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1 Introduction

Theories with fundamental scalars usually suffer from a quadratic sensitivity to the ultra-

violet (UV) that leads to naturalness problems when hierarchically separated energy scales

are present. Historically this has motivated extensions of the Standard Model with either

new symmetries that protect the theory against short distance details (e.g. supersymmet-

ric models) or with an UV completion where the scalar particle is not fundamental (e.g.

technicolor (TC) models).
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The usual TC models were constructed in analogy with QCD and the Higgs was

identified with the elusive σ-meson. This interpretation is now excluded since the Higgs

was found to be light and narrow [1, 2]. However, it was also proposed in the 1980’s that

the Higgs boson could be a pseudo-Nambu-Goldstone (pNGB) composite state from the

spontaneous breaking of a global symmetry [3–6] (for a nice review, see [7]). The study of

effective theories of this sort eventually led to what is generically known as composite Higgs

(CH) models. CH models experienced a revival about a decade ago with their incorporation

into extra-dimensional theories in AdS spaces [8, 9].

Several CH models have been proposed recently and it is timely to explore what are the

requirements on the underlying theory that gives rise to these effective theories at low en-

ergies, generating the correct electroweak symmetry breaking (EWSB) scale and the Higgs

mass. Here we start exploring this question by describing a concrete non-supersymmetric

UV completion with the required low-energy properties (see also [10, 11]). A number of

supersymmetric UV completions of CH scenarios have also been proposed [12–14].

Implicit in much of the literature is the idea that the underlying physics involves strong

dynamics, which eventually triggers symmetry breaking and the formation of bound states.

One can then try to model these strong interactions as effective 4-fermion interactions and

study them in the context of the Nambu-Jona-Lasinio (NJL) framework. In the incarnation

studied in this paper one has three energy scales: a scale Λ associated with the mass of

heavy degrees of freedom that, when integrated out, generate the 4-fermion interactions

with strength G = O(1/Λ2) –we will sometimes refer to it as the compositeness scale; a

scale f associated with the breaking of a global symmetry through the vacuum expectation

value (vev) of an effective scalar field that generates Goldstone bosons; and finally v, the

scale of electroweak (EW) breaking that is generated through a 1-loop effective potential

from (small) effects that violate the global symmetry explicitly.

We are largely inspired by the seminal paper by Bardeen, Hill and Lindner [15] (see

also the early works [16–18]) who studied a model where the Higgs boson is a composite

state of top quarks, arising from 4-fermion top-quark interactions à la NJL [19, 20]. There,

a self-consistent solution of the gap equation with a nonzero 〈t̄t〉 condensate for a strong

enough coupling breaks a global symmetry SU(2)L × SU(2)R → SU(2)V generating the

Goldstone bosons that are absorbed by the EW gauge bosons in the usual symmetry

breaking mechanism, which in this case has an explicit custodial symmetry. The solution

to the gap equation determines the mass of the top quark and predicts a new composite

scalar particle, associated with the bound state of t̄t that is identified with the Higgs boson.

In the approximation where gauge loops are neglected, the Higgs mass is predicted to be

mh ≈ 1.32mt [15]. Moreover, at the scale Λ the scalar kinetic term approaches zero (the

“compositeness condition”), and hence the top Yukawa coupling reaches a Landau pole. It

turns out that this is only possible for a rather heavy top quark. In spite of its attractiveness

as a model of dynamical symmetry breaking without fundamental scalars, the most minimal

model fails since it gives both a too heavy top quarks and a too heavy Higgs boson.

Prior to the Higgs discovery, the problem with the top quark mass was solved in

models that include the top quark see-saw (TSS) mechanism [21, 22]. However, after the

2012 discovery we know that the Higgs boson is lighter than the top quark. As a result,
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the problem of too heavy a Higgs in NJL-type models (with a TSS) has been brought up

again recently. In particular, the idea to enlarge the pattern of global symmetry breaking

in order to realize the Higgs boson as a pNGB has been put forward in [23–28].

In this paper we consider a UV complete scenario that realizes the Higgs as a pNGB of

the symmetry breaking SO(5)→ SO(4). As is well-known [9] , this leads to a minimal set

of NGB’s while containing a custodial symmetry [29] and allowing for the “custodial pro-

tection” of the ZbLb̄L vertex [30]. We point out that four-fermion interactions, which may

easily arise from a renormalizable model, can naturally realize the above symmetry break-

ing pattern. This leads to simpler realizations than have been explored in the literature,

and goes beyond the CCWZ [31, 32] non-linear realizations of the symmetry employed in

most of the composite Higgs literature. We also show that the heavy spin-1 sector, which

would be responsible for cancelling the quadratic divergences in the Higgs mass parame-

ter due to the SM gauge bosons, arises quite naturally in this framework. In regards to

fermions, we focus on the top sector and proceed guided by the principle of minimality.

We find that the most minimal model is typically ruled out by electroweak precision tests

(EWPT) due to a negative 1-loop contribution to the Peskin-Takeuchi T -parameter [33].

However, a slightly extended version allows agreement with precision measurements. We

find that it is necessary to include a moderate amount of (soft) custodial breaking in the

BSM sector which, however, does not spoil the calculability implied by the custodial SO(4).

We also compute the dynamically generated Higgs potential, and explore the region of pa-

rameter space where the observed Higgs mass can be reproduced. It is interesting that the

presence of IR quasi-fixed points make the low-energy predictions largely insensitive to the

uncertainties associated with the underlying strong dynamics.

This paper is organized as follows. In section 2, we review the NJL symmetry breaking

mechanism as applied to the present SO(5) scenario. We remind the reader of the IR quasi-

fixed point that relates the fermion and (radial) scalar masses. We also present the minimal

fermionic sector that leads to a realistic low-energy field content, as well as other natural

extensions inspired by an analogy with models of partial compositeness (on which we also

comment). Spin-1 resonances are then introduced and shown to be naturally associated

with a “hidden local symmetry”.

Sections 3 and 4 are devoted to the dynamical breaking of the EW symmetry. This

arises from the explicit breaking of the SO(5) symmetry by the gauge interactions, as well

as by certain mass terms in the fermionic sector. Of particular note is that the SO(5)

breaking is not only soft (so that the quadratic sensitivity to the UV of the weak scale

is absent), but that there is a second IR quasi-fixed point that largely shields the low-

energy predictions from the UV details. We also study the interplay between EWSB and

EWPT. In section 5 we analyze the resulting tuning in our scenario, which itself depends

on a relatively small number of parameters. Interestingly, we find that although the new

resonances are typically in the TeV range, the theory could be technically natural due to a

nearby enhanced symmetry point. Finally, in section 6, we present a simple renormalizable

model that can serve as a UV completion to our present work, generating the necessary

four-fermion operators with the required SO(5) symmetry and in section 7 we present a

few comments on the expectations for present and future colliders within our scenario.

Section 8 contains our summary and conclusions.
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We also include a number of appendices. In appendix A we present details of the Fierz

rearrangements necessary to relate the renormalizable theory of section 6 and the SO(N)

NJL model. We summarize our SO(5) conventions in appendix B, while in appendix C we

provide a few technical details of the evaluation of the Higgs potential due to the spin-0,

spin-1/2 and spin-1 resonances. Finally, appendix D discusses a technical point related to

the IR divergences that appear when expanding the potential in powers of the Higgs vev,

and appendix E summarizes the RG equations that are used to establish the presence of

the IR quasi-fixed points mentioned above.

2 Description of the model

2.1 NJL breaking of SO(5)L ×U(1)X → SO(4)L ×U(1)X

The breaking of the global group G = SO(5)L×U(1)X can be achieved by strongly coupled

four-fermion operators along the lines of [19, 20]. The minimal fermionic field content to

achieve this breaking is comprised of a left handed 52
3
, denoted by FL, and a right-handed

12
3
, denoted by SR.1 The kinetic terms read thus

LF =
5∑
j=1

iF̄ jL/∂F
j
L + iS̄R /∂SR . (2.1)

This Lagrangian is actually accidentally invariant under the larger group G0 ≡ SU(5)L ×
U(1)L ×U(1)R, with SO(5)L ⊂ SU(5)L and U(1)X = [U(1)L ×U(1)R]diagonal, under which

FL transforms as a 52
3
,0 and SR as a 10,2

3
. However, while the fermionic fields decompose

under G0 → G simply as

52
3
,0 → 52

3
, 10,2

3
→ 12

3
, (2.2)

the decomposition of the composite scalar field S̄RFL is reducible

52
3
,−2

3
→ 50 + 50 , (2.3)

where the real and imaginary parts of S̄RFL form two different irreducible representations

of G. As a consequence it is possible to write down two four-fermion operators that are

separately invariant under G. They read

LS =
GS
2

(
Nc∑
a=1

S̄R,aF
i,a
L + F̄ iL,aS

a
R

)2

, L′S = −
G′S
2

(
Nc∑
a=1

S̄R,aF
i,a
L − F̄

i
L,aS

a
R

)2

, (2.4)

1The normalization of the U(1)X generators is chosen for later convenience, when we discuss the embed-

ding of the SM electroweak symmetry SU(2)L×U(1)Y ⊂ SO(5)L×U(1)X , and provide further details of the

fermionic sector necessary to reproduce the observed low-energy physics. In addition, we allow each of the

fermion fields to carry a color index, so that the symmetry of the theory will always contain an additional

SU(Nc) factor. This factor is understood to be weakly gauged and, with Nc = 3, will be identified with

the QCD interactions. We will assume that all fields are in the fundamental or singlet representations of

SU(Nc), depending on whether they are associated with the quarks or leptons of the SM. Except when

there could be some ambiguity in how the color indices are contracted, we will not display them explicitly.
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where, to avoid ambiguity, we also show the color index contractions (see footnote 1),

labeled by the index a. Such contractions will be implicitly understood from here on. For

GS = G′S the Lagrangian LS + L′S = 2GS |S̄RF iL|2 becomes indeed invariant under the

extended group G0, and hence GS 6= G′S parametrizes the explicit breaking G0 → G.

Whenever the four-fermion couplings GS orG′S are greater than some critical value [20],

the composites S̄RF
i
L become dynamical scalar fields that condense and break the global

symmetry. For both GS ≈ G′S super-critical, this would lead to additional light scalar

composites (in particular, a second Higgs doublet under SU(2)L). Here we effectively re-

strict ourselves to the minimal Lagrangian LS by imposing that only the coupling GS be

super-critical, while G′S is assumed to be sub-critical and does not give rise to any light

composites. In other words, the four-fermion interactions of LS lead to a spontaneous

symmetry breakdown (reviewed below) that produces light (p)NGB states, while the in-

teractions in L′S do not induce any such breaking. If G′S is not close to criticality, the

additional loosely bound fermion bilinears will have masses close to the cutoff, and it may

not even be appropriate to think of them as well-defined scalar resonances in their own

right. Thus, the assumption that GS is slightly larger than G′S , and close to criticality,

allows us to focus from the start on a minimal set of light degrees of freedom that are

relevant to the low-energy physics. We will present in section 6 a simple UV model that

realizes this picture. Alternatively, one could allow for the additional bound states from L′S
(or even from further four-fermion operators) and then add appropriate symmetry breaking

terms to the low-energy theory to make them sufficiently heavy. The latter is essentially

the approach taken in refs. [23, 27]. Note that in this second approach, in general, one

would need to take into account such intermediate thresholds to establish a connection be-

tween the low-energy theory and the theory at the UV scale Λ, where the physics is most

appropriately described by the four-fermion interactions discussed above. By assuming

that G′S is sub-critical, so that there are no such additional scalar states below Λ, a more

straightforward connection between the UV and IR can in principle be established.

We analyse now the theory described above following closely the methods described

in [15]. This will serve not only as a review, but will also allow us to point out the crucial

features that result when applied to our scenario.2 The first step is to rewrite the four-

fermion Lagrangian in terms of real scalar auxiliary fields Φi in the 50 representation of G as

LS = − 1

2GS
Φ2 − Φ(S̄RFL + h.c.) , (2.5)

which can be seen to be equivalent to the form given earlier after integrating out the

auxiliary scalar fields. The Lagrangian LF +LS generates, through fermion loops, a kinetic

term for Φ, thus making this field dynamical at scales sufficiently below the matching scale

Λ (at which eq. (2.5) holds). They also generate tachyonic corrections to the tree level Φ

mass, eventually leading to the spontaneous breaking of SO(5)L to its subgroup SO(4)L,

2One possibility is to perform an analysis based on the gap equation. Here we follow the alternate

approach based on the introduction of an effective scalar field Φ. The two approaches are equivalent in

the large N limit, but the latter allows to more easily introduce certain subleading 1/N effects, as well as

those from the (weak) SM gauging. It also gives rise more directly to a rather transparent physical picture.

