
J
H
E
P
0
6
(
2
0
1
5
)
0
8
6

Published for SISSA by Springer

Received: April 20, 2015

Accepted: May 30, 2015

Published: June 15, 2015

Turbulent strings in AdS/CFT

Takaaki Ishiia and Keiju Muratab

aCrete Center for Theoretical Physics, Department of Physics,

University of Crete, PO Box 2208, 71003 Heraklion, Greece
bKeio University,

4-1-1 Hiyoshi, Yokohama 223-8521, Japan

E-mail: ishii@physics.uoc.gr, keiju@phys-h.keio.ac.jp

Abstract: We study nonlinear dynamics of the flux tube between an external quark-

antiquark pair in N = 4 super Yang-Mills theory using the AdS/CFT duality. In the

gravity side, the flux tube is realized by a fundamental string whose endpoints are attached

to the AdS boundary. We perturb the endpoints in various ways and numerically compute

the time evolution of the nonlinearly oscillating string. As a result, cusps can form on the

string, accompanied by weak turbulence and power law behavior in the energy spectrum.

When cusps traveling on the string reach the boundary, we observe the divergence of the

force between the quark and antiquark. Minimal amplitude of the perturbation below

which cusps do not form is also investigated. No cusp formation is found when the string

moves in all four AdS space directions, and in this case an inverse energy cascade follows

a direct cascade.

Keywords: Brane Dynamics in Gauge Theories, Gauge-gravity correspondence, AdS-

CFT Correspondence, Holography and quark-gluon plasmas

ArXiv ePrint: 1504.02190

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP06(2015)086

mailto:ishii@physics.uoc.gr
mailto:keiju@phys-h.keio.ac.jp
http://arxiv.org/abs/1504.02190
http://dx.doi.org/10.1007/JHEP06(2015)086


J
H
E
P
0
6
(
2
0
1
5
)
0
8
6

Contents

1 Introduction 2

2 A review of the static solution 4

3 Linear perturbation theory 5

4 Non-linear dynamics of fundamental strings 7

4.1 Setup 7

4.2 Basic equations 9

4.3 Boundary conditions 10

4.4 Initial data 11

4.5 Quantities for evaluation 11

4.5.1 Cusp formation 12

4.5.2 Energy spectrum in the non-linear theory 12

4.5.3 Forces acting on the heavy quarks 13

5 Results for the longitudinal quenches 13

5.1 Cusp formation 13

5.2 Energy spectrum in the non-linear theory 16

5.3 Time-dependence of the forces acting on the heavy quarks 17

5.4 Z2-symmetric quench 19

6 Results for the transverse linear quench 21

6.1 Cusp formation 21

6.2 Energy spectrum in the non-linear theory 22

6.3 Time-dependence of forces acting on the heavy quarks 22

7 Results for the transverse circular quench 23

8 Summary and discussion 25

A Numerical methods 27

B Error analysis 28

C Energy spectrum in the linear theory 28

D Forces acting on the quark and the antiquark 31

– 1 –



J
H
E
P
0
6
(
2
0
1
5
)
0
8
6

1 Introduction

The gauge/gravity duality [1–3] is successfully applied to investigating strongly coupled

gauge theories. Through this duality, it is hoped that one can access their nontrivial aspects

that are hard to be handled because of the strong coupling. In particular, among advantages

in using gravity duals, it is worth notifying that dynamics in time-dependent systems

can be powerfully computed from time evolution in classical gravity. Applications range

over far-from-equilibrium dynamics governed by nonlinear equations, and using numerical

techniques for solving them attracts much attention. For instance, physics of strongly

coupled plasma of quarks and gluons at RHIC and LHC brings motivations to numerically

study dual gravitational dynamics; a series of seminal works is in refs. [4–8].

Far-from-equilibrium processes in the D3/D7 brane system dual to N = 2 supersym-

metric QCD have been recently studied in refs. [9–13], where partial differential equations

for time evolution were solved numerically. As a phenomena characteristic in non-linear

dynamics, it has been found that long time evolution of the D7-brane generates a singu-

larity on the brane, and this is understood from the viewpoint of weak turbulence on the

D7-brane: the energy in the spectrum is transferred from large to small scales [10–12].

