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1 Introduction

Weakly-interacting massive particles (WIMPs) are promising candidates for dark mat-

ter (DM) in the Universe. Many theoretical models beyond the Standard Model predict

WIMPs and it is known that the thermal WIMP scenario can explain the present energy

density of dark matter in those models. The early stage of the experiments at the Large

Hadron Collider, however, has found no evidence for new physics near the electroweak scale

so far. In particular, the experiments give severe bounds on new colored particles, such as

gluino and squarks in the supersymmetric (SUSY) models [1, 2]. This situation may imply

that most of the new particles in the high energy theory have masses much larger than

the electroweak scale and only a WIMP, probably accompanied with some non-colored

particles, is accessible in the TeV-scale experiments.

The current experimental consequences would fit in with a simple SUSY breaking

scenario. If the SUSY breaking is induced by non-singlet chiral superfields (as is often
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the case with the dynamical SUSY breaking [3–8]), gaugino masses are induced by the

anomaly mediation mechanism [9, 10] and thus suppressed by a loop factor compared with

the gravitino mass. A generic Kähler potential gives masses of the order of the gravitino

mass to scalar particles and higgsino. In this framework, the neutral wino is found to be

the lightest SUSY particle and thus becomes a candidate for dark matter in the Universe.

Actually, its thermal relic abundance explains the observed energy density of DM if the

wino DM has a mass of 2.7–3.1 TeV [11]. For relatively light wino DM, on the other

hand, the non-thermal production via the late time decay of gravitino could be invoked

to provide the correct abundance of DM [12, 13]. As this scenario [10, 14–18] requires

the SUSY breaking scale to be much higher than the electroweak scale, a relatively heavy

mass for the Higgs boson is predicted [19–28], which is consistent with the observed value

mh ' 125 GeV [29, 30]. Although such a high SUSY-breaking scale requires a severe fine-

tuninig to realize the electroweak scale, it is phenomenologically desirable since it relaxes

the SUSY flavor and CP problems [31–37], the dimension-five proton decay problem [38–

42], and some cosmological problems [43–45]. Gauge coupling unification is found to be

still preserved with good accuracy [46]. For these reasons, the wino DM scenario attracts

a lot of attention, and its phenomenology has been studied widely.

A lot of efforts have been dedicated to searching for the wino DM. A robust constraint is

provided by the Large Hadron Collider experiment; charged winos with a mass of 270 GeV

or less have been excluded at 95% C.L. [47]. For prospects of the wino search in future

collider experiments, see ref. [48–54]. On the other hand, signal of the wino DM may

be detected in cosmic ray observations. Since the wino DM has large annihilation cross

section [55, 56], cosmic rays from annihilating winos are promising tools to detect the wino

DM indirectly. The mass of wino DM, M , is excluded as M ≤ 320 GeV and 2.25 TeV ≤
M ≤ 2.43 TeV at 95% C.L. [57] by using gamma ray data from dwarf spheroidal galaxies

provided by Fermi-LAT collaboration [58]. See also ref. [59] for relevant discussion. Gamma

rays from the Galactic center provided by the H.E.S.S. [60] may give a strong limit on the

wino DM, though the consequences are quite dependent on the DM density profile used

in the analysis [61–63]. Developments in both theory [64–68] and observation enable us to

probe a wide range of mass region of the wino DM in future indirect detection experiments.

Direct detection of dark matter is another important experiment to study the nature of

dark matter. Currently the most stringent limits are provided by the LUX experiment [69];

it sets an upper limit on the spin-independent (SI) WIMP-nucleon elastic scattering cross

section as σSI < 7.6 × 10−46 cm2 at a WIMP mass of 33 GeV. Moreover, various future

projects with ton-scale detectors are now ongoing and expected to have significantly im-

proved sensitivities. To test the wino DM scenario in the direct detection experiments, one

needs to evaluate the wino-nucleon scattering cross section precisely, with the theoretical

uncertainties being sufficiently controlled. This scattering is induced by loop diagrams if

the higgsino and squarks are much heavier than wino [70]. At present, the leading order

(LO) calculation for the scattering cross section is given in the literature [71–74]; in these

works, the SI scattering cross section with a nucleon is evaluated as σSI ∼ 10−47 cm2.

For other relevant works, see refs. [75–82]. Since the predicted scattering rate of the wino

DM is larger than those of the neutrino backgrounds [83], one expects that the future
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direct detection experiments may eventually catch a signal of the wino DM. However, it

was pointed out by the authors of refs. [79, 80, 82] that the present calculation may suffer

from large uncertainties. They further found that these uncertainties mainly come from

the neglect of the higher order contribution in perturbation theory, not from the error of

the nucleon matrix elements, which may alter the SI cross section by a factor. To reduce

the uncertainties, therefore, we need to go beyond the LO calculation.

In this paper, we complete this calculation up to the next-to-leading order (NLO) in the

strong coupling constant αs. For this purpose, we first reformulate the computation based

on the effective theoretical approach. The relevant interactions are expressed in terms of

the effective operators, whose Wilson coefficients are given up to the NLO with respect to

αs. The coefficients are evolved down to the scale at which the nucleon matrix elements

of the effective operators are evaluated, by means of the renormalization group equations

(RGEs). This procedure allows us to include the NLO QCD effects systematically.

The rest of the paper is organized as follows. In the next section, we describe the

formulation mentioned above. All of the matching conditions as well as the RGEs are

presented here. Then, in section 3, we show our results for the SI scattering cross section

and discuss the uncertainties of the calculation. In section 4, we also present the results

for a generic SU(2)L multiplet DM. Those who are interested in a quick reference may find

our results in these two sections. Section 5 is devoted to conclusion and discussion.

2 Formalism

In this section, we give a formalism to evaluate the SI scattering cross section of the wino

DM with a nucleon. We will carry out the calculation up to the NLO in the strong coupling

constant αs. The formalism given here is based on the method of effective field theories,

which consists of the following three steps. Firstly, we obtain the effective operators at

the electroweak scale µW ' mZ (mZ is the mass of the Z boson) by integrating out

heavy particles whose masses are not less than the electroweak scale. This step is carried

out in terms of the operator product expansions (OPEs). Secondly, we evolve the Wilson

coefficients of the effective operators using the RGEs down to the scale at which the nucleon

matrix elements of the operators are evaluated. Finally, we express the SI effective coupling

of a wino DM with a nucleon in terms of the Wilson coefficients and the nucleon matrix

elements. From this effective coupling, one readily obtains the SI scattering cross section.

2.1 Effective Lagrangian

First let us formulate the effective Lagrangian which gives rise to the SI interactions of

the wino DM with quarks and gluon. The effective Lagrangian comprises two types of the

higher dimension operators — the scalar and the twist-2 type operators — as follows [84]:

Leff =
∑
i=q,G

CiSOiS +
∑
i=q,G

(CiT1
OiT1

+ CiT2
OiT2

) , (2.1)
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Proton Neutron

f
(p)
Tu

0.019(5) f
(n)
Tu

0.013(3)

f
(p)
Td

0.027(6) f
(n)
Td

0.040(9)

f
(p)
Ts

0.009(22) f
(n)
Ts

0.009(22)

Table 1. Mass fractions computed with the lattice simulations of QCD [89, 90].

with

OqS ≡ mqχ̄
0χ0q̄q ,

OGS ≡
αs
π
χ̄0χ0GaµνG

aµν ,

OiT1
≡ 1

M
χ̄0i∂µγνχ0Oiµν ,

OiT2
≡ 1

M2
χ̄0(i∂µ)(i∂ν)χ0Oiµν , (2.2)

Here χ0, q, and Gaµν denote the wino DM, quarks, and the field strength tensor of gluon

field, respectively; mq are the masses of quarks; M is the mass of the wino DM; Oqµν and

OGµν are the twist-2 operators of quarks and gluon, respectively, which are defined by1

Oqµν ≡
1

2
qi

(
Dµγν +Dνγµ −

1

2
gµν /D

)
q ,

OGµν ≡ Gaρµ Gaνρ −
1

4
gµνG

a
ρσG

aρσ , (2.3)

with Dµ the covariant derivative. Here we neglect the operators that are suppressed in the

non-relativistic limit. We have performed the quark mass/momentum expansion and kept

only the LO terms. Factors of 1/M and 1/M2 in the definition of OiT1 and OiT2 , respectively,

compensate the derivatives on the DM fields, whose time component reduces to the DM

mass in the non-relativistic limit. Moreover, we have used the equations of motion to

eliminate redundant operators [86, 87]. These effective operators are renormalized at the

electroweak scale µW ' mZ with Nf = 5 active quarks (q = u, d, s, c, b). The Wilson

coefficients of the operators are to be determined below. Notice that we have included the

strong coupling constant αs/π in the definition of the gluon scalar-type operator OGS [88].

We will discuss the validity in the next subsection.