See [15] for further details.
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which we identify with the SU(2)L×SU(2)R symmetry group of the SM (in the limit that the

hypercharge and Yukawa couplings are turned off). The Goldstone bosons of this breaking

transform in a 4 of SO(4)L and hence can be identified with the SM Higgs field. We

will trade the scalar mass parameter for the physical symmetry breaking scale f̂2 = 〈Φ〉2.

Finally, fermion loops also generate a quartic self coupling, so that at low energies LS reads

L̃S =
1

2
(∂µΦ)2 − 1

4
λ
(

Φ2 − f̂2
)2
− ξΦ (S̄RFL + h.c.) , (2.6)

where the Yukawa coupling ξ appears after canonical normalization (we do not change the

name for Φ for notational simplicity). The fact that the kinetic term for Φ vanishes at Λ

is equivalent to saying that ξ reaches a Landau pole at that scale, a condition also known

as the compositeness boundary condition.3

In the NJL model, the quartic self coupling λ is a prediction due to an IR quasi-fixed

point for the quantity λ/ξ2 [15]. Indeed, in the SO(N) NJL model, we find

16π2βξ2 = (4Nc +N + 5)ξ4 ,

16π2βλ = 2(N + 8)λ2 − 8Ncξ
4 + 8Ncξ

2λ , (2.7)

which possess an IR stable fixed point at

λ = a∗ξ2 , (2.8)

where (for Nc = 3 and N = 5) a∗ = 12
13 ≈ 0.92.4 While this type of fixed point is present in

any scalar-fermion system (even in the SM [34]), the compositeness condition – i.e. the fact

that ξ is strong in the UV – guarantees that this fixed point is reached rapidly in the IR.

A mild correction to this fixed point behavior is induced by nonzero gauge couplings. We

illustrate the effect of QCD corrections in figure 1 (see appendix E for the RG equations

that include the QCD effects). Remarkably, the theory remains completely predictive even

in the presence of gauge corrections, in the sense that the IR value for λ is still fully

determined from the IR value of ξ (see the solid blue line in the figure). Notice that the

QCD corrections are numerically small, for instance a∗(ξ = 2) ≈ 0.86, compared to the

fixed-point value of eqs. (2.7), a∗ ≈ 0.92.

The SO(5) basis employed so far simplifies the description of the global symmetry

breaking, but the SM quantum numbers of the fields are not manifest. For the remainder

of this paper we thus switch to a different basis defined as

(
Q1
L, Q

2
L

)
≡ 1√

2

(
F 4
L + iF 3

L F 2
L + iF 1

L

−F 2
L + iF 1

L F
4
L − iF 3

L

)
, SL ≡ F 5

L . (2.9)

3For completeness, we remind the reader that Φ becomes tachyonic provided GSΛ2 is larger than a

certain critical value. Here we trade Λ (where ξ diverges) in favor of the low-energy value of ξ, while GS
is traded for the symmetry breaking scale f . As a result, we do not need to know GS except for the

assumption that it should be above criticality.
4There is also a UV fixed point at a∗ = −1. In order to reach the IR fixed point one must have λ/ξ2 > −1

at the scale Λ.
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2

Figure 1. RG flow of the couplings λ and ξ. The dashed line is the exact IR fixed point a∗ = 12/13

that is reached in the absence of gauge interactions. QCD corrections introduce a mild dependence

a∗(ξ) represented by the solid blue line. The thin red lines are examples of trajectories, with the

distance between the dots corresponding to one e-fold of running. For simplicity, we neglect the

running of the strong coupling constant.

where Q1
L and Q2

L transform under SU(2)L × U(1)Y ⊂ SO(5)L × U(1)X as 21
6

and 27
6

respectively, and SL (as well as SR) as 12
3
.5 Thus, the first doublet Q1

L has the same

quantum numbers of the left-handed top-bottom doublet, while the second doublet Q2
L has

the exotic hypercharge 7
6 . The vector-like singlet (SL, SR) has the same quantum numbers

as the right handed top. In order to obtain a chiral spectrum which at low energies contains

just a left handed 21
6

(to be identified with the SM (tL, bL) doublet) and a right-handed

12
3

(to be identified as the SM tR) we will have to introduce more states in incomplete G

multiplets. We will describe the top sector in detail in section 2.2, and continue focusing

in this section on the minimal content required to achieve the dynamical breaking above.

In the new basis, the scalar sector becomes

(
φ̃, φ

)
≡ 1√

2

(
Φ4 + iΦ3 Φ2 + iΦ1

−Φ2 + iΦ1 Φ4 − iΦ3

)
, φ5 ≡ Φ5 (2.10)

where φ transforms in 21
2

and φ̃ as 2−1
2

of SU(2)L × U(1)Y . The reality property Φ∗ = Φ

translates into the well-known relation φ∗ = −iσ2φ̃. In this basis, the Yukawa Lagrangian

in eq. (2.5) reads

LS = − 1

GS
φ†φ− 1

2GS
φ2

5 − (Q̄1
LSRφ̃+ Q̄2

LSRφ+ h.c.)− S̄Sφ5 , (2.11)

5See appendix B, where we summarize the conventions for the two different SO(5) bases, as well as the

embedding of SU(2)L ×U(1)Y ⊂ SO(5)L ×U(1)X .
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while at sufficiently low-energies, where a sizable kinetic term for Φ has been radiatively

generated, together with quartic scalar self-interactions, the Lagrangian in eq. (2.6) reads

L̃S = (∂µφ)2 +
1

2
(∂µφ5)2 − 1

4
λ
(

2φ2 + φ2
5 − f̂2

)2

− ξ
[
(Q̄1

LSRφ̃+ Q̄2
LSRφ+ h.c.)− S̄Sφ5

]
. (2.12)

When 〈φ5〉 = f̂ (and 〈φ〉 = 0) , the breaking SO(5)L → SO(4)L ensues, generating four

NGB’s that transform as a doublet of SU(2)L and can thus be identified with the SM Higgs

field. These G/H Goldstone bosons are parameterized by introducing a unitary matrix U as

Φ̂ = HUe5 , (2.13)

where Φ̂ = (φ̃, φ, φ5)T and e5 is the unit vector pointing along the φ5 direction.

We have introduced here the real scalar SM singlet H that we will refer to as the radial

mode in the following, and that acquires the vacuum expectation value 〈H〉 = f̂ . At the

IR quasi-fixed point one has

m2
H = 2λf̂2 = 2a∗ξ2f̂2 , (2.14)

and the mass of the radial mode becomes a prediction of the model once the dynamical

fermion mass mf = ξf̂ is fixed. The situation is of course completely analogous to the

relation between the Higgs and top masses in the seminal paper [15], where the Higgs

boson was identified with the radial mode.

Radiative effects arising from small explicit SO(5)L symmetry breaking terms can lead

to a vacuum that is slightly misaligned with the vacuum above, in which case the EW

symmetry will be spontaneously broken. Such a misalignment can be parametrized by an

angle sv � 1 between 〈Φ̂〉 and f̂ e5 = (0, 0, 0, 0, f̂), so that there is a separation of scales

between the EW scale and f̂ (further details will be discussed later). In this case

〈φ̃〉 =
1√
2

(
sv

0

)
f̂ , 〈φ〉 =

1√
2

(
0

sv

)
f̂ , 〈φ5〉 = cvf̂ . (2.15)

The particle content introduced so far allows for precisely one fermion mass term that

is invariant under the SM gauge symmetries,

Lmass,0
F = − µSSS̄S . (2.16)

It preserves only the subgroup SO(4)L and hence violates explicitly the global SO(5)L sym-

metry. It is the analogue of current quark masses in models of chiral symmetry breaking.

Such a term is in fact easily seen to be equivalent to a tadpole term for the scalar field φ5,

via the field redefinition φ5 → φ5−µSS in eq. (2.11) together with (2.16), which eliminates

the mass term and instead generates the tadpole term (see also ref. [23])

LT =
µSS
GS

φ5 . (2.17)
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We define τ ≡ ξµSS/GS , which is the relevant tadpole term after canonical normalization

as in eq. (2.6). We will see that although EWSB can be achieved without such a term, the

measured value for the Higgs mass can typically only be reproduced for µSS 6= 0. We note

that for fixed symmetry breaking scale f̂ , the mass of the radial mode changes to

m2
H = 2a∗ξ2f̂2 +

τ

f̂
. (2.18)

We will see later that this correction is rather small, and the mass is well approximated by

the leading term, eq. (2.14).

2.2 The top sector and partial compositeness

We now complete the model to include a realistic top sector by means of the TSS mech-

anism [21]. This bears some resemblance to the partially composite top models typically

introduced in the recent CH literature [35–43]; a more complete set of references to the

rather extensive literature can be found in the recent review [44]. We will explicitly make

the connection between the two approaches, but one should keep in mind that in our case

all fermions are elementary, and the distinction between “composite” and “elementary” is

purely formal.

The fermionic sector of the model so far contains a chiral doublet with the quantum

numbers of the left-handed top-bottom, an exotic (chiral) left-handed doublet of hyper-

charge 7
6 , and a vector-like right handed top. It is manifestly symmetric under the global

group G [and in particular contains an unbroken custodial SO(4)L], but does not reduce to

the SM top sector at low energies. The minimal solution is to introduce the right handed

fields Q2
R and tR with EW quantum numbers 27

6
and 12

3
respectively, and write the soft

G-breaking mass mixing terms:

Lmass,1
F = − µ′QQQ̄2

LQ
2
R − µtSS̄LtR + h.c. (2.19)

In particular, no new dimensionless G-breaking couplings are introduced.6 One notices that

our model thus naturally realizes the TSS mechanism, in which the top Yukawa coupling

arises only after integrating out the heavy vector-like top S [21].

To leading order in s2
v — the misalignment angle that parameterizes EWSB — the

approximate mass eigenvalues in the fermionic sector of this “minimal” model are given by

m2
S = ξ2f̂2 + µ2

tS , m′2Q = µ′2QQ , m2
t =

s2
v

2

ξ2f̂2 µ2
tS

m2
S

. (2.20)

Subleading corrections will in particular split the charge 2
3 from the charge 5

3 states in Q2.

These eigenvalues are not changed by the tadpole term, which only redefines f̂ .

A (formally) very similar concept to the TSS mechanism is partial compositeness (PC)

of the top quark (see [45] for an early model and [46] for a modern view). One distinguishes

a G-symmetric (or at least H-symmetric) sector, made up of “composite” fermions, coupled

6Unlike the mass terms in eq. (2.16) the operators in eq. (2.19) are not equivalent to tadpole terms, as

tR and Q2
R are not part of the condensate.
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scalar constituents

Fermion Q1
L Q2

L SL SR Q1
R Q2

R qL tR

G = SO(5)L ×U(1)X 52
3

12
3

- - -

H = SO(4)×U(1)X (2,2)2
3

12
3

1 2
3

(2,2)2
3

- -

SU(2)L ×U(1)Y 21
6

27
6

12
3

12
3

21
6

27
6

21
6

12
3

“composite” “elementary”

Table 1. Quantum numbers of the top sector of the model, and its relation to the PC picture.

The RH composite sector can be made fully G symmetric by adding another vector-like H singlet

(see main text). The state (qL, Q
1
R) can be decoupled by a large mixing mass µqQ. The “scalar

constituents” are those that lead to light scalar bound states.

via mass mixing terms to a set of “elementary” fermions that do not come in complete

G multiplets. The latter, in particular, do not possess direct Yukawa couplings to the

composite Higgs. In this last sense, one could formally refer to the fields Q1
L, Q2

L, SL
and SR in our setup as “composite”, and the fields Q2

R, tR as “elementary”. However, the

connection to other CH constructions based on partial compositeness still would seem to be

imperfect, since in such CH models the elementary sector typically consists of just the SM

fermions, and (consequently) the composite sector is entirely vectorlike. The connection

of our setup to other CH models recently considered in the literature can be made more

direct by adding the 21
6

states qL and Q1
R. With such a field content one could label tR

and qL as “elementary”, with all other states labeled as “composite”. The field content

just described is summarized in table 1. The composite sector allows now for a global

symmetry SO(4)L × SO(4)R, where (Q1
L, Q

2
L) transform as (4,1), (Q1

R, Q
2
R) transform as

(1,4) and all other fields transform as singlets. This symmetry is broken softly by mass

terms such as eq. (2.19) or mass terms of the form:

Lmass,2
F = − µQQ Q̄1

LQ
1
R − µqQ q̄LQ1

R . (2.21)

For µQQ = µ′QQ, the composite sector has an exact custodial H ≡ SO(4) = [SO(4)L ×
SO(4)R]diagonal global symmetry, that is only broken by mixing with the elementary fields

qL and tR. Taking µQQ 6= µ′QQ then corresponds to (soft) custodial breaking in the com-

posite sector, which as we will see can be of phenomenological importance. Note that

eqs. (2.16), (2.19) and (2.21) are the most general mass terms consistent with SU(2)L ×
U(1)Y , given the field content of table 1.

