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(1 + 1)-dimensional false vacuum decay initiated by a collision of N particles at energy

E, paying special attention to the realistic case of N = 2 particles. We demonstrate that

the cross section of this process is exponentially suppressed at all energies. Moreover, the

respective suppressesion exponent FN (E) exhibits a specific behavior which is significant

for our semiclassical method and assumed to be general: it decreases with energy, reaches

absolute minimum F = Fmin(N) at a certain threshold energy E = Ert(N), and stays

constant at higher energies. We show that the minimal suppression Fmin(N) and threshold

energy can be evaluated using a special class of semiclassical solutions which describe

exponentially suppressed transitions but nevertheless evolve in real time. Importantly,

we argue that the cross section at energies above Ert(N) is computed perturbatively in

the background of the latter solutions, and the terms of this perturbative expansion stay

bounded in the infinite-energy limit. Transitions in the high-energy regime proceed via

emission of many soft quanta with total energy Ert; the energy excess E − Ert remains in

the colliding particles till the end of the process.
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1 Introduction

Exponential suppression of probabilities precludes direct observation of extraordinary tun-

neling phenomena such as baryon number violation in instanton-like electroweak transi-

tions [1–3] or spontaneous decay of allegedly false Higgs vacuum [4–8]. Quantum mechan-

ical intuition suggests, however, that tunneling probabilities grow with energy. Indeed,

tunneling phenomena of the above sort occur at higher rates [9, 10] in two-particle colli-

sions:

σ(E) ∝ e−F (E)/g2 , (1.1)

where the suppression exponent1 F (E) decreases with collision energy E, while g is a

small coupling constant. The central question is whether the exponential suppression in

eq. (1.1) disappears at sufficiently high energies and, if it does not, what is the value of the

suppression exponent at E → +∞.

This question is surprisingly nontrivial. Field-theoretic tunneling involves barriers of

finite heights Ecb given by the energies of the critical bubble [12–15] and sphaleron [16, 17]

in scalar and gauge theories, see figure 1a. Nevertheless, the respective collision-induced

transitions cannot become unsuppressed2 at E > Ecb [20, 21]. Consider e.g. massless

fermions ψ and ψ̄ coupled with small Yukawa constant Y to the scalar sector of the theory.3

Their contribution to the scalar self-energy Π(Q2) obeys dispersion relation [21],

d2

(dQ2)2
Π(Q2)

∣∣∣∣
Q2→0

= − 8

πY 2

∫
dE

E
σtot(E) , (1.2)

1Dubbed “holy grail function” [11].
2Gravitational interactions are completely different in this respect [18, 19].
3It is straightforward to generalize this argument to other setups.
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Figure 1. (a) A sketch of the potential barrier Epot[φ] between the vacua φ = 0 and φ = φ+.

(b) Scalar potential V (φ). (c) Suppression exponent FN (E) at high energies.

where σtot(E) is the total annihilation cross section ψψ̄ → anything at the center-of-mass

energy E and we ignore irrelevant scalar masses. If the fermion annihilation leads to unsup-

pressed over-barrier transitions at E > Ecb, the self-energy Π(Q2) in eq. (1.2) receives large

nonperturbative contributions at small Q2. This would contradict the standard perturba-

tion theory which is valid at low energies. Thus, the cross section (1.1) of collision-induced

tunneling is exponentially suppressed at E > Ecb.

In this paper we describe collision-induced tunneling at high energies. To be specific,

we consider false vacuum decay in the (1 + 1)-dimensional scalar field model

S[φ] =
1

g2

∫
d2x

[
1

2
(∂µφ)2 − V (φ)

]
(1.3)

with false and true vacua at φ = 0 and φ = φ+, respectively; the scalar potential V (φ)

is shown in figure 1b. We work at weak coupling, g � 1. At zero energy the vacuum

φ = 0 decays spontaneously via formation of an expanding bubble with φ ≈ φ+ inside.

Below we study the same decay accompanied by a collision of N φ-quanta at energy E.

We compute the suppression exponent FN (E) of the corresponding inclusive cross section

at high energies.

Our numerical result4 for FN (E) is presented in figure 1c. This function decreases

with energy, reaches minimum Fmin(N) at E = Ert(N) and stays constant at higher ener-

gies. With the aid of the Rubakov-Son-Tinyakov conjecture [22] we extrapolate results to

the two-particle initial state and find similar behavior of the exponent F (E) ≡ F2(E) in

eq. (1.1) (upper panel in figure 1c). We conclude that collision-induced false vacuum decay

is exponentially suppressed at arbitrary high energies.

Energy-independent suppression exponent F = Fmin of collision-induced tunneling at

high energies was proposed in ref. [23] and observed in toy models of refs. [24, 25]. We find

the same behavior in the full-fledged field-theoretic model.

Besides, we demonstrate that induced false vacuum decay at the threshold E = Ert(N),

despite being exponentially suppressed, is described by one-parametric family of complex

4In numerical calculations we use a specific form of V (φ) which is not significant at the moment.
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semiclassical solutions φ = φrt(x) evolving in real time t ≡ x0. These solutions were

introduced in ref. [26] under the name real-time instantons. They satisfy complexified

classical field equations with certain boundary conditions in the asymptotic past and future.

The initial particle number N parametrizing the solutions enters the conditions at t→ −∞.

One can show [26] that the minimal suppression Fmin(N) and respective energy Ert(N) are

computed as functionals on the real-time instantons.

We argue on general grounds that if the real-time instantons exist for some collision-

induced process, the respective suppression exponent is energy-independent and equal to

Fmin(N) at E > Ert(N). Thus, finding the family of these solutions in a given model, one

obtains the exponent FN (E) in the entire high-energy region E > Ert(N).

Most importantly, we demonstrate that the real-time instantons serve as backgrounds

for the long-awaited [23, 27] perturbative description of collision-induced tunneling at high

energies, and the respective corrections are bounded in the high-energy limit. This remark-

able feature is in sharp contrast to the properties of perturbative expansions in Euclidean

backgrounds [9, 10] which blow up [3, 11, 28] at E ∼ Ecb. Let us explain the differ-

ence by considering scatterings of particles at energy ∆E in different backgrounds. At

a crude level the quantum particles can be regarded as small-amplitude high-frequency

waves δφ ∝ e±i∆Et added to the background. In the Euclidean case δφ grows as e∆Eτ with

τ = −it, and nonlinear backreaction effects become essential at high ∆E. In other words,

the perturbative expansion in δφ breaks down. In the opposite case of the real-time instan-

ton the waves δφ evolve adiabatically and do not change the soft background. Scattering

of these waves can be described perturbatively.

Using the above observation, we propose a working perturbative scheme [29] for eval-

uating the inclusive cross section of collision-induced tunneling as series in g2 in the most

interesting case of high energies E > Ert(2) and two initial particles. The receipt is as

follows. One starts by developing a formal perturbation theory in the background of a

real-time instanton φrt(x) with parameter N = N0. Namely, one considers the (n + 2)-

point Green’s function

Grt ≡ 〈Ψrt|φ(x1) . . . φ(xn+2)|Ψ0〉 =

∫
Dφ Ψ∗rt[φ]φ(x1) . . . φ(xn+2) eiS[φ] Ψ0[φ] (1.4)

between the false vacuum Ψ0 and the most probable final state5 Ψrt of this real-time

instanton. One substitutes

φ(x) ≡ φrt(x) + gδφ(x)

into eq. (1.4) and evaluates the path integral over fluctuations δφ as series in g. The

terms in these series depend on the auxiliary parameter N0 of the real-time instanton

which characterizes the background configuration. Using the LSZ reduction formula, one

extracts from the Green’s function the amplitude of the process 2 → n + Ψrt, where the

final state contains n particles on top of Ψrt. We argue that the final states of this kind

form a complete set. Summing over them, one finds the inclusive cross section of the

collision-induced process. The final result is obtained in the limit N0 → 0.

5A coherent state to be specified in the main body of the paper.
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Our method is different from the standard instanton perturbation theory [9, 10] in

several respects. First, we use the real-time instanton as a background. This guarantees

stability of the perturbative expansion at high energies. Second, we introduce an additional

parameter N0 of φrt and send N0 → 0 in the end of calculations. Indeed, the real-time

instanton with N0 = 0, as we argue in the main body of the paper, is the saddle-point

configuration for the path integral (1.4). Formally it describes transition from vacuum: two

initial particles of the process are represented by two φ-factors in the integrand of eq. (1.4)

which do not affect the saddle-point solution. On the other hand, φrt(t, x) turns out to be

singular at N0 = 0. We therefore work with smooth saddle-point configurations at N0 > 0

and recover6 the correct results in the limit N0 → 0. Third and finally, although below

we evaluate only the leading inclusive suppression exponent F = Fmin at E > Ert, our

perturbative approach can be used for the prefactor and exclusive cross sections at high

energies.

E

Figure 2. Transitions at E > Ert(2).

With the help of the perturbative method we

identify7 the dominant mechanism of the collision-

induced transitions at E > Ert(2) and N = 2, see

figure 2. We observe that the colliding particles

emit many soft quanta which form a bubble of true

vacuum with energy Ert(2); the energy excess E −
Ert(2) remains in the initial particles till the end of

the process.

