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1 Introduction

For the vacuum state of QCD as well as for the properties of finite temperature QCD the

existence of non-trivial topological excitations is important. Well known are instantons [1]

as classical solutions in Euclidean space as tunneling events between topologically different

zero-temperature vacua. The role of topology for the solution of the famous UA(1) problem

has been recognized very early [2, 3]. Presently, the anomalous breaking of the UA(1)

symmetry above the deconfinement transition/crossover is under intense investigation in

the lattice community (see, e.g., ref. [4]).

It is known by now from lattice QCD at zero temperature that a (fractal) low-

dimensional (laminar) topological vacuum structure is discernible at very fine resolution

scale [5], while localized instanton-like structures, actually prevailing at an infrared scale,

are believed to explain chiral symmetry breaking [6, 7].

The gluon fields contributing to the path integral at finite temperature correspondingly

may contain calorons [8, 9]. Adapted to the non-trivial holonomy they have a richer

structure (in terms of “dyonic” constituents) than instantons. The changes of this structure

at the QCD phase transition are presently still under study [10, 11].

Some time ago the gluonic topological structure and the famous axial anomaly have

been proposed to be immediately observable (and controllable) through the generation of

P and CP violating domains (violating also translational invariance) in heavy ion colli-

sions [12, 13]. It has been demonstrated by detailed numerical calculations [12, 14] that

macroscopic domains of (anti)parallel color-electric and color-magnetic field can emerge in

a heavy ion collision creating an increasing chiral imbalance among the quarks which are

deconfined due to the high energy density. In this situation, the magnetic field created by

the spectator nucleons may initiate a charge separation relative to the reaction plane (par-

allel to the electro-magnetic field) [15]. The resulting charge asymmetry of quarks would

become observable in terms of recombined hadrons (chiral-magnetic effect) [16, 17]. The

strength (and particularly the dependence on the collision energy) of this effect has been
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theoretically studied and proposed to be a signal of the transient existence of liberated

quarks [12, 13, 18].

In recent years the dependence of the chiral and deconfinement transitions on the

magnetic field has been investigated both in models and ab-initio lattice simulations, see

e.g. [19, 20]. It remains an open question whether the phase transition from quarks to

hadrons, i.e. the onset of confinement and chiral symmetry breaking (and vice versa),

depends on the chiral imbalance.

In this paper we study the change of the phase structure induced by a chiral chemical

potential in an equilibrium lattice simulation. We mimic the topological content (of a CP

violating, topologically nontrivial gluonic background in a heavy ion collision event) by

inducing a chiral imbalance, which is provided (i.e. frozen) by a non-zero chiral chemical

potential. In this setting, the modification of the phase diagram by the chiral chemical

potential µ5 has been studied mainly by means of effective models [21–27], the predictions

of which will later be compared with our results.

On the lattice, contrary to the case of non-zero baryon chemical potential, simulations

with non-vanishing µ5 are not hampered by a sign problem.1 Thus, one can employ the

standard hybrid Monte Carlo algorithms. Such lattice simulations with µ5 6= 0 were already

performed in ref. [28, 29]. The main goal of these papers, however, was the study of the

chiral magnetic effect. Therefore, the phase diagram was not systematically studied.

In refs. [30, 31] we have carried out the first lattice study of the phase diagram with

non-zero chiral chemical potential. It was performed in SU(2) QCD with four flavors,

which we have considered as a simplified model of QCD. In this article we extend this

investigation generating considerably more data and performing a more detailed analysis.

But we do not attempt to analyse the topological structure that would reflect the presence

of the chiral chemical potential.

One reason for choosing the SU(2) gauge group is that less computational resources

are required for this pilot study than for full QCD. The second reason is that we have

already carried out two-colour QCD computations with an external magnetic field [32, 33].

Furthermore, the four flavor case results from our choice of staggered fermions as lattice

regularization, while we avoid to take the root of the fermion determinant, which would

allow to reduce the number of flavors. The “rooting procedure” might introduce further

systematic errors at finite lattice spacing.

In section 2 we introduce the model and its lattice implementation and define the

quantities we measure. In section 3 we present our results, and section 4 is devoted to their

discussion and to the formulation of conclusions. In the appendix we discuss the question

of renormalizations refering to explicit analytical calculations in perturbation theory.

2 Details of the simulations

We have performed simulations with the SU(2) gauge group. We employ the standard

Wilson plaquette action

Sg = β
∑
x,µ<ν

(
1− 1

Nc
TrUµν(x)

)
. (2.1)

1In SU(2) there is no sign problem even in presence of a baryon chemical potential.

– 2 –



J
H
E
P
0
6
(
2
0
1
5
)
0
9
4

For the fermionic part of the action we use staggered fermions

Sf = ma
∑
x

ψ̄xψx+

+
1

2

∑
xµ

ηµ(x)(ψ̄x+µUµ(x)ψx − ψ̄xU †µ(x)ψx+µ)

+
1

2
µ5a

∑
x

s(x)(ψ̄x+δŪx+δ,xψx − ψ̄xŪ †x+δ,xψx+δ),

(2.2)

where the ηµ(x) are the standard staggered phase factors: η1(x) = 1, ηµ(x) =

(−1)x1+...+xµ−1 for µ = 2, 3, 4. The lattice spacing is denoted by a, the bare fermion

mass by m, and µ5 is the value of the chiral chemical potential. In the chirality breaking

term s(x) = (−1)x2 , δ = (1, 1, 1, 0) represents a shift to the diagonally opposite site in a

spatial 23 elementary cube. The combination of three links connecting sites x and x+ δ,

Ūx+δ,x =
1

6

∑
i,j,k=perm(1,2,3)

Ui(x+ ej + ek)Uj(x+ ek)Uk(x) (2.3)

is symmetrized over the 6 shortest paths between these sites. In the partition function,

after formally integrating over the fermions, one obtains the corresponding determinant. As

mentioned above, we do not take the fourth root of this determinant in order to represent

each flavor (“taste”) independently of the others. Thus, the continuum limit of our model

corresponds to a theory of four (degenerate) flavors.