The approximate spectrum of the “extended” model is then given by eqs. (2.20) but

with the top mass modified to

m2
t =

s2
v

2

ξ2f̂2 µ2
tSµ

2
qQ

m2
Sm

2
Q

, (2.22)
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[due to the additional masses in eq. (2.21)], together with an additional state with approx-

imate mass

m2
Q = µ2

QQ + µ2
qQ . (2.23)

The minimal model discussed at the beginning of this section can be recovered in the limit

µqQ → ∞, and in PC language it features a “mostly composite LH top”. Note that one

can make the connection to other CH models even sharper by adding a vector-like SU(2)L
singlet (S′L, S

′
R) so that ΨL = (Q1

L, Q
2
L, SL) and ΨR = (Q1

R, Q
2
R, S

′
R) transform as a vector-

like 5 of SO(5), with (SR, S
′
L) a vector-like SO(5) singlet: in this scenario the “composite

sector” is explicitly SO(5) [and not only SO(4)] invariant, the symmetry being reduced

from SU(5) down to SO(5) due to the 4-fermion interactions discussed in the previous

section. Writing a mass term for (S′L, S
′
R) breaks this SO(5) symmetry softly and allows

to decouple these additional states. We therefore see that the minimal or extended models

can be obtained from a softly broken SO(5) invariant composite sector in an appropriate

limit, which still leaves the SO(5)L symmetry discussed in subsection 2.1 untouched.

We will examine the “minimal” model with just the states (Q1
L, Q

2
L, SL), SR, Q2

R

and tR, with the symmetry breaking Lagrangian (2.19), as well as the “extended” model

with the additional Q1
R, qL and the symmetry breaking Lagrangian eq. (2.21). While it

is possible to achieve realistic electroweak breaking within the minimal model, we always

find a negative contribution to the T parameter which makes compatibility with EWPT

challenging. The extended model on the other hand does not suffer from this problem. We

will not analyze the “fully SO(5) invariant model” that includes also the states (S′L, S
′
R)

discussed above, since it does not introduce a qualitatively new feature compared to the

extended model (which itself allows to introduce a controlled amount of custodial breaking

that is not present in the minimal model). Before analyzing these points in more detail,

we will discuss the spin-1 sector of the NJL scenario.

2.3 The spin-1 sector

In this section we turn to the composite vector resonances that are predicted within our

model. The latter appear very naturally as gauge-bosons of a hidden local symmetry [47].

Modeling the spin-1 resonances allows us to understand how the loop contributions to the

(dynamically generated) Higgs potential are cut off by these heavy states.

One first notices that the NGB’s defined by eq. (2.13) can be eliminated from the

Yukawa couplings in eq. (2.12) by a fermionic field redefinition of the form(
QL

SL

)
= UL

(
QL
SL

)
, SR = UR SR , (2.24)

with Ue5 = ULe5U
†
R, and QL = (Q1

L, Q
2
L)T , QL = (Q1

L,Q2
L)T . One obvious possibility is

the choice

UL = U , UR = 1 . (2.25)

However, this choice is ambiguous up to a local HHLS ≡ SO(4) × U(1)X transformation

that acts on UL and UR from the right.7 This ambiguity defines a so-called Hidden Local

7In addition, the fields UL,R transform under the full global group G acting from the left.
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Symmetry (HLS) [47] and eq. (2.25) corresponds to the unitary gauge. Notice that outside

the unitary gauge, the matrix UL and the phase UR also contain the NGB’s of the HLS. It

is furthermore convenient to parameterize UR and UL by U1 and U5 defined as8

UR ≡ (U1)
2
3 , UL ≡ U5(U1)

2
3 . (2.26)

The field U1 transforms under U(1)X with unit charge and the field U5 is an element of

SO(5) only.

We will refer to the basis defined in eq. (2.24) as the HLS basis and denote its fields

with calligraphic letters. Note that these fields transform as singlets of the global group G

but transform non-trivially under HHLS.9 The only fields that transform under G are the

NGB’s in U5 and U1. After the above transformation, one obtains

LF = i(Q̄L, S̄L)γµ
(
∂µ + U †5∂µU5 + qXU

†
1∂µU1

)(QL
SL

)
+ iS̄Rγµ

(
∂µ + qXU

†
1∂µU1

)
SR ,

(2.27)

where qX = 2
3 , and

LS = − 1

2GS
H2 −H S̄S . (2.28)

The Cartan connections appearing in LF ensure that the Lagrangian is fully invariant under

the gauge symmetry HHLS. We will see now that they will become dynamical composite

gauge fields, in full analogy to the scalar composites above.

In addition to the scalar four-fermion channels, we add the corresponding vector chan-

nels

LV = − Gρ
2

(JAµ)2 − GX
2

(JX µ)2 , (2.29)

with the conserved SO(5)L and U(1)X currents10

JAµ = (Q̄L, S̄L)TAγµ

(
QL

SL

)
, JX µ = qX(Q̄Lγ

µQL + S̄Lγ
µSL + S̄Rγ

µSR) . (2.30)

In full analogy to the scalar Lagrangian LS , we now introduce spin-1 auxiliary fields

LV =
1

2Gρ
(AAµ )2 +

1

2GX
(AXµ )2 +AAµJ

Aµ +AXµ J
Xµ . (2.31)

In the HLS basis, eq. (2.24), it is then natural to define new vector fields

AAµ = [U †5(Aµ + i∂µ)U5]A ,

8Notice that the U(1)X parts of UL and UR must coincide, as they transform identically under the

Abelian part of HHLS, i.e. formally we have [U†L∂µUL]X = U†R∂µUR = 2
3
U†1∂µU1.

9The construction of this section could be generalized to the “full SO(5) symmetric” model discussed at

the end of section 2.2, from which the minimal and extended models can be obtained after decoupling certain

states. For instance, using the notation of eq. (2.24), one could rotate (QR, S
′
R)T = UL(QR,S ′R)T , while leav-

ing the “elementary” qL and tR unchanged. For simplicity, we do not keep track of these fields in this section.
10The normalization of the generators is tr TATB = δAB .
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AXµ = AXµ + iU †1∂µU1 . (2.32)

Indeed, one checks that the definitions eq. (2.32) are precisely the connections cou-

pling to the fermions, and hence define their covariant derivatives in the HLS basis [see

eqs. (2.27), (2.31)]:

Dµ = ∂µ − i TAAAµ − i qXAXµ . (2.33)

Denoting the SO(4)L-generators by T a and the SO(5)L/SO(4)L generators by T â (see

appendix B), observe that only (Aaµ,AXµ ) transform as gauge fields of HHLS while Aâµ
transform homogeneously.

At the UV matching scale, Λ, one ends up with the Lagrangian

LF + LS + LV = i(Q̄L, S̄L) /D

(
QL
SL

)
+ iS̄R /DSR −

1

2GS
H2 −H S̄S

+
1

2Gρ

(
AAµ − i[U

†
5∂µU5]A

)2
+

1

2GX

(
AXµ − i U

†
1∂µU1

)2
. (2.34)

The gauging of the EW subgroup of G proceeds by the substitution ∂µU1,5 → DSM
µ U1,5

(no other fields transforms under G), with

DSM
µ U5 =

[
∂µ − iwiLµT iL − ibµT 3

R

]
U5 ,

DSM
µ U1 = (∂µ − ibµ)U1 , (2.35)

where T iL (i = 1,2,3) are the SU(2)L generators and T 3
R is the third isospin generator of

SU(2)R [see eq. (B.3)]. One also introduces the kinetic terms

LG = − 1

4g2
0

(waµν)2 − 1

4g′20
(bµν)2 . (2.36)

RG running induces kinetic terms for Aµ and H,

LK = − 1

4g2
ρ

(FVµν)2 − 1

4g2
X

(FXµν)2 − 1

2
(∇µH)2 , (2.37)

with

∇µH = (∂µ − iAâµ T â)e5H , (2.38)

and where we normalized canonically the field H in full analogy to eqs. (2.6) or (2.12), but

kept a convenient non-canonical normalization for the spin-1 fields.

Putting all the ingredients together, the Lagrangian of the model reads

L = i(Q̄L, S̄L) /D

(
QL
SL

)
+ iS̄R /DSR +

1

2
(∇µH)2 − 1

4
λ
(
H2 − f̂2

)2
− ξH S̄S

+
1

4
f2
ρ

(
AAµ − i[U

†
5D

SM
µ U5]A

)2
+

1

4
f2
X

(
AXµ − i U

†
1D

SM
µ U1

)2
(2.39)

− 1

4g2
ρ

(FVµν)2 − 1

4g2
X

(FXµν)2 − 1

4g2
0

(waµν)2 − 1

4g′20
(bµν)2 ,
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together with eqs. (2.33), (2.35) and (2.38).11 For later convenience, we introduced the

decay constants f2
ρ = 2G−1

ρ and f2
X = 2G−1

X of the SO(5)L and U(1)X resonances, respec-

tively. The physical NGB decay constant f is then obtained after integrating out the coset

resonances and is given by

f−2 = f̂−2 + f−2
ρ . (2.40)

The physical spin-1 masses (before EWSB) are given by

m2
ρ =

g2
ρf

2
ρ

2
, m2

a = r−1
v m2

ρ , m2
X =

g2
Xf

2
X

2
, where rv ≡

f2

f̂2
< 1 , (2.41)

where the index ρ denotes the SO(4)L resonances and the index a the SO(5)L/SO(4)L
ones. The remaining spin-1 states are massless in this approximation and can be identified

with the SM gauge bosons. The corresponding gauge couplings are given in terms of the

fundamental parameters by 1/g2 = 1/g2
0 + 1/g2

ρ and 1/g′2 = 1/g′20 + 1/g2
ρ + 1/g2

X .

In a large part of the literature on NJL models, the couplings gρ and ξ are studied in

the so-called fermion loop approximation, in which only the planar fermion loops — leading

in the number of fermion colors Nc — are kept [48]. In this case, the beta functions are

one-loop only, and in particular are positive, hence rapidly decreasing the couplings ξ, gρ in

the IR. This allows one to conclude that the compositeness boundary condition ξ, gρ = 4π

at a UV scale Λ can indeed be consistent with relatively weakly coupled states gρ, ξ � 4π

with masses below the compositeness scale Λ. The real-world value of the number of colors

being Nc = 3, the validity of this approximation is far from obvious.

As it turns out, there is a fundamental difference in the RG running of the nonabelian

coupling gρ and the Yukawa coupling ξ once the diagrams subleading in Nc are included

(such as loops of the actual composite states H and AV ). While the full 1-loop contribution

to βξ remains positive, the one for βgρ switches sign due to the negative contribution of

the gauge self interactions, gρ, at least for Nc = 3 and large enough global groups such as

SO(5). Since beyond the large Nc approximation we would in principle need to take into

account higher loop contributions (at least near Λ where ξ, gρ ∼ 4π), one cannot reach any

safe conclusion as to whether any composite states AVµ below Λ are present or not.

To shed more light on this issue, it is useful to imagine there was such a relatively

weakly coupled state gρ � 4π with mass mV � Λ. Then the β function can safely be

approximated by its one-loop value, and evolving the coupling gρ towards the UV will

further decrease it. One would tend to conclude that a compositeness boundary condition

gρ = 4π can never be reached. However, the Yukawa couplings will start increasing and

will eventually impact the running of gρ via higher-loop effects. Similarly, the NGB that

make up the longitudinal components of the spin-one resonances are expected to become

strongly coupled in the UV, triggering a breakdown of perturbative unitarity. Although this

is expected to happen only near the compositeness scale (that we might define as ξ(Λ) = 4π

in this case) it cannot be said with certainty if these effects are able to sufficiently increase

gρ to allow for a compositeness boundary condition at such scales.

11It only remains to add terms associated with the fermionic extension as well as the soft-breaking terms

in eqs. (2.19) or (2.21), as discussed in section 2.2 and footnotes 9 and 10.
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In conclusion, the IR value for gρ — unlike the coupling ξ — cannot be predicted. We

will leave it as a completely free parameter of the model, keeping in mind the possibility

that the composite states AV could be strongly coupled with a mass near the cutoff.12 We

will see that unless gρ is very close to 4π, our predictions depend very little on its precise

value. In practice we can simply ignore the RG running of all couplings in the UV and

trade the value of the UV scale Λ for the the IR value of ξ. The scalar self coupling λ

remains predicted due to the IR quasi-fixed point.