From a general prospective our results support

exponential suppression of collision-induced tunnel-

ing at arbitrary high energies and per se put on shaky ground proposed searches for nonper-

turbative phenomena at future colliders [32] or in cosmic ray events [33, 34], cf. ref. [35]. For

example, it was found in refs. [36, 37] that the suppression exponent of electroweak baryon

number violation in two-particle collisions is almost energy-independent at E ∼ 15 TeV.

If the minimum E = Ert(2) is somewhere near this point, the respective cross section is

suppressed at all energies by a deadly factor e−F (15 TeV)/αW ∼ 10−100, where αW is the elec-

troweak coupling and we took numerics from refs. [36, 37]. To get reasonable probabilities,

one should consider models with tunneling rates raised by dynamical mechanisms [38–41],

resort to strong coupling [42, 43] or exotica [44].

We argued in ref. [45] that the collision-induced false vacuum decay in (1+1) dimensions

turns into production of kink-like soliton pairs from particles once the energy densities of

the two vacua are leveled, V (0) − V (φ+) → 0. One expects that the properties indicated

above hold in this limit. In particular, the cross section of creating a pair of solitons from

two particles is exponentially small at all energies, and the suppression exponent of this

process does not depend on energy above a certain threshold.

This paper is organized as follows. In section 2 we recall perturbative expansion in

the background of a Euclidean bounce. This technique reproduces exponentially growing

6This makes our procedure a regularized version of Landau method [24, 30, 31] of singular semiclassical

solutions.
7For simplicity we consider the process in a large finite volume.
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collision-induced cross section at low energies but breaks down at E & Ecb. We proceed

with moderate energies in section 3 and demonstrate how the bounce at E � Ecb is

connected with the real-time instantons at E = Ert(N) > Ecb. The latter semiclassical

solutions and transitions at E > Ert(N) are considered in sections 4 and 5, respectively. In

section 6 we show that the same term of perturbative expansion which led to exponential

growth of the cross section with energy in perturbation theory around the bounce, gives

subdominant and exponentially decreasing contribution in the background of the real-time

instanton. We propose a working perturbative description of collision-induced tunneling

at N = 2 and high energies in section 7. Our results are summarized in section 8.

2 Perturbative expansion in the background of a bounce

Let us explain the difficulties with the collision-induced tunneling by reviewing its low-

energy description [9, 10] in the model (1.3). We will also introduce terminology and

sharpen contrast with the high-energy transitions.

O

t

Re tIm t

φb ≈ 0

x1

φb ≈ φ+

O

Euclidean Minkowski

Rb

Figure 3. Bounce φb(x).

Spontaneous decay of false vacuum at E =

0 is described by the celebrated bounce solu-

tion [14, 15] φb(x), see figure 3. The latter has

Euclidean and Minkowski parts representing nu-

cleation of a true vacuum bubble and its expan-

sion to infinite size. Note that the bounce is

Lorentz-invariant i.e. depends on x2 ≡ xµxµ. At

large negative x2 it satisfies the Klein-Gordon

equation in the false vacuum and therefore be-

haves as

φb(x)→ cb

2π
K0(m

√
−x2) as x2 → −∞ .

(2.1)

Herem is the mass in the false vacuum φ = 0. In

eq. (2.1) and below we exploit universal complex

time t ≡ x0 which is real and pure imaginary in

the respective parts of the contour in figure 3.

Parameter cb is related to the bubble size Rb: φb

is of order 1 at x ∼ Rb. In the thin-wall limit

mRb � 1 one obtains cb ∝ emRb , where the

asymptotics of the Bessel function in eq. (2.1)

was used.

To compute the amplitude of collision-induced tunneling, we consider the Green’s

function

Gb ≡ 〈Ψb|φ(x1) . . . φ(xn+2)|Ψ0〉

=

∫
Dφ Ψ∗b[φ] φ(x1) . . . φ(xn+2) eiS[φ] Ψ0[φ] , (2.2)

– 5 –
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where |Ψ0〉 and |Ψb〉 are the false vacuum and the final state of its decay at E = 0,

respectively. The latter describes expanding bubbles.

The idea [9, 10] is to evaluate the path integral in eq. (2.2) in the saddle-point approx-

imation treating φ(x1) . . . φ(xn+2) as a prefactor. The relevant saddle-point configuration

is the bounce φb. In the leading order one obtains,

Gb = Ab

∫
d2x0 φb(x1 − x0) . . . φb(xn+2 − x0) , (2.3)

where we introduced the bounce position x0, ignored irrelevant saddle-point determinant

and denoted the bounce amplitude by Ab = Ψ∗b[φb] eiS[φb] Ψ0[φb]. Note that the action S

and zero-energy states Ψ0, Ψb are translation-invariant8 and therefore independent of x0.

The bounce amplitude is computed in refs. [14, 15]: with exponential precision

|Ab|2 = e−2 Im S[φb] , (2.4)

in particular, |Ψb[φb]|, |Ψ0[φb]| ∼ 1. We remark that corrections to eq. (2.3) can be

evaluated perturbatively using the bounce as a background: one substitutes φ = φb + gδφ

into the path integral and calculates it as series in g2.

Importantly, the large-x asymptotics of the bounce in eq. (2.1) reproduces correct

residual at k2 = m2 of its Fourier transform,

φb(k) ≡
∫
d2x eik·x φb(x− x0) =

icb eik·x0

k2 −m2 + iε
+ regular part , (2.5)

where we recalled that K0 in eq. (2.1) is the Feynman propagator in two dimensions; we

denote k · x ≡ kµx
µ and assume ε → +0. The residue cb in eq. (2.5) is k-independent or

“point-like” [3]. This property is specific to Euclidean solutions, as we argue below. One

immediately obtains the 2→ n transition amplitude from the LSZ formula,

A2→n = Ab

(
cb

g

)n+2

. (2.6)

To derive this expression, we Fourier-transformed eq. (2.3), extracted the on-shell residues

(2.5) and collapsed the integral over x0 into the δ-function9 representing the energy-

momentum conservation. Factors g in eq. (2.6) compensate for non-canonical normalization

of kinetic term in eq. (1.3).

The amplitude (2.6) exponentially grows with energy E if the most probable final state

contains n ≈ E/m nonrelativistic particles. To confirm this guess about the most probable

state, we derive the inclusive cross section in appendix A,

σ(E) =
∑
n

∫
|A2→n| dΠn = |Ab|2

∫
d2λ e

iP ·λ+
|cb|

2

2πg2
K0(m

√
−λ2+iελ0)

(2.7)

8Here and below we assume asymptotic limits ti,f → ∓∞ when all quantities oscillating with the initial

ti or final tf times can be dropped.
9It is absorbed in the phase space volume, as usual.
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where the prefactors are ignored, Πn is the n-particle phase space volume and Pµ = (E, 0)

is the total momentum in the center-of-mass frame. The variable λµ in eq. (2.7) can

be regarded as a typical Compton wavelength of the final particles: the latter become

nonrelativistic at λ � m−1. At g � 1 the integral in eq. (2.7) is evaluated in the saddle-

point approximation. The extremum of the exponent is achieved at

λµs = (−2iT, 0) , T =
1

2m
log

(
|cb|2
√
m

2g2E
√

4πT

)
, (2.8)

where the asymptotics of the Bessel function was used. This gives

σ(E) = e(2T+m−1)E−2 Im S[φb] , (2.9)

see eq. (2.4). In the thin-wall limit V (φ+)→ 0 we substitute cb ∝ emRb and obtain T ≈ Rb

with corrections proportional to log(mRb). The cross section (2.9) in this limit coincides

with that in refs. [46, 47], see also refs. [48–50].

The result (2.9) demonstrates exponential growth of the cross section with energy. It

involves nonrelativistic final particles when λs ∼ T is large i.e. at E � m e2mRb /g2, where

the exponent comes from cb. Moreover, the relativistic regime is never reached because at

E & m/g2 weak coupling expansion becomes unreliable. Indeed, relative corrections to the

leading-order result (2.3) are estimated10 [3] as g2n2, where n2 comes from combinatorics;

they are already large at n ∼ E/m ∼ 1/g2. One concludes that correct description of

collision-induced tunneling at E & Ecb ∼ m/g2 should incorporate backreaction of the

final-state particles on the semiclassical solution; we will pursue this approach in the next

section.

Let us point at two specific features of the low-energy calculation. First, the bounce

residue cb in eq. (2.5) does not depend on k as k → +∞. Second, the final state Ψb has

zero energy and factorizes in eq. (2.3). We will see that these two properties do not hold

for perturbative expansion about the relevant high-energy solutions.

3 From Euclidean to real-time solutions

We demonstrated that collision-induced transitions are no longer described by the bounce

at E & Ecb. Since our interest lies in high energies, we set this background aside and

search for true semiclassical solutions describing the false vacuum decay in the N -particle

collisions. Consider the inclusive cross section,

σN (E) =
∑

Ψi,Ψf

∣∣∣〈Ψf |Û(tf , ti)|Ψi; E, N〉
∣∣∣2 ≈ e−FN (E)/g2 , (3.1)

where Û is the evolution operator, ti,f → ∓∞, we ignored the initial flux in the prefactor

and introduced the suppression exponent FN (E) in the approximate equality. The sum in

eq. (3.1) runs over all initial states Ψi with energy E and multiplicity N in the false vacuum

and final states Ψf containing a bubble of true vacuum. Importantly, σN (E) coincides at

10Sophisticated resummation [51, 52] shows that the true expansion parameter is g2n� 1.
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N = 2 with the two-particle collision-induced cross section σ(E) and can be computed

semiclassically at N � 1. Moreover, Rubakov-Son-Tinyakov conjecture [22] states that

the suppression exponent FN (E) does not depend on N at N � 1/g2, see refs. [53–56] for

confirmations. This means that the two-particle exponent F (E) in eq. (1.1) is obtained by

extrapolating the semiclassical result for FN (E) to g2N → 0.