Small scale fluctuations there correspond to excited heavy mesons in the dual gauge the-

ory. The turbulent behavior of the D7-brane can be interpreted as production of many

heavy mesons in the dual gauge theory, and the singularity formation is interpreted as

deconfinement of such mesons.

To gain a deep insight into this kind of nonlinear dynamics in the gauge/gravity du-

ality, in this paper, we will consider a string in AdS dual to the flux tube between a

quark-antiquark pair in N = 4 super Yang-Mills theory, and fully solve its nonlinear time

evolution with a help of numerical techniques. This setup corresponds to focusing on a

Yang-Mills flux tube compared with the collective mesons described in the D3/D7 system.

In addition, working in this setup is simpler than using the D3/D7 system and will provide

a clear understanding of the turbulent phenomena and instabilities in probe branes in the

gauge/gravity duality. To initiate the time evolution, we will perturb the endpoints of the

string for an instant. Our setup is schematically illustrated in figure 1. The endpoints

are forced to move momentarily and then brought back to the original locations. We will

loosely use the terminology “quench” for expressing this process. This action introduces

waves propagating on the string, and we will be interested in their long time behavior where

nonlinearity in the time evolution of the string plays an important role. When we perform

numerical computations, we will use the method developed in [9], which turned out to be

efficient for solving the time evolution in probe brane systems. We are also motivated by

the weakly turbulent instability found by Bizoń and Rostworowski [14]. Our setup may

give a simple playground to study that kind of phenomenon.

The string hanging from the AdS boundary is one of the most typical probes in the

gravity dual. This gives the gravity dual description of a Wilson loop corresponding to

the potential between a quark and an antiquark [15, 16]. Although the potential in a

conformal theory is different from that in real QCD, linear confinement can be realized

in nonconformal generalization [17]. In finite temperatures, a string extending to the AdS
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Figure 1. A schematic picture of our setup. Perturbing the endpoints induces fluctuations on the

string.

black hole corresponds to a deconfined quark [18, 19], and this has been utilized for studying

the behavior of moving quarks in Yang-Mills plasma [20–26]. Moving quark-antiquark pairs

were also considered [27, 28]. In far-from-equilibrium systems, holographic Wilson loops

have also been used as probes for thermalization [29, 30]. Nevertheless, veiled by these

applications to QGP, nonlinear (and non-dissipative) dynamics of the probe hanging string

in AdS has not been shed light on so much. Some analytic solutions of non-linear waves on

an extremal surface in AdS have been studied in ref. [31]. Notice that that configuration

corresponds to a straight string in the Poincare coordinates.

When it comes to nonlinear dynamics of a string, formation of cusps would be primarily

thought of. In fact, it is well known in flat space in the context of closed cosmic strings

that cusp formation is ubiquitous [32]. Cusp formation of fundamental strings ending on

D-branes has been also found in ref. [33]. We will turn our attention to whether there is

such formation of cusps also in AdS.1

The organization of the rest of this paper is as follows. We start from reviewing

the static solution and linear perturbations in section 2 and 3, where we introduce a

parametrization convenient for our use. In section 4, we explain the setup for our time

dependent computations. We introduce four patterns of quenches that we consider, derive

the evolution equations and the boundary conditions, prepare initial data, and explain

measures for evaluating the time evolution. Sections 5, 6, and 7 are reserved for numerical

results: in section 5, we discuss two of the four quenches where the oscillations of the

boundary flux tube are restricted to compression waves and therefore we call them longi-

tudinal. We evaluate cusp formation, turbulent behavior in the energy spectrum, and the

forces acting on the quark endpoints. In section 6, we show results of a quench where the

flux tube oscillates in one of its transverse directions. Finally, in section 7, we examine

the last quench where the motion of the flux tube is in all three spatial directions of the

1A development of a cusp in a decelerating trailing string was discussed in ref. [34].
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boundary 3+1 dimensions. Section 8 is devoted to summary and discussion. In appendices,

we explain details for the numerical computations and derive some formulae used in the

main text.