Before closing this section, we comment on two further aspects directly connected to

the spin-1 sector.

Connection to 2-site models. Interestingly, our Lagrangian eq. (2.39) is equivalent to

a two-site model. Recall that a two-site model is defined as follows. The first site has global

group G0 = SO(5) of which only the SM subgroup is gauged.13 On the second site one

introduces a CCWZ [31, 32] type breaking of the group G1 = SO(5) to H1 = SO(4), pa-

rameterized by a field Φ. The two sites interact via link fields, Ω, which transform in the bi-

fundamental ofG0×G1. Focusing on the spin-1 part, the Lagrangian is thus given by [49, 50]

L = − 1

4g2
0

tr(F 0
µν)2 − 1

4g2
1

tr(F 1
µν)2 +

f2
1

2
trDµΩ†DµΩ +

1

2
|DµΦ|2 . (2.42)

The covariant derivatives are

DµΩ = ∂µΩ− iA0
µΩ + iΩA1

µ , (2.43)

DµΦ = ∂µΦ− iA1
µΦ , (2.44)

where A0 are the “elementary” gauge fields and A1 the composite ones. In the last term

of eq. (2.42), Φ = f̂ Ũe5 accomplishes the breaking G1 → H1. The matrix Ũ contains the

Goldstone bosons of this breaking on the second site, while the link field Ω contains the

NGB of the breaking to G = (G0 × G1)diagonal. Going to the gauge Ũ = 1 we precisely

recover our Lagrangian with the identifications

Ω = U5 , f2
1 = f2

ρ , g1 = gρ . (2.45)

Finally, we point out that the Lagrangian of eq. (2.42) (and hence the spin-1 sector

of our model) is actually equivalent to the most general, left-right symmetric Lagrangian

of one complete set of G resonances, if and only if the spin-1 sum rules in eqs. (3.13) and

(3.14) of [51] hold.

Tree-level S-parameter from the vector resonances. One of the most sensitive

constraints on any composite Higgs model comes from the electroweak S parameter, and

its largest contribution is provided by the spin-1 resonances. Since our spin-1 sector is

12It is worth noticing that the running of the Abelian coupling gX does not suffer from this issue, and

can be computed reliably.
13For simplicity, we omit in this discussion the U(1)X factors.
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quite general and basically the same as in any composite Higgs model, it is worthwhile to

consider at this stage the constraints implied by S. It can be computed as (see appendix C)

S = −16πΠ′3B(0) = 4πs2
vf

2

(
1

m2
ρ

+
1

m2
a

)
= 8πs2

v

1− r2
v

g2
ρ

(2.46)

Using the most recent oblique fit (with U = 0) [52]

S = 0.06± 0.09 , T = 0.1± 0.07 (2.47)

with a correlation of ρ = 0.91, one can place bounds on the parameters. At T = 0 the

95% C.L. interval for S is [−0.13, 0.017], while the SM point S = T = 0 roughly sits on the

90% C.L. contour. For rv = 0.5 we find that gρ = 3 (6) requires f & 2.7 (1.3) TeV. These

bounds can be alleviated (made worse) if quantum corrections yield negative (positive)

contributions to S or positive (negative) contributions to T .

2.4 Parameter space of the model

The parameter space of the model is spanned by the couplings ξ, gρ, the symmetry breaking

VEV f̂ , the NGB decay constant f and the fermionic mass parameters µQQ, µ′QQ, µtS and

µqQ.14 These are eight parameters that can be expressed in terms of the masses mS , mQ,

m′Q, mρ, ma, and mt and two mixing angles:

sR ≡
µtS
mS

, sL ≡
µqQ
mQ

, sL,R = sinαL,R . (2.48)

The mass of the radial mode can be expressed in terms of these parameters as

mH =
√

2a∗ cRmS . (2.49)

Since we have two conditions from electroweak breaking, we can eliminate the angles sL,

sR, and the radial mass will be a prediction in terms of the other masses alone. Moreover,

the electroweak splitting for the doublets will also be predicted.

Note that the mass condition for the top quark in eq. (2.22) in this parametrization

reads

mt =
mS√

2
svsLsRcR , (2.50)

which in particular implies the inequality

mS ≥ 2 ytf , (2.51)

where we used that the gauge boson masses determine sv = vSM/f with vSM = 246 GeV.

We will often use the notation

rv ≡
m2
ρ

m2
a

, rf ≡
m2
Q

m2
S

, r′f ≡
m′2Q
m2
S

, (2.52)

to denote ratios of the various masses.
14We will analyze first the case where the tadpole term τ vanishes, and only include this parameter at a

second stage in our analysis. Also, as we show in appendix C.1, when g2
X � g′20 the U(1)X spin-1 resonance

induces only minor effects.
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3 Remarks about the pNGB effective potential

One of the interesting features of the previous construction is that the Higgs boson appears

quite explicitly as a bound state of fermions, and that its potential is generated dynamically.

Since the Higgs is a pNGB of the breaking SO(5)→ SO(4), the generated potential must be

proportional to the couplings that break SO(5) explicitly. In the spin-1 sector, the breaking

arises from the gauging of the SM subgroup (hence the effects are proportional to g and g′).
In the fermionic sector, the parameters that break the SO(5) symmetry are µtS , µQQ and

µ′QQ.15 Note that the explicit breaking in the fermionic sector is soft. As we will see, at

1-loop order, the dominant effects are proportional to a certain combination of the previous

parameters, such that when µtS = µQQ = µ′QQ and the SO(5) symmetry is restored, the

corresponding contributions vanish. One attractive feature of many recent pNGB Higgs

constructions is that the explicit breaking of the underlying symmetry whose spontaneous

breaking leads to the pNGB’s is “super-soft”, i.e. it causes the Higgs potential to depend

little or not at all on the details of the UV completion, resulting in a completely predictive

model of EWSB.16 We will see that this holds true in our case, due to an interesting twist

that is due to the RG running above the symmetry breaking scale.

Due to the shift-symmetry, the effective potential depends on the angular variable

sh = sin(h/f). We give general formulas and analytic approximations for our setup in

appendix C. In this section we simply highlight the main ingredients. If one formally

expands the potential in powers of sh, one has the parameterization

V = −α
2
s2
h +

β

4
s4
h +O(s6

h) , (3.1)

where, as mentioned above, the explicit breaking of the global SO(5) symmetry generates

nonzero values for α and β. As discussed in appendix D, the naive expansion of the

potential in powers of sh introduces a logarithmic IR divergence in β. A more careful

analysis shows that this divergence is roughly cut by the W or top masses, but the details

of how this happens are not very important for the following discussion.

We start with the contributions to α and β from fermion loops. As it turns out, the

top sector introduced in section 2.2 is not enough to render the top-loop contribution to

the NGB potential completely finite. However, the UV sensitivity is softened and only a

logarithmic divergence of the Higgs mass remains. This fact can easily be understood as

follows. Let us parameterize a SO(5)L violating mass splitting in the Higgs potential as

Lmass = −1

2
m2

1|φ5|2 −m2
4|φ2| = −1

2
m2

1

(
|φ5|2 + 2|φ|2

)
− δm2 |φ|2 (3.2)

The renormalization of the universal SO(5)L symmetric mass operator φ2
5 + 2|φ|2 = H2

is quadratically divergent, but contains no NGB’s. To renormalize the SO(5)L violating

(NGB-dependent) mass operator 2|φ|2 = H2s2
h, one needs two fermionic, SO(5)L violating

15In the extended model, there can also exist contributions proportional to µqQ. These are finite.
16In N-site models, the potential is finite up to a fixed order in the loop expansion. Often, sensitivity to

the UV physics at the scale Λ can be introduced at sufficiently high order. In extra-dimensional construction

the Higgs potential is finite due to locality in the extra-dimension.
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φ Qi
L

Qi
R

Qi
L φ†

SR

φ5 SL

tR

SL φ5

SR

Figure 2. Logarithmically divergent diagrams contributing to the running of the operators 2|φ|2 =

H2s2
h (left) and φ2

5 = H2c2h (right).

mass insertions as shown in figure 2, thus reducing the divergence to a logarithmic one. By

an analogous argument one can easily see that the one-loop renormalization of operators

quartic in φ and φ5 other than the SO(5)L symmetric one are completely finite. The

logarithmic divergence for δm2 is proportional to the combination of mass insertions

µ2
eff ≡ 2µ2

tS − µ2
QQ − µ′2QQ , (3.3)

where the various masses were defined in eqs. (2.19) and (2.21). A vanishing of this quantity

would indicate a softer (actually finite) UV behavior, similar to the general sum-rules found

in ref. [51]. However, we will not assume µeff = 0 in this paper. As a consequence, we are

forced to introduce a counterterm for the mass splitting δm2. Once such a counterterm is

introduced, it also receives multiplicative (logarithmically divergent) renormalization from

scalar loops.

A major point that we would like to stress is that, remarkably, the introduction of a

counterterm for the mass squared of the Goldstone boson does not reduce the predictivity

of our model. The reason is similar to the prediction of the quartic self-coupling in terms

of the Yukawa coupling that we encountered in section 2.1. In fact, in the absence of gauge

interactions, the RG-equations for µeff and the NGB mass δm2 are

βµ2
eff

=
ξ2

16π2
µ2

eff , βδm2 =
3ξ2

4π2
µ2

eff +
λ+ 3ξ2

4π2
δm2 . (3.4)

The coupling µeff only runs due to the anomalous dimension of the left handed fields,

eq. (E.1), while δm2 contains the above mentioned logarithmically divergent fermion and

scalar contributions. The crucial observation is that the system in eq. (3.4) has a fixed

point at

δm2 = − r∗µ2
eff , (3.5)

with r∗ ≡ 156
191 ≈ 0.81. This fixed point is IR stable and hence any unknown UV value for

δm2 is eliminated along the RG flow. As was the case with the ratio λ/ξ2, QCD corrections

induce a mild dependence of r∗ on ξ.17 This effect is illustrated in figure 3, and results in

slightly smaller values of r∗, e.g. r∗|ξ=2 ≈ 0.72. One also observes that the asymptotic line

is reached more slowly than in the case of the quartic coupling.

17In addition to the modification of the running of the Yukawa coupling, there is a correction to the β

function for µeff (see appendix E).
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δm
2
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2 eff

Figure 3. RG flow of the ratio δm2/µ2
eff and ξ. The dashed line marks the exact IR fixed point −r∗

that is reached in the absence of gauge interactions, the solid blue line is the asymptotic trajectory

including QCD effects. The dots on the trajectories represent e-folds of RG running.

The RG flow discussed so far applies to the regime above the masses of the fermionic

and scalar resonances. The full effective potential is computed in appendix C which is used

for our numerical analysis in section 4. We can cross-check our claims above with this ex-

plicit calculation by combining the scalar and fermion loop contributions, and substituting

the fixed-point conditions eqs. (2.8) and (3.5), obtaining

α0 + α1/2 = r∗µ2
eff f̂

2

(
1 +

11

16π2
ξ2 log

M

mH

)
+ finite , (3.6)

where M is the renormalization scale. For the purpose of this discussion, we have chosen

the IR cutoff as mH, the mass of the radial scalar mode [see eq. (2.14)], assuming that the

remaining resonances are somewhat lighter and therefore contribute to the running with

full strength above mH.18 The first term thus corresponds to −δm2f̂2 at the IR quasi-fixed

point discussed above, while the second accounts for the running between M and mH. One

should note that in reaching the quasi-fixed point value, the explicit loop suppression factor

is lost, and the size of this contribution to the pNGB Higgs mass parameter is controlled by

µ2
eff . We should find that the explicit RG scale-dependence in eq. (3.6) precisely accounts for

the running of µ2
eff and the field rescaling ofH. Indeed, from eq. (3.4) and eq. (E.1) one finds

βµ2
eff

µ2
eff

− 2γΦ = − 11

16π2
ξ2. (3.7)

M can be chosen at will as long as the running parameters are evaluated at that scale. It

is thus natural to chose M ∼ mH, in which case the parenthesis in eq. (3.6) is close to one.

The finite pieces of α and the corresponding contribution to β are given in appendix C.