2.2 Nucleon matrix elements

In order to compute the scattering cross section of the wino DM with a nucleon, we need

the nucleon matrix elements of the scalar and twist-2 type quark and gluon operators

presented above. Since these two types of the operators do not mix with each other under

the renormalization group (RG) flow, it is possible to consider these two types separately.

1We have changed the definition of OGµν by a factor of −1 from those in refs. [71–73, 84]. We follows the

conversion in ref. [85].
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g(2) 0.464(2)

u(2) 0.223(3) ū(2) 0.036(2)

d(2) 0.118(3) d̄(2) 0.037(3)

s(2) 0.0258(4) s̄(2) 0.0258(4)

c(2) 0.0187(2) c̄(2) 0.0187(2)

b(2) 0.0117(1) b̄(2) 0.0117(1)

Table 2. Second moments of the PDFs of proton evaluated at µ = mZ . We use the CJ12 next-to-

leading order PDFs given by the CTEQ-Jefferson Lab collaboration [92].

For the scalar-type quark operators, we use the results from the QCD lattice simula-

tions. The values of the mass fractions of a nucleon N(= p, n), which are defined by

f
(N)
Tq
≡ 〈N |mq q̄q|N〉/mN , (2.4)

are shown in table 1. Here mN is the nucleon mass. They are taken from ref. [74], which

are computed with the recent results of the lattice QCD simulations [89, 90].

The nucleon matrix element of OGS , on the other hand, is evaluated by means of the

trace anomaly of the energy-momentum tensor in QCD [91]:

Θµ
µ =

β(αs)

4αs
GaµνG

aµν + (1− γm)
∑
q

mqqq . (2.5)

Here the beta-function β(αs) and the anomalous dimension γm are defined by the following

equations:

β(αs) ≡ µ
dαs
dµ

, γmmq ≡ µ
dmq

dµ
, (2.6)

whose explicit forms will be given in eqs. (2.37) and (2.38), respectively. By putting the

operator (2.5) between the nucleon states at rest, we obtain

〈N |αs
π
GaµνG

aµν |N〉 = mN
4α2

s

πβ(αs;Nf = 3)

[
1− (1− γm)

∑
q

f
(N)
Tq

]
. (2.7)

This formula is obtained with Nf = 3 quark flavors. Notice that the relation (2.5) is an

operator equation and thus scale-invariant. This is because the energy-momentum tensor is

corresponding to the current of the four momentums, which is a physical quantity and thus

not renormalized. As a consequence, eq. (2.7) should hold at any scales. We will evaluate

the matrix element at the hadronic scale µhad ' 1 GeV in the following calculation.

Since β(αs) = O(α2
s), the r.h.s. of eq. (2.7) have a size of O(mN ). Namely, although

we include a factor of αs/π in the definition of OGS , its nucleon matrix element is not sup-

pressed by the factor. It should be also noted that the scalar-type quark operator mq q̄q is

scale-invariant to all orders in perturbation theory (in a mass-independent renormalization

scheme) and then the matrix element of OGS is independent of the scale at the LO in αs.

This is another reason for our definition of OGS .
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Finally, the nucleon matrix elements of the twist-2 operators are given by the second

moments of the parton distribution functions (PDFs):

〈N(p)|Oqµν |N(p)〉 = mN

(pµpν
m2
N

− 1

4
gµν

)
(q(N)(2;µ) + q̄(N)(2;µ)) , (2.8)

〈N(p)|OGµν |N(p)〉 = −mN

(pµpν
m2
N

− 1

4
gµν

)
g(N)(2;µ) . (2.9)

with

q(N)(2;µ) =

∫ 1

0
dx x q(N)(x, µ) , (2.10)

q̄(N)(2;µ) =

∫ 1

0
dx x q̄(N)(x, µ) , (2.11)

g(N)(2;µ) =

∫ 1

0
dx x g(N)(x, µ) . (2.12)

Here q(N)(x, µ), q̄(N)(x, µ) and g(N)(x, µ) are the PDFs of quark, antiquark and gluon in

nucleon at the scale µ, respectively. Contrary to the case of the scalar matrix elements,

we have the values of the PDFs at various scales. In table 2, for example, we present the

second moments at the scale of µ = mZ . Here we use the CJ12 next-to-leading order PDFs

given by the CTEQ-Jefferson Lab collaboration [92]. It turns out that with the definition

of the gluon twist-2 tensor given in eq. (2.3), the second moment for gluon g(2) is of the

same order of magnitude as those for quarks so that the r.h.s. of eqs. (2.8) and (2.9) are

O(mN ). This justifies the definition (2.2), where we do not include a factor of αs/π in the

definition of OGT1
and OGT2

. Our definition for the gluon operators (OGS , OGT1
, and OGT2

)

clarifies the order counting with respect to αs/π [88].

2.3 Wilson coefficients

Now we evaluate the Wilson coefficients of the effective operators at the electroweak scale

µW to the NLO in αs/π. We use the MS scheme in the following calculation. The scattering

of a pure neutral wino χ0 with a nucleon is induced via the weak interactions accompanied

by the charged winos χ±. The interaction Lagrangian is given by

Lint = g2χ0 /Wχ+ + h.c. , (2.13)

where g2 and Wµ are the SU(2)L gauge coupling constant and the W boson, respectively.

Since the winos do not couple to the Higgs field directly and the mass difference ∆M

between the neutral and charged winos is radiatively generated after the electroweak sym-

metry breaking, ∆M is much smaller than the DM mass itself or other masses which

enter into our computation; according to the recent NLO computation given in ref. [93],

∆M ' 165 MeV. Therefore, we safely neglect it in the following discussion.

Before looking into the details of the calculation, we first summarize the procedure

of the computation as well as the approximations we have used in the calculation. In

figure 1, we show the diagrams which induce the couplings of wino DM with quarks and

– 6 –
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Figure 1. Diagrams for wino-nucleon scattering.

gluon, respectively [71–74]. These diagrams are classified into two types; one is the Higgs

exchange type like the upper two diagrams and the other is the box diagrams corresponding

to the lower two. We separately discuss each two type.

The Higgs contribution only induces the scalar-type operators. For the NLO-level

calculation, we need to evaluate the two- and three-loop diagrams for the quark and gluon

scalar-type operators, respectively.

For the box-type contribution, on the other hand, the NLO-level calculation requires

us to determine the Wilson coefficients of the operators mq q̄q,
αs
π G

a
µνG

aµν , and Oiµν to

O(αs/π). We first carry out the OPEs of the correlation function of the electroweak

currents, as described in refs. [72, 73]. For the scalar operators, the NLO contribution to

the OPEs of the correlation functions of vector and axial-vector currents is evaluated in

ref. [94] in the degenerate quark mass limit for each generation. The results are directly

applicable to the contribution of the first two generations in our calculation since all of the

quarks of the generations may be regarded as massless. Concerning the third generation

contribution, the mass difference between top and bottom quarks is significant, and thus

the mere use of the results in ref. [94] is not justified. Their contribution is, however,

found to be small compared with those of the first two generations. In our calculation, we

neglect the NLO contribution of the third generation, and take into account the effects as

a theoretical uncertainty. The Wilson coefficients of the twist-2 operators are evaluated in

ref. [95] to O(αs/π) in the massless limit. It is again not possible to use the results for the

contribution of the third generation, and thus we will drop the contribution and estimate

the effects as a theoretical uncertainty. By evaluating the W boson loop diagrams with this

correlation function, we then obtain the Wilson coefficients of the operators in eq. (2.2).

As a result, CqS, CiT1
, and CiT2

are computed at the two-loop level, while CGS is evaluated

at the three-loop level. In table 3, we summarize the number of loops in diagrams relevant

to the NLO calculation for each contribution. They complete the NLO matching condition

– 7 –
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Operators Higgs Box

Parton Type LO NLO LO NLO

Quark Scalar CqS 1-loop 2-loop - 2-loop

(1st&2nd) Twist-2 CqT1,2
- - 1-loop 2-loop

Quark Scalar CbS 1-loop 2-loop 1-loop 2-loop (neglected)

(b-quark) Twist-2 CbT1,2
- - 1-loop 2-loop (neglected)

Gluon Scalar CGS 2-loop 3-loop 2-loop 3-loop

(1st & 2nd) Twist-2 CGT1,2
- - - 2-loop

Gluon Scalar CGS 2-loop 3-loop 2-loop 3-loop (3rd gen. neglected)

(3rd) Twist-2 CGT1,2
- - - 2-loop (3rd gen. neglected)

Table 3. Number of loops in diagrams relevant to the O(αs/π) calculation for each operator. We

also show where we neglect the third generation contribution at the NLO. Here “−” means that

there is no contribution or the contribution vanishes.

for each Wilson coefficient at the electroweak scale µW . In addition, we show in the table

where we ignore the third generation contribution. As we will see below, the effect of

dropping the NLO third-generation contribution is actually negligible.

2.3.1 Higgs exchange

The Higgs exchange processes are induced by the effective coupling of the wino DM with

the Higgs boson. They only give the scalar-type interactions as we show in table 3.