In the continuum limit eq. (2.2) can be rewritten in the Dirac spinor-flavor basis [34, 35]

as follows

Sf → S
(cont)
f =

∫
d4x

4∑
i=1

q̄i(∂µγµ + igAµγµ +m+ µ5γ5γ4)qi. (2.4)

We would like to emphasize that the chiral chemical potential, introduced in eq. (2.2),

corresponds to the taste-singlet operator γ5γ4 ⊗ 1 in the continuum limit.

It should be also noted here that the usual baryonic chemical potential after the dis-

cussion in ref. [36], and also the chiral chemical potential as used in ref. [29], are introduced

to the action as a modification of the temporal links by corresponding exponential factors

in order to eliminate chemical-potential dependent quadratic divergences. For staggered

fermions this modification can be performed as well for the baryonic chemical potential.

However, for the chiral chemical potential such a modification would lead to a highly non-

local action [29]. Therefore, we decided to introduce µ5 in eq. (2.2) in an additive way

similar to the mass term.

It is known that the additive way of introducing the chemical potential leads to ad-

ditional divergences in observables. In the appendix we present analytical and numerical

investigations of additional divergences in the Polyakov loop and the chiral condensate.

Our study shows that there is no additional divergence in the Polyakov loop, whereas there

is an additional logarithmic divergence in the chiral condensate. The latter is numerically

small and does not effect the results of this paper.
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We have performed simulations with two lattice sizes Nτ × N3
σ = 6 × 203, 10 × 283.

The measured observables are

• the Polyakov loop

L =
1

N3
σ

∑
n1,n2,n3

〈
Tr

Nτ∏
n4=1

U4(n1, n2, n3, n4)

〉
, (2.5)

• the chiral condensate

a3〈ψ̄ψ〉 = − 1

NτN3
σ

1

4

∂

∂(ma)
logZ =

1

NτN3
σ

1

4

〈
Tr

1

D +ma

〉
, (2.6)

• the Polyakov loop susceptibility

χL = N3
σ

(
〈L2〉 − 〈L〉2

)
, (2.7)

• the disconnected part of the chiral susceptibility

χdisc =
1

NτN3
σ

1

16

(〈(
Tr

1

D +ma

)2〉
−
〈

Tr
1

D +ma

〉2)
. (2.8)

The Polyakov loop and the corresponding susceptibility are sensitive to the confinement/de-

confinement phase transition, whereas the chiral condensate in principle responds to chiral

symmetry breaking/restoration.

The simulations have been carried out with a CUDA code in order to perform the

simulations using the Hybrid Monte Carlo algorithm on GPU’s.

The parameters of our lattice calculation are the inverse of the bare coupling constant

β, the bare mass ma and the bare chiral chemical potential aµ5 (both in dimensionless

units) as well as the lattice size. The physical temperature and the volume are given by

V = (Nσa(β))3

T =
1

a(β)Nτ
.

(2.9)

To perform the scale setting (calibration) of the lattice, we use the results of ref. [32].

There, the static potential in the same theory has been measured at zero temperature for

several values of β. The Sommer parameter r0 was calculated in lattice units and compared

to its physical value, which was supposed to be the same as in QCD, i.e. r0 = 0.468(4) fm. It

was found that the scaling function a(β) in the region were we perform our measurements

is well described by the two loop β-function. Thus, for given β we can obtain e.g. the

temperature T in units of MeV. For more details, see ref. [32].
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Figure 1. Polyakov loop and chiral condensate versus T for five values of µ5. Lattice size is 6×203,

fermion mass is m ≈ 12 MeV. Errors are smaller than the data point symbols. The curves are to

guide the eyes.
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Figure 2. Polyakov loop susceptibility and chiral susceptibility versus T for three values of µ5 =

0, 475, 950 MeV. Lattice size is 6× 203, fermion mass is m ≈ 12 MeV. In order to avoid a complete

superposition of data points belonging to different µ5 values we applied a tiny shift along the T axis.

3 Results of the calculation

We first performed simulations on a lattice of size 6 × 203 for five fixed values of µ5 =

0, 150, 300, 475, 950 MeV and different values of T . The fermion mass was kept fixed in

physical units m ≈ 12 MeV(mπ ≈ 330 MeV). The expectation values of the Polyakov loop

and the chiral condensate are shown in figure 1. The sharp change of the observables as

functions of T indicates the onset of the deconfinement and the chiral restoration phase

transition. It is seen that the temperature of both phase transitions increases with the

chiral chemical potential. One also sees that the phase transition becomes sharper for

increasing chiral chemical potential.

To study the change of the critical temperature more quantitatively, we also calculated

the chiral and the Polyakov loop susceptibilities. In order to make the figures readable we
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Figure 3. Same as figure 2 but for the three values of µ5 = 0, 150, 300 MeV.

plot separately the susceptibilities for values µ5 = 0, 475, 950 MeV in figure 2 and for

values µ5 = 0, 150, 300 MeV in figure 3. We see that increasing the value of the chiral

chemical potential moves the position of the peaks of the chiral and Polyakov loop sus-

ceptibilities to larger values of β. This means that the transition temperature increases.

We have fitted the data for both the susceptibilities near the peak with a Gaussian func-

tion χ = a0 + a1 exp
(
− (β−βc)2

2σ2

)
and extracted the critical temperatures Tχc (βχc ) using the

chiral susceptibility and TLc (βLc ) using the Polyakov loop susceptibility. The resulting de-

pendences of both critical temperatures on the value of the chiral chemical potential µ5 are

shown on the figure 4 and table 1. The values of βχc , βLc and Tχc , TLc and their uncertainties

are calculated from a fit of 5-6 points in the vicinity of the peak by the Gaussian function

given above. One sees that for all points except for µ5 = 950 MeV the critical temperatures

Tχc and TLc coincide within errors. There is a slight discrepancy for µ5 = 950 MeV, but

because of possible systematic uncertainties in the fit as well as finite size effects, we cannot

claim that the transition temperatures are different.

It should be noted that for small values of µ5 the dependence of Tc on µ5 is well

described by the function Tc = a+ bµ2
5, but the larger µ5 is the larger is the deviation from

this simple formula.

In addition to the calculations on the 6 × 203 lattice we carried out simulations on

a larger lattice of size 10 × 283. Note that this allows us to investigate larger values of

µ5. The susceptibilities require large statistics, and therefore our current computational

resources do not allow us to measure them on the larger lattice. In the simulations we kept

the physical fermion mass fixed at m = 18.5 MeV (mπ ≈ 550 MeV).