18A more precise treatment will identify the relevant thresholds and integrate out the respective degrees

of freedom accordingly in order to identify the pNGB mass parameter at the weak scale. In this work we

will be satisfied with the leading approximation that does not take into account such subtleties.
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We remark that the modification needed for the minimal model (in which the hyper-

charge 1/6 resonance is decoupled) is simply to replace µeff by

µ̃2
eff ≡ 2µ2

tS − µ′2QQ , (3.8)

whereas eq. (3.4) and hence the value of r∗ remain unchanged, as the decoupled state

(qL, Q
1
R) does not possess any Yukawa interactions.

Finally, we comment on the contribution from the spin-1 sector, derived in section 2.3.

Details of the computation can be found in appendix C. Here we stress the fact that the

resulting contributions to both α and β are UV finite (cutoff at ∼ mρ), due to the UV

behaviour of the form factors eq. (C.3), which are derived from the Lagrangian (2.39) or

the equivalent 2-site Lagrangian (2.42). As discussed in section 2.3, we are assuming that

a kinetic term for the spin-1 resonances is generated in the IR, which can be verified (and

computed explicitely) in the large Nc limit, but is not completely straightforward beyond

that approximation.

4 Electroweak symmetry breaking and the Higgs mass

Our starting point is the parametrization of the Higgs potential in the approximation of

eq. (3.1). EWSB and the correct Higgs mass imply the following simple conditions:

α =
m2
hf

2

2c2
v

≈ (88 GeV)2 f2

c2
v

, β =
m2
hf

2

2c2
vs

2
v

≈ 0.13 f4

c2
v

, (4.1)

Notice that the Higgs VEV v = 〈h〉 is not equal to the SM model value vSM = 246 GeV

but is rather fixed by the relation svf = vSM.

A crucial observation that will facilitate the discussion below is that one has to expect

a certain degree of cancellation between the different contributions to eq. (3.3). Observe

that the leading contribution to α arises from eq. (3.6) and is given by

α

f2
= r∗µ2

effr
−1
v + . . . , (4.2)

The parameter µ′QQ equals the mass m′Q of the exotic doublet Q2 and it is already con-

strained by direct LHC searches of strongly pair-produced Q = 5/3 fermions to be larger

than about 800 GeV at 95% C.L. [53].19 However, if µeff was of that size, then its con-

tribution would need to be canceled by other (truly loop-suppressed) contributions, which

requires large couplings gρ, ξ, possibly outside the perturbative regime. One thus expects

a certain degree of cancellation to happen between the different terms in µ2
eff such that20

|ε| � 1 , where ε ≡
µ2

eff

2µ2
tS

. (4.3)

19The lower limits for Q = 2/3 top-partners are around 700−800 GeV, depending on the decay mode [54,

55], while Q = −1/3 fermionic resonances should be heavier than about 500 − 800 GeV [56]. See also [57].
20Notice that as µeff renormalizes only multiplicatively this is a technically natural tuning. We come

back to the issue of naturalness in section 5.
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To reasonably good approximation one can thus set µeff ≈ 0 everywhere but in the leading

contribution to α1/2 given by eq. (4.2) (for instance, we can approximate β1/2 ≈ β1/2|µeff=0).

In the minimal model, the same argument leads one to conclude that

|ε̃| � 1 , where ε̃ ≡
µ̃2

eff

2µ2
tS

. (4.4)

We will make use of these relations in the discussions below, but will always keep the exact

expressions in our numerical analyses.

We will start our analysis with the minimal scenario described in section 2.2, and first

consider the case with vanishing tadpole. Using then eq. (4.4) in the expression for the

(dominant) fermionic contribution to β, one obtains

β1/2

f4
=

3

4π2

m4
t

v4
SM

(
log

m′2Q
m2
t

−
r′2f (3− r′f )

(1− r′f )3
log r′f −

1 + r′2f
(1− r′f )2

)

≤ 3

4π2

m4
t

v4
SM

(
log

m′2Q
m2
t

− 1

)
. (4.5)

where the upper bound in the second line is attained for r′f → 0. This is too small and,

comparing to eq. (4.1), implies that the correct Higgs mass cannot be achieved unless cv ≈ 1

(e.g. f > 1 TeV) and mQ′ & 1.7 GeV (using the exact expressions, the situation is actually

worse, and typically we find too light a Higgs). A very similar conclusion is reached for the

extended model with the SO(4) symmetric choice µQQ = µ′QQ. In this case eq. (4.3) reduces

β1/2 to the same expression, eq. (4.5), with the replacement r′f → rf , m′Q → mQ and hence

β1/2

f4
≤ 3

4π2

m4
t

v4
SM

(
log

m2
Q

m2
t

− 1

)
. (4.6)

A possible solution to this problem is to add the explicit SO(5) breaking tadpole term,

eq. (2.17), which easily accounts for the missing contribution to β. One obtains

ατ = − τ f̂ , βτ =
1

2
τ f̂ . (4.7)

As β1/2+β1 is positive but too small, τ needs to be positive but is bounded from eq. (4.1) by

τ . 0.26
f4

f̂ c2
v

, (4.8)

In particular, the correction to the mass of the radial mode due to the tadpole, cf. eq. (2.18),

is negligible. Moreover the relation (4.3) remains true, as ατ can never become large

enough so as to significantly reduce the leading contribution to α.

However, as it turns out, the fermionic contribution to the T parameter is negative in

the minimal model, for reasons closely connected to those first discussed in [58]. As we

have already pointed out at the end of section 2.3, this means that EWPT are very difficult

to satisfy. In fact, performing a scan of the minimal model over 3000 points with 0.5 TeV
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T T

Figure 4. Electroweak precision tests for the minimal model with τ 6= 0 (left) and the extended

model with µQQ = µ′QQ and τ < 0 (right). We scan over the ranges f ∈ [500, 2000] GeV, rv ∈
[0.05, 0.95], gρ ∈ [0, 3π], sR ∈ [0, 1] (and, for the right plot, sL ∈ [0, 1]). We fix τ , mS and mQ from

EWSB (Higgs vev and Higgs mass) plus the top mass, but requiring mS ,mQ > 500 GeV. In the left

panel we also require |τ | ∈ [0, (1000 GeV)3] while in the right panel we impose τ ∈ [−(3000 GeV)3, 0].

All points reproduce the correct Higgs, top and Z masses. The contours correspond to 68%, 95%

and 99% C.L. respectively [52].

< f < 2 TeV, we find not a single point within 95% C.L., and only 20 points pass EWPT

at 99% C.L. (see the left panel of figure 4).21

A next to simplest model is the extended model with µ′QQ = µQQ, and τ > 0 to raise the

Higgs mass. This model has the interesting feature that the tuning eq. (4.3) is protected, as

the point µQQ = µ′QQ = µtS is invariant under the global symmetry. However, as with the

minimal scenario, for τ > 0 all points that lead to successful EWSB have a negative T and

do not pass EWPT. There exists however a possibility in the latter scenario to accommodate

both the correct Higgs mass and EWPT with a large negative value for τ . In fact, if −τ
is so large as to cancel a large negative µ2

eff , we can escape the condition (4.3) and β1/2 is

not bounded by (4.6) . This will however require a very large |τ |, and both α and β show

substantial cancellations between tadpole and other contributions. Notice that a large

negative τ is bounded by the mass for the radial mode, eq. (2.18). We show the S and T

parameters of this model in the right panel of figure 4. We find that the interplay of EWSB

and EWPT require in this case a peculiar hierarchy of fermion masses, mS < m′Q < mQ.

The correct Higgs mass and agreement with EWPT can also be achieved in the ex-

tended model with µQQ 6= µ′QQ (see figure 5). As this introduces a new source of explicit

SO(4) violation, we expect the T parameter to be affected. We first consider the case τ = 0.

As we already pointed out above, at µQQ = µ′QQ, β1/2 is bounded by eq. (4.6), resulting in

21Here and in the following we also include an additional contribution to the T parameter ∆T =

− 3
8π

m2
Z

m2
W

log Λ
mh

due to modified Higgs couplings [59]. For definiteness we use Λ = mρ in our scans.
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T

T

Figure 5. Electroweak precision tests (left) and fermion spectrum (right) for the extended model

with µQQ 6= µ′QQ. The plots in the upper row assume vanishing tadpole, while those in the lower

row have a positive tadpole term. For τ > 0, we also impose mQ < m′Q. We scan over the ranges

f ∈ [500, 2000] GeV, rv ∈ [0.05, 0.95], gρ ∈ [0, 3π], sR ∈ [0, 1] and sL ∈ [0, 1]. In the plots of the

upper row, we fix mS , mQ and m′Q from EWSB (Higgs vev and Higgs mass) plus the top mass,

but requiring mS ,mQ,m
′
Q > 500 GeV. In the lower row plots we instead fix τ , mS and mQ from

EWSB plus the top mass, requiring mS ,mQ > 500 GeV, while scanning over m′Q ∈ [500, 3000] GeV

and fixing f = 500 GeV. The blue points pass EWPT at 95% C.L.
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2700

2750

2800

2850

2900

2950

3000

mΡ

m
H

Extended

ΜQQ ¹ ΜQQ', Τ = 0

Figure 6. Left panel: mass of the radial mode (in GeV) as a function of the other masses in the

extended model with τ = 0. We have fixed mQ = 1 TeV, mS = 5 TeV and m′Q = 6.5 TeV. The ratio

mρ/ma =
√
rv is held fixed, with rv = 0.9, 0.75 and 0.5 (from top to bottom). Right panel: amount

of explicit violation of the global and custodial symmetries, as parametrized by the quantities ε and

aµ, for the same parameter scan as in the lower row plots of figure 5. All points reproduce the

correct Higgs, top and Z masses. The blue points pass EWPT at 95% C.L.

a too small Higgs mass. One can show that β can be raised if

(µ2
QQ − µ′2QQ)(µ2

QQ + µ2
qQ − µ′2QQ) > 0 , (4.9)

which implies that either µQQ > µ′QQ or mQ < m′Q. It turns out that the former case

further lowers the fermionic contribution to the T parameter, while the latter one leads to

positive T . It is therefore an important conclusion that EWPT force mQ < m′Q. We also

remark that mS needs to be comparatively heavy in this scenario. We already pointed out

that there exists a lower bound on mS due to the top mass, mS & 2f . The bound is attained

at sL = 1, sR = 1/
√

2 [see eq. (2.48)]. However at these values, β1/2 reduces simply to

β1/2

f4
=

3

4π2

m4
t

v4
SM

(
log

8f2

v2
SM

− 11

6

)
, (4.10)

which requires values of f in the multi-TeV range in order to get a large enough Higgs

quartic coupling. Larger values of mS/f are required to avoid this latter conclusion. We

typically find that for f = 500 GeV we need mS > 2 TeV, which sets a lower bound on

mS in this scenario. EWPT further increase this bound. We illustrate these conclusions

in the upper row plots of figure 5. As we pointed out in subsection 2.4, for τ = 0 there is

one relation between the masses of the model. We show in the left panel of figure 6 the

mass of the radial mode as a function of the other masses of the model.

Finally, we also performed a full scan of the extended model with µQQ 6= µ′QQ with

nonzero tadpole term (see plots in the lower row of figure 5). We only discuss in detail the

case τ > 0. The implications for the spectrum are similar as in the case with τ = 0, with
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Model mh EWPT Spectrum Remarks

Minimal
τ=0 too light

τ 6=0 X ×

Extended

µQQ=µ′QQ

τ=0 too light

τ >0 X × ε� 1

τ <0 X X mH<mS<m
′
Q<mQ ε & 1

µQQ 6=µ′QQ

τ=0 X X mQ < m′Q,mS ε� 1

τ >0 X X mQ < m′Q,mS ε� 1

τ <0 X X

Table 2. Summary of our various scenarios. In the last column we have defined ε = µ2
eff/2µ

2
tS . See

text for details.

the difference that the states can generally be lighter while still passing EWPT. We present

in the lower row plots of figure 5 a scan with fixed f = 500 GeV, with the fermion masses

in the range {500, 3000}GeV. In addition we require mQ < m′Q as otherwise T is negative.

It is also interesting to know how much explicit violation of the global symmetry is

required in the fermionic mass Lagrangian. We therefore plot in the right panel of figure 6

the quantity ε defined in eq. (4.3) against the asymmetry parameter

aµ ≡
µ′QQ − µQQ
µ′QQ + µQQ

. (4.11)

The point ε = aµ = 0 corresponds to the SO(5) preserving choice µQQ = µ′QQ = µtS , while

the deviations from aµ = 0 parametrize the breaking of the custodial symmetry in the

“composite sector”, to use the language of section 2.2. We see that aµ & 0.15 is required

in order to obtain points that pass EWPT, while ε is always very small as expected from

the general arguments above.