In direct semiclassical approach one writes a path integral for σN (E) and evaluates

it at g � 1 using the saddle-point configuration φs(t, x). In general, this configuration

is complex. The saddle-point equations for φs are derived in ref. [22], see the summary

in figure 4a. Like the bounce, this configuration satisfies the classical field equations11

δS/δφ = 0 or

(∂2
t − ∂2

x)φs = −V ′(φs) (3.2a)

along the complex time contour ABCD in figure 4a. It contains an expanding bubble in

the asymptotic future where the solution is real,

Im φs, Im ∂tφs → 0 as t→ +∞ . (3.2b)

Peculiarities of φs(x) are related to the nontrivial initial state in eq. (3.1). Along the part

AB of the contour the saddle-point solution describes motion of the particles prior to the

collision: in the asymptotic past it reduces to free waves

φs →
∫

dk

4πωk

(
ak e−ik·x +b∗k eik·x

)
as t ≡ x0 → −∞ , (3.2c)

where kµ = (ωk, k), ω2
k = k2+m2, and the limit is taken along the time contour of figure 4a.

In eq. (3.2c) we introduced the classical counterparts ak, b
∗
k of the annihilation and creation

operators with relativistic normalization. They are related by the initial condition

ak = e−2ωkT−θbk (3.2d)

involving two Lagrange multipliers T and θ due to fixation of energy E and the number N

of colliding particles. The latter quantities are given by the standard expressions

g2E =

∫
dk

akb
∗
k

4π
, g2N =

∫
dk

akb
∗
k

4πωk
. (3.3)

In the limit T → +∞ eq. (3.2d) reduces to vacuum condition ak = 0 which corresponds to

E = N = 0. In this case φs(x) coincides with the bounce solution φb(x). At finite T and

θ the saddle-point solution describes transition at nonzero E and N . In what follows we

solve equations (3.2) and relate (T, θ) to (E, N) by eq. (3.3).

Given the saddle-point configuration φs(x), one evaluates the suppression exponent [22]

FN (E) = g2(2 Im S[φs]− 2ET −Nθ) + Im

∫
dxφs∂tφs

∣∣∣
t=ti

, (3.4)

where the last three terms are the initial-state contributions. Importantly, the method of

Lagrange multipliers implies Legendre transform

∂EFN (E) = −2g2T , ∂NFN (E) = −g2θ , (3.5)

which demonstrates that T and θ are proportional to the derivatives of FN (E).

11At the spatial boundary we impose the standard energy-conserving condition ∂xφs → 0 at x→ ±∞.
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C

B
A

D

ak = e−2ωkT−θbk

δS

δφ

∣∣∣∣∣∣
φs

= 0

φs, ∂tφs ∈ R

t∗

t

(a)

φ+ ≈ 2.56

m ≈ 1.00

g2Ecb ≈ 6.11

g2 Im S[φb] ≈ 86.7

cb ≈ 7.4 · 104

(b)

0

30

60

90

0 0.2 0.4 0.6 0.8

F

E/Ecb

Semiclassical
Eq. (2.9)

(c)

Figure 4. (a) Contour in complex time for φs(t, x). Saddle-point equations and boundary condi-

tions at t → ±∞ are written near the respective parts of the contour. The nearest singularity t∗
of the solution is marked by the crossed circle attached to the branch cut (thin double line). (b)

Physical quantities in the model (3.6). (c) Suppression exponent at low energies.

We solve the boundary value problem (3.2) for different T and θ numerically. To this

end we specify the scalar potential in dimensionless units,

V (φ) =
φ2

2

[
1− vW

(
φ− 2

u

)]
, (3.6)

where W (x) = e−x
2
(x + x3 + x5), u = 0.4, and the energy density V (φ+) = −0.4 of the

true vacuum is set by tuning v ≈ 0.84. Function (3.6) is plotted in figure 1b. It is almost

quadratic at φ < φ+/2 and nontrivial at larger φ, so that waves in eq. (3.2c) remain linear12

almost up to their collision point.

We numerically computed the physical quantities for the potential (3.6), see figure 4b.

To this end we have found the bounce φb(t, x) and the critical bubble φcb(x), see ref. [15]

for details. Recall that the bounce action 2 Im S[φb] in eq. (2.4) is the suppression exponent

of false vacuum decay at zero energy, whereas the energy Ecb of the critical bubble gives

the height of the potential barrier between the vacua. We also extracted the bounce residue

cb from the asymptotics of φb(t, x) at xµx
µ → −∞, see eq. (2.1). We remind that the

coupling constant g � 1 scales out in the semiclassical calculations, cf. eq. (1.3).

We discretize equations (3.2) and introduce uniform Nt× 2Nx lattice with sites ti and

xj covering the contour ABCD and space interval13 (−L, L), L = 7; the spatial lattice

spacing is ∆x ≡ L/Nx. We use the second-order finite-difference approximation for the

field equation and trade Fourier transform in eq. (3.2c) for its discrete version. This turns

the semiclassical boundary value problem into a set of Nt × 2Nx nonlinear algebraic equa-

tions14 for φij = φs(ti, xj) which are solved by the Newton-Raphson method [57]. Detailed

description of our numerical technique will be presented elsewhere [58], see refs. [36, 59]

for related works. In the subsequent sections we will concentrate on numerical solutions at

12Long nonlinear evolution in other models is costly for numerical computations.
13Larger intervals are used at low energies due to larger sizes of the respective solutions.
14The solutions are P -symmetric, φs(t, x) = φs(t, −x), so we use only a half of the lattice with xj > 0.
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high energies and small multiplicities. We will need large Nt and Nx because the typical fre-

quencies ωk ∼ E/N of these solutions are high. In particular, lattices Nt×Nx = 3000×150

and 11000× 4000 are required to reach acceptable numerical precision at E ∼ Ecb and the

highest energies, respectively.

Our interest lies in the semiclassical results at high energies and relatively small N . The

well-known saddle-point configuration, however, is the bounce φb(t, x) which satisfies the

boundary value problem (3.2) at T = +∞, θ = 0 and E = N = 0. We continuously relate

it to the high-energy solutions. Namely, we find solutions at large T by iterative numerical

method using the bounce as the zeroth-order approximation. After that we change T and

θ in small steps and obtain one slightly deformed solution φs(t, x) of eqs. (3.2) at each step.

We compute the energy E and initial particle number N for every φs(t, x) by eqs. (3.3).

An exemplary set of numerical solutions is marked by points (E, N) in the central plot

of figure 5. It was obtained by decreasing T at θ = 0 (red/dark points), then increasing

θ to θ = 0.4, and finally decreasing T (green/light points) until the solution with T = 0

and θ = 0.4 is reached (squared point). This procedure brings us to the high-energy region

of interest. The other solutions in this region (not shown in figure 5) are obtained in

similar manner, by changing (T, θ) in small steps and numerically solving the semiclassical

equations (3.2).

Solutions φs = φrt(t, x) with T = 0 and arbitrary θ are called “real-time instantons”.

A representative solution of this type corresponds to the squared point in figure 5. In

the next section we will find that the real-time instantons are radically different from the

solutions with T 6= 0. We will develop an adequate high-energy description of collision-

induced tunneling based on their properties.

At low energies our semiclassical solutions reproduce the results of the previous section.

Indeed, figure 4c compares the semiclassical exponent (3.4) at θ = 0 (points) with the

exponent in eq. (2.9) (line), where the numerical values in figure 4b are used. The two

graphs coincide at E � Ecb despite the fact that the perturbative results are obtained

at N = 2 whereas the semiclassical solutions involve large multiplicities N ∼ 1/g2, see

figure 5. This is because FN (E) is independent15 of N at E < Ecb [46], so we do not

have to continue it to g2N → 0. Importantly, the perturbative graph in figure 4c becomes

negative at E ≈ 0.8Ecb indicating apparent violation of unitarity. At these energies the

perturbative expansion of section 2 is not reliable unlike the semiclassical method of this

section.

Our numerical results show a dramatic change in the form of the saddle-point solutions

at E ≈ Ecb. The low-energy solutions in figures 5a, 5b resemble the bounce: they contain

long Euclidean parts and describe creation of true vacuum bubbles (the latter are shown

by red (dark) in the figures). Waves in the left parts of the plots represent initial particles.