On this lattice we also calculated the observables L and 〈ψ̄ψ〉 as functions of T for

different values of µ5. The results for the Polyakov loop and the chiral condensate are

presented in figure 5. They underpin the fact that the critical temperature grows when

one increases µ5. The value of the chiral chemical potential used in our simulations was

rather large (up to µ5 = 3345 MeV), but we have not seen signals of a first-order phase

transition, although the transition becomes sharper when the value of the chiral chemical

potential grows.
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Figure 4. The dependence of the critical temperatures Tχc and TLc on the value of the chiral

chemical potential. Lattice size is 6× 203, fermion mass is m ≈ 12 MeV. The curve connecting the

points for Tχc is to guide the eyes.

µ5 (MeV) βχc Tχc (MeV) βLc TLc (MeV)

0 1.7975 ± 0.0005 195.8 ± 0.4 1.7993 ± 0.0016 197.6 ± 1.3

150 1.7984 ± 0.0009 196.7 ± 0.7 1.8025 ± 0.0023 200.3 ± 1.9

300 1.8012 ± 0.0007 198.9 ± 0.5 1.8000 ± 0.0008 198.2 ± 0.6

475 1.8116 ± 0.0003 207.5 ± 0.2 1.8117 ± 0.0005 207.9 ± 0.4

950 1.8404 ± 0.0002 233.3 ± 0.2 1.8381 ± 0.0003 231.4 ± 0.3

Table 1. The critical temperatures Tχc and TLc and the lattice parameters βχc and βLc as a function of

the chiral chemical potential µ5 obtained from the fit of the chiral and Polyakov loop susceptibilities

near the peak by a Gaussian function χ = a0 + a1 exp
(
− (β−βc)

2

2σ2

)
.
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Figure 5. Polyakov loop and chiral condensate versus T for four values of µ5 and lattice size

10 × 283, fermion mass is ma ≈ 18.5 MeV. Errors are smaller than the data point symbols. The

curves are to guide the eyes.
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Figure 7. Polyakov loop and chiral condensate versus ma for three µ5 values at β = 1.80 on a

lattice of size 10× 283. β = 1.80 corresponds to the confinement phase.

It is interesting to study how the observables L and 〈ψ̄ψ〉 depend on µ5 for fixed tem-

perature. To do this we have measured the Polyakov loop and the chiral condensate as

functions of µ5a for three different values of β, β = 1.87 (158 MeV), 1.91 (186 MeV) and

1.95 (219 MeV), which for a vanishing chiral chemical potential corresponds to a temper-

ature below the transition, in the transition region, and in the high temperature phase,

respectively. The results of these measurements are shown in figure 6. As can be seen

from the figure, in the confinement phase the Polyakov loop remains almost constant with

increasing chiral chemical potential. It means that if the system was in the confinement

phase at µ5 = 0, it remains confined at µ5 > 0. Moreover, we observe the Polyakov loop

to drop down with increasing µ5 both in the deconfinement phase and in the transition

region. Thus, the system goes into the confinement phase for sufficiently large µ5. With

other words, we conclude that the critical temperature increases with an increasing chiral

chemical potential in agreement with our results obtained on the smaller lattice. It is worth

mentioning that the behavior described above looks quite similar to the behavior obtained

for two-color QCD in an external magnetic field [10, 32].
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f1(ma) f2(ma)

β µ5, MeV χ2
dof a0 a1 a2 χ2

dof b0 b1 b2

1.80 0 0.56 0.034(1) 0.34(2) 0.3(1) 1.2 0.042(1) −0.9(1) −1.1(4)

1.80 1115 1.83 0.135(2) 0.06(5) 0.6(2) 2.0 0.137(1) −0.15(13) 0.4(5)

1.80 2230 2.0 0.237(5) −0.004(100) 0.3(5) 2.0 0.237(3) 0.02(26) 0.3(9)

1.90 1115 2.7 0.034(3) 0.31(6) 0.3(3) 3.9 0.042(2) −0.8(2) −1.0(7)

1.90 2230 0.62 0.144(2) 0.18(3) −0.11(15) 0.3 0.1486(5) −0.47(6) −0.9(2)

Table 2. The parameters for the fits f1(ma) eq. (3.1) and f2(ma) eq. (3.2) allowing to extrapolate

to the chiral limit for β = 1.80 and β = 1.90 and various values of chiral chemical potential. The

fit curves obtained with f1 are shown in the right panel of figure 7 and figure 8.
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Figure 8. Same as figure 7, but for β = 1.90 corresponding to the transition region.

In order to study the dependence of the observables on the value of the quark mass

for different values of chiral chemical potential, we have chosen four values of β: one in

the confinement phase, β = 1.8 (corresponding to a temperature T = 119 MeV), two in

the transition region, β = 1.9 (T = 178 MeV) and β = 2.0 (T = 268 MeV), and one in the

deconfinement phase β = 2.1 (T = 404 MeV). The lattice size used here is 10 × 283. We

have taken four values of the fermion mass ma and three values of the chemical potential

µ5 = 0 MeV, µ5 = 1115 MeV and µ5 = 2230 MeV. The expectation values of the Polyakov

loop and the chiral condensate are presented as functions of ma for different β in figure 7,

figure 8, figure 9, and figure 10.

In figure 7 we show the results in the confinement region at β = 1.80 (T = 119 MeV).

The Polyakov loop is small and does not show any nontrivial behavior. The chiral conden-

sate remains almost constant when the value of the fermion mass changes.

To extrapolate to the chiral limit (ma = 0) we performed chiral extrapolations in two

ways. Since the value of the temperature is not very far from the transition temperature,

we suppose that we can use the formula for the reduced three dimensional model [37]. See

also [38–40]. In that case we may use the ansatz a3 < ψ̄ψ >= f1(ma), where

f1(ma) = a0 + a1

√
ma+ a2ma (3.1)

with the non-analytic term coming from the Goldstone bosons. Such a parametrization
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Figure 10. Same as figure 7, but for β = 2.10 corresponding to the deconfinement phase.

has been used in [41] in the context of the finite temperature transition in QCD. As

an alternative we also use the chiral extrapolation relevant for zero temperature, namely

a3 < ψ̄ψ >= f2(ma), where

f2(ma) = b0 + b1ma logma+ b2ma. (3.2)

The fits performed with the eq. (3.1) are shown as lines in figure 7. The corresponding

parameters of both are given in table 2. As can be seen from this table and the corre-

sponding figure, the chiral condensate extrapolates to a non-zero value in the chiral limit.