In the case that the wino DM is close to the electroweak eigenstate, the coupling is

generated at one-loop level:

Lχχh = −1

2
cH(w) χ̄0χ0h0 , (2.14)

where w ≡ m2
W /M

2 with mW and M being the masses of W boson and wino, respectively,

and cH(w) =
g32

(4π)2
gH(w). Here gH(x) is a mass function presented in ref. [71].2 By using the

effective coupling we readily obtain the LO matching condition for the scalar-type quark

operators as

CqS(µW )|LO =
α2

2

4mWm2
h

gH(w) . (2.15)

Here mh is the mass of the Higgs boson and α2 ≡ g2
2/(4π). To evaluate the NLO matching

condition, one needs to evaluate the QCD corrections in the full and effective theories at

two- and one-loop levels, respectively. These corrections turn out to be equivalent, and

thus the matching condition does not differ from the above equation, i.e.,

CqS(µW ) =
α2

2

4mWm2
h

gH(w) , (2.16)

to the NLO in perturbation theory.

2The mass functions used in text are collected in appendix A.

– 8 –



J
H
E
P
0
6
(
2
0
1
5
)
0
9
7

For the scalar-type gluon operator, the one-loop long-distance contribution by the

scalar-type quark operators is subtracted from the two-loop contribution in the full theory

so that only the top-quark contribution is included in CGS . Then, we have [91]

CGS (µW )|LO = − α2
2

48mWm2
h

gH(w) . (2.17)

At the NLO, the above expression is modified to [96, 97]

CGS (µW ) = − α2
2

48mWm2
h

gH(w)

[
1 +

11

4π
αs(µW )

]
. (2.18)

Notice that it contains no logarithmic terms like those containing a factor of ln(mt/µW ).

This is because αs
π G

a
µνG

aµν is renormalization-group invariant up to this order in pertur-

bation theory.

2.3.2 Box type

Let us move on to the contribution of the box diagrams. They induce both scalar-type and

twist-2 operators. To compute the effective operators, we first consider the OPEs of the

correlation function of the charged currents:

ΠW
µν(q) ≡ i

∫
d4xeiq·x T

{
JWµ (x)JWν (0)†

}
, (2.19)

where

JWµ ≡
∑

i=1,2,3

g2√
2
uiγµPLdi , (2.20)

with PL ≡ (1−γ5)/2. We evaluate the Wilson coefficients of the scalar and twist-2 operators

in the OPEs up to the NLO in αs/π.

We first consider the scalar part. It is convenient to decompose the correlator into the

transverse and the longitudinal parts as

ΠW
µν(q)|scalar =

(
−gµν +

qµqν
q2

)
ΠW
T (q2) +

qµqν
q2

ΠW
L (q2) , (2.21)

where

ΠW
T (q2) =

∑
q

cqW,S(q2;µW )mq q̄q + cGW,S(q2;µW )
αs
π
GaµνG

aµν . (2.22)

Here we give only the transverse part since the longitudinal one does not contribute to CqS
and CGS [72, 73]. As for the contribution to the scalar-type quark operators of the first two

generations, there is no O(α0
s) term since the charged current JWµ is pure chiral (we take

small quark mass limit for q = u, d, s, c, b). Thus, only the one-loop diagrams are relevant

in this case. It readily follows from the results given in ref. [94], in which the correlation

functions for vector and axial currents are evaluated with the OPEs, that

cqW,S(q2;µW ) = −
αs(µW )

4π

g2
2

q2
, (2.23)

– 9 –
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for q = u, d, s, c. On the other hand, the tree-level contribution of the bottom quark to the

scalar-type operator does not vanish because of the large top-quark mass. We have

cbW,S(q2;µW ) =
g2

2m
2
t

8(q2 −m2
t )

2
. (2.24)

Here, as mentioned above, we neglect the NLO contribution and take its effects into account

as a theoretical uncertainty. The gluon contribution of the first two generations is also

obtained straightforwardly from ref. [94]. The contribution of the third generation quarks,

however, is not evaluated reliably by means of the method used in ref. [94] due to the

large mass of top quark. Here again, we neglect the NLO effects and consider them as a

theoretical uncertainty. As a result, we obtain

cGW,S(q2;µW ) =
g2

2

48q2

[
2×

(
1 +

7

6

αs(µW )

π

)
+

(
q2

q2 −m2
t

)]
, (2.25)

where the first and second terms in bracket correspond to the contribution of the first two

generations and the third generation, respectively.

Next, we consider the twist-2 part. For the contribution of q = u, d, s, c to the quark

twist-2 operators, the relevant parts are written as

ΠW
µν(q)|Q(1,2) =

∑
q=u,d,s,c

g2
2

2

[
−
(
gµρgνσq

2 − gµρqνqσ − qµqρgνσ + gµνqρqσ
(q2)2

)
cqW,2

+

(
gµν −

qµqν
q2

)
qρqσ
(q2)2

cqW,L

]
Oqρσ .

(2.26)

The Wilson coefficients cqW,2 and cqW,L are evaluated in refs. [95] as follows:

cqW,2(µW ) = 1 +
αs(µW )

4π

[
−1

2

(
64

9

)
ln

(
−q2

µ2
W

)
+

4

9

]
,

cqW,L(µW ) =
αs(µW )

4π

[
16

9

]
. (2.27)

For the third generation contribution, on the other hand, we take into account top mass

in the LO part and neglect the NLO part as mentioned above. As a result, we have

ΠW
µν(q)|Q(3) = −g

2
2

2

1

(q2 −m2
t )

2

[
(q2 −m2

t )gµρgνσ − gµρqνqσ − qµqρgνσ + gµνqρqσ
]
cbW,3Obρσ ,

(2.28)

with

cbW,3 = 1 +
αs(µW )

4π

[
−1

2

(
64

9

)
ln

(
−q2

µ2
W

)]
. (2.29)

Note that we have included the logarithmic part though it is induced at the NLO; otherwise,

the Wilson coefficient shows wrong dependence on the factorization scale µW . Finally let

– 10 –
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us derive the gluon twist-2 operator. It is always induced at O(αs/π). For the contribution

of massless quarks, we use the results given in refs. [95]. The result is

ΠW
µν(q)|G(1,2) =

g2
2

2

[
−
(
gµρgνσq

2 − gµρqνqσ − qµqρgνσ + gµνqρqσ
(q2)2

)
cGW,2

+

(
gµν −

qµqν
q2

)
qρqσ
(q2)2

cGW,L

]
OGρσ , (2.30)

where

cGW,2(µW ) = 4×
αs(µW )

4π

[
−1

2

(
4

3

)
ln

(
−q2

µ2
W

)
+

1

2

]
,

cGW,L(µW ) = 4×
αs(µW )

4π

[
−2

3

]
, (2.31)

with a factor of four counting the number of the first two generation quarks. As before, we

neglect the NLO contribution of the third generation quarks but keep its logarithmic part

in order to guarantee the appropriate scale dependence. This reads

ΠW
µν(q)|G(3) = −g

2
2

2

1

(q2 −m2
t )

2

[
(q2 −m2

t )gµρgνσ − gµρqνqσ − qµqρgνσ + gµνqρqσ
]

× cGW,3OGρσ , (2.32)

with

cGW,3 =
αs(µW )

4π

[
−1

2

(
4

3

)
ln

(
−q2

µ2
W

)]
. (2.33)

Then, the sum of the above contributions gives the total twist-2 contribution:

ΠW
µν(q)|twist2 = ΠW

µν(q)|Q(1,2) + ΠW
µν(q)|Q(3) + ΠW

µν(q)|G(1,2) + ΠW
µν(q)|G(3) . (2.34)

Our remaining task is to obtain the Wilson coefficients of the effective operators in

eq. (2.2) by computing another loop with the electroweak current correlator ΠW
µν(q). For

the scalar-type operators, we have

CqS(µW ) =
α2

2

m3
W

αs(µW )

4π
[−12gB1(w)] , (for q = u, d, s, c) ,

CbS(µW ) =
α2

2

m3
W

[(−3)gbtm(w, τ)] ,

CGS (µW ) =
α2

2

4m3
W

[(
2 +

7

3

αs(µW )

π

)
gB1(w) + gtop(w, τ)

]
, (2.35)

where τ ≡ m2
t /M

2. The mass function gB1(x) is given in ref. [71], and gtop(x, y) and

gbtm(x, y) are equivalent to g
(1)
B3 (x, y) and g

(2)
B3 (x, y) in ref. [73], respectively. These functions

are also presented in appendix A.
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For the twist-2 type operators, on the other hand, we have

CqTi(µW ) =
α2

2

m3
W

[
gTi(w, 0) +

αs(µW )

4π

(
−32

9
glog

Ti
(w, 0;µW ) +

9

4
gTi(w, 0) +

16

9
hTi(w)

)]
,

CbTi(µW ) =
α2

2

m3
W

[
gTi(w, τ) +

αs(µW )

4π

(
−32

9
glog

Ti
(w, τ ;µW )

)]
,

CGTi(µW ) =
α2

2

m3
W

αs(µW )

4π
×[

4×
(
−2

3
glog

Ti
(w, 0;µW ) +

1

2
gTi(w, 0)− 2

3
hTi(w)

)
− 2

3
glog

Ti
(w, τ ;µW )

]
,

(2.36)

where the functions gTi(x, y), hTi(x) and glog
Ti

(x, y;µW ) are given in appendix A. gTi(x, 0)

agrees with gTi(x) in, e.g., ref. [71]. The terms proportional to glog
Ti

(x, y) come from the

logarithmic terms in the OPEs of the correlation function of the charged currents, while

the terms with gTi(x, y) and hTi(x) are from the non-logarithmic terms in c
q/b/G
W,2 and

c
q/G
W,L, respectively. The NLO contribution to the gluon twist-2 operator is also given in

refs. [79, 82]. Here we note that to obtain the proper dependence of the above coefficients on

the scale µW , we need to include all of the NLO corrections. Otherwise, the mismatch in the

scale dependence between the matching conditions and the RGEs causes large uncertainties.