We summarize the various scenarios studied in this section in table 2.

5 Naturalness considerations

Indirect constraints from electroweak precision data as well as direct bounds on vectorlike

top partners will require a sufficiently high scale for the global symmetry breaking, resulting

in a certain fine-tuning of parameters. In order to get a first idea, it is enough to notice that

the largest cancellation occurs in the quantity α. There will be a large positive contribution

proportional to µ2
tS , leading to a sensitivity

∆αµtS
α

≈
4r∗µ2

tS

rvm2
h

. (5.1)

For µtS = 500 GeV and rv = 0.5 this implies a tuning of about 1 %.
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Figure 7. Left plot: fine tuning against the mass m′Q (GeV). The gray band is the estimate

eq. (5.1). Right plot: fine tuning for µeff held fixed.

In the following we will quantify these considerations more precisely by evaluating the

sensitivity parameter

∆M ≡ max
P

∆M
P , ∆M

P ≡
∣∣∣∣∂ logM

∂ logP

∣∣∣∣ , (5.2)

where M runs over the measured quantities M ∈ {v2,m2
h,m

2
t } and P over the parameters

of the model. It is important to pick a basis for P that corresponds to the parameters in

the Lagrangian. We thus chose

P ∈ {f̂ , fρ, ξ, gρ, µtS , µQQ, µQQ′ , τ} . (5.3)

One can easily evaluate

∆v2

P =

∣∣∣∣fsvv cv
∂p log

α

β
+∂p log f2

∣∣∣∣ , ∆
m2
h

P =

∣∣∣∣∂p log
α

f2
− s

2
v

c2
v

∂p log
α

β

∣∣∣∣ , ∆
m2
t

P =

∣∣∣∣∂p log
αγ

β

∣∣∣∣ ,
(5.4)

where p = logP and γ = ξ2f̂2µ2
tSµ

2
qQ/m

2
Sm

2
Q. All of the ∆M in eq. (5.4) are dominated

by ∂p logα, and it turns out the largest one is ∆v2
. We plot the latter in the left panel of

figure 7, using the same parameter scan as in the lower row plots of figure 5. We find that

the maximal sensitivity is to the parameter µtS for all points, and pretty much follows the

general considerations in eq. (5.1), shown as the gray band in the plot. The cancellation

of the term proportional to µ2
tS then typically requires fine tuning below 1%.

However, as we already discussed in section 4, to some extent this cancellation must

happen against the other terms in µeff , as the other contributions to α are loop suppressed,

and the quantity ε defined in eq. (4.3) is expected to be small. In the vicinity of the point

µtS = µQQ = µ′QQ this cancellation is protected by the global symmetry, as except for

the mixing term µqQ the fermion mass Lagrangian becomes SO(5) symmetric.22 However,

22See the right panel of figure 6 for the required amount of SO(5) violation.
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even away from this point, µeff only renormalizes multiplicatively and one can thus consider

this tuning “technically natural”. One could thus ask the question of how much tuning is

required beyond the one needed in order to obtain small ε. This question can be answered

by evaluating again the same sensitivity parameters, but with µeff held fixed, i.e. we replace

in eq. (5.4)

∂p → ∂p|µeff fixed . (5.5)

The result is plotted in the right panel of figure 7. As expected, the tuning is considerably

reduced, as large as 5% for the points that pass EWPT. The largest sensitivity occurs with

respect to the parameters gρ and µ′QQ.

We now return to theoretical considerations in order to close a possible loophole on

how to obtain the set of four-fermion operators used thus far.

6 A simple model leading to SO(N) symmetric 4-fermion interactions

We pointed out in subsection 2.1 that four-fermion interactions naturally lend themselves

to the implementation of SO(N) symmetries, as opposed to SU(N) symmetries. In

particular, when GS 6= G′S in eq. (2.4), the global symmetry of the theory is SO(N) and

one can work in a region of parameter space where the only light states are those of the

SO(N)→ SO(N − 1) breaking. In this section we describe a simple renormalizable model

that can lead to the above situation.

Consider a SU(Nc)×SU(Nc) gauge theory, and assume that the fermions described in

subsection 2.1, F iL and SR, transform in the (Nc, 1) representation. We assume that this

gauge symmetry is (spontaneously) broken, as in top-color UV completions [60] of the top

condensation mechanism [15]. The diagonal SU(Nc), with Nc = 3, is then identified with

the QCD interactions,23 while the broken SU(Nc) induces four-fermion operators below the

mass of the corresponding gauge boson, Gµ. In addition, assume there exists a real scalar

field Ξ that transforms in the fundamental representation of the “flavor” SO(N), as does

F iL, while being a singlet of the new gauge group. In unitary gauge, one can then write the

following terms in the UV Lagrangian:

LUV ⊃ −
1

2
M2

Ξ Ξ2 + y (S̄R ΞiF iL + h.c.) +
1

2
M2
GGµG

µ +
1

2
ĝ GAµ (S̄Rγ

µλASR + F̄L,iγ
µλAF iL) ,

(6.1)

where λA are the Gell-Mann matrices. The contractions of the indices not explicitly shown

should be obvious. We have assumed above, for simplicity, that the Yukawa coupling, y,

is real. Integrating out the heavy gauge and scalar fields, leads to an effective Lagrangian

L ⊃ y2

2M2
Ξ

(S̄RF
i
L + h.c.)2 − ĝ2

8M2
G

(S̄Rγ
µλASR + F̄L,iγ

µλAF iL)2

=
y2

2M2
Ξ

(S̄RF
i
L + h.c.)2 − ĝ2

4M2
G

(S̄Rγ
µλASR)(F̄L,iγ

µλAF iL) + · · · , (6.2)

23We imagine that all matter is charged under the first SU(3) group only. Since the full model consists of

the SM field content plus additional vectorlike states, the theory is easily seen to be vectorlike with respect

to SU(3)× SU(3), hence anomaly free.

– 27 –



J
H
E
P
0
6
(
2
0
1
5
)
1
1
9

where the terms not shown correspond to vector channels and are further discussed in

appendix A. Upon Fierz rearrangement of the second term, and neglecting further vector

channels, one gets

L ⊃ y2

2M2
Ξ

(S̄RF
i
L + h.c.)2 +

ĝ2

M2
G

(S̄RF
i
L)(F̄L,iSR) + · · · . (6.3)

This can be written as LS + L′S of eq. (2.4) with the identifications

GS =
ĝ2

2M2
G

+
y2

M2
Ξ

, G′S =
ĝ2

2M2
G

. (6.4)

We see that the splitting between GS and G′S [hence the explicit breaking from SU(N) down

to SO(N)] is controlled by the heavy scalar sector [which is not surprising given that Ξ is

the only field that transforms explicitly only under SO(N)]. In addition, we see that the

effective coupling GS is positive and naturally larger than G′S , as required in subsection 2.1.

We conclude that it is not far-fetched to have GS close to criticality (through some degree

of tuning, as is typical in the context of the NJL mechanism), while G′S is sub-critical so

that the corresponding (irrelevant) four-fermion operators play no role at low energies.

One should note that the scalar field Ξ enters in a very similar fashion to the scalar Φ

of subsection 2.1. However, these d.o.f. are distinct and should not be confused. Whereas

the scalar Ξ above is a propagating degree of freedom, with a well-defined kinetic term

above scales of order G
−1/2
S , the scalar Φ discussed in the main text is a (F̄LSR) bound

state, that exists as such only well below the scale G
−1/2
S . While the two scalars share the

same quantum numbers, they are better thought as “dual” to each other, in the sense of

UV versus IR degrees of freedom. Having said this, it is possible that the scalar Ξ is itself a

composite that arises in the process of breaking the SU(Nc)×SU(Nc) gauge symmetry and

whose mass is tied to that of the gauge field Gµ. Since for our applications Ξ can have a mass

of a similar order as that for Gµ (but with no special relation), we see that no tuning beyond

the one required to lie close to criticality needs to be imposed in this new scalar sector.

7 Brief phenomenological remarks

We end by offering a few comments on the expectations for present and future colliders

within our scenario. A more detailed study will be presented elsewhere [61]. We start

by noting that, although we are providing a description of the Higgs constituents and the

interactions that bind them together (the NJL model discussed in most of this paper), the

low-energy physics is expected to be well-described by a general non-linear σ-model based

on the SO(5)/SO(4) symmetry breaking pattern. Uncovering the specific manifestations

of our set-up requires experiments that are sensitive to higher energies.

The model we have described contains a rather minimal set of fields beyond those of

the SM. In the fermion sector, we have a vectorlike 5 of SO(5), which decomposes into a

bi-doublet of SO(4) ≈ SU(2)L×SU(2)R [the states Q and Q′ with approximate masses mQ

and m′Q, as given in eqs. (2.20) and (2.23)] plus a singlet S with approximate mass as given

in eq. (2.20). Hence, we have three top-like partners, a b′ and an exotic Q = 5/3 state, as
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is common in many CH model with a custodial protection of Zbb̄. Several search strategies

to look for such states at the LHC have been put forward (see, for instance, [57], and

references therein), and a number of LHC searches already exist which can be sensitive to

such states below about 800 GeV [53–56]. We have found that typically mQ < m′Q,mS .24

Direct searches, in particular those for Q = −1/3 and Q = 2/3 states (in our case arising

from the Q state), imply within our model that mS & 1.6 TeV (although it may well be

significantly heavier), while EWPT require m′Q & 1 TeV (which corresponds to the mass

of the Q = 5/3 state).

In addition to the fermion sector above, we predict the existence of a “radial” Higgs

mode, H, that together with the pNGB degrees of freedom form a 5 of SO(5). Such a scalar

state would likely be beyond the reach of the LHC, but might be accessible at a 100 TeV

collider. If H happens to be a sufficiently narrow resonance, one could try to measure its

Yukawa coupling ξ with the previously mentioned fermionic resonances. One then expects

this coupling to become large as one approaches a certain scale Λ. We also reiterate that

the mass of the radial mode is determined by the Yukawa coupling ξ and the symmetry

breaking scale f . This is a prediction of the NJL model, in sharp contrast to an arbitrary

linearization of the sigma model (as in the SM).

Finally, there are spin-1 resonances that, however, cannot be guaranteed to lie below

the cutoff of the theory, where the composite Higgs “dissolves” into its constituents. The

gap between this cutoff scale and mH depends on how close to criticality is the (scalar

channel) four-fermion coupling. Near this cutoff scale, there may exist further excited

resonances of various spins.

The fact that in our case the Higgs is a bound state of fermions closely connected

to the top quark (i.e. some of the resonances mentioned above) should have, in principle,

measurable consequences below the scale Λ (where ξ blows up). This, together with evi-

dence for 4-fermion interactions involving these fermionic resonances, with a strength GS
of order 1/Λ2, would further point to a picture as studied in this paper.

We have already noted that above this scale the UV degrees of freedom may be rel-

atively few, and described by a renormalizable theory, perhaps valid up to much higher

energies. If the model of section 6 was indeed the underlying microscopic physics giving

rise to the 4-fermion interactions, one could expect those states to be not too far above

the scale of strong coupling indicated by the Yukawa interaction ξ. Carrying out such a

program would require energies beyond the LHC, and detailed studies are necessary before

one can judge its feasibility, and to what extent (and with what type of machines) one could

establish such a picture. Here we only point out a few avenues that need to be explored in

order to eventually test the model.

In terms of Higgs physics, at higher-energies one would expect to start seeing form

factors that indicate its composite nature. Perhaps in the details of such form factors

there could be a measurable imprint of the NJL dynamics. Studying such an interesting

possibility goes beyond the scope of this paper, which was simply to provide a step towards

24Although in the presence of a very large tadpole, eq. (2.17), one can have the peculiar hierarchy

mS < m′Q < mQ. In this case, all states would be rather heavy.

– 29 –



J
H
E
P
0
6
(
2
0
1
5
)
1
1
9

establishing microscopic realizations of modern pNGB scenarios. We leave a detailed phe-

nomenological study for future work.

8 Conclusions

One of the major questions whose answer will determine qualitatively the nature of physics

near the weak scale is whether the Higgs resonance identified by the ATLAS and CMS col-

laborations [1, 2] is elementary down to ultra-short distances or whether it is actually a

composite state of more fundamental constituents, whose nature could be revealed at ener-

gies not far above the EW scale. In either case, a phenomenon never seen in nature before

would have been established. In the first case, we would have discovered the first example

of an “elementary” scalar, which perhaps could suggest the presence of supersymmetry at

some higher scale (given that fundamental scalars are a generic prediction of supersym-

metric scenarios). If, on the other hand, the Higgs turned out to be composite, it would

be the first example of condensation by such a scalar that can be effectively described

by weakly coupled dynamics. In spite of this, its composite nature itself would point to

some strongly coupled underlying dynamics that, if realized by nature, would lead to a

qualitatively different view of the EW scale than in the first case.