In contrast, at E > Ecb the initial waves are sharper and the bubbles are smaller, see fig-

ures 5c, 5d. Another property of high-energy solutions is small durations of their Euclidean

evolutions and, nevertheless, nonzero values of the suppression exponents16 (3.4) thanks

15In the thin-wall approximation which works well [45] at V (φ+) = −0.4.
16Exponentially suppressed transitions at E > Ecb are called “dynamical tunneling” [60, 61] to distinguish

from the potential tunneling at low energies.
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t×15
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0-4-8 4

4

0

-4
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Figure 5. Central plot: (E, N) plane of initial data. Parameters of the numerical solutions are

indicated by red (dark gray), purple and green (light gray) points. Circles with letters represent

solutions from the insets (a)–(d). The squared point corresponds to the real–time instanton with

T = 0 and θ = 0.4. Insets (a)–(d): Three–dimensional plots of the numerical solutions Re φs(t, x),

where the abscisses Re t − Im t parametrize the contours in the complex time plane. Color shows

arg(φs−1). Euclidean parts of the solutions are marked by the square brackets with arrows. Above

each 3D plot we draw the respective contour in the complex time plane, where the zoomed circular

area with magnification factor displays the vicinity of the nearest singularity (crossed circle attached

to the branch cut). The lattice size of all solutions is Nt ×Nx = 3000× 150.

to complex-valued φs(t, x). In particular, the real-time instanton at T = 0 evolves entirely

along t ∈ R. We will argue that this feature guarantees stable perturbative expansion at

high energies.
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One wonders how the durations of Euclidean evolutions can be of any physical mean-

ing: they are not even explicitly specified in figure 4a. Indeed, one expects that φs(t, x)

are analytic functions of time and can be continued to any contours. But in fact, the solu-

tions and, in particular, the bounce have branch-cut singularities starting at t = t∗ which

separate their time contours from the real time axis, see figure 4a. We compute positions

of these singularities for the solutions (a)–(d) in figure 5. To this end we continue φs(t, x)

to complex t and find the points t = t∗ where |V (φs)| = ∞, see the zoomed areas in the

respective t-planes. The singularities prevent us from continuing the low-energy solutions

to the real time axis. We find, however, that Im t∗ decreases with energy and becomes

negative for the solution (d) in figure 5. The latter solution can be considered in real time,

as well as the real-time instanton at T = 0.

We find the semiclassical solutions at g2N = 2 (not shown in figure 5) and plot the

respective suppression exponent FN (E) in figure 1c (thick line in the left part of the lower

panel). The latter exponent monotonously decreases with energy until the point T = 0

and E = Ert(N) is reached.17 The region of few-particle initial states N � 1/g2 cannot

be directly addressed at the present-day computers. So, we extrapolate numerical results

into this region. Since e−θ analytically enters the semiclassical equations (3.2), the particle

number N , action S[φs], and the last term in eq. (3.4) have regular Taylor expansions in

this parameter. Moreover, e−θ → 0 leads to Feynman boundary conditions at t → −∞
and therefore to g2N → 0, see eq. (3.2d). Substituting all Taylor expansions into eq. (3.4)

and using eq. (3.5), one finds that

FN (E) + g2θN + g2N = F (E) +O(g4N2) .

We fit numerical data for the left-hand side of this equality with function F (E)+d(E)·g4N2

and obtain the suppression exponent F (E) (solid line in the left upper part of figure 1c).

Numerical error of this procedure is expected to be smaller than 5%. Our results show

that the two-particle exponent F (E) is also a decreasing function of energy.

We finish this section by remarking that the above semiclassical solutions describe

classically forbidden transitions from the initial states with relatively small multiplicities

N . Increasing N , one reaches the states decaying classically (region “FN = 0” in figure 5).

Classical transitions in the model (3.6) were studied in ref. [62], see refs. [38–40] for the

related work.

4 Real-time instantons

The real-time instantons, i.e. solutions of the saddle-point equations at T = 0 and arbitrary

θ, are special in many respects (see one of them in figure 6a). At a given N they have the

highest energies E = Ert(N) and smallest suppression exponents Fmin(N) ≡ FN (Ert(N))

considered so far. Indeed, all solutions at smaller energies have positive parameter T : we

obtained them by lowering T from T = +∞ to T = 0. Since ∂EFN = −2g2T , the exponent

17Data lines are not shown at high energies where the numerical errors are large. To decrease the

computational cost, we find the solution at E = Ert at high precision (next section) and fill the gap with

thin interpolating line.
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Figure 6. (a) Real-time instanton φrt(t, x) and (b) its initial energy distributions εk at different

Nx (numbers in boxes). In both figures θ = 0.199, (E, N) ≈ (2.4Ecb, 3.5/g2), Nt = 11000. Figure

(a) uses colors of figure 5 and Nx = 2000.

FN (E) decreases with energy and reaches a local minimum at E = Ert(N). In section 5

we will argue that this minimum is global by showing that the suppression exponent is

energy-independent at E > Ert(N).

The above property implies that each real-time instanton describes collision-induced

transitions from the states with fixed multiplicity N and arbitrary energies. Indeed, the

probability

σmax
N =

∫ ∞
0

dE e−FN (E)/g2 ,

receives dominant contribution near the saddle point E = Ert(N) corresponding to the real-

time instanton. One finds σmax
N ≈ e−Fmin(N)/g2 , where Fmin(N) is computed using φrt(t, x).

In the previous section we obtained the real-time instantons from the larger family of

semiclassical solutions with arbitrary T and θ. One can compute φrt directly by solving

the semiclassical equations (3.2a), (3.2b) with the initial condition

ak = e−θ bk , (4.1)

cf. eq. (3.2d). Then the parameter N , energy Ert(N) and minimal suppression exponent

Fmin(N) are given by the standard expressions (3.3), (3.4).

A convenient and important feature of the real-time instantons came as a surprising

numerical fact in figure 5: they are defined along the real time axis t ∈ R. Technically,

this property is related to the initial condition (3.2d) and its consequence (4.1). Indeed,

the positive- and negative-frequency terms in the integrand of eq. (3.2c) are of order b̃∗k ≡
b∗k e−ωkTAB and ãk ≡ ak eωkTAB , where TAB = Im tAB is the height of the time contour. The

integrals of these terms in eq. (3.2c) converge faster and slower at higher TAB, respectively.

At TAB = T the terms are of the same order because ãk = e−θ b̃k due to the initial
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condition (3.2d). This “optimal” contour lies right in the middle between the singularities

of the solution: at somewhat higher or lower TAB one of the integrals in eq. (3.2c) diverges

signaling that the contour hits the singularity. We use TAB = T in numerical calculations

and show the corresponding contour in figures 5a–5d. At T → 0 the optimal contour

coincides with the real time axis.

The above argument turns quantitative if we use the high-frequency asymptotics of

the solution. Namely, consider the energy of modes with the wave number k in eq. (3.3),

εk ≡
akb
∗
k

4π
, g2E =

∫
dk εk . (4.2)

In appendix B we demonstrate that any smooth solution has exponential asymptotics,

εk → ε0 e−2ωkT∗ as k → +∞ , (4.3)

where T∗ is a parameter of the solution. Extracting ak and b∗k from eq. (4.3) and initial

condition (3.2d), one finds that the integral in eq. (3.2c) converges at |TAB − T | < T∗
and diverges otherwise. Thus, T∗ is the distance from the optimal contour to the nearest

singularity of the solution, T∗ = |T − Im t∗|.
In figure 6b we plot energy distributions εk for the real-time instanton with θ = 0.199

at different Nx. At larger Nx and ωk � m the graphs approach eq. (4.3) with T∗ ≈ 0.013.

This indicates that the continuum limit of our numerical solution is a smooth configuration

with singularities at finite distances T∗ from the real time axis.

Note that the latter fact is important because our conclusions about existence and

properties of the real-time instantons rely on numerical calculations. In figure 7 we study

the continuum limit in more detail. If φrt(t, x) are smooth configurations, the numerical

errors are expected to be polynomials in δ ≡ N−2
x ∝ (∆x)2 and N−2

t because we use the

second-order finite-difference methods. This is indeed the case: lattice values of E, N

and Fmin (points in figure 7) are not sensitive to Nt and well approximated by quadratic

functions of δ (lines). At large Nx all numerical errors are proportional to δ, see the inset in

figure 7a. Once again we conclude that our lattice solutions with T = 0 have well-defined

continuum limits.

Numerical results for the minimal suppressions Fmin(N) and respective energies Ert(N)

are shown in figure 8. Dashed lines in figure 8b are the lattice results,18 while the solid lines

represent continuum limits obtained by quadratic extrapolations in δ = N−2
x to δ = 0, cf.

figure 7. Points E = Ert in figure 1c are extracted from figure 8. In particular, we obtain

results for the few-particle initial states g2N � 1 by extrapolating Ert(N) to g2N = 0 with

linear function, and Frt(N) by the method described in the end of section 3, see the dotted

lines in figure 8. The accuracy of our result for Frt(0) is better than 5%, while extrapolation

of energy should be considered as illustrative. In particular, we cannot completely exclude

the possibility that Ert → +∞ at g2N → 0. Nevertheless, it is likely that the point

E = Ert exists for the few-particle initial states, since it does for the multiparticle ones, cf.

refs. [25, 26].

18In figure 8a they are indistinguishable from the continuum limit.