To that end, it is important to appropriately perform the order counting with respect

to αs/π. Especially, the two-loop contribution to CGTi should be regarded as the NLO in

αs/π,3 not the LO, which is contrary to the case of the gluon scalar operator CGS ; in this

case, the two-loop contribution is the LO in αs/π. Our convention for the definition of the

gluon operators clarifies this order counting.

As we have already commented several times, we neglect the NLO contribution of the

third generation quarks. Indeed, we expect that its significance is quite small, and thus

we safely regard it as a theoretical uncertainty. In figure 2 we compare the mass func-

tions corresponding to the LO third generation contributions with those of the LO mass-

less quark contributions, which corresponds to gtop(w, τ)/gB1(w), gT1(w, τ)/gT1(w, 0), and

gT2(w, τ)/gT2(w, 0). gbtm(w, τ)/gB1(w) is also shown as its contribution to CGS via inte-

gration of the bottom quark is given by −CbS/12. It is found that the LO third generation

contributions are smaller than those of the first and second generations by almost an order

of magnitude. Hence, we expect that the NLO contributions of the third generation are

also considerably small compared with those of the other two generations. This allows us

to ignore the third-generation NLO contribution, and treat it as a theoretical uncertainty.

2.4 Renormalization group equations and matching conditions

The effective operators are scale dependent and their scale evolution is described by the

RGEs. During the RG evolution, heavy quarks are integrated out around their mass scale.

3One may easily check that the logarithmic parts in the NLO contribution to the twist-2 operators

reproduce the one-loop RGEs presented in section 2.4. This justifies the order counting discussed here.
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Figure 2. Comparison of gtop(w, τ), gT1
(w, τ), gT2

(w, τ), and gbtm(w, τ) with gB1(w), gT1
(w, 0),

gT2
(w, 0), and gB1(w) in red solid, blue dotted, green dash-dotted, and gray dashed lines, respec-

tively, to show smallness of third generation contributions.

Thus we need to match the theories above and below the threshold. Here we summarize

the RGEs and the matching conditions.

To begin with, we write down beta-function of αs and anomalous dimension of quark

mass operator:

β(αs) = (2b1)
α2
s

4π
+ (2b2)

α3
s

(4π)2
, (2.37)

γm = −6CF
αs
4π

, (2.38)

with b1 = −11
3 Nc + 2

3Nf , b2 = −34
3 N

2
c + 10

3 NcNf + 2CFNf . (Nc = 3 is the number

of colors, Nf denotes the number of quark flavors in an effective theory and CF is the

quadratic Casimir invariant defined by CF ≡ N2
c−1

2Nc
.) Here for the MS quark masses, we

use the one-loop anomalous dimension since their effects first appear at the NLO level as

we will see below soon.

Now we give the RGEs for the Wilson coefficients of the above operators. First, we

consider the RGEs for the scalar-type operators. To that end, notice that the quark

mass operator is RG invariant in a mass-independent renormalization scheme like the MS

scheme, i.e.,

µ
d

dµ
mqqq = 0 . (2.39)

To evaluate the evolution of the gluon scalar operator, we use the trace anomaly for-

mula (2.5). Differentiating eq. (2.5), we then obtain the differential equation for the gluonic
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scalar operator αs
π G

a
µνG

aµν . As a result, we have4

µ
d

dµ
(CqS, C

G
S ) = (CqS, C

G
S ) ΓS , (2.40)

where ΓS is a (Nf + 1)× (Nf + 1) matrix given by

ΓS =


0 · · · 0 0
...

. . .
...

...

0 · · · 0 0

−4α2
s
dγm
dαs
· · · −4α2

s
dγm
dαs

α2
s
d
dαs

(β(αs)
α2
s

)
 , (2.41)

The solutions of the RGEs are given as follows:

CqS(µ) = CqS(µ0)− 4CGS (µ0)
α2
s(µ0)

β(αs(µ0))
(γm(µ)− γm(µ0)) , (2.42)

CGS (µ) =
β(αs(µ))

α2
s(µ)

α2
s(µ0)

β(αs(µ0))
CGS (µ0) . (2.43)

Eq. (2.42) shows that the anomalous dimension at O(αs), i.e. eq. (2.38), is enough for the

NLO calculation.

Next, we consider the RGEs for the twist-2 operators. The two-loop anomalous di-

mension matrix of the operators is evaluated as [99, 100]

µ
d

dµ
(CqTi , C

G
Ti) = (CqTi , C

G
Ti) ΓT , (2.44)

with ΓT a (Nf + 1)× (Nf + 1) matrix:

ΓT =



γqq 0 · · · 0 γqg

0 γqq
...

...
...

. . . 0
...

0 · · · 0 γqq γqg
γgq · · · · · · γgq γgg


, (2.45)

where

γqq =
16

3
CF ·

αs
4π

+

(
−208

27
CFNf −

224

27
C2
F +

752

27
CFNc

)(
αs
4π

)2

,

γqg =
4

3
· αs

4π
+

(
148

27
CF +

70

27
Nc

)(
αs
4π

)2

,

γgq =
16

3
CF ·

αs
4π

+

(
−208

27
CFNf −

224

27
C2
F +

752

27
CFNc

)(
αs
4π

)2

,

γgg =
4

3
Nf ·

αs
4π

+

(
148

27
CFNf +

70

27
NcNf

)(
αs
4π

)2

. (2.46)

4In fact, we implicitly assume that the operators are to be evaluated between the on-shell states. As

discussed in refs. [96, 98], during the RG flow, the scalar operators mix with other (gauge-variant) operators

whose on-shell matrix elements vanish.
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Finally we give the threshold corrections at the scale where heavy quarks are integrated

out. For example, in the vicinity of the bottom-quark threshold µb ' mb, we match the

strong gauge coupling constant and the Wilson coefficients as

1

αs(µb)|Nf=4
=

1

αs(µb)|Nf=5
+

1

3π
ln

(
µb
mb

)
, (2.47)

and

CqS(µb)|Nf=4 =CqS(µb)|Nf=5 ,

[αsC
G
S ](µb)|Nf=4 =− αs(µb)

12

[
1 +

αs(µb)

4π

(
11 +

2

3
ln
m2
b

µ2
b

)]
CbS(µb)|Nf=5

+

[
1 +

αs(µb)

4π

2

3
ln
m2
b

µ2
b

]
[αsC

G
S ](µb)|Nf=5 ,

CqTi(µb)|Nf=4 =CqTi(µb)|Nf=5 ,

CGTi(µb)|Nf=4 =

[
1 +

αs(µb)

4π

2

3
ln
m2
b

µ2
b

]
CGTi(µb)|Nf=5 +

αs(µb)

4π

2

3
ln
m2
b

µ2
b

CbTi(µb)|Nf=5 ,

(2.48)

with q = u, d, s, c for the first and third equations.5 In the following section, we estimate

the uncertainties coming from the neglect of the higher order perturbation by varying the

matching scale µb around the µb ' mb. We repeat a similar procedure for the charm-quark

threshold around µc ' mc.

Here we note that besides the above threshold corrections, the higher dimension op-

erators suppressed by a power of the threshold quark mass are also generated in general.

For instance, if the scalar-type quark operator is integrated out at a quark threshold mQ,

then we will obtain the following dimension-nine operators at one-loop level [98, 101]:

−

[
αs(mQ)

60πm2
Q

(DνGaνµ)(DρGaρµ)χ̄0χ0 +
gsαs(mQ)

720πm2
Q

fabcG
a
µνG

bµρGcνρχ̄
0χ0

]
CQS (mQ) , (2.49)

where fabc is the SU(3) structure constant. In particular, those generated at the charm-

quark threshold give the largest effects. By using the naive dimensional analysis, we see

that their contribution to the nucleon matrix element may give a correction by a factor

of Λ2
QCD/m

2
c = O(0.1), which could be additionally suppressed by the prefactors of these

operators. Since we do not know precise values of the nucleon matrix elements of the

operators in eq. (2.49), we should also consider their effects as an uncertainty.