At larger values β = 1.90 (T = 178 MeV), β = 2.00 (T = 268 MeV), and β = 2.10

(T = 404 MeV) and at zero chiral chemical potential the system is in the chirally re-

stored phase, when m goes to zero. However, at β = 1.90 (T = 178 MeV) and

µ5 = 1115, 2230 MeV, the chiral condensate has non-zero expectation values. We have

performed the same extrapolation technique as for β = 1.80 and present also these results

in table 2, showing that for these values of µ5 the data are consistent with non-zero values

in the chiral limit. It implies that also in the chiral limit a non-zero chiral chemical po-

tential shifts the position of the phase transition to larger temperatures. The plot for the

Polyakov loop (left panel of figure 8) confirms this observation: for the two smaller values

of the fermion mass ma the values of Polyakov loop for µ5a = 0 is several times larger than
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for non-zero values of µ5, so that the system for non-zero µ5 is deeper in the confinement

region than for zero chiral chemical potential.

At β = 2.00 (T = 268 MeV) and β = 2.10 (T = 404 MeV) the chiral condensate goes to

zero in the chiral limit (figure 9, 10), thus the system is in the chirally restored phase. The

dependence of the chiral condensate on the value of the mass is almost a linear function,

apart from the behavior for β = 2.00 (T = 268 MeV) at the largest chiral chemical potential

under our investigation, µ5 = 2230 MeV. This behavior can be explained if one assumes

that this point is near the phase transition. It is known that increasing the mass shifts the

position of the transition to larger temperatures [32]. Thus, at smaller masses the system

is in the chirally restored phase, while increasing the mass lets the system undergo the

chiral phase transition. Again, the plot of the Polyakov loop confirms this suggestion. The

Polyakov loop is small at larger masses implying that the system is in the confinement

phase and increases when the mass is decreased, i.e. the system becomes deconfining. This

behavior suggests that at the largest value of µ5 = 2230 MeV the transition happens at

even larger temperature than we have investigated. These results are in total agreement

with the results described above.

4 Discussion and conclusion

In this paper we have presented an investigation of the phase diagram of two-color QCD

with a chiral chemical potential using lattice simulations with dynamical staggered fermions

without rooting, i.e. with four flavor degrees of freedom in the continuum limit.

We have calculated the chiral condensate and the Polyakov loop for different values of

the temperature T and chiral chemical potential µ5 on lattices of size 6× 203 and 10× 283

as well as their respective susceptibilities (for the smaller lattice size). Our main result

is the observation that the finite temperature phase transition becomes clearly shifted to

larger critical temperature with rising chiral chemical potential. It was seen that this

conclusion remains true when one is extrapolating to vanishing quark mass. Additionally

by comparing the peak positions of the Polyakov loop susceptibility with those of the chiral

susceptibility we saw the respective critical temperatures TLc and Tχc to agree within errors

at least up to µ5 ≈ 0.5 GeV. For larger µ5 values we were not able to draw a final conclusion

about the (dis)agreement.

Our result is in contradiction to results obtained with various effective models of

QCD [21–23, 26, 27], where the critical temperature was said to decrease as µ5 increases.

We concede that we study two-color QCD with Nf = 4 quarks which is different from

what is mostly considered in the effective models. For a closer comparison, it would be

very interesting to examine the corresponding model case or to carry out the corresponding

lattice simulation in the SU(3) case.

It is likely, however, that the contradictions are rather a consequence of the fact that

the critical temperature is not a universal parameter but crucially depends on the structure

and parameters of the effective models. It is unclear to what extent they describe the actual

behavior of finite temperature QCD. It should be also noted that some predictions obtained

in different effective models are in conflict with each other. For instance, the dependence

of the chiral condensate on µ5 obtained in papers [21, 22] is opposite to the result obtained
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in paper [25]. The latter paper claims that the chiral condensate grows with the chiral

chemical potential, which is in agreement with our results.

In addition to the dependence of the critical temperature on the chiral chemical po-

tential, some effective models predict that — beginning from some critical value of µc5
(µc5 ≈ 400 MeV in ref. [21], µc5 = 50 MeV in ref. [22]) — the transition from the hadronic

to the plasma phase turns into a first order transition. In our simulations we see that the

transition becomes sharper as we increase µ5, but we don’t see a first order phase transition

up to µ5 ≈ 3.3 GeV, which would manifest itself as discontinuity in the Polyakov loop and

chiral condensate at a sufficiently large spatial extension of the lattice. In this connection

a finite size scaling analysis would be valuable but is outside the scope of this paper.

Besides within effective models, the phase diagram of QCD in the (µ5, T )-plane was

studied in papers [42, 43] in a framework of Dyson-Schwinger equations. The authors of

these papers found that the critical temperature rises with µ5 and the “phase transition”

actually is always a crossover. These results are corroborating the results of our paper.

We would like also to mention the paper [44]. In this paper the authors address the

question of universality of phase diagrams in QCD and QCD-like theories through the

large-Nc equivalence. Using the results of this paper one can show that at large Nc and

in the chiral limit there is an equivalence between the QCD phase diagram at finite µ5

and the QCD phase diagram at finite isospin chemical potential µI . The chiral condensate

of QCD with µ5 6= 0 can be mapped to the pion condensate of QCD with µI 6= 0. In

the latter theory the pion condensate and the critical temperature Tc of pion condensation

increase with µI . Despite the fact that we considered Nc = 2 one can expect that the chiral

condensate and Tc in our theory also increase with µ5. We believe this is one more fact in

favor of our results.
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A Ultraviolet divergences in the chiral condensate

The fermion propagator including the chiral chemical potential for “naive” lattice fermions

can be written in the following form

Sαβ(x, y) =
δαβ

LtL3
s

∑
{p}

∑
s

eip(x−y)
−i
∑

µ γµ sin(pµ) +m+ µ5γ0γ5

sin2(p0) + (|p| − sµ5)2 +m2
× P (s), (A.1)
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P (s) =
1

2

(
1− is

∑
i

γi sin(pi)

|p|
γ0γ5

)
, i = 1, 2, 3,

|p|2 = sin2(p1) + sin2(p2) + sin2(p3),

pi =
2π

Ls
ni, i = 1, 2, 3, ni = 0, . . . , Ls − 1,

p4 =
2π

Lt
n4 +

π

Lt
, n4 = 0, . . . , Lt − 1.