– 14 –



J
H
E
P
0
6
(
2
0
1
5
)
1
2
3

2.25

2.30

0 10−6 2 · 10−6E
rt
/E

cb

N−2
x

Nt = 11000

quadratic fit

2.25

2.30

0 10−6 2 · 10−6E
rt
/E

cb

N−2
x

Nt = 11000

quadratic fit
numerical

2.25

2.30

0 10−6 2 · 10−6E
rt
/E

cb

N−2
x

Nt = 11000

quadratic fit
numerical

numerical
quadratic fit

2.25

2.30

0 10−6 2 · 10−6E
rt
/E

cb

N−2
x

Nt = 11000

quadratic fit
numerical

numerical
quadratic fit

2.35

2.4

0 4 · 10−7

Nt = 22000Nt = 22000

(a)

3.50

3.51

3.52

g
2 N

0.034

0.035

0.036

0 10−6 2 · 10−6

F
m
in

N−2
x

(b)

Figure 7. Continuum limits Nx → +∞ of the (a) real-time instanton energy Ert, (b) its initial

particle number N and suppression exponent Fmin; θ = 0.199. We fit the data points with quadratic

functions of δ ≡ N−2
x (lines) in the range Nx = 800÷ 4000.
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Figure 8. (a) Suppression exponent Fmin(N) and (b) energy Ert(N) of the real-time instantons.

Dashed lines in figure (b) are the lattice results at Nt = 11000 and different Nx (numbers near the

lines). Thick solid lines are obtained by extrapolating results to Nx → +∞.

5 Transitions at E > Ert

Numerical solutions at E > Ert(N) look similar to the real-time instantons, cf. figures 9a

and 6a. But in fact they are fundamentally different: we are going to demonstrate that

they do not have continuum limits and lead to energy-independent suppression expo-

nent FN (E) = Fmin(N).

To begin with, we find that the lattice values of the parameter T monotonously decrease

with energy and become negative at E > Ert(N), see figure 9b. Then eq. (3.5) implies that

the exponent FN (E) reaches minimum at E = Ert(N) and increases at higher energies.

The last feature, however, is not expected in continuum models. Indeed, the sum in the

definition (3.1) of FN (E) runs over all initial states with energy E and multiplicity N .

These include, in particular, the state where N − 1 particles perform transition at smaller
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Figure 9. (a) Numerical solution φs(t, x) at E ≈ 2.6Ecb > Ert(N). The other parameters are

g2N ≈ 3.5, T ≈ −2.8 · 10−4, and Nx = 1000. (b) Parameter T in the region E > Ert(N) for

different Nx (numbers in boxes). (c) Energy distributions for the solution (a) and the real-time

instanton with Nx = 1000 from figure 6b. In all figures θ = 0.199 and Nt = 11000.

energy E0 and one spectator particle carries the energy excess ∆E = E−E0, see figure 10.

The suppression exponent of the last process is FN−1(E0) ≈ FN (E0), where correction of

order g2θ � 1 is ignored, cf. eq. (3.5). Since the inclusive transition is less suppressed

than the exclusive one, we conclude that FN (E) ≤ FN (E0), i.e. FN (E) is a non-increasing

function of energy.

The above argument suggests that the negative values of T ∝ −∂EFN in figure 9b

are lattice artifacts and one should be careful with the continuum limit ∆x → 0. Indeed,

figure 9c shows that the high-frequency modes of solutions with E > Ert(N) are enhanced

as compared to the case of the real-time instanton and eq. (4.3). To perform the quantita-

tive comparison, we boldly assume that the semiclassical solutions at T < 0 have the form

φs(x) = φrt(x) + δφ(x), where δφ consists of high-frequency modes evolving linearly in the

real-time instanton background. Ignoring reaction of the latter on δφ, we write,

δφ(x) =

∫
dk

4πωk

[
δck e−ik·x +δc∗k eik·x

]
. (5.1)

This solution is real at t→ +∞ because δck and δc∗k are the mutually conjugate constants.
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One expresses δck from the initial condition (3.2d): δck = (b
(rt)
k γk − a

(rt)
k )/(1− γk), where

γk = e−2ωkT−θ. Here and below we mark quantities related to the real-time instanton with

“(rt)”, e.g. a
(rt)
k = e−θ b

(rt)
k . We obtain the energy distribution for the solution with T < 0,

εk ≡
1

4π
(a

(rt)
k + δck)(b

(rt)∗
k + δc∗k) = ε

(rt)
k

sinh2(θ/2)

sinh2(ωkT + θ/2)
, (5.2)

where ε
(rt)
k = a

(rt)
k b

(rt)∗
k /4π. Recall that eq. (5.2) is based on a crude assumption that the

solutions with E > Ert(N) differ from the real-time instantons only in linearly evolving

high-frequency modes. Nevertheless, this scaling works well: in figure 9c the function (5.2)

(points) coincides with the actual energy distribution (solid line). In appendix B we derive

eq. (5.2) in somewhat different approach.

E0

∆E

Figure 10. Exclusive transition at E > Ert(N).

Distributions (5.2) are qualitatively dif-

ferent at T > 0 and T < 0. In the for-

mer case the high-frequency asymptotics of

εk is consistent with eq. (4.3) which im-

plies smooth continuum limit. At T < 0,

however, the function (5.2) develops a non-

integrable singularity at ωk = ω∗ ≡ −θ/2T .

Technically, this feature is related to the fact

that the linear mode with frequency ω∗ sat-

isfies reality conditions at t → ±∞, see eqs. (3.2b) and (3.2d). Solutions can accumulate

macroscopic energy in this mode before its amplitude δck∗/ω∗ ∼ ε
1/2
k∗
/ω∗ becomes large and

linear approximation (5.1) breaks down. Importantly, the latter energy tends to infinity as

T → −0 or ω∗ → +∞.

Lattice solutions do not feel the singularity in eq. (5.2) if the maximal lattice frequency

ωmax = 2/∆x is below ω∗. If we decrease ∆x with constant (T, θ), the value of ωmax

approaches ω∗ and the solution gains energy. Vice versa, at fixed energy one obtains

smaller |T | at smaller ∆x. If eq. (5.2) is valid up to infinitesimally small ∆x, parameter

T approaches zero as ∆x → 0, so that ω∗ is kept outside of the lattice frequency range

and the energy remains finite. The respective semiclassical solutions arrive at the real-

time instanton plus modes with infinitely high frequency and vanishingly small amplitude

carrying the energy excess E − Ert(N). These solutions do not have smooth continuum

limits.

The scaling property of our solutions is best summarized by dividing the total energy

into “soft” and “hard” parts, i.e. E = Esoft + Ehard, involving modes with ωk < ωΛ and

ωΛ < ωk < ωmax in eq. (3.3). In figure 11 we plot Esoft(T ) and Ehard(T ) for ωΛ = 70m and

several values of Nx. Predictably, Esoft is not sensitive to Nx, while Ehard sharply depends

on it according to eq. (5.2) (lines in figure 11b). Since the data points in figure 11b are well

approximated by eq. (5.2), the value of T approaches zero as Nx → +∞ at fixed Ehard, so

that Esoft → E
(rt)
soft in figure 11a.

A remark is in order. Our numerical results show that at high enough E−Ert(N) the

singularity ω∗ falls below ωmax and interaction of high-frequency modes becomes important.
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Figure 11. Energies of (a) soft and (b) hard modes of solutions at E > Ert(N) and different Nx
(numbers near the lines); θ = 0.199.

We find, however, that the above qualitative picture holds even in this case. In particular,

|T | decreases with Nx at fixed total energy E, see figure 9b. We therefore expect that the

respective continuum limit has the same properties: parameter T vanishes as Nx →∞ and

lattice solutions approach the real-time instanton plus high-frequency modes.

It is important to point out that the lattice solutions lacking smooth continuum limits

at E > Ert(N), are still capable of describing tunneling transitions in that region. Namely,

instead of discretizing the semiclassical equations (3.2) one can start from the lattice path

integral for the cross section (3.1). The latter is an ordinary integral over Nt×2Nx variables

φij . At g2 → 0 it can be evaluated in the saddle-point approximation, where the saddle-

point values of φij are the semiclassical lattice solutions. In this approach the existence of

well-defined continuum limits of the latter solutions is irrelevant. The overall semiclassical

results are reliable if the exponent FN (E) has a limit at ∆x→ 0. Then the lattice solutions

point at the dominant mechanism of quantum transition.

We have already argued that our lattice solutions with E > Ert(N) describe processes

shown in figure 10: they tend to the real-time instanton with energy Ert(N) plus a few

spectator particles in the form of high-frequency waves carrying the energy excess E −
Ert(N). The respective suppression exponent is constant because T ∝ −∂EFN approaches

zero as ∆x → 0. We finally conclude that FN (E) is constant and equal to Fmin(N) at

energies above the threshold Ert(N), see figure 1c and cf. refs. [24, 26].

6 Stability of perturbative expansion around the real-time instanton

Since the inclusive cross section does not grow exponentially with energy at E > Ert, one

assumes that the terms of its perturbative expansion in g2 around the real-time instanton

are also bounded as E → +∞. Then one can compute the collision-induced amplitudes

and cross sections perturbatively at N = 2 and arbitrary high energies.

To test this property, we directly address the two-particle inclusive cross section of

collision-induced false vacuum decay,

σ(E) =
∑
Ψf

∣∣∣〈Ψf |Û(tf , ti)â
†
p2 â
†
p1 |Ψ0〉

∣∣∣2 , (6.1)
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where ti,f → ∓∞, the initial state describes two particles with total momentum P ≡
p1 + p2 = (E, 0) in the false vacuum Ψ0, each final state Ψf contains an expanding bub-

ble of true vacuum, and we ignore prefactors. Let us check the possibility of extracting

the cross section 6.1 from the perturbative Green’s functions in the backgrounds of the

real-time instantons, so that the corrections to the perturbative calculations remain small

as E → +∞.