3 Results

Now we compute the wino-nucleon scattering cross section and evaluate the theoretical

uncertainties. We first separately consider the scalar and twist-2 contributions to the

wino-nucleon effective coupling in section 3.1 and 3.2, respectively. Then, we show the

5The matching condition for CGTi
here differs from that given in refs. [79, 82].
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Strong coupling constant αs(mZ) [102] 0.1185± 0.0006

Higgs pole mass mh [103, 104] 125.03± 0.27 GeV

Top-quark pole mass mt [105] 173.34± 0.76 GeV

Table 4. Input parameters.

result for the scattering cross section in the following subsection. In table 4, we summarize

the input parameters we use in our computation. For the mass of top quark, we use the

pole mass as an input parameter, and convert it to the MS mass using the one-loop relation:

mt = mt(mt)

[
1 +

4αs(mt)

3π

]
, (3.1)

where mt denotes the MS top mass. In what follows, we only use the MS mass so we drop

the bar for brevity.

3.1 Scalar part

The spin-independent effective coupling of the wino with nucleon is defined by

L(N)
SI = fN χ̄0χ0NN . (3.2)

The contribution of the scalar operators to the coupling is given by

fNscalar =
∑

q=u,d,s

CqS(µhad)〈N |mq q̄q|N〉+ CGS (µhad)〈N |αs
π
GaµνG

aµν |N〉 , (3.3)

where we take the hadron scale µhad = 1 GeV with Nf = 3 active quarks. Figure 3 shows

fpscalar with various types of errors.

In figure 3 (a) fpscalar at the LO (blue dashed) and NLO (red solid) with corresponding

bands showing the theoretical error due to the perturbative calculation are shown. In the

plot the uncertainty coming from lack of the NLO contribution of the third generation,

which is multiplied by a factor of five just for the purpose of presentation, is also shown

(gray band). For the evaluation of the error from the ignorance of higher order contribution

in perturbation, we vary each matching scale by a factor of two; i.e., mc/2 ≤ µc ≤ 2mc,

mb/2 ≤ µb ≤ 2mb, mZ/2 ≤ µW ≤ 2mZ . The prescription is, however, less effective for

the scalar-type operators since these operators are almost scale-invariant. For this reason,

when evaluating the error resulting from the quark threshold matching for the NLO (LO)

calculation, we use the NNLO (NLO) matching conditions to artificially generate the loga-

rithmic dependence of the Wilson coefficients on the scale by using the mismatch between

the matching conditions and RGEs. The NLO matching conditions are given in eq. (2.48),

while the NNLO ones are found in ref. [106]. In addition, for the LO contribution, we eval-

uate the uncertainty caused by the electroweak-scale matching by merely multiplying the

LO contribution by a factor of αs/π. Since the scalar-type operators are scale-invariant at

the LO, it is impossible to estimate the LO uncertainty from the electroweak-scale match-

ing by varying the scale µW . At the NLO, on the other hand, we are able to estimate the
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(a) Perturbation (b) Input

(c) OPE

Figure 3. Contribution of scalar-type operators to wino-proton coupling fpscalar. (a) LO (blue

dashed) and NLO (red solid) results with corresponding bands showing uncertainty due to pertur-

bative calculation. Gray band indicates uncertainty coming from lack of NLO contribution of third

generation, multiplied by a factor of five. (b) Errors from input parameters (gray), the Higgs mass

(dark red), compared with NLO error (pink). (c) Uncertainty from truncating higher dimension

operators at each quark threshold (gray band), compared with NLO perturbative QCD uncertainty

(pink band).

uncertainty with the scale variation since the NLO RGEs yield the scale dependence of the

scalar operators.

The error from the LO perturbative calculation is more than 5%, which reduces to a

few % level with the NLO calculation. The upper errors are smaller than the lower errors in

the LO and NLO perturbative calculations in the figure 3 (a). This comes from difference

between αs(mQ/2) and αs(2mQ) for Q = b, c. On the other hand, as for the uncertainty due

– 17 –



J
H
E
P
0
6
(
2
0
1
5
)
0
9
7

to the lack of the third-generation NLO contribution, we estimate its effect by multiplying

the LO contribution by a factor of αs/π. From the figure, we find that the ignorance of

the third-generation NLO contribution only gives a negligible effect on the resultant value.

The effect is much smaller than the uncertainty due to the perturbative calculation.

Figure 3 (b) shows comparison of the uncertainty in the NLO perturbative QCD cal-

culation (pink) with that from the errors in the input parameters we have used in the

calculation (gray). Among them, the uncertainty coming from the Higgs mass error is

especially shown in the dark red band. We see that thanks to the NLO calculation the

perturbative error now becomes smaller than the error from the input parameters, though

they are still of the same order of the magnitude.

Finally we plot the theoretical uncertainty which could arise due to the higher dimen-

sion operators induced at each quark threshold in figure 3 (c). To evaluate the effects

of the higher dimension operators, we vary the scalar gluon contribution induced at the

charm-quark threshold by 2%, which is expected from the naive dimensional analysis as

discussed in section 2.4.6 Since the higher dimension operators generated at the bottom-

quark threshold are suppressed by the bottom quark mass, their effects are negligible. As

seen from the figure, this uncertainty may be as large as the NLO perturbative QCD error.

To reduce the uncertainty, one of the most efficient ways is to use the nucleon matrix ele-

ments computed above the charm-quark threshold, say, at the scale of 2 GeV. In this case,

we need to evaluate the charm-quark content in nucleon, f
(N)
Tc

= 〈N |mcc̄c|N〉/mN , as well.

Currently, the QCD lattice simulations are not able to compute it accurately [107]. If this

quantity is evaluated with good precision in the future, then the uncertainty due to the

higher dimension operators will be significantly reduced. We expect that the perturbative

QCD error will also decrease, since we do not need the charm-quark threshold matching

procedure any more. Thus, we strongly encourage the development in this field.

3.2 Twist-2 part

Contrary to the scalar-type operators, the twist-2 operators have the scale dependence at

the leading order in αs. Therefore, it is necessary to determine the appropriate scale for

the matching of the full theory onto the effective theory in order not to suffer from large

logarithmic factors. To that end, we require that the logarithmic dependent parts glog
Ti

in the Wilson coefficients presented in eq. (2.36) should not be large, say, within O(1).

Since the terms proportional to glog
Ti

come from the logarithmic terms in the OPEs of the

correlation function of the charged currents, this condition guarantees the validity of the

perturbative QCD expansion. In figure 4, we show glog
Ti

(w, 0;µW ) (i = 1, 2) as function of

the factorization scale µW . Here M = 3 TeV (solid) and 300 GeV (dashed). The vertical

gray line shows µW = mZ . It turns out that the size of these functions is within O(1)

if one takes the scale µW to be around the electroweak scale. This consequence rarely

depends on the DM mass. The absolute values for these functions are minimum at a scale

6Since the first (second) operator in eq. (2.49) receives additional suppression by a factor of five (sixty)

compared with the contribution of the scalar gluon operator, −αs/(12π)GGχ̄0χ0, we estimate the sig-

nificance of the former contribution as ∼ 2% of that of the scalar-type gluon operator, while the latter

contribution is negligible.
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(b) glogT2
(w, 0;µW )

Figure 4. glogTi
(w, 0;µW ) (i = 1, 2) as function of factorization scale µW . M = 3 TeV (solid) and

300 GeV (dashed). Vertical gray line shows µW = mZ .

of O(10) GeV, which is much smaller than the DM mass. This observation reflects the fact

that the typical scale of the loop momentum flowing in the loop diagrams in figure 1 is

around the electroweak scale, as pointed out in ref. [70]. In the following calculation, we

take µW = mZ , which assures that glog
Ti

is within O(1) and thus the perturbative expansion

is justified.

To calculate the contribution of the twist-2 operators, we also need to choose the scale

at which the nucleon matrix elements of the twist-2 operators are evaluated. As mentioned

above, contrary to the case of the scalar-type operators, the twist-2 matrix elements are

obtained at various scales. Since the result does not depend on the choice of the scale

within the uncertainty of the calculation, it is desirable to choose the scale so that the

error in calculation is reduced. Thus, we take it to be the same as the factorization scale,

i.e., µ = mZ . This choice allows us to decrease the error which would arise from the

process where the operators are evolved down to the low-energy region; for instance, if one

evaluates the matrix elements at a scale µ < mb, the result suffers from the uncertainty

resulting from the bottom-quark mass threshold. See ref. [88] for further discussion.