Here m and µ5 are mass and chiral chemical potential in lattice units, α, β are color indices,

the sum is taken over all possible values of (n1, n2, n3, n4) and s = ±1.

In the limit Ls, Lt →∞ the condensate per one fermion flavor can be written as

〈ψ̄ψ〉 =
1

16
Tr[S(x, x)] =

m

4

∫ π

−π

d4p

(2π)4

∑
s

1

sin2(p0) + (|p| − sµ5)2 +m2
. (A.2)

To calculate the integral in formula (A.2) we use the standard approach, which separates

the main divergence from the rest of the integral∫ π

−π

d4p

(2π)4

∑
s

1

sin2(p0) + (|p| − sµ5)2 +m2
=

∫ π

−π

d4p

(2π)4

2

sin2(p0) + |p|2 +m2
(A.3)

+

∫ π

−π

d4p

(2π)4

∑
s

(
1

sin2(p0) + (|p| − sµ5)2 +m2
− 1

sin2(p0) + |p|2 +m2

)
.

The first term in this expression is just the loop integral for 〈ψ̄ψ〉 without chiral chemical

potential. The expression for this integral in the continuum limit a → 0 can be found

in [45]∫ π

−π

d4p

(2π)4

1

sin2(p0) + |p|2 +m2
= 0.619734 +m2

(
log(m2)

π2
− 0.345071

)
+O(m4). (A.4)

The second term in (A.3) is proportional to µ2
5 and contains a logarithmic divergence in

the continuum limit. This divergence can be calculated using saddle-point method. To

calculate the second term in (A.3) we subtract the leading divergence and calculate the

rest of the integral in the limit a→ 0. The result of the calculation can be written as follows∫ π

−π

d4p

(2π)4

∑
s

(
1

sin2(p0) + (|p| − sµ5)2 +m2
− 1

sin2(p0) + |p|2 +m2

)
= µ2

5

(
−4

log(m2)

π2
+ 0.671036

)
+O(m4, µ2

5m
2, µ4

5). (A.5)

We have checked the last formula numerically. Introducing a physical mass mpa = m and a

physical chiral chemical potential µp5a = µ5 one can write the expression for the condensate

in physical units as

〈ψ̄ψ〉p = 0.309867
mp

a2
+m3

p

(
log(mpa)

π2
− 0.172536

)
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Figure 11. The difference between chiral condensates at µ5 = 0 MeV and µ5 = 330 MeV for

different lattice spacings (T = 270 MeV). Square points correspond to lattice measurements, circle

points correspond to the contribution of logarithmic divergence (A.6) to the difference.

+mp(µ
p
5)2

(
−2

log(mpa)

π2
+ 0.167759

)
. (A.6)

From the last formula one sees that at one-loop level the inclusion of a non-zero chiral

chemical potential leads to an additional logarithmic divergence. We believe that this

conclusion persists if one takes into account radiative corrections to formula (A.6). To

see this, consider some Feynman graph of radiative corrections to formula (A.6). The

expansion of this graph in powers of µ5 can be reduced to the inclusion of a dimension-3

operator to the graph that diminishes the power of divergence by one unit per one power

of µ5. Expansion of the chiral condensate in powers of µ5 contains only even powers. The

main divergence of the chiral condensate is ∼ 1/a2. So, the next to leading term in µ5

expansion is two powers smaller than ∼ 1/a2, i.e. it is at most logarithmically divergent.

Further it is important to understand how the additional divergence connected to non-

zero µ5 effects the results of this paper. To estimate this we fixed the physical values of

temperature T = 270 MeV, quark mass mp = 33 MeV and measured the condensate 〈ψ̄ψ〉
in the deconfinement phase for µ5 = 0 and µ5 = 330 MeV for different values of lattice

spacing a. In particular, we took the following lattice parameters: 163 × 8 β = 1.9500,

203×10 β = 2.0047, 243×12 β = 2.0493 and 283×14 β = 2.0870. The difference between the

measured chiral condensates at zero and non-zero µ5 for different lattice spacings is shown

in figure 11. In addition to the lattice measurement, in figure 11 we plot the contribution

of logarithmic divergence (A.6) to the difference 〈ψ̄ψ〉 − 〈ψ̄ψ〉µ5=0.

From figure 11 one sees that the uncertainty of the calculation does not allow to confirm

the logarithmic type of the divergence. However, the variation of the lattice results with

variation of the lattice spacing is very slow what allows us to assume that there are no

other divergences different from the logarithmic one. Note also that the value of the

µ5 6= 0 contribution to the chiral condensate obtained from the one-loop expression for the

logarithmic divergence is by a factor 2-3 smaller than the lattice results. The difference can

be attributed to a non-zero temperature effect and radiative corrections. This fact allows
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one to state that the renormalization effect of the one-loop expression for the logarithmic

divergence (A.6) is not very large. So one can use it to estimate the contribution of the

ultraviolet logarithmic divergence in the confinement phase.

The calculation shows that the characteristic values of the difference 〈ψ̄ψ〉 − 〈ψ̄ψ〉µ5=0

in the confinement phase for different values of lattice parameters used in this paper are

approximately by one order of magnitude larger than the additional ultraviolet logarithmic

divergence due to µ5 6= 0 estimated according to formula (A.6). For instance, from figure 1

one can see that at temperature T = 200 MeV (close to the phase transition at µ5 = 0)

the difference (〈ψ̄ψ〉µ5=300 MeV − 〈ψ̄ψ〉µ5=0)/T 3 ≈ 2. At the same time the additional

ultraviolet divergence according to formula (A.6) gives (〈ψ̄ψ〉add)/T 3 ≈ 0.1. Note also

that the position of the phase transition manifests itself as a peak of the susceptibility.

Evidently, there is no peak due to the additional ultraviolet divergence. All this allows

us to state that the conclusions obtained in this paper are not affected by the additional

ultraviolet µ5 6= 0 divergence in the chiral condensate.

