE‘T’YI)

+ X0 (g,ypgp/,y/ — 267p/6p,y/) + Xpo’ (Efyg&‘p/,y/ — 2€7p/60,y/)
+Xop (EqpEory = 267018 py) = Xyy(€pp€ao + €porEapt)
+2Xpy(Eoor€por + EopEory) + 2K (EpprEorn + Epo€pryr)

+XU,’Y(EP,0/€U"Y/ + Eo.p/é‘p,y/) —+ X,ypl(80015p-y/ + E‘prlé‘po—/)] . (Dll)

This tensor defines the flavour current three-point correlation function,

ml?’o‘pml'ga/plmQSﬂUngBlgl fﬁ,BEpr/yO'a'/’y’y/ (Xg) . (D12)

_ 5 = o
(Lo (1) Lgg (552)L»Cy»y’(x3)> = 213052936

It is instructive to convert the pairs of spinor indices into vector ones in the correlation
function (D.12) to compare it with the corresponding expression obtained in [11]. Using
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the identity??

1 T L1307 5 T13mT
-3 gla TBLB 13a£13123a5 = Do — 2 13'::1132137’1, — Imn(l'13), (D.13)
we find
= 7 = 1 / ’ / = 7 =
(L (1) Ly, (22) L (w3)) = —gm AR (Lo (1) L () LS, (23))
Imm’(lil?))lnn’(:CQ?)) abé 'm!
= H™™ 1 (X3), D.14
P (Xa) (D14
where
]. / ! !
Hmnk:(X) = _§7frf) '7;‘10 '727 pr’,ao’,vv’(X)
XX Xie ik Xm — kX — Nmn Xk,
= 3dn—1 < S I e : (D.15)
Finally, using the identity X3% = x2§215132 we represent the denominator in (D.14) in a
symmetric form with respect to the indices labelling spacetime points
— n = I / I / P I
(L8 1) D (2) L 1)) = o 0 028) gt ety o0y - (Daag)
T19%2132 1932
where
X X X X — X, — X
tmnk:(X) :XQHmnk’(X) = 3dN:1 < ng £ + Ik Zom nm; = T k) . (D17)
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