Now we evaluate the contribution of the twist-2 operators to the SI effective coupling

in eq. (3.2), which is given by

fNtwist2

mN
=

3

4

∑
q

∑
i=1,2

CqTi(mZ)[q(N)(2;mZ) + q̄(N)(2;mZ)]

− 3

4

∑
i=1,2

CGTi(mZ)g(N)(2;mZ) , (3.4)

where q runs over the active quarks (q = u, d, s, c, b for our choice of the scale µ = mZ).
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(a) Perturbation (b) Input

Figure 5. Contribution of twist-2 operators to wino-proton coupling fptwist2. (a) LO (blue dashed)

and NLO (red solid) results with corresponding bands showing uncertainty due to perturbative

calculation. (b) Uncertainty resulting from input error.

In figure 5, we show fptwist2 as function of the wino mass. We compare the LO and NLO

results in the left panel, shown in the blue dashed and red solid lines, respectively, with

the corresponding bands representing the uncertainties. The uncertainties are evaluated

by varying the scale µW between mZ/2 and 2mZ . Besides, it is found that to drop the

NLO contribution of the third generation quarks causes only the negligible effects, so we

do not show the error due to the contribution. The O(1)% error in the LO computation

now reduces to ∼ 0.5% when going to the NLO level, though the central value shifts more

than expected, i.e. about 5% change. This is due to a large NLO term in CqTi of eq. (2.36).

In the large DM mass limit, the contributions of quarks and gluon at the NLO are 0.90

and −0.047 in 10−9 GeV−2 unit, respectively, while the quark contribution at the LO is

0.82 in 10−9 GeV−2 unit.7 In the right panel of figure 5, we also illustrate the uncertainty

resulting from the input error, which turns out to be as large as the NLO uncertainty. The

uncertainty mainly comes from those of the PDFs, which we estimate following the method

given in ref. [92] with the χ2 tolerance T taken to be T = 10. After all, in the case of the

twist-2 contribution, both the NLO and input uncertainties are less than 1%, and thus well

controlled compared to the scalar contribution.

3.3 Scattering cross section

Finally, we evaluate the wino-nucleon SI scattering cross section, which is given by

σNSI =
4

π

(
MmN

M +mN

)2

|fNscalar + fNtwist2|2 . (3.5)

7To be concrete, in CqTi
the NLO term summed over i = 1, 2 gives (α2

2αs/4πm
3
W ) × (41π/12) in the

large DM mass limit. Here logarithmic term glogTi
is neglected for simplicity. See also eqs. (A.18)–(A.31) for

the mass functions in the large DM mass limit.
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Figure 6. Wino-proton SI scattering cross section. Blue dashed and red solid lines represent LO

and NLO results, respectively, with corresponding bands show perturbative uncertainties. Gray

band shows uncertainty resulting from the input error. Yellow shaded area corresponds to the

region in which neutrino background overcomes DM signal [83].

We plot σpSI as function of the wino mass in figure 6. Additionally we indicate the parameter

region where the neutrino background dominates the the DM-nucleon scattering [83] and

then it becomes hard to detect the DM signal in the DM direct detection experiments

(yellow shaded). Here we estimate each error by varying the scalar and twist-2 contributions

within their uncertainties evaluated above. The result shows that the large uncertainty in

the LO computation is significantly reduced once the NLO QCD corrections are included,

which is now smaller than that from the input error. In the large DM mass limit, the SI

scattering cross section converges to a constant value,

σpSI = 2.3 +0.2
−0.3

+0.5
−0.4 × 10−47 cm2 , (3.6)

where the first and second terms represent the perturbative and input uncertainties, re-

spectively. As seen from figure 6, σpSI has little dependence on the DM mass; its variation is

actually within the uncertainties of the calculation, for the wino mass larger than 270 GeV.

Both the scalar and twist-2 contributions depend on the DM mass when the mass is smaller

than ∼ 1 TeV as shown in figures 3 and 5. However, the dependence in the cross section is

accidentally canceled. The NLO result is found to be larger than the LO result by almost

70%. This large enhancement is due to the significant cancellation in the scattering ampli-

tude; because of the cancellation, even an O(10)% correction in each contribution would

change the total amplitude significantly. After all, the resultant scattering cross section is

well above that of the neutrino background [83], and therefore the future direct detection

experiments are promising to test the wino DM scenario.
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Before concluding the section, we briefly discuss the effects of wino-higgsino mixing.

So far, we have assumed that the higgsino mass is heavy enough so that the lightest

neutralino is regarded as a pure wino. If the higgsino mass is rather light, however, the

wino-higgsino mixing becomes sizable, which allows the lightest neutralino to interact with

quarks (gluon) via the tree-level (one-loop) Higgs exchange process. This interaction gives

rise to the scalar-type quark operators as

CqS|tree ' −
g2

2

4m2
hµ

2
(M + µ sin 2β) , (3.7)

where µ is the higgsino mass parameter and tan β is the ratio of the Higgs vacuum expec-

tation values. We assume |µ| � M in the above expression. As shown in ref. [74], this

contribution gives a sizable effect if |µ| . O(10) TeV. A similar procedure to that given

in section 2.3.1 enables us to include this quark contribution as well as the corresponding

gluon contribution at the NLO level. In addition, a sizable wino-higgsino mixing modifies

the electroweak loop contribution, where W , Z, Higgs and Nambu-Goldstone bosons run

in the loop. The effects are evaluated in ref. [81].

4 Electroweakly-interacting DM

Although we have focused on the wino DM in this paper, a similar formalism may be

constructed for a more general class of the DM candidates; i.e., an SU(2)L multiplet with

hypercharge Y that contains a neutral component for DM, and their thermal relic may

explain the observed DM density with O(1) TeV masses. For previous works on such DM

candidates, see refs. [108–120]. Some theories beyond the Standard Model actually predict

this kind of DM. For example, the higgsino and wino in the SUSY models are representative

of the SU(2)L multiplet DM. Moreover, such a particle may show up in grand unified

theories [121–125], whose stability is explained by a remnant discrete symmetry of extra

U(1) symmetries in the theories [126–131].

Before concluding our discussion, we give the results of the NLO calculation for this

class of DM candidates. If the DM particle is a fermion, its interactions with quarks and

gluon are completely determined by the electroweak gauge interactions,8 so we consider

the fermionic DM candidates in the following discussion. If Y 6= 0, the DM is a Dirac

fermion, while a Majorana fermion if Y = 0. Pure Dirac fermion DM is, however, severely

constrained by the direct detection experiments already, since the vector interactions via

the Z boson exchange yield too large scattering cross section with nucleon. The constraint

may be evaded if there are some new physics effects that give rise to the mass difference

between the neutral components to split them into two Majorana fermions. If the mass

difference is larger than O(100) keV, the scatterings with nucleon are not induced by the

tree-level Z boson exchange. In what follows, we assume the presence of the mass difference

and regard the lighter neutral component χ0 as a DM candidate. The mass difference is

8In the case of the scalar DM, on the other hand, there always exist quartic couplings to the Higgs

boson, and the couplings also induce the interactions of the DM with quarks and gluon.
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Figure 7. SI scattering cross sections of the SU(2)L multiplet DM candidates. Red solid, green

dashed, and blue dash-dotted lines correspond to the (n, Y ) = (3, 0), (2, 1/2), and (5, 0) cases,

respectively. Yellow shaded area indicates the region in which neutrino background overcomes the

DM signal [83].

assumed to be small enough to be neglected in the following calculation. In this case, the

interactions including the neutral components are given by

Lint =
g2

4

√
n2 − (2Y − 1)2 χ+ /W+χ0 +

g2

4

√
n2 − (2Y + 1)2 χ0 /W+χ− + h.c.

+ igZY χ0 /Zη0 . (4.1)

Here n is the number of the components in the DM SU(2)L multiplet, gZ ≡
√
g2
Y + g2

2 with

gY the U(1)Y gauge coupling constant, and η0 and Zµ for the heavier neutral component

and the Z boson, respectively.

The LO calculation of the scattering cross section with a nucleon for this type of DM

candidates is given in ref. [73]. As in the case of the wino DM, we find that there is a

significant cancellation among the contributions to the scattering amplitude. Therefore,

the NLO corrections are of importance to evaluate the scattering cross section precisely.

We compute the NLO scattering cross section in a similar manner to above discussion. The

only difference is the electroweak matching conditions, which we summarize in appendix B.

Below the electroweak scale, the procedure is completely the same as before.

In figure 7 we plot the SI scattering cross sections for several SU(2)L multiplet DM

candidates. Here the red solid, green dashed, and blue dash-dotted lines represent the

(n, Y ) = (3, 0), (2, 1/2), and (5, 0) cases, respectively. The triplet case corresponds to the

wino DM, while the doublet one is regarded as the higgsino DM. The (n, Y ) = (5, 0) fermion

DM is the so-called minimal DM [108–111], for which the gauge symmetry guarantees its
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stability. Again, the yellow shaded area indicates the region in which neutrino background

overcomes the DM signal [83]. We find that all of the scattering cross sections are almost

constant in the mass region we are interested in, as already seen in the case of wino DM.