In this section we compute only the “factorized” contribution to σ(E) which was dom-

inant and responsible for the exponential growth of the inclusive cross section in the Eu-

clidean approach of section 2. We will see that this contribution is exponentially suppressed

if the real-time instanton is used as a background. A consistent perturbative expansion

around φrt(x) will be developed in the next section.

We start from the Green’s function (1.4) between the false vacuum Ψ0 and the dom-

inant final state Ψrt of the real-time instanton φrt(x). In the leading order of the pertur-

bation theory we substitute φ with φrt(x− x0) in the integrand of eq. (1.4) and find,

Grt = Art

∫
d2x0 Ψ∗rt[φrt] φrt(x1 − x0) . . . φrt(xn+2 − x0) , (6.2)

where19

Art = eiS[φrt] Ψ0[φrt] . (6.3)

Note that the position x0 of φrt is not fixed by the semiclassical equations (3.2). Neverthe-

less, the final-state wave functional Ψrt[φrt] depends on x0 via φrt(x− x0).

We use the LSZ reduction formula and turn eq. (6.2) into the 2→ n+ Ψrt amplitude.

Considering the initial particles, we trade two of φ’s in the integrand for their positive-

frequency residues b∗p e−ip·x0 , see eq. (3.2c). The case of the final-state particles is more

involved because at t→ +∞ the configuration φrt contains, apart from the outgoing waves,

an interacting bubble. To handle this difficulty, we assume that the false vacuum decay

occurs in a finite volume |x| < L with periodic boundary conditions. Then at t→ +∞ the

bubble fills all space and φrt(x) reduces to waves in the true vacuum,

φrt(x− x0)→ φ+ +

∫
dk

4πω
(+)
k

[
ck e−ik·(x−x0) +c∗k eik·(x−x0)

]
as t→ +∞ , (6.4)

where kµ = (ω
(+)
k , k) are the on-shell momenta in the vacuum φ+. The LSZ formula

substitutes φrt(x − x0) with its residue ck eik·x0 for every final-state particle. For clarity

below we consider finite large L and do not study the limit L→ +∞.

We obtain,

A′2→n+Ψrt
= Art

∫
d2x0

b∗p1b
∗
p2

g2+n
ck1 . . . ckn Ψ∗rt[φrt] eix0·(k1+···+kn−p1−p2) . (6.5)

Here pj and ki are the momenta of the initial and final particles, the prime of A′ reminds

that only the factorized contribution is considered. Unlike in section 2, we do not explicitly

19Recall that S and Ψ0 are independent of x0 in the limit ti,f → ∓∞, as we drop the terms oscillating

with ti and tf .
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integrate over x0 because Ψrt depends on it in a nontrivial way. Indeed, since φrt(x) is

real at t → +∞, its dominant final state is a coherent one [46, 63]: in the interaction

representation

|Ψrt〉 = exp

{∫
dk

ck ĉ
†
k

4πg2ω
(+)
k

}
|Ψ+〉 , (6.6)

where we introduced creation operators ĉ†k in the true vacuum Ψ+. Parameters ck of

Ψrt are precisely the final-state residues ck in eq. (6.4). One can extract dependence of

the wave functional Ψrt[φrt] on x0 from its transformation properties ĉ†k → ĉ†k e−ik·x0 and

Ψ+ → e−it0E+ Ψ+ under spacetime shifts x → x + x0, where E+ = 2LV (φ+) < 0 is the

energy of the true vacuum.

The amplitude (6.5) has almost factorized form. In appendix A we integrate over the

phase-space volume and obtain the inclusive cross section,

σ′(E) = |Art bp1bp2Ψ+[φrt]|2
∫
d2λ exp

{
iP · λ− iE+λ

0 +

∫
dk |ck|2

4πg2ω
(+)
k

e−ik·λ

}
, (6.7)

where P ≡ p1 + p2 = (E, 0). Equation (6.7) looks similar to eq. (2.7) of section 2,

and yet it is entirely different. First, the initial-state factor |bp1bp2 |2 ∝ e−2ET∗ decays

exponentially with energy because higher momentum transfer from the initial particles to

the soft background is less probable, see eq. (4.3). Second, the final-state contribution is

nontrivial because Ψrt is not an eigenstate of energy, it absorbs different energies in different

cases. Thus, the simple picture of converting all energy into the multiparticle final states

with huge phase volume is lost.

Since the exponent in eq. (6.7) is large, the integral over λ is evaluated in the saddle-

point approximation. One finds the extremum of the exponent λµs = (−2iT ′, 0) satisfying

E = E+ +

∫
dk
|ck|2

4πg2
e−2T ′ω

(+)
k . (6.8)

At E = Ert the solution is T ′ = 0 because the right-hand side of eq. (6.8) coincides with

the final energy of the real-time instanton, cf. eq. (6.4). At E > Ert one obtains T ′ < 0.

Substituting λs into eq. (6.8), we find,

σ′(E) = |Art Ψ+[φrt]|2 exp

{
2E(T ′ − T∗)− 2E+T

′ +

∫
dk |ck|2 e−2T ′ω

(+)
k

4πg2ω
(+)
k

}
= e−F

′(E)/g2 ,

(6.9)

where the suppression exponent is introduced in the second equality.

Equation (6.8) implies that the suppression exponent of σ′(E) grows at E > Ert,

dF ′

dE
= 2g2(T∗ − T ′) > 0 . (6.10)

In the next section we will demonstrate that at E = Ert the exponent F ′(E) coincides with

the true semiclassical exponent F (E). The latter, however, is constant at high energies.

Thus, the factorized contribution (6.9) is exponentially subdominant, F ′ > F , at E > Ert.
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7 Perturbative method at high energies

Before considering the dominant contribution, we remark that the perturbative approach

of the previous section is incomplete. Indeed, there is a large family of real-time instantons

parametrized20 with N = N0 and position y0. Every solution from this family has its own

dominant final state Ψrt which also depends on N0 and y0, cf. eq. (6.6). In this section we

change notation N → N0 for the real-time instanton parameter, to distinguish it from the

number of colliding particles in the process; from now on, the latter equals two. We stress

that the values of N0 and y0 characterize the background for the perturbative expansion.

Their values are selected to achieve better convergence.

Our receipt for perturbative evaluation of the collision-induced cross section at high

energies and two initial particles is summarized as follows [29]. One starts from the (n+2)-

point Green’s function (1.4) between the false vacuum Ψ0 and the dominant final state Ψrt

of the real-time instanton φ
(N0)
rt (x − y0), cf. eq. (6.6). One evaluates the path integral for

the Green’s function perturbatively in the background of φrt: substitutes φ(x) = φ
(N0)
rt (x−

x0) + gδφ(x) and expands the integrand in gδφ. Integral over the would-be flat direction

x0 6= y0 remains in the Green’s function, cf. eq. (6.2). One finally extracts the perturbative

amplitudes A2→n+Ψrt from the LSZ formula, turns them into the inclusive cross section

with the machinery of appendix A, and takes the limit N0 → 0. The result is a perturbative

expansion for σ(E) which, as we are going to argue, is applicable at arbitrary high energies.

Let us explain the role of the auxiliary parameter N0 characterizing the background

solution. On the one hand, recall that the real-time instanton φ
(N0)
rt describes transition

from the initial states with N0 particles: the limit N ≡ N0 → 0 formally corresponds to

the vacuum initial state. Indeed, at θ → +∞ one simultaneously obtains Feynman initial

condition ak → 0 for φ
(N0)
rt and N0 → 0, see eqs. (3.2d) and (3.3). Thus, the real-time

instanton with N0 = 0 and x0 = y0 is the formal saddle-point configuration21 for the path

integral (1.4), and the perturbative series around it constitute the ordinary saddle-point

expansion. On the other hand, the energy Ert(N0) of the real-time instanton represents

the extremum, ∂EFN = 0, and stays nonzero in the limit N0 → 0, cf. figure 8b. This means

that φ
(N0)
rt is singular at N0 = 0 because its typical frequencies ωk ∼ E/N0 are infinite. We

therefore develop perturbative expansion around the smooth configurations with N0 > 0

and send N0 → 0 in the end of calculations.

In figure 12 we plot parameter e−θ of the real-time instanton and distance T∗ to its clos-

est singularity as functions of N0. Numerical data (solid lines) are well fitted by quadratic

polynomials with zeros at N0 = 0 (dashed lines). The graphs support our expectation that

as N0 → 0, the real-time instanton φ
(N0)
rt tends to a singular configuration with vacuum

initial conditions.

20Recall that we work in the finite-L box which explicitly breaks Lorentz symmetry. Boosted real-time

instantons should be taken into account in the infinite-volume limit.
21Recall that φrt extremizes the classical action and, by construction of Ψrt, at x0 = y0 serves as the

saddle-point configuration for the integral with the final state in eq. (1.4). Note also that the two initial

particles of the process are represented by the two φ-factors in the integrand which do not change the initial

saddle-point conditions ak = 0. The latter are satisfied by φ
(N0)
rt at N0 → 0.
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Figure 12. Quantities (a) e−θ and (b) T∗ characterizing the real-time instanton as functions of its

parameter N0. Numerical data at Nt × Nx = 11000 × 3000 (solid lines) are fitted with quadratic

polynomials in N0 (dotted lines).