In this work we have explored a possible microscopic realization of the second possi-

bility, modeling the interactions that lead to the scalar bound state via four-fermion inter-

actions à la NJL [19, 20]. This allows the explicit identification of the Higgs constituents

and the interactions responsible for the formation of the bound states. As was first done

in ref. [23], in order to obtain a scalar resonance that is parametrically lighter than other

strong resonances, it is assumed that the microscopic Lagrangian possesses an approximate

global symmetry that is spontaneously broken by the NJL mechanism, thus leading to suit-

able Nambu-Goldstone bosons, some of which can be identified with the Higgs. We are

therefore providing a possible UV completion to a class of pNGB Higgs scenarios that have

been studied only at the level of the non-linear σ-model. In order to control potentially

large corrections to precision EW measurements, we implement a scheme that preserves ap-

proximately a custodial symmetry, as well as the custodial symmetry protection of the Zbb̄

coupling put forward in [30] (a similar setup to ours was studied in [27]). As is well known,

minimality together with the above requirements uniquely singles out the symmetry break-

ing pattern SO(5)→ SO(4) ≈ SU(2)L×SU(2)R. In addition, the SM bL satisfies T 3
L = T 3

R.

We point out here that four-fermion interactions naturally lend themselves to imple-

menting the above symmetry breaking pattern. Unlike fermion bilinears25 which typically

preserve an SU(N) symmetry, for four-fermion operators it is possible to impose a reality

condition that preserves only the SO(N) subgroup. We also point out that in the con-

text of the NJL mechanism, the breaking by the 4-fermion interactions from SU(N) down

to SO(N) may be small, yet effective: if one is close to criticality, small effects can easily

make the additional SU(N) resonances much heavier than those associated with the SO(N)

breaking. In this respect, our implementation represents a considerable simplification with

25Kinetic terms and gauge interactions. Mass terms can in principle reduce the symmetry appropriately.

However, in our minimal implementations this is not an option.
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respect to the schemes proposed in [23, 27]. A possible question is how to generate the

four-fermion interactions with the required global SO(N) symmetry. As an existence proof,

we have provided a simple renormalizable model that generates such 4-fermion interactions,

thus realizing our framework.

Also, unlike the previous works, we have explicitly described the spin-1 sector that

would be responsible for the cancellation of the quadratic divergences in the Higgs mass

arising from the SM gauge interactions. We have highlighted the qualitative differences

between the spin-1 and scalar sectors in terms of calculability. We have paid particular

attention to the fermion sector with an eye towards minimality, emphasizing the role played

by the new degrees of freedom beyond the SM. Importantly, we find that the presence of

quasi-fixed points (generalizing the observations in [15]) imply that the low-energy physics

is largely insensitive to uncertainties arising from the underlying strong dynamics.

Given the presence of four-fermion interactions that, through the NJL mechanism,

break SO(5) → SO(4), we recover at low energies the SM field content, except that the

Higgs potential is dynamically induced and the breaking of the EW symmetry (or not) is

an outcome of the theory. We have shown that in regions of parameter space where the

EW symmetry is actually broken, it is possible to accommodate the observed Higgs mass of

about 125 GeV [62, 63]. In some cases, this requires turning on a tadpole term (equivalent

to a certain vector-like fermion mass), but we have also identified cases where such a tadpole

is not essential. We find, however, that in general there is some tension with EW precision

measurements. This is due to a typically negative contribution to the Peskin-Takeuchi [33]

T -parameter that arises from two sources: the non-linear couplings of the Higgs field to the

gauge bosons, due to its pNGB nature [59], and the fermion loop contributions. The latter

effect is tied to the imposed custodial protection (on T and Zbb̄) which suppresses the

contributions to an acceptable order of magnitude, but typically leads to a negative sign

that makes agreement with the S−T ellipse challenging. Such an effect has the same origin

as first pointed out in the context of extra-dimensional constructions in [58]. Interestingly,

in our setup it is possible to allow for a controlled amount of custodial breaking in the

heavy fermion sector so that the corresponding contribution to T changes sign and allows

compatibility with EWPT. We emphasize that this custodial breaking is soft, so that the

effects are fully calculable within the theory, and no particular tuning of parameters is

required. Nevertheless, well-defined regions of parameter space are selected in this way,

which have implications for the expected hierarchies of states beyond the SM ones.

We have also studied the tuning in the present models, as measured by the sensitivity

of low-energy observables to UV Lagrangian parameters. Without any special assump-

tions about the UV, the tuning so defined is found to be at the percent level or worse.

Interestingly, however, this tuning has a rather well-defined source throughout the region

of parameter space. It arises from a necessary cancellation between fermion mass param-

eters, forced by current LHC direct lower bounds on some of these states. However, the

region corresponding to such a cancellation actually corresponds to an enhanced symmetry

point of the theory. Therefore, small deviations from perfect cancellation can be naturally

small, in the ’t Hooft sense. The remnant fine-tuning (assuming the previous cancellation

between fermion mass parameters) can be on the order of 1 − 5%.
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We also presented a simple model for the origin of the new four-fermion interactions

with the correct global symmetry breaking pattern. Possible phenomenological conse-

quences of our setup, such as the existence of the radial mode H, of vector resonances, and

of the various fermionic resonances, as well as possible changes in the Higgs couplings due

to form factors, were briefly mentioned.

We end by noting that we have focused our attention on the third generation, which is

likely to be most relevant for EWSB. However, accomodating the first two generations, and

understanding how issues such as the flavor structure could be embedded in the present

framework would be of extreme interest, and are likely to provide further handles from

precision flavor measurements, rare decays or CP-violation.
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A Four-fermion interactions from vector boson exchange

In this appendix we rewrite the four-fermion interactions induced by heavy vector boson

exchange in the model of section 6. Our purpose is to identify the full set of scalar and vector

channels thus generated (the scalar ones were presented in the main text). For this purpose,

it will be useful to recall the following generic Fierz rearrangement for the vector channel

(ĀγµB)(C̄γµD) = −(ĀD)(C̄B) + (Āγ5D)(C̄γ5B)

+
1

2

[
(ĀγµD)(C̄γµB) + (Āγ5γµD)(C̄γ5γµB)

]
, (A.1)

as well as the “color” identity

(χ̄iΓχ
j)(ψ̄jΓψ

i) = (χ̄Γ tAχ)(ψ̄ Γ tAψ) +
1

N
(χ̄Γχ)(ψ̄Γψ) , (A.2)

where Γ is any set of gamma matrices that makes M j
i = (ĀiΓA

j) hermitian, while

i, j are U(N) indices. Here and in the following we normalize the SU(N) generators as

tr tAtB = δAB.

In the following, we denote by i (I) the fundamental (adjoint) index of SU(NL), and

by a (A) the fundamental (adjoint) index of SU(Nc). We focus on the fermion field content

of section 6, F a,iL and SaR, so that, for example,

1

2
(F̄Lγ

µλAFL)2 = (F̄L,aγ
µF bL)2 − 1

Nc
(F̄Lγ

µFL)2

= (F̄L,iγ
µF jL)2 − 1

Nc
(F̄Lγ

µFL)2

= (F̄Lγ
µT IFL)2 +

(
1

NL
− 1

Nc

)
(F̄Lγ

µFL)2 , (A.3)
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where T I are the generators of SU(NL). Here we have used a condensed notation where

the color and flavor indices in F a,iL that are not shown explicitly are understood to be

appropriately contracted between the fields within each factor in parenthesis.

Analogously for the RH field SaR we find

1

2
(S̄Rγ

µλASR)2 =

(
1− 1

Nc

)
(S̄Rγ

µSR)2 , (A.4)

while for the mixed term one obtains

1

2
(S̄Rγ

µλASR)(F̄Lγ
µλAFL) = (S̄R,aγ

µSbR)(F̄L,bγµF
a
L)− 1

Nc
(S̄Rγ

µSR)(F̄LγµFL)

= −2(S̄RF
i
L)(F̄L,iSR)− 1

Nc
(S̄Rγ

µSR)(F̄LγµFL) , (A.5)

where the first term reproduces the scalar channel written in eq. (6.3). Putting every-

thing together one concludes that the exchange of the heavy vector bosons Gµ induces the

following set of four-fermion interactions:

1

2
(S̄Rγµλ

ASR + F̄Lγµλ
AFL)2 = −4(S̄RF

i
L)(F̄L,iSR) + (F̄LγµT

IFL)2

− 1

Nc
(S̄RγµSR + F̄LγµFL)2 +

1

NL
(F̄LγµFL)2 + (S̄RγµSR)2

= −4(S̄RF
i
L)(F̄L,iSR) + (F̄LγµT

IFL)2 (A.6)

+

(
1

4NL
+

1

4
− 1

Nc

)
J2

+ +

(
1

4NL
+

1

4

)
J2
− +

(
1

2NL
− 1

2

)
J+J−

where we defined

J±µ ≡ (F̄LγµFL ± S̄RγµSR) . (A.7)

We see that apart from the scalar channel discussed in section 6, the topcolor interactions

also produce a vector SU(NL) channel that contains the SO(N)L channel of eq. (2.29) [with

the correct sign required in the discussion around eq. (2.29)]. There are also U(1) currents

that, however, do not exactly match the U(1)X current of eq. (2.30). Had we included NR

flavor Sa,iR , the last line in eq. (A.6) would have read(
1

4NL
+

1

4NR
− 1

Nc

)
J2

+ +

(
1

4NL
+

1

4NR

)
J2
− +

(
1

2NL
− 1

2NR

)
J+J− .

The condition for the eigenvalues of this system to be both positive is Nc > NL + NR.

The condition for J+ and J− to be eigenstates is NL = NR. For Nc = 3 and the flavor

content we have in mind, there is always one negative and one positive eigenvalue. The

“wrong sign” four-fermion interaction would then correspond to a repulsive channel that

does not lead to spin-1 bound states. At any rate, as we remarked in the main text, the

U(1)X resonance leads only to subleading modifications when g2
X � g′20 . Therefore, for

our purposes the microscopic model introduced in section 6 is sufficient to establish the

possibility of UV completing our point of departure in the main text.
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B SO(5) basis

The Minimal Composite Higgs literature based on the coset space SO(5)/SO(4) has widely

adopted the basis introduced in [9], given by:

(T aL,R)ij = − i
2

[
1

2
εabc

(
δbi δ

c
j − δbjδci

)
±
(
δai δ

4
j − δaj δ4

i

)]
,

T âij = − i√
2

(
δâi δ

5
j − δâj δ5

i

)
. (B.1)

However, we find it more convenient to use the basis obtained by a similarity transformation

defined by the unitary matrix:

P =
1√
2



0 0 i 1 0

i −1 0 0 0

i 1 0 0 0

0 0 −i 1 0

0 0 0 0
√

2


. (B.2)

Explicitly we have:

T 1
L =



0 1
2 0 0 0

1
2 0 0 0 0

0 0 0 1
2 0

0 0 1
2 0 0

0 0 0 0 0


, T 2

L =



0 − i
2 0 0 0

i
2 0 0 0 0

0 0 0 − i
2 0

0 0 i
2 0 0

0 0 0 0 0


, T 3

L =



1
2 0 0 0 0

0 −1
2 0 0 0

0 0 1
2 0 0

0 0 0 −1
2 0

0 0 0 0 0


,

T 1
R = −



0 0 1
2 0 0

0 0 0 1
2 0

1
2 0 0 0 0

0 1
2 0 0 0

0 0 0 0 0


, T 2

R =



0 0 − i
2 0 0

0 0 0 − i
2 0

i
2 0 0 0 0

0 i
2 0 0 0

0 0 0 0 0


, T 3

R =



−1
2 0 0 0 0

0 −1
2 0 0 0

0 0 1
2 0 0

0 0 0 1
2 0

0 0 0 0 0


,

T 1̂ =



0 0 0 0 0

0 0 0 0 1
2

0 0 0 0 1
2

0 0 0 0 0

0 1
2

1
2 0 0


, T 2̂ =



0 0 0 0 0

0 0 0 0 i
2

0 0 0 0 − i
2

0 0 0 0 0

0 − i
2

i
2 0 0


,

T 3̂ =



0 0 0 0 1
2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1
2

1
2 0 0 −1

2 0


, T 4̂ =



0 0 0 0 − i
2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 − i
2

i
2 0 0 i

2 0


. (B.3)
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Then, for instance, the fermionic 52/3 containing the LH top and bottom reads:

1√
2



−i(bL + χL)

−bL + χL

−i(tL − t′L)

tL + t′L√
2SL


P−→



tL

bL

χL

t′L
SL


⇐⇒

(
tL χL

bL t′L

)
⊕ SL , (B.4)

where the first vector is in the basis of eq. (B.1), the second in our basis, eqs. (B.3), and

the last column makes the connection to the SO(4) ' SU(2)L× SU(2)R ⊂ SO(5) notation.