In the heavy DM mass limit, the DM-proton effective coupling fp ≡ fpscalar + fptwist2 at the

NLO is given by

fp = (n2 − 4Y 2 − 1)fpW + Y 2fpZ , (4.2)

with

fpW = 2.9× 10−11 GeV−2 ,

fpZ = −1.8× 10−10 GeV−2 , (4.3)

from which one readily obtains the SI scattering cross section for a generic SU(2)L DM

candidate. It is seen that the (n, Y ) = (3, 0) and (5, 0) cases offer the SI scattering cross

sections well above the neutrino background, while that of the (n, Y ) = (2, 1/2) case falls

far below the background. Compared to the previous results in ref. [73], slightly larger

SI scattering cross sections are obtained for DM candidates with Y = 0. As for the

(n, Y ) = (2, 1/2) case, on the other hand, we obtain a smaller SI scattering cross section.9

5 Conclusion and discussion

In this paper we have completed the calculation of the wino-nucleon scattering cross section

up to the NLO in αs/π. It turns out that the inclusion of the NLO corrections allows us

to reduce the theoretical uncertainty significantly, which is now O(10)% level. The NLO

scattering cross section is larger than the LO one by about 70%. The resultant cross section

is well above the neutrino background, and thus the DM direct detection experiment is a

promising tool for examining the wino DM scenario. In addition, we give the NLO results

for the cases with a generic SU(2)L multiplet DM, some of which may also be probed in

future experiments.

At present, the uncertainties from the input parameters, especially those of the scalar

matrix elements, dominate the theoretical error. If future lattice simulations determine the

charm-quark content in nucleon with good accuracy, the uncertainties are to be reduced

considerably. We strongly anticipate the developments in the field.
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A Mass functions

Here we list the mass functions used in text:

gH(x) =2
√
x(2− x lnx)− 2

bx
(2 + 2x− x2) tan−1

(
2bx√
x

)
, (A.1)

gB1(x) =
1

24

√
x(2− x lnx) +

1

24bx
(4− 2x+ x2)tan−1

(
2bx√
x

)
, (A.2)

gbtm(x, y) =− x
3
2 y

12(x− y)2
− x

5
2 y2

24(x− y)3
ln

(
x

y

)
− xy(2y + 6x+ 2xy − x2y)

24bx(x− y)3
tan−1

(
2bx√
x

)
+
x

3
2 y

1
2 (2x+ 6y + 2xy − xy2)

24by(x− y)3
tan−1

(
2by√
y

)
, (A.3)

gtop(x, y) =
x

3
2

12(x− y)
− x

5
2 (x− 2y)

24(x− y)2
lnx− x

3
2 y2

24(x− y)2
ln y

+
x{x3 + 4y + 4x(1 + y)− 2x2(1 + y)}

24bx(x− y)2
tan−1

(
2bx√
x

)
− x

3
2 y

1
2 by(2 + y)

6(x− y)2
tan−1

(
2by√
y

)
, (A.4)

gT1(x, y) =
x

3
2 {x(1− 2x) + y(13 + 2x)− 2y2}

12(x− y)2

− x
3
2 {x3(2− x) + 2xy(3− 3x+ x2) + 6y2(2− x)}

12(x− y)3
lnx

+
x

3
2 y{2x(3− 6y + y2) + y(12 + 2y − y2)}

12(x− y)3
ln y

+
x{4x2b2x(2 + x2)− 2xy(6− 7x+ 5x2 − x3)− 6y2(2− 4x+ x2)}

12bx(x− y)3
tan−1

(
2bx√
x

)
− x

3
2 y

1
2 {2x(3− y)(2 + 5y − y2)− y(2− y)(14 + 2y − y2)}

12by(x− y)3
tan−1

(
2by√
y

)
,

(A.5)

gT2(x, y) =
x

3
2 {x(−1 + 2x)− (1 + 2x)y + 2y2}

4(x− y)2

+
x

5
2 {(2− x)x2 + 2y(1− 3x+ x2)}

4(x− y)3
lnx

+
x

3
2 y{y2(y − 2)− 2x(1− 3y + y2)}

4(x− y)3
ln y

+
x3{x(2− 4x+ x2)− 2y(5− 5x+ x2)}

4bx(x− y)3
tan−1

(
2bx√
x

)
+
x

3
2 y

3
2 (2x(5− 5y + y2)− y(2− 4y + y2))

4by(x− y)3
tan−1

(
2by√
y

)
, (A.6)
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hT1(x) =−
√
x

12
{3− 2x− x(3− x) lnx}+

1

3
bx x(1− x) tan−1

(
2bx√
x

)
, (A.7)

hT2(x) =−
√
x

12
{1 + 6x+ x(4− 3x) lnx}+

1

12bx
(4− 2x+ 10x2 − 3x3) tan−1

(
2bx√
x

)
,

(A.8)

where we have defined bx ≡
√

1− x/4. Note that

gT1(x, 0) =
1

12

√
x{1− 2x− x(2− x) lnx}+

1

3
bx(2 + x2) tan−1

(
2bx√
x

)
, (A.9)

gT2(x, 0) = −1

4

√
x{1− 2x− x(2− x) lnx}+

1

4bx
x(2− 4x+ x2) tan−1

(
2bx√
x

)
, (A.10)

are equal to gT1(x) and gT2(x) in ref. [71], respectively. On the other hand, glog
Ti

(x, y;µW )

are given by the following integrals:

glog
Ti

(x, y;µW ) = gnum
Ti (x, y) + ln

(
x
M2

µ2
W

)
gTi(x, y) , (A.11)

with

gnum
T1

(x, y) =
x

3
2

24

∫ ∞
0

dt
1

(t+ x)2(t+ y)2

[
6y
{
−4t− t2 + (2 + t)

√
t
√

4 + t
}

+ t
{
−6t+ 4t2 + t3 + (2− t)(4 + t)

√
t
√

4 + t
}]

ln

(
t

x

)
,

gnum
T2

(x, y) =
x

3
2

8

∫ ∞
0

dt
t2{−2− 4t− t2 + (2 + t)

√
t
√

4 + t}
(t+ x)2(t+ y)2

ln

(
t

x

)
. (A.12)

We compute these integrals numerically.

For the generic SU(2)L DM case, we further introduce the following functions:

fV (x, y) = fanl
V (x, y) + fnum

V (x, y) ,

fA(x, y) = fanl
A (x, y) + fnum

A (x, y) , (A.13)
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where

fanl
V (x, y) =−

√
x(x2 − xy + 12y2)

12(x− 4y)2

+
x

3
2 (x3 − 12x2y + 20xy2 − 48y3)

24(x− 4y)3
lnx+

x
3
2 y2(7x− 4y)

6(x− 4y)3
ln(4y)

+
x

3
2 y

1
2 {5x+ 28y + 2y(7x− 4y)(1− 2y)}

12(x− 4y)3
√

1− y
tan−1

(√
1− y
√
y

)
− 4(x3 + 44xy2 − 48y3) + x(x− 2)(x3 − 12x2y + 20xy2 − 48y3)

24(x− 4y)3bx
tan−1

(
2bx√
x

)
,

(A.14)

fanl
A (x, y) =

√
x(x− 2y)

4(x− 4y)
− x

3
2 (x2 − 8xy + 8y2)

8(x− 4y)2
lnx− x

3
2 y2

(x− 4y)2
ln(4y)

+
x

3
2
√
y(2y2 − y − 1)

(x− 4y)2
√

1− y
tan−1

(√
1− y
√
y

)
+

4(x2 − 2xy + 8y2) + x(x− 2)(x2 − 8xy + 8y2)

8(x− 4y)2bx
tan−1

(
2bx√
x

)
, (A.15)

while fnum
V (x, y) and fnum

A (x, y) are expressed by the integral form as

fnum
V (x, y) = −x

3
2 y2

∫ ∞
0

dt
(t+ 2y){(2− t)

√
t+ 4 + t

√
t}

2t(t+ x)2(t+ 4y)
5
2

ln

(√
t+ 4y +

√
t

√
t+ 4y −

√
t

)
, (A.16)

fnum
V (x, y) = x

3
2 y2

∫ ∞
0

dt
(t+ 4y){(2− t)

√
t+ 4 + t

√
t}

2t(t+ x)2(t+ 4y)
5
2

ln

(√
t+ 4y +

√
t

√
t+ 4y −

√
t

)
. (A.17)

Again, these integrals are evaluated numerically. The functions fanl
V (x, y) and fanl

A (x, y)

are given by functions in ref. [73] as fanl
V (x, y) = Gt1(x, y)/4 and fanl

A (x, y) = Gt2(x, y)/4.