Expanding the integrand of eq. (1.4) in gδφ, we obtain Feynman rules involving points,

propagators and vertices,

x

rt
=
φrt

g

∣∣∣∣
x−x0

, x y
rt

= 〈δφ(x)δφ(y)〉rt ,
x

rt
= gm−2V (m)(φrt)

∣∣∣
x−x0

,

(7.1)

which explicitly depend on N0 and x0. At nonzero N0 or x0 6= y0 one also obtains the

tadpoles, i.e. terms in action proportional to δφ, which characterize deviation of the back-

ground solution from the true saddle-point configuration. The tadpoles coming from the

terms at t → −∞ vanish as N0 → 0, and we do not consider them in what follows. The

final-state tadpoles are related to the fact that Ψrt is the dominant final state for the con-

figuration φrt(x− y0) which is different from our background φrt(x− x0). We will discuss

them in the end of this section. Since the elements in eq. (7.1) explicitly depend on x,

energy and momentum are not conserved along the lines and in the vertices. Rather, the

Feynman rules in momentum space involve structure functions depending on the momen-

tum Q transferred to the background. We will see shortly that the real-time instanton

consumes total energy Q0 ≈ Ert from the initial particles.

At zeroth order of the perturbative expansion one uses φ(x) = φ
(N0)
rt (x−x0) in eq. (1.4)

and obtains the diagram in figure 13a. Extracting the cross section and summing over

the final states, one arrives at the contribution (6.9) which is exponentially subdominant.

Indeed, we argued in eq. (6.10) that the suppression exponent F ′(E) of this contribution

grows with energy at E > Ert. Besides, at E = Ert and N0 → 0 we have T ′ = T∗ = 0 and

therefore

F ′(Ert) = 2g2 Im S[φrt]− g2 ln |Ψ0|2 − g2 ln |Ψ+|2 −
∫
dk |ck|2

4πω
(+)
k

= F (Ert) +O(N0) . (7.2)
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Figure 13. Diagrams for perturbative expansion around the real-time instanton.

Here we used eqs. (6.3) and (3.4), vacuum wave functionals

Ψ0[φ] = exp

{
−
∫
dk ωk
4πg2

φ(k)φ(−k)

}
ti

and Ψ+[φ], spatial Fourier transform φ(k) of configuration φ, and representations (3.2c),

(6.4) of the real-time instanton.22 Since the dominant exponent F (E) is constant at high

energies, we repeat that F ′(E) > F (E) at E > Ert, i.e. the factorized diagram in figure 13a

is negligible.23

The dominant diagram at E > Ert is shown in figure 13b. It describes propagation

of two initial particles which transfer momentum Q = q1 + q2 to the background. The

respective transition amplitude is,24

A2→n+Ψrt = Art n(n− 1)

∫
d2x0Dp1, k1 Dp2, k2

ck3 . . . ckn
gn−2

Ψ∗rt[φrt] eix0·(k3+···+kn−q1−q2) ,

(7.3)

cf. eq. (6.5). Here qi ≡ pi − ki and Dp, k · e−iq·x0 is the double residue of the propagator

〈δφ δφ〉rt. In appendix A we convert the amplitude into the inclusive cross section,

σ(E) = |Art Ψ+[φrt]|2
∫

dk1dk2

32π2ω
(+)
k1
ω

(+)
k2

|Dp1, k1 Dp2, k2 +Dp1, k2 Dp2, k1 |2

×
∫
d2λ exp

{
iQ · λ− iE+λ

0 +

∫
dk |ck|2

4πg2ω
(+)
k

e−ik·λ

}
, (7.4)

where λ ≡ y0 − x0 and we omit trivial prefactors. The first line in this expression is the

naive Feynman diagram in the background of the real-time instanton. The factor in the

second line is related to the on-shell final state of the background process. It is the same

as in eq. (6.7). In section 6 we demonstrated that this factor is sharply peaked around

Qµ = (Ert, 0) with fluctuations of order ∆Q ∼ gErt.

22Recall also that FN (E) = F (E)− g2θN +O(N) as we argued in the end of section 3.
23One finds that as L → ∞, the energy of the true vacuum becomes infinite and therefore T ′ → 0.

This means that in the true infinite-volume limit (not considered here) the contribution (6.9) becomes

comparable to the dominant one.
24Symmetrization with respect to permutations of k1, . . . , kn is assumed.
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Evaluating the integrals over Q and λ in the saddle-point approximation, we get with

exponential precision,

σ(E) = e−F (Ert)/g2 at E > Ert ,

see eqs. (6.9) and (7.2). We thus obtained constant suppression exponent F = F (Ert) at

E > Ert which was deduced in section 5 on the basis of sophisticated numerical analysis.

Note that our perturbative method can be applied for calculating the prefactor: one just has

to estimate the energy-independent saddle-point determinant in the Green’s function (1.4)

and collect few simple prefactors in the above calculations.

The first perturbative correction to the dominant contribution is shown in figure 13c.

It involves the same relative factor g2n2 as in the low-energy calculation of section 2. This

time, however, the number n of the point-like factors φrt representing the particles added to

the background, is relatively small and does not grow with the collision energy E. Indeed,

any energy transfer to the background above Q = Ert is cut off by the final-state factor.

This means that n ∼ |Q− Ert|/m ∼ g−1, and the diagram in figure 13c is of the same

order as the dominant one. Importantly, it does not grow with energy. Resummation of

these disconnected diagrams [51, 52] leaves us with corrections involving vertices which are

suppressed by the true expansion parameter g.

Let us finally discuss the tadpoles. We saw that the parameter y0 of Ψrt does not

coincide with the position x0 of the background solution: the integral over the difference

λ ≡ y0−x0 enters eq. (7.4). Thus, φrt(x−x0) is not the true saddle-point configuration of

the integral (1.4), perturbative expansion around it starts from the linear term in δφ. We

obtain the tadpole

q
rt

=
c∗q e−iq·x0

4πgω
(+)
k

(
e−iq·λ−1

)
(7.5)

which should be integrated over q with the final-state residue of the propagator. Apart

from the additional integration, this tadpole is similar to the final on-shell particle in

the amplitude. One may think that the dominant contribution includes diagrams with

the tadpoles attached to the hard propagators, e.g. figure 13d. However, all momentum

p1 = q1 + q of the propagator with the tadpole is transferred to the real-time instanton.

Indeed, eq. (7.5) is proportional to the exponent e−iq·x0 which accumulates transferred

momentum in the amplitude, cf. eq. (7.3). Then the total transferred energy in the process

in figure 13d is higher than Ert and the respective contribution to the cross section is

exponentially small.

We see that the tadpoles infest the final-state propagators in figure 13c and subdomi-

nant diagrams.25 Note, however, that the element (7.5) is O(g0) at best. Indeed, at small

q the bracket in eq. (7.5) is proportional to g because λ ∼ g at E ≈ Ert. At q ∼ m/g the

tadpole is suppressed by the factor c∗q/ω
(+)
q which vanishes at high q because the energy

of the real-time instanton is finite. Thus, the tadpoles also do not break the perturbative

expansion.

25One can check that the tedpoles do not change our conclusion about exponential suppression of the

factorized contribution.
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We conclude that the perturbative expansion around the real-time instanton is reliable

at arbitrarily high energies.

8 Summary and discussion

In this paper we studied collision-induced tunneling in field theory. We paid special at-

tention to the case of two colliding particles with high total energy E. As a playground

we considered induced false vacuum decay in (1 + 1) dimensions. We demonstrated that

the suppression exponent FN (E) of this process decreases with energy, reaches minimum

F = Fmin(N) at E = Ert(N) and remains constant at higher energies.

Our methods rely on existence of the real-time instantons — a special class of semi-

classical solutions describing inclusive collision-induced transitions from the initial states

with N particles and arbitrary energies. The minimal suppression Fmin(N) and threshold

energy Ert(N) are computed as functionals on these solutions. Real-time instantons were

first observed in the toy model of ref. [26]. Here we numerically obtained them in the case

of (1 + 1)-dimensional false vacuum decay. We expect that these solutions exist for other

collision-induced tunneling processes. One can verify this expectation on a case-to-case

basis by solving the respective semiclassical boundary value problem in a given model.

Importantly, we argue on general grounds that the real-time instantons are complex

solutions evolving in real time (hence the title). This property is very unusual for the semi-

classical solutions related to exponentially suppressed transitions, it leads to far-reaching

consequences. We find that scattering of high-energy quantum particles in the backgrounds

of the real-time instantons resembles scattering in vacuum because energy exchange be-

tween the particles and the soft background occurs with exponentially small probability.

This situation is radically different from that at low energies where the Euclidean semiclas-

sical solutions recycle any additional energy into exponentially large probability factors.

Starting from the real-time instantons, we develop a perturbative description of the two-

particle collision-induced processes at high energies. We demonstrate that this description

remains valid at arbitrary high energies. Our method shows that the suppression exponent

F (E) ≡ F2(E) is constant at E > Ert(2). The collision-induced transitions in this regime

involve transfer fixed energy Ert from the two colliding particles to the soft background; the

energy excess E −Ert remains in the initial particles till the end of the process. Note that

our perturbative methods can be easily generalized for calculating prefactors or exclusive

cross sections.