2 A review of the static solution

We briefly review the holographic calculation of the static quark-antiquark potential in the

near horizon limit of extremal D3-branes [15, 16]. The background metric is AdS5 × S5,

ds2 =
ℓ2

z2
(

−dt2 + dz2 + dx2
)

+ ℓ2dΩ2
5 , (2.1)

where ℓ4 = 4πgsNcα
′2 and x ≡ (x1, x2, x3). We consider a rectangular Wilson loop with

the quark-antiquark separation L along the x1-direction where the quark and antiquark

are located at x1 = ±L/2. The dynamics of the string is described by Nambu-Goto action,

S = − 1

2πα′

∫

dτdσ
√−γ , (2.2)

where γ = det(γab) and γab is the induced metric on the string. It is convenient to take a

static gauge where the worldsheet coordinates (τ, σ) coincide with target space coordinates

as (τ, σ) = (t, z). The static solution is then described by a single function x1 = X1(z).
2

The Nambu-Goto action becomes

S = −
√
λ

2π

∫

dtdz
1

z2

√

1 +X ′
1
2 , (2.3)

where λ = 4πgsNc is the ’t Hooft coupling.

Solving the equation of motion of X1(z) gives the bulk string configuration. Let z = z0
specify the bulk bottom of the string reached at x = 0, where the regular boundary

condition ∂xz = 0 is imposed. The embedding solution is given by

X1(z) = ±z0

∫ 1

z/z0

dw
w2

√
1− w4

= ±z0
[

Γ0 + F (z/z0; i)− E(z/z0; i)
]

, (2.4)

where Γ0 ≡
√
2π3/2/Γ(1/4)2 ≃ 0.599, and F and E are the incomplete elliptic integrals of

the first and second kinds defined as

F (x; k) =

∫ x

0
dt

1
√

(1− t2)(1− k2t2)
, E(x; k) =

∫ x

0
dt

√

1− k2t2

1− t2
. (2.5)

Setting z = 0 in (2.4), we obtain L/2 = z0Γ0. In figure 2, we show the profile of the static

string in the (z, x1)-plane. We will use this solution as the initial configuration for our time

evolution.

It is also known that the dependence of the potential energy on L is Coulomb. The

energy is evaluated from the on-shell action, which in general diverges at the boundary,

2We will use small letters for coordinates and capital letters for functions specifying the string position.
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Figure 2. The string profile of the static solution.

but this divergence can be regulated by comparing with the diverging energy of two strings

straightly extending to the Poincare horizon. The regularized energy is then given by

Ereg = − 4π2
√
λ

Γ(1/4)4L
. (2.6)

In this sense, the quark-antiquark potential in the AdS background does not correspond to

the confining potential of real QCD. This, however, is considered as a handy playground

for testing nonlinear evolution in the gauge/gravity duality.

3 Linear perturbation theory

Linearized fluctuations and stability of holographic quark-antiquark potentials have been

studied in refs. [35–38]. Here, we solve the linearized fluctuations of the static solution in

coordinates convenient for our use. In (2.4), we parametrized the location of the string in

terms of the z-coordinate. In this coordinate, however, the static solution X1(z) becomes

multi-valued, and this may not be suitable for considering linear perturbations. Instead,

we introduce new polar-like coordinates (r, φ) in which the static embedding is expressed

by single-valued functions,

z = rf(φ) , x1 = rg(φ) , (3.1)

where we define the functions f and g as

f(φ) ≡ sn(φ; i) , (3.2)

g(φ) ≡ −
∫ φ

β0/2
dφ′ f(φ′)2 =











φ− E(sn(φ; i); i) + Γ0 (φ ≤ β0/2)

φ+ E(sn(φ; i); i)− Γ0 − β0 (φ > β0/2)

, (3.3)

where sn(x; k) is a Jacobi elliptic function defined as the inverse function of F (x; k) given

in eq. (2.5): F (sn(x; k); k) = x. For k = i =
√
−1, the Jacobi elliptic function has roots

at x = β0n (n ∈ Z), where β0 = π/(2Γ0) ≃ 2.622. We find that there is a nice relation

between f and g,

f ′(φ)2 + g′(φ)2 = 1 . (3.4)
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Figure 3. (a) The profiles of the functions f(φ) and g(φ). (b) r = const. and φ = const. surfaces

are shown in the (z, x1)-plane.
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Figure 4. Normal mode frequencies of the longitudinal and transverse modes. The eigenfunctions

for n = 1, 2, 3, 4 are also shown in the inset in each figure.