In the large DM mass limit, i.e., x, y → 0 with the ratio y/x fixed, the above analytic

functions are reduced to as follows:

gH(x) → −2π , (A.18)

gB1(x) → π

12
, (A.19)

gbtm(x, y) → π

24

r

(1 + r)3
, (A.20)

gtop(x, y) → π

12(1 + r)2
, (A.21)

gT1(x, y) → π(2 + 3r)

6(1 + r)3
, (A.22)

gT2(x, y) → 0 , (A.23)

hT1(x) → 0 , (A.24)

hT2(x) → π

6
, (A.25)
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gnum
T1

(x, y) → −π{(1 + r)2(1− r)(2− 3r) + (3− 7r2)r ln r}
3(1− r2)3

, (A.26)

gnum
T2

(x, y) → 0 , (A.27)

fanl
V (x, y) → π

24

(−2 + 5r + 28r3 − 88r4 + 96r6)

(1− 4r2)3
, (A.28)

fanl
A (x, y) → π

4

(1− 2r − 2r2 + 8r4)

(1− 4r2)2
, (A.29)

with r ≡
√
y/x and

fnum
V (z, τ)→ −0.189 , (A.30)

fnum
A (z, τ)→ 0.364 . (A.31)

Here we have set the values for the masses of Z boson and top quark in z and τ , respectively.

B Results for the electroweak-interacting DM

In this appendix, we summarize the electroweak matching conditions for generic SU(2)L
multiplet DM.

B.1 Current correlator

To begin with, we consider the OPEs of the electroweak current correlators as in sec-

tion 2.3.2. The correlation function of the charged currents has been already discussed

there. Here we give the OPEs of the neutral current correlator, for it is necessary to eval-

uate the Z boson contribution. The correlation function of the weak neutral current is

defined by

ΠZ
µν(q) ≡ i

∫
d4x eiq·xT{JZµ (x)JZν (0)†} , (B.1)

where

JZµ =
gZ
2

∑
q

qγµ(gqV − g
q
Aγ

5)q , (B.2)

with

gqV ≡ T
3
qL
− 2 sin2 θWQq , gqA ≡ T

3
qL
. (B.3)

Let us first evaluate the Wilson coefficients of the scalar operators. For the scalar

operators, the correlator is decomposed to the transverse and longitudinal parts as

ΠZ
µν(q)|scalar =

(
−gµν +

qµqν
q2

)
ΠZ
T (q2) +

qµqν
q2

ΠZ
L(q2) . (B.4)

Again, only the transverse part is relevant to the calculation. The OPE coefficients are

defined by

ΠZ
T (q2) =

∑
q

cqZ,S(q2;µW )mq q̄q + cGZ,S(q2;µW )
αs
π
GaµνG

aµν , (B.5)
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are then evaluated as follows [94]:

cqZ,S(q2;µW ) =
g2
Z

2q2

[
{(gqV )2 − (gqA)2}+

αs
3π
{(gqV )2 − 7(gqA)2}

]
, (B.6)

cGZ,S(q2;µW ) =
∑
q

g2
Z

48q2

(
1 +

7αs
6π

)
{(gqV )2 + (gqA)2}

+
g2
Z{(gtV )2(−q4 + 4m2

t q
2 − 12m4

t ) + 3(gtA)2(q2 − 4m2
t )(q

2 − 2m2
t )}

48q2(q2 − 4m2
t )

2

+

g2
Zm

4
t {(gtV )2(q2 − 2m2

t )− (gtA)2(q2 − 4m2
t )}
√

1− 4m2
t

q2
ln

(√
1− 4m2

t
q2

+1√
1− 4m2

t
q2
−1

)
4q2(q2 − 4m2

t )
3

,

(B.7)

with q = u, d, s, c, b. Here we drop the NLO contribution of top quark for simplicity. This

contribution is also readily obtained from the results in ref. [94]. The LO terms in the

above equations agree with the results given in ref. [73].

Next, we consider the twist-2 operators. Their contribution to the correlation function

is written as [95]

ΠZ
µν(q)|twist2 = g2

Z

∑
i=q,G

[
−
(
gµρgνσq

2 − gµρqνqσ − qµqρgνσ + gµνqρqσ
(q2)2

)
ciZ,2

+

(
gµν −

qµqν
q2

)
qρqσ
(q2)2

ciZ,L

]
Oiρσ , (B.8)

with the coefficients given by

cqZ,2(µW ) = [(gqV )2 + (gqA)2]

{
1 +

αs(µW )

4π

[
−1

2

(
64

9

)
ln

(
−q2

µ2
W

)
+

4

9

]}
,

cqZ,L(µW ) = [(gqV )2 + (gqA)2]

{
αs(µW )

4π

[
16

9

]}
,

cGZ,2(µW ) =
∑

q=u,d,s,c,b

[(gqV )2 + (gqA)2]

{
αs(µW )

4π

[
−1

2

(
4

3

)
ln

(
−q2

µ2
W

)
+

1

2

]}
,

cGZ,L(µW ) =
∑

q=u,d,s,c,b

[(gqV )2 + (gqA)2]

{
αs(µW )

4π

[
−2

3

]}
. (B.9)

Here again, we have neglected the top-quark contribution to the NLO gluon coefficients.

– 29 –



J
H
E
P
0
6
(
2
0
1
5
)
0
9
7

B.2 Wilson coefficients

Now we calculate the electroweak-scale matching conditions. For the scalar-type quark

operators, we have

CqS(µW ) =
α2

2

4m2
h

[
n2 − (4Y 2 + 1)

8mW
gH(w) +

Y 2

2mZ cos4 θW
gH(z)

]
+

α2
2

m3
W

n2 − (4Y 2 + 1)

8

αs(µW )

4π
[−12gB1(w)]

+
α2

2Y
2

cos4 θWm3
Z

[
{(gqV )2 − (gqA)2}+

αs
3π
{(gqV )2 − 7(gqA)2}

]
[3gB1(z)] , (B.10)

for q = u, d, s, c, and

CbS(µW ) =
α2

2

4m2
h

[
n2 − (4Y 2 + 1)

8mW
gH(w) +

Y 2

2mZ cos4 θW
gH(z)

]
+

α2
2

m3
W

n2 − (4Y 2 + 1)

8
[(−3)gbtm(w, τ)]

+
α2

2Y
2

cos4 θWm3
Z

[
{(gqV )2 − (gqA)2}+

αs
3π
{(gqV )2 − 7(gqA)2}

]
[3gB1(z)] , (B.11)

where θW is the weak mixing angle and z ≡ m2
Z/M

2.10 The Wilson coefficient of the

scalar-type gluon operator is, on the other hand, computed as

CGS (µW ) =− α2
2

48m2
h

[
1 +

11

4π
αs(µW )

][
n2 − (4Y 2 + 1)

8mW
gH(w) +

Y 2

2mZ cos4 θW
gH(z)

]
+

α2
2

4m3
W

n2 − (4Y 2 + 1)

8

[(
2 +

7

3

αs(µW )

π

)
gB1(w) + gtop(w, τ)

]
+

α2
2Y

2

8 cos4 θWm3
Z

[ ∑
q=u,d,s,c,b

(
1 +

7αs
6π

)
{(gqV )2 + (gqA)2}gB1(z)

+ (gtV )2fV (z, τ) + (gtA)2fA(z, τ)

]
, (B.12)

where the functions fV (x, y) and fA(x, y) are given in appendix A. The twist-2 contribution

is given by

CqTi(µW ) =
α2

2

m3
W

n2 − (4Y 2 + 1)

8

[
gTi(w, 0)

+
αs(µW )

4π

(
−32

9
glog

Ti
(w, 0;µW ) +

9

4
gTi(w, 0) +

16

9
hTi(w)

)]
+
α2

2Y
2{(gqV )2 + (gqA)2}
m3
Z cos4 θW

[
gTi(z, 0)

+
αs(µW )

4π

(
−32

9
glog

Ti
(z, 0;µW ) +

9

4
gTi(z, 0) +

16

9
hTi(z)

)]
, (B.13)

10Note that gS(x) in ref. [73] is equal to 6gB1(x).
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for q = u, d, s, c,

CbTi(µW ) =
α2

2

m3
W

n2 − (4Y 2 + 1)

8

[
gTi(w, τ) +

αs(µW )

4π

(
−32

9
glog

Ti
(w, τ ;µW )

)]
+
α2

2Y
2{(gbV )2 + (gbA)2}
m3
Z cos4 θW

[
gTi(z, 0)

+
αs(µW )

4π

(
−32

9
glog

Ti
(z, 0;µW ) +

9

4
gTi(z, 0) +

16

9
hTi(z)

)]
, (B.14)

and

CGTi(µW ) =
α2

2

m3
W

n2 − (4Y 2 + 1)

8

αs(µW )

4π
×[

4×
(
−2

3
glog

Ti
(w, 0;µW ) +

1

2
gTi(w, 0)− 2

3
hTi(w)

)
− 2

3
glog

Ti
(w, τ ;µW )

]
+

∑
q=u,d,s,c,b

α2
2Y

2{(gqV )2 + (gqA)2}
m3
Z cos4 θW

αs(µW )

4π

[
−2

3
glog

Ti
(z, 0;µW ) +

1

2
gTi(z, 0)− 2

3
hTi(z)

]
.

(B.15)

Here we note that the LO Z boson contribution to CqS, CGS , and CqTi differs from that given

in ref. [73] by a factor of two.
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