We conclude that the real-time instantons, if exist for a given collision-induced process,

provide powerful perturbative framework and guarantee constant suppression exponent

F (E) = Fmin(2) of this process at energies above a certain threshold Ert(2).
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A Multiparticle cross sections

In this appendix we evaluate inclusive cross sections for the amplitudes considered in the

main body of the paper. We start from the factorized 2→ n amplitude

A2→n =
A0

gn
ck1 . . . ckn . (A.1)

Here A0 and g are constants, ki are momenta of particles in the final state. The cross

section of inclusive transition to the n-particle final states is obtained by integrating over

the phase space volume Πn,

σn(P ) =

∫
|A2→n|2 dΠn(P )

=
|A0|2

n!

∫
dk1|ck1 |2

4πg2ωk1
. . .

∫
dkn|ckn |2

4πg2ωkn
(2π)2δ(2)(k1 + · · ·+ kn − P ) ,

where we ignored the initial-state factor, introduced the total initial momentum Pµ and

on-shell frequencies ω2
k = k2+m2. We use Fourier representation of the δ-function and find,

σn(P ) =
|A0|2

n!

∫
d2λ [f(λ)]n eiP ·λ , where f(λ) =

∫
dk |ck|2

4πg2ωk
e−ik·λ . (A.2)

If ck = cb does not depend on k,

f(λ) =
|cb|2

2πg2
K0(m

√
−λ2 + iελ0) .

Equation (A.2) shows that λ is a typical Compton wavelength of the final particles, λ ∼ k−1.

Summing up the n-particle contributions (A.2), we obtain eq. (2.7) of section 2.

In section 6 we consider the factorized amplitude (6.5) of the process 2→ n+ Ψrt. To

simplify summation over the final states in the inclusive cross section, we relate eq. (6.5)

to the ordinary 2 → n + m amplitudes. To this end we expand the exponent in the final

state (6.6) of our amplitude and obtain,

A′2→n+Ψrt
=
∞∑
m=0

1

m!

∫ dkn+1 c
∗
kn+1

4πgω
(+)
kn+1

. . .

∫ dkn+m c
∗
kn+m

4πgω
(+)
kn+m

A′2→n+m (2π)2δ(2)(P − Pf ) ,

(A.3)

where Pf is the total momentum of the (n+m)-particle final state. Next, we compare the

right-hand side of eq. (6.5) with eq. (A.3). Substituting φ = φrt into the wave functional

Ψd[φ] of a coherent state [28] with parameters dk e−iωktf , we find,

Ψd[φrt] ≡ 〈φ|Ψd〉 = exp

{∫
dk

dk c
∗
k e−ik·x0

4πg2ω
(+)
k

}
e−iE+t0 Ψ+[φrt] , (A.4)

where we extracted dependence on x0 as explained in section 6, used the form (6.4) of φrt,

took the limit tf → +∞· e−iε and introduced wave functional Ψ+ of the true vacuum. The
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final state Ψrt in section 6 has dk = ck, cf. eq. (6.6). Expanding the exponent in eq. (A.4)

and substituting the series into eq. (6.5), we find,

A′2→n+Ψrt
=
∞∑
m=0

1

m!

∫
dkn+1 |ckn+1 |2

4πg2ω
(+)
kn+1

. . .

∫
dkn+m |ckn+m |2

4πg2ω
(+)
kn+m

× A0

gn
ck1 . . . ckn (2π)2 δ(2)(P − Pf ) . (A.5)

Here we evaluated the integral over x0 and introduced A0 = Art Ψ∗+[φrt] b
∗
p1b
∗
p2/g

2. Com-

paring eqs. (A.3) and (A.5), one finds that the amplitudes A′2→n+m have the form (A.1).

We finally obtain the inclusive cross section (6.7) by summing up the n-particle ones

in eq. (A.2).

To process the dominant amplitude (7.3) of section 7, we do the opposite to the above,

i.e. combine the final states into the coherent states Ψd with parameters dk ≡ ck eik·y0 +δck,

where ck eik·y0 are the parameters of Ψrt and δck are arbitrary. We find,

A2→Ψd =

∞∑
n=0

1

n!

∫
dk1 δc

∗
k1

4πg ω
(+)
k1

. . .

∫
dkn δc

∗
kn

4πg ω
(+)
kn

A2→n+Ψrtf

= Art

∫
d2x0 Ψ∗d[φrt]

∫
dk1 dk2 δc

∗
k1
δc∗k2

16π2g2ω
(+)
k1
ω

(+)
k2

Dp1, k1 Dp2, k2 e−ix0·(q1+q2) . (A.6)

In the first line of this expression we expanded Ψd in δc using eq. (6.6), in the second

substituted eq. (7.3) and introduced wave functional Ψd[φrt], eq. (A.4).

Now, we evaluate the inclusive cross section

σ(E) =
1

V (2)

∫
Dd′Dd∗ A2→Ψd A

∗
2→Ψd′

exp

{
−
∫

dk d′k d
∗
k

4πg2ω
(+)
k

}
, (A.7)

where V (2) is the spacetime volume. First, we note that the amplitude (A.7) depends on

the arbitrary parameter y0. This is the freedom of choosing the background for expansion,

it disappears after resummation of perturbative series. We fix the freedom requiring

y0 = x′0 , y′0 = x0 , (A.8)

where y′0 and x′0 come from the complex conjugate amplitude (A.6) in the integral for the

inclusive cross section. Second, the parameters δc∗k in the prefactor can be obtained by

varying the exponent exp{
∫
dk αkδc

∗
k/(4πg

2ω
(+)
k )} with respect to α at α = 0. The integral

in eq. (A.7) therefore can be evaluated using the functional

Π[α , α′∗] =

∫
Dδc′Dδc∗ Ψ∗d[φrt] Ψd′ [φrt] exp

[∫
dk

4πg2ω
(+)
k

(αkδc
∗
k + α′∗k δc

′
k − d′k d∗k)

]

= e−iE+λ0 |Ψ+[φrt]|2 exp

[∫
dk

4πg2ω
(+)
k

(αkα
′∗
k + |ck|2 e−ik·λ)

]
, (A.9)
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where we denoted d′k ≡ ck eik·y
′
0 +δc′k, substituted eq. (A.4), evaluated the integrals over

δc∗, δc′ and denoted λ ≡ y0 − x0 = x′0 − x0. We see that variations over αk and α′∗k give

contraction rule for the final-state variables δck1 δc
∗
k2

= 4πg2ω
(+)
k δ(k1 − k2).

Substituting eqs. (A.6) and (A.9) into eq. (A.7), one obtains the inclusive cross sec-

tion (7.4) containing the integral over λ = x′0 − x0; integration with respect to (x0 + x′0)/2

gives the two-volume V (2) which is canceled in eq. (A.7).

B High-frequency tail of the semiclassical solution

Let us evaluate high-frequency asymptotics of the saddle-point solution φs(x). To this end

we represent φs(x) = φ0(x) + δφ(x) as a sum of soft nonlinear background φ0 and high-

frequency part δφ � φ0 evolving on top of it. Functions φ0 and δφ contain modes with

k < Λ and k > Λ, respectively. One rewrites the field equation as

�δφ(x) = J(x) , (B.1)

where J is a contribution of φ0 and δφ is ignored in potential terms. We solve eq. (B.1),

δφ(x) = −
∫

d2k

(2π)2

J(k) e−ik·x

k2 − iεk0
+

∫
k>Λ

dk

4πωk

[
ck e−ik·x +c∗k eik·x

]
, (B.2)

using the two-dimensional Fourier image of the source J(k) and arbitrary on-shell waves

in the second term with kµ = (ωk, k) and ωk = |k|. The solution (B.2) is real as t→ +∞
in accordance with eq. (3.2b). In the infinite past, i.e. t → iT − ∞, eq. (B.2) takes the

form (3.2c) with

ak = ck + J−k , b∗k = c∗k + J+
k , and J±k ≡ ±iJ(∓k)

∣∣
k0=ωk

. (B.3)

We finally solve the initial condition (3.2d) and obtain,

ck =
γk(J

+
k )∗ − J−k
1− γk

, γk ≡ e−2ωkT−θ . (B.4)

t∗

t′∗

J+
k

J−k

J−k

J+
k

t

Figure 14. Contours for J±
k .

Note that eq. (B.1) and its solution (B.2),

(B.4) are valid only at k > Λ� m.

One notices that the sources J±k are expo-

nentially sensitive to k. Indeed, the t-contours

in the Fourier transforms

J±k = ±i
∫
d2xJ(x) e∓ik·x

∣∣∣
k0=ωk

(B.5)

can be deformed into the upper and lower parts

of the complex time plane until they hit the

singularities t∗ and t′∗ of the solution,26 see fig-

ure 14. At large k the integrals receive the dom-

inant contribution near the singularities, and

J+
k ∼ J

+
0 e−iωkt∗ , J−k ∼ J

−
0 eiωkt

′
∗ (B.6)

where J±0 are constants.

26Recall that J(x) is related to φ0(x).
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We finally compute the energy of the initial particles with momentum k in eq. (3.3)

using eqs. (B.3), (B.4),

εk ≡
akb
∗
k

4π
=

|(J+
k )∗ − J−k |

2

16π sinh2(ωkT + θ/2)
, (B.7)

Estimating the largest term in the nominator by eq. (B.6), one obtains the high-frequency

asymptotic (4.3) with T∗ = T + min(− Im t∗, Im t′∗). Equation (B.7) obeys27 the rescaling

property (5.2) of section 5.
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