With these functions f and g, the static embedding (2.4) is simply given by r = z0.

The profiles of the functions f(φ) and g(φ) are shown in figure 3(a). We also depict the

r = const. and φ = const. surfaces in the (z, x1)-plane in figure 3(b).

Using t and φ as the worldsheet coordinates, we can describe the dynamics of the string

in terms of three functions,

r = R(t, φ), x2 = X2(t, φ), x3 = X3(t, φ) . (3.5)

We consider perturbations around the static solution, R = z0, X2 = X3 = 0, as

R(t, φ) = z0{1 + χ1(t, φ)} , X2(t, φ) = z0 χ2(t, φ), X3(t, φ) = z0 χ3(t, φ) , (3.6)

where χi (i = 1, 2, 3) are dimensionless perturbation variables. We will refer to χ1 as the

longitudinal mode and χi (i = 2, 3) as the transverse modes. Then, in the second order in

χ, the Nambu-Goto action becomes

S =

√
λ

4πz0

∫

dtdφ

[

h(φ) (z20 χ̇
2
1 − χ′

1
2) +

∑

i=2,3

1

f2(φ)
(z20 χ̇

2
i − χ′

i
2)

]

, (3.7)
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where we define ˙≡ ∂t and
′ ≡ ∂φ, and introduce h(φ) ≡ [(g/f)′f ]2. To derive the above

expression, we used the relation of f and g (3.4) and omitted the total derivative terms.

The equations of motion for (χ1, χ2, χ3) are

(∂2
t +H)χ1 =0 , H ≡ − 1

z20h
∂φh∂φ ,

(∂2
t +H′)χi =0 , H′ ≡ −f2

z20
∂φ

1

f2
∂φ (i = 2, 3) .

(3.8)

Operators H and H′ are Hermitian under the inner products

(α, β) ≡
∫ β0

0
dφh(φ)α(φ)β(φ) , (α, β)′ ≡

∫ β0

0
dφ

1

f(φ)2
α(φ)β(φ) , (3.9)

respectively. We denote the eigenvalues and eigenfunctions of H and H′ as {ω2
n, en(φ)} and

{ω′
n
2, e′n(φ)}, respectively. These are labeled by integers n ≥ 1 in ascending order of ωn

and ω′
n. The eigenfunctions are orthonormalized as (en, em) = δnm and (e′n, e

′
m)′ = δnm.

It is easy to check the linear stability of the static embedding against the longitudinal

perturbation as

ω2
n = (en,Hen) =

1

z20

∫ β0

0
dφh (∂φen)

2 ≥ 0 . (3.10)

In the same way, the stability against the transverse perturbations can be also checked,

ω′
n
2 ≥ 0.

We numerically determine normal mode frequencies and eigenfunctions. These are

plotted in figure 4. The spectra are asymptotically linear: ωn, ω
′
n ∝ n for n → ∞. In

fact, from the WKB analysis, we can obtain z0ωn ≃ 2Γ0(n + 1) for n → ∞ [35, 36]. Our

numerical results are consistent with the WKB approximation.

4 Non-linear dynamics of fundamental strings

The main focus of this paper is to study nonlinear dynamics of the string, where we make

use of numerical techniques for solving the time evolution. In this section, the setup for

this is prepared.

4.1 Setup

We consider AdS5×S5 (2.1) as the background spacetime, and take the static solution (2.4)

as the initial configuration. We then consider “quench” on the endpoints of the string: we

move their positions momentarily and put them back to the original positions. A schematic

picture of this setup is depicted in figure 1.

Let us denote the two endpoints of the string as xq(t) and xq̄(t), corresponding to the

locations of the quark and antiquark, respectively. In this paper, we consider the following

four kinds of quenches on xq(t) and xq̄(t):

(i) Longitudinal one-sided quench:

xq(t) =

(

L

2
+ ǫLα(t), 0, 0

)

, xq̄(t) =

(

−L

2
, 0, 0

)

, (4.1)

– 7 –
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Figure 5. A compactly supported C∞ function for quench.

where α(t) is a compactly supported C∞ function defined by

α(t) =







exp
[

2
(

∆t
t−∆t − ∆t

t + 4
)]

(0 < t < ∆t)

0 (else)
. (4.2)

The profile of this function is shown in figure 5. The flux tube vibrates in its lon-

gitudinal direction, and motions are not induced in the transverse directions by this

quench. Thus, in this case, the motion of the string is restricted in (2+1)-dimensions

spanned by (t, z, x1).