B Ultraviolet divergences in the Polyakov loop

At the leading order approximation in the strong coupling constant g the Polyakov loop

can be written in the following form

L = 1− β g
2

4

∫ β

0
dτDaa

00 (τ,~0) = 1− β g
2

4

∫
d3q

(2π)3
D̃aa

00 (0, ~q), (B.1)

where Dab
00(t, ~x) and D̃aa

00 (q0, ~q) represent the propagator of the temporal components of the

gluon field in coordinate and momentum space, correspondingly, β is inverse temperature,

and the summation over color index a is assumed. From eq. (B.1) it is clear that additional

divergences connected to non-zero µ5 at one-loop level can appear from the fermion self-

energy part of the gluon propagator. The study of the divergences with “naive” fermions

in the self-energy part of the propagator is cumbersome. For this reason we use momentum

cut of regularization procedure to study the divergences in the Polyakov loop.

– 15 –



J
H
E
P
0
6
(
2
0
1
5
)
0
9
4

The fermion contribution to the one-loop self-energy of the gluon propagator D̃ab
00 can

be written in the following form

Π00(~q) =
1

4

∑
s1,s2

∫ Λ d4k

(2π)4

−k2
0 + (µ5 − s1|~k|)(µ5 − s2|~k + ~q|) +m2

(k2
0 + (|~k| − s1µ5)2 +m2)(k2

0 + (|~k + ~q| − s2µ5)2 +m2)
× (B.2)

×
(

1 + s1s2

~k · (~k + ~q)

|~k||~k + ~q|

)
,

where ~q is the external momentum, s1, s2 = ±1.

To proceed we expand equation (B.2) in µ2
5. Evidently each new term in this expansion

diminishes the power of divergence by two units. That means that beginning from µ4
5 term

the series is ultraviolet convergent. The first term (Π00(~q)|µ5=0) is just the expression for

the self-energy without chiral chemical potential. So, to calculate the divergence which

results from nonzero µ5 one needs to study only the divergence of the second term. Taking

the derivative of equation (B.2) with respect to µ2
5 we get

Π00(~q)−Π00(~q)|µ5=0 =4µ2
5

∫
d4k

(2π)4

(
1

(k2
0 + |~k|2 +m2)(k2

0 + |~k + ~q|2 +m2)
(B.3)

− 2m2 + 4|k + q|2 + 6~k · (~k + ~q)− 2k2
0

(k2
0 + |~k|2 +m2)2(k2

0 + |~k + ~q|2 +m2)

+
8|~k|2(m2 + ~k · (~k + ~q)− k2

0)

(k2
0 + |~k|2 +m2)3(k2

0 + |~k + ~q|2 +m2)

+
4(m2 − k2

0)(~k · (~k + ~q)) + 4|~k|2|~k + ~q|2

(k2
0 + |~k|2 +m2)2(k2

0 + |~k + ~q|2 +m2)2

)
+O(µ4

5) .

One can easily check that this expression is free from ultraviolet divergence. Moreover,

a calculation shows that at large ~q 2 expression (B.3) behaves as Π00(~q) − Π00(~q)|µ5=0 ∼
µ2

5(c1 log ~q2+c2), where c1, c2 are some constants. So, at one-loop level there is no ultraviolet

divergence in the Polyakov loop which results from non-zero chiral chemical potential.

Similarly to the previous section, one can argue that there is no ultraviolet divergence in

the µ5 6= 0 contribution to the Polyakov loop at higher loops.

In order to numerically study the role of divergences in the Polyakov loop due

to non-zero chiral chemical potential, we used the following definition of renormalized

Polyakov loop

Lren =
L

Lµ5=0
, (B.4)

where L is the Polyakov loop and Lµ5=0 is the Polyakov loop at the same lattice but

with µ5 = 0. Evidently Lren doesn’t contain divergences that are usual for simulations

with zero chiral chemical potential. Similarly to the previous section we fixed the physical

values of temperature T = 270 MeV, quark mass mp = 33 MeV and measured the Lren in

the deconfinement phase for µ5 = 330 MeV and different values of lattice spacing a. The

result of this measurement is shown in figure 12
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From this figure one sees that the renormalized Polyakov loop Lren is consistent with

a constant in the region of lattice spacings investigated. In the same region the unrenor-

malized Polyakov loop L changes by a factor of two. From these facts we conclude that

there is no additional ultraviolet divergence in Polyakov loop due to non-zero chiral chem-

ical potential.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[7] E.V. Shuryak and T. Schäfer, Instantons and chiral symmetry restoration in QCD-like

theories, Nucl. Phys. Proc. Suppl. 53 (1997) 472 [INSPIRE].

[8] T.C. Kraan and P. van Baal, Periodic instantons with nontrivial holonomy, Nucl. Phys. B

533 (1998) 627 [hep-th/9805168] [INSPIRE].

[9] K.-M. Lee and C.-h. Lu, SU(2) calorons and magnetic monopoles, Phys. Rev. D 58 (1998)

025011 [hep-th/9802108] [INSPIRE].

[10] E.-M. Ilgenfritz, B.V. Martemyanov and M. Müller-Preussker, Topology near the transition

temperature in lattice gluodynamics analyzed by low lying modes of the overlap Dirac

operator, Phys. Rev. D 89 (2014) 054503 [arXiv:1309.7850] [INSPIRE].

[11] V.G. Bornyakov, E.M. Ilgenfritz, B.V. Martemyanov and M. Muller-Preussker, Dyon

structures in the deconfinement phase of lattice gluodynamics: topological clusters, holonomies

and Abelian monopoles, Phys. Rev. D 91 (2015) 074505 [arXiv:1410.4632] [INSPIRE].

[12] D. Kharzeev, Parity violation in hot QCD: Why it can happen and how to look for it, Phys.

Lett. B 633 (2006) 260 [hep-ph/0406125] [INSPIRE].