In the main text, we have used the notation Q1
L = (tL, bL)T , Q2

L = (χL, t
′
L)T .

For the Higgs field, we have:

h1

h2

h3

h4

f̂


P−→ 1√

2



h4 + ih3

−h2 + ih1

h2 + ih1

h4 − ih3√
2 f̂


≡



H0∗

−H−

H+

H0

f̂


⇐⇒

(
H0∗ H+

−H− H0

)
(B.5)

In the main text, we have used the notation φ̃ = (H0∗,−H−)T , φ = (H+, H0)T .

C Computation of the pNGB potential

In this appendix we collect a few details of the computation of the pNGB Higgs effective

potential, focusing on the contributions to the coefficients α and β defined in eq. (3.1).

These are obtained by evaluating the pNGB effective potential in the (unitary gauge)

constant backgrounds, U1 = 1 and [see eq. (B.3)]

U5 = e
√

2i hT 4̂/f =



cos2
(
h
2f

)
0 0 − sin2

(
h
2f

) sin
(
h
f

)
√

2

0 1 0 0 0

0 0 1 0 0

− sin2
(
h
2f

)
0 0 cos2

(
h
2f

) sin
(
h
f

)
√

2

−
sin

(
h
f

)
√

2
0 0 −

sin
(
h
f

)
√

2
cos
(
h
f

)


, (C.1)

after expanding for small sh = sin(h/f). We treat separately the contributions from the

states of spin-1, 1/2 and 0.

C.1 Vector resonances

As is commonly done in CH models, we integrate over the vector resonances. The ele-

mentary gauge fields will pick up form factors. In momentum space, the relevant spin-1
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Lagrangian reads (see, for instance, [51])

LG =
Pµν

2

(
ΠWW

a
µW

a
ν + ΠBBµBν + Π1

s2
h

4
[W a

µW
a
ν +BµBν −BµW 3

ν −W 3
νBµ]

)
,

(C.2)

with Pµν = ηµν − pµpν/p2 and

ΠW (p2) = −p
2

g2
0

+
p2

g2
ρ

m2
ρ

p2 −m2
ρ

, ΠB(p2) = − p2

g′20
+
p2

g2
ρ

m2
ρ

p2 −m2
ρ

+
p2

g2
X

m2
X

p2 −m2
X

,

Π1(p2) = f2 + p2

[
f2
ρ − f2

p2 −m2
a

−
f2
ρ

p2 −m2
ρ

]
=

f2m2
am

2
ρ

(p2 −m2
ρ)(p

2 −m2
a)
, (C.3)

where eq. (2.41) has been used. The NGB potential can then be written as

VV =
3

32π2

∫
dp2 p2

[
2 log

(
1 +

s2
h

4

Π1(−p2)

ΠW (−p2)

)
+ log

(
1 +

s2
h

4

[
Π1(−p2)

ΠW (−p2)
+

Π1(−p2)

ΠB(−p2)

])]
(C.4)

corresponding to the contributions of the W and Z bosons respectively. It is manifestly

UV finite.

In the parametrization of eq. (3.1) one has

α1 = − 3

64π2
f2m2

ρ

(
3g2 + g′2

) log rv
rv − 1

,

β1 = − 3f4

16(4π)2

(
2g4 log

m2
ρ

m2
W (h)

+ (g2 + g′2)2 log
m2
ρ

m2
Z(h)

+
[
2g4 + (g2 + g′2)2

] [(3− rv)r2
v log rv

(rv − 1)3
− r2

v + 1

(rv − 1)2

])
, (C.5)

where we have approximated g2
ρ, g

2
X � g2

0 , g
′2
0 , i.e. g2 ≈ g2

0 and g′2 ≈ g′20 and rv = m2
ρ/m

2
a <

1. Note that the U(1)X sector does not enter at leading order in these expansions.

C.2 Fermion resonances

The fermion mass matrix is most easily evaluated in the unrotated (non-HLS) basis, where

φ̃ =
1√
2

(
sh

0

)
f̂ , φ =

1√
2

(
0

sh

)
f̂ , φ5 = chf̂ . (C.6)

Substituting these fields, the mass terms are given as

L−1/3 = −µQQ Q̄1,2
L Q1,2

R + h.c. , L5/3 = −µ′QQ Q̄
2,1
L Q2,1

R + h.c. , (C.7)

where Q1,2
L and Q1,2

R are the charge −1/3 components of Q1
L and Q1

R, respectively, while

Q2,1
L and Q2,1

R are the charge +5/3 components of Q2
L and Q2

R, respectively. In the charge
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2/3 sector, we have

L2/3 = −
(
S̄L Q̄

2,2
L Q̄1,1

L q̄L

)

ξf̂ch 0 µtS 0

ξf̂ sh√
2
µ′QQ 0 0

ξf̂ sh√
2

0 0 µQQ

0 0 0 µqQ




SR

Q2,2
R

tR

Q1,1
R

+ h.c. , (C.8)

where Q1,1
L , Q1,1

R , Q2,2
L and Q2,2

R are the charge 2/3 components of Q1
L, Q1

R, Q2
L and Q2

R,

respectively. All phases can be reabsorbed into the different fields, so we take all parameters

real and positive. Only the charge 2
3 fermions contribute to the effective potential. One

can evaluate the characteristic polynomial of the matrix MF appearing in L2/3

χ(p2) ≡ det (M†FMF − p2) = χ0(p2) + s2
h χ1(p2) , (C.9)

with

χ0 = p2(p2 − ξ2f̂2 − µ2
tS)(p2 − µ′2QQ)(p2 − µ2

QQ − µ2
qQ)

χ1 =
ξ2f̂2

2

(
p4[2µ2

tS − µ2
QQ − µ′2QQ]

+p2[(2µ2
QQ + µ2

qQ)µ′2QQ − (µ2
QQ + 2µ2

qQ + µ′2QQ)µ2
tS ] + µ2

tSµ
′2
QQµ

2
qQ

)
. (C.10)

The first term corresponds to the unperturbed mass eigenvalues, the second term encodes

the effects of EWSB. Notice that eq. (C.9) is exact as χ(p2) does not have terms beyond

quadratic order in sh.

In terms of χ it is easy to write down the fermion contribution to the effective potential

VF = − Nc

8π2

∫
dp2 p2 log χ(−p2) . (C.11)

One obtains

α1/2 =
3

4π2

∫
dp2p2 χ1(−p2)

χ0(−p2)
, β1/2 =

3

4π2

∫
dp2p2

(
χ1(−p2)

χ0(−p2)

)2

, (C.12)

One notices that α1/2 is IR finite but has a logarithmic UV divergence proportional to

µ2
eff = 2µ2

tS − µ2
QQ − µ′2QQ (in the limit µqQ →∞ the divergence is instead proportional to

µ̃2
eff = 2µ2

tS − µ′2QQ), as argued diagrammatically in section 3. Conversely, β1/2 is UV finite

but logarithmically IR divergent, to be regularized by the top mass.

It is useful to explicitly extract the UV divergent piece from α1/2 by writing α1/2 =

αdiv
1/2 + αfin

1/2 with26

αdiv
1/2 =

3

4π2

∫
dp2 ξ

2f̂2

2

µ2
eff

p2 +m2
H
, αfin

1/2 =
3

4π2

∫
dp2

(
p2 χ1(−p2)

χ0(−p2)
− ξ2f̂2

2

µ2
eff

p2 +m2
H

)
(C.13)

26The choice of the IR scale mH in this decomposition is done for later convenience.
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In the MS scheme one obtains

αdiv
1/2 =

3

8π2
ξ2f̂2µ2

eff

(
log

M2

m2
H

+ 1

)
(C.14)

where M is the RG scale.

While the UV finite integrals in αfin
1/2 and β1/2 can be performed straightforwardly, the

expressions are rather cumbersome so we do not report them here.

C.3 Scalar resonance

The scalar sector also contributes to the NGB potential due to the SO(5)L violating cou-

pling δm2 introduced in section 3. The scalar mass matrix is given by

M2
S =


(m2

4 + λH2) 13×3

m2
4 + λ(1 + 2s2

h)H2 2λshchH2

2λshchH2 m2
1 + λ(3− 2s2

h)H2

 . (C.15)

The vacuum expectation value of the radial field H is given by f̂2 = −m2
1/λ. In this

vacuum, one obtains the effective potential

VS =
1

32π2

∫
dp2p2 log

(
[(p2 + δm2 +m2

Hs
2
h)(p2 +m2

Hc
2
h)−m4

Hs
2
hc

2
h]
)
, (C.16)

and hence

α0 = −δm2f̂2 +
1

16π2
m2
Hδm

2

(
log

M2

m2
H

+ 1

)
,

β0 =
1

16π2
(δm2)2

(
1 + log

m2
H(h)

m2
H

)
, (C.17)

where mH is the Higgs mass that we used as an IR cutoff here. Notice that β0 is of higher

order in δm2 and we will hence neglect it.

D Expansion in powers of sh and logarithmic divergences

In this appendix we clarify the issue of (spurious) IR divergences introduced when naively

expanding the Coleman-Weinberg potential in powers of x = s2
h. These arise from an

unjustified expansion in the low-momentum region of integration, and is connected to

states that acquire mass only as a result of x 6= 0. We use the spin-1/2 case for illustration,

but the same considerations and conclusions hold true in the spin-1 and spin-0 sectors.

The 1-loop effective potential takes the form V = − Nc
8π2 V, where

V =

∫ ∞
0
d2p p2 log

(
f(p2) + g(p2)x+

1

2
h(p2)x2 + · · ·

)
, (D.1)

and

f(p2) = p2f ′0 + · · · , g(p2) = g0 + · · · , h(p2) = h0 + · · · . (D.2)
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The expansion in small x is then (neglecting a x-independent term):

V = x lim
x→0

∫ ∞
0
d2p p2 g(p2)

f(p2)
+
x2

2
lim
x→0

∫ ∞
0
d2p p2 fh− g2

(f + gx)2
+ · · · . (D.3)

The first term is IR safe so we can directly take the limit x → 0. In the second term we

first make the shift of variables p′2 = p2 +xg0/f
′
0, and expand the integrand in x to obtain

V = x

∫ ∞
0
d2p p2 g(p2)

f(p2)
+
x2

2
lim
x→0

∫ ∞
m2

0

d2p p2

[
f(p′2)h(p′2)− g2(p′2)

f2(p′2)
+O

(
x

p′4

)]
+ · · · ,

(D.4)

where m2
0 = (g0/f

′
0) s2

h is the (field-dependent) “zero-mode” mass squared. The fist term in

the brackets gives a contribution from the lower limit of integration of the form A log(m2
0)+

B. The O
(
x
p′4

)
term in the brackets gives only terms of order x log x and hence vanishes

in this limit. The upshot is that one can obtain the correct small x expansion by naively

expanding the integrand, but cutting off the resulting IR divergence at the (field dependent)

“zero-mode” mass, m0. In practice, using the top (or W or Higgs) mass at the minimum

of the potential, i.e. the physical mass, does not introduce a large difference compared to

the more correct field-dependent one (see also [51]).

E RG equations in the presence of QCD interactions

In this appendix we collect the RG equations used in the generation of figures 1 and 3,

meant to illustrate the effect of the gauge interactions on the fixed point behavior discussed

in the main text:

βξ2 =
ξ2

16π2

{
(17 +N)ξ2 − 16g2

3

}
,

βλ =
1

16π2

{
2(N + 8)λ2 − 24ξ4 + 24ξ2λ

}
,

βµ2
eff

=
µ2

eff

16π2

{
ξ2 − 16g2

3

}
,

βδm2 =
3ξ2

4π2
µ2

eff +
λ+ 3ξ2

4π2
δm2 ,

where g3 is the QCD coupling constant and we have taken Nc = 3.

In the main text we also used that

γL =
ξ2

32π2
, γR =

Nξ2

32π2
, γΦ =

Ncξ
2

8π2
, (E.1)

where γL is the anomalous dimension of FL and γR that of SR. Using the Landau gauge (ξ =

0) for QCD, there are no 1-loop contributions to the fermion anomalous dimensions from g3.
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