(ii) Longitudinal Z2-symmetric quench:

xq(t) =

(

L

2
+ ǫLα(t), 0, 0

)

, xq̄(t) =

(

−L

2
− ǫLα(t), 0, 0

)

. (4.3)

We simultaneously quench both endpoints in the opposite directions along the flux

tube. The string motion induced by this quench is invariant under x1 → −x1 and

restricted in the same (2+1)-dimensions as (i).

(iii) Transverse linear quench:

xq(t) =

(

L

2
, ǫLα(t), 0

)

, xq̄(t) =

(

−L

2
, 0, 0

)

. (4.4)

We shake one of the endpoints along x2-direction. String fluctuations in this direction

are induced by the quench but not in x3-direction. Thus, the string oscillates in

(3+1)-dimensions spanned by (t, z, x1, x2).

(iv) Transverse circular quench:

xq(t) =

(

L

2
, ǫLα(t),±ǫL

√

α(t)(1− α(t))

)

, xq̄(t) =

(

−L

2
, 0, 0

)

, (4.5)

where we choose the upper and lower signs for t ≤ ∆t/2 and t > ∆t/2, respectively.

The orbit of xq is a circle given by (x2 − ǫL/2)2 + x23 = (ǫL/2)2. String fluctuations

along both x2- and x3-directions are induced by this quench, and hence the string

moves in all (4+1)-dimensions spanned by (t, z, x1, x2, x3).

– 8 –
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Figure 6. Schematic pictures of the quenches we will consider.

In figure 6, we show schematic pictures of the quenches (i)-(iv). These patterns are cho-

sen to represent typical string motions, particularly with different dimensionality. String

dynamics is specified by two parameters ǫ and ∆t once we choose a quench type.

In this paper, we will take modest values for the amplitude of the quench (ǫ ∼ 0.01)

since we are interested in nonlinear evolution starting from small deviation from the linear

theory and focus on weak turbulence and cusp formation driven by the nonlinearity. For

a large value of ǫ, we expect some effect similar to the overeager effect found in ref. [9]:

the string will be able to plunge into the Poincare horizon z = ∞ because of the strong

perturbation. Such strong quenches will be studied in detail elsewhere [39].

4.2 Basic equations

To calculate the time evolution on the string worldsheet, we find it convenient to use double

null coordinates. With worldsheet coordinates (u, v), the string position is parametrized as

t = T (u, v) , z = Z(u, v) , x = X(u, v) . (4.6)

Using these expressions with eq. (2.1), we obtain the induced metric as

γuu =
ℓ2

Z2
(−T 2

,u + Z2
,u +X2

,u) , γvv =
ℓ2

Z2
(−T 2

,v + Z2
,v +X2

,v) ,

γuv =
ℓ2

Z2
(−T,uT,v + Z,uZ,v +X,u ·X,v) .

(4.7)

The reparametrization freedom of the worldsheet coordinates allows us to impose the double

null condition on the induced metric as

C1 ≡ γuu = 0 , C2 ≡ γvv = 0 . (4.8)

Notice that these conditions do not fix the coordinates completely: there are residual

coordinate freedoms,

u = u(ū) , v = v(v̄) . (4.9)

These will be fixed by boundary conditions and initial data.

– 9 –
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In the double null coordinates, the Nambu-Goto action (2.2) becomes

S = − 1

2πα′

∫

dudv
√

γ2uv − γuuγvv =
1

2πα′

∫

dudvγuv

=
ℓ2

2πα′

∫

dudv
1

Z2
(−T,uT,v + Z,uZ,v +X,u ·X,v) ,

(4.10)

where at the second equality we eliminate the square root in the action using the double

null conditions (4.8). (Note that γuv is negative.) From the action, we obtain the evolution

equations of the string as

T,uv =
1

Z
(T,uZ,v + T,vZ,u) ,

Z,uv =
1

Z
(T,uT,v + Z,uZ,v −X,u ·X,v) ,

X,uv =
1

Z
(X,uZ,v +X,vZ,u) .