[13] K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D

78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

– 17 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0370-2693(75)90163-X
http://inspirehep.net/search?p=find+J+Phys.Lett.,B59,85
http://dx.doi.org/10.1016/0550-3213(79)90031-2
http://dx.doi.org/10.1016/0550-3213(79)90031-2
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B156,269
http://dx.doi.org/10.1016/0550-3213(79)90332-8
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B159,213
http://dx.doi.org/10.1103/PhysRevD.91.094504
http://arxiv.org/abs/1502.06190
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06190
http://dx.doi.org/10.1103/PhysRevD.77.074502
http://arxiv.org/abs/0801.1725
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1725
http://dx.doi.org/10.1103/RevModPhys.70.323
http://arxiv.org/abs/hep-ph/9610451
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9610451
http://dx.doi.org/10.1016/S0920-5632(96)00691-3
http://inspirehep.net/search?p=find+J+NUPHZ,53,472
http://dx.doi.org/10.1016/S0550-3213(98)00590-2
http://dx.doi.org/10.1016/S0550-3213(98)00590-2
http://arxiv.org/abs/hep-th/9805168
http://inspirehep.net/search?p=find+EPRINT+hep-th/9805168
http://dx.doi.org/10.1103/PhysRevD.58.025011
http://dx.doi.org/10.1103/PhysRevD.58.025011
http://arxiv.org/abs/hep-th/9802108
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802108
http://dx.doi.org/10.1103/PhysRevD.89.054503
http://arxiv.org/abs/1309.7850
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.7850
http://dx.doi.org/10.1103/PhysRevD.91.074505
http://arxiv.org/abs/1410.4632
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.4632
http://dx.doi.org/10.1016/j.physletb.2005.11.075
http://dx.doi.org/10.1016/j.physletb.2005.11.075
http://arxiv.org/abs/hep-ph/0406125
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0406125
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://dx.doi.org/10.1103/PhysRevD.78.074033
http://arxiv.org/abs/0808.3382
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.3382


J
H
E
P
0
6
(
2
0
1
5
)
0
9
4

[14] D. Kharzeev, A. Krasnitz and R. Venugopalan, Anomalous chirality fluctuations in the initial

stage of heavy ion collisions and parity odd bubbles, Phys. Lett. B 545 (2002) 298

[hep-ph/0109253] [INSPIRE].

[15] D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change

in heavy ion collisions: ‘Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227

[arXiv:0711.0950] [INSPIRE].

[16] STAR collaboration, B.I. Abelev et al., Azimuthal charged-particle correlations and possible

local strong parity violation, Phys. Rev. Lett. 103 (2009) 251601 [arXiv:0909.1739]

[INSPIRE].

[17] STAR collaboration, B.I. Abelev et al., Observation of charge-dependent azimuthal

correlations and possible local strong parity violation in heavy ion collisions, Phys. Rev. C 81

(2010) 054908 [arXiv:0909.1717] [INSPIRE].

[18] STAR collaboration, L. Adamczyk et al., Beam-energy dependence of charge separation

along the magnetic field in Au+Au collisions at RHIC, Phys. Rev. Lett. 113 (2014) 052302

[arXiv:1404.1433] [INSPIRE].

[19] I.A. Shovkovy, Magnetic catalysis: a review, Lect. Notes Phys. 871 (2013) 13

[arXiv:1207.5081] [INSPIRE].

[20] M. D’Elia, Lattice QCD simulations in external background fields, Lect. Notes Phys. 871

(2013) 181 [arXiv:1209.0374] [INSPIRE].

[21] K. Fukushima, M. Ruggieri and R. Gatto, Chiral magnetic effect in the PNJL model, Phys.

Rev. D 81 (2010) 114031 [arXiv:1003.0047] [INSPIRE].

[22] M.N. Chernodub and A.S. Nedelin, Phase diagram of chirally imbalanced QCD matter, Phys.

Rev. D 83 (2011) 105008 [arXiv:1102.0188] [INSPIRE].

[23] R. Gatto and M. Ruggieri, Hot quark matter with an axial chemical potential, Phys. Rev. D

85 (2012) 054013 [arXiv:1110.4904] [INSPIRE].

[24] A.A. Andrianov, D. Espriu and X. Planells, Chemical potentials and parity breaking: the

Nambu-Jona-Lasinio model, Eur. Phys. J. C 74 (2014) 2776 [arXiv:1310.4416] [INSPIRE].

[25] X. Planells, A.A. Andrianov, V.A. Andrianov and D. Espriu, An effective theory for QCD

with an axial chemical potential, PoS(QFTHEP 2013)049 [arXiv:1310.4434] [INSPIRE].

[26] J. Chao, P. Chu and M. Huang, Inverse magnetic catalysis induced by sphalerons, Phys. Rev.

D 88 (2013) 054009 [arXiv:1305.1100] [INSPIRE].

[27] L. Yu, H. Liu and M. Huang, Spontaneous generation of local CP-violation and inverse

magnetic catalysis, Phys. Rev. D 90 (2014) 074009 [arXiv:1404.6969] [INSPIRE].

[28] A. Yamamoto, Chiral magnetic effect in lattice QCD with a chiral chemical potential, Phys.

Rev. Lett. 107 (2011) 031601 [arXiv:1105.0385] [INSPIRE].

[29] A. Yamamoto, Lattice study of the chiral magnetic effect in a chirally imbalanced matter,

Phys. Rev. D 84 (2011) 114504 [arXiv:1111.4681] [INSPIRE].

[30] V. Braguta et al., Study of the phase diagram of SU(2) quantum chromodynamics with

nonzero chirality, JETP Lett. 100 (2015) 547.

[31] V.V. Braguta et al., Two-color QCD with chiral chemical potential, PoS(LATTICE2014)235

[arXiv:1411.5174] [INSPIRE].

– 18 –

http://dx.doi.org/10.1016/S0370-2693(02)02630-8
http://arxiv.org/abs/hep-ph/0109253
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0109253
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.298
http://arxiv.org/abs/0711.0950
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.0950
http://dx.doi.org/10.1103/PhysRevLett.103.251601
http://arxiv.org/abs/0909.1739
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.1739
http://dx.doi.org/10.1103/PhysRevC.81.054908
http://dx.doi.org/10.1103/PhysRevC.81.054908
http://arxiv.org/abs/0909.1717
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.1717
http://dx.doi.org/10.1103/PhysRevLett.113.052302
http://arxiv.org/abs/1404.1433
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1433
http://dx.doi.org/10.1007/978-3-642-37305-3_2
http://arxiv.org/abs/1207.5081
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5081
http://dx.doi.org/10.1007/978-3-642-37305-3_7
http://dx.doi.org/10.1007/978-3-642-37305-3_7
http://arxiv.org/abs/1209.0374
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0374
http://dx.doi.org/10.1103/PhysRevD.81.114031
http://dx.doi.org/10.1103/PhysRevD.81.114031
http://arxiv.org/abs/1003.0047
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.0047
http://dx.doi.org/10.1103/PhysRevD.83.105008
http://dx.doi.org/10.1103/PhysRevD.83.105008
http://arxiv.org/abs/1102.0188
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0188
http://dx.doi.org/10.1103/PhysRevD.85.054013
http://dx.doi.org/10.1103/PhysRevD.85.054013
http://arxiv.org/abs/1110.4904
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4904
http://dx.doi.org/10.1140/epjc/s10052-014-2776-8
http://arxiv.org/abs/1310.4416
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.4416
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(QFTHEP 2013)049
http://arxiv.org/abs/1310.4434
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.4434
http://dx.doi.org/10.1103/PhysRevD.88.054009
http://dx.doi.org/10.1103/PhysRevD.88.054009
http://arxiv.org/abs/1305.1100
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1100
http://dx.doi.org/10.1103/PhysRevD.90.074009
http://arxiv.org/abs/1404.6969
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.6969
http://dx.doi.org/10.1103/PhysRevLett.107.031601
http://dx.doi.org/10.1103/PhysRevLett.107.031601
http://arxiv.org/abs/1105.0385
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0385
http://dx.doi.org/10.1103/PhysRevD.84.114504
http://arxiv.org/abs/1111.4681
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.4681
http://dx.doi.org/10.1134/S0021364014210048
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE2014)235
http://arxiv.org/abs/1411.5174
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.5174


J
H
E
P
0
6
(
2
0
1
5
)
0
9
4

[32] E.-M. Ilgenfritz, M. Kalinowski, M. Muller-Preussker, B. Petersson and A. Schreiber,

Two-color QCD with staggered fermions at finite temperature under the influence of a

magnetic field, Phys. Rev. D 85 (2012) 114504 [arXiv:1203.3360] [INSPIRE].

[33] E.M. Ilgenfritz, M. Muller-Preussker, B. Petersson and A. Schreiber, Magnetic catalysis (and

inverse catalysis) at finite temperature in two-color lattice QCD, Phys. Rev. D 89 (2014)

054512 [arXiv:1310.7876] [INSPIRE].

[34] H. Kluberg-Stern, A. Morel, O. Napoly and B. Petersson, Flavors of lagrangian Susskind

fermions, Nucl. Phys. B 220 (1983) 447 [INSPIRE].

[35] I. Montvay and G. Münster, Quantum fields on a lattice, Cambridge University Press,

Cambridge U.K. (1994).

[36] P. Hasenfratz and F. Karsch, Chemical potential on the lattice, Phys. Lett. B 125 (1983) 308

[INSPIRE].

[37] R.D. Pisarski and F. Wilczek, Remarks on the chiral phase transition in chromodynamics,

Phys. Rev. D 29 (1984) 338 [INSPIRE].

[38] D.J. Wallace and R.K.P. Zia, On singularities induced by goldstone modes, Phys. Rev. B 12

(1975) 5340 [INSPIRE].

[39] P. Hasenfratz and H. Leutwyler, Goldstone boson related finite size effects in field theory and

critical phenomena with O(N) symmetry, Nucl. Phys. B 343 (1990) 241 [INSPIRE].

[40] A.V. Smilga and J. Stern, On the spectral density of Euclidean Dirac operator in QCD, Phys.

Lett. B 318 (1993) 531 [INSPIRE].

[41] A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D

85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

[42] B. Wang, Y.L. Wang, Z.F. Cui and H.S. Zong, Effect of the chiral chemical potential on the

position of the critical endpoint, Phys. Rev. D 91 (2015) 034017.

[43] S.S. Xu et al., Chiral phase transition with a chiral chemical potential in the framework of

Dyson-Schwinger equations, Phys. Rev. D 91 (2015) 056003.

[44] M. Hanada and N. Yamamoto, Universality of phase diagrams in QCD and QCD-like

theories, PoS(LATTICE 2011)221 [arXiv:1111.3391] [INSPIRE].

[45] S. Capitani, Lattice perturbation theory, Phys. Rept. 382 (2003) 113 [hep-lat/0211036]

[INSPIRE].

– 19 –

http://dx.doi.org/10.1103/PhysRevD.85.114504
http://arxiv.org/abs/1203.3360
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3360
http://dx.doi.org/10.1103/PhysRevD.89.054512
http://dx.doi.org/10.1103/PhysRevD.89.054512
http://arxiv.org/abs/1310.7876
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.7876
http://dx.doi.org/10.1016/0550-3213(83)90501-1
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B220,447
http://dx.doi.org/10.1016/0370-2693(83)91290-X
http://inspirehep.net/search?p=find+J+Phys.Lett.,B125,308
http://dx.doi.org/10.1103/PhysRevD.29.338
http://inspirehep.net/search?p=find+J+Phys.Rev.,D29,338
http://dx.doi.org/10.1103/PhysRevB.12.5340
http://dx.doi.org/10.1103/PhysRevB.12.5340
http://inspirehep.net/search?p=find+J+Phys.Rev.,B12,5340
http://dx.doi.org/10.1016/0550-3213(90)90603-B
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B343,241
http://dx.doi.org/10.1016/0370-2693(93)91551-W
http://dx.doi.org/10.1016/0370-2693(93)91551-W
http://inspirehep.net/search?p=find+J+Phys.Lett.,B318,531
http://dx.doi.org/10.1103/PhysRevD.85.054503
http://dx.doi.org/10.1103/PhysRevD.85.054503
http://arxiv.org/abs/1111.1710
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1710
http://dx.doi.org/10.1103/PhysRevD.91.034017
journals.aps.org/prd/abstract/10.1103/PhysRevD.91.034017
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2011)221
http://arxiv.org/abs/1111.3391
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.3391
http://dx.doi.org/10.1016/S0370-1573(03)00211-4
http://arxiv.org/abs/hep-lat/0211036
http://inspirehep.net/search?p=find+EPRINT+hep-lat/0211036

	Introduction
	Details of the simulations
	Results of the calculation
	Discussion and conclusion
	Ultraviolet divergences in the chiral condensate
	Ultraviolet divergences in the Polyakov loop