(4.11)

Using these, we find that the constraints (4.8) are preserved under the time evolution:

∂vC1 = ∂uC2 = 0 . (4.12)

Hence if we impose C1 = C2 = 0 on the initial surface and the boundaries, the con-

straints (4.8) are automatically satisfied in the whole computational domain.

Our numerical method for solving the evolution equations is briefly summarized in

appendix A and its numerical error is estimated in appendix B. For more details of the

numerical method, see also appendix A in [9].

4.3 Boundary conditions

On the worldsheet, there are two time-like boundaries that correspond to the two endpoints

of the string attaching on the AdS boundary. We need boundary conditions there. Using

the residual coordinate freedoms (4.9), we can fix the locations of the boundaries to u =

v and u = v + β0. The boundary conditions for the spatial parts of the target space

coordinates are given by

Z|u=v = 0 , X|u=v = xq , Z|u=v+β0
= 0 , X|u=v+β0

= xq̄ . (4.13)

We also need boundary conditions for T . To derive them, we solve eq. (4.11) and (4.8)

near the boundaries. Defining τ = u + v and σ = u − v (τ ∈ (−∞,∞), σ ∈ [0, β0]), we

obtain the asymptotic solutions around σ = 0 as

T = t0(τ) +

[

1

2
ẗ0 − γ2v · a ṫ20

]

σ2 + v · x3σ
3 + · · · ,

Z =
ṫ0
γ
σ +

[ ...
t 0

6γ
− 1

2
γv · a ẗ0ṫ0 −

γ

6
(3γ2a2 + v · j) ṫ30

]

σ3 + · · · ,

X = xq(τ) +

[

1

2
v ẗ0 −

(

γ2 − 1

2

)

a ṫ20

]

σ2 + x3(τ)σ
3 + · · · .

(4.14)

– 10 –
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where ˙ = d/dτ , v = ẋq/ṫ0, a = v̇/ṫ0, j = ȧ/ṫ0 and γ = 1/
√
1− v2. The asymptotic

solutions near σ = β0 can be given by replacing σ → β0 − σ and xq → xq̄ in the above

expressions. From the second equation in eq. (4.14), we have ∂σZ|σ=0 =
√

ṫ20 − ẋ2
q . Using

this, we obtain

T,τ |σ=0 =
√

(Z,σ|σ=0)2 + ẋ2
q , T,τ |σ=β0

=
√

(Z,σ|σ=β0
)2 + ẋ2

q̄ . (4.15)

These equations determine the time evolution of T at the boundaries σ = 0, β0. Their

numerical implementation is explained in appendix A.

For consistency, the speed of the quark endpoints during the quench should be slower

than light, |v| < 1. Otherwise, the Lorentz factor γ becomes imaginary. Solving this

condition, we obtain constraints for the quenches (i)-(iii),

ǫL

∆t
<

(19− 5
√
13)e

√
13−3

12
√

6
√
13− 21

≃ 0.1865 , (4.16)

and for the transverse circular quench (iv),

ǫL

∆t
<

1

4
√
2
≃ 0.1768 . (4.17)

The parameter values examined in this paper satisfy these conditions.

4.4 Initial data

Before the quenches are applied, we assume that the string is static, namely, we use the

static solution (2.4) as the initial configuration. For numerical computations, we need initial

data written in the (u, v)-coordinates. Substituting eq. (2.4) into eqs. (4.8) and (4.11), we

can express the static solution in terms of (u, v) as

T (u, v) = z0 [φ1(u) + φ2(v)] , Z(u, v) = z0 f(φ1(u)− φ2(v)) ,

X1(u, v) = z0 g(φ1(u)− φ2(v)) , X2(u, v) = X3(u, v) = 0 ,
(4.18)

where φ1 and φ2 are arbitrary functions associated with the residual coordinate free-

dom (4.9), and the functions f and g are defined in eqs. (3.2) and (3.3).

Locating the initial surface at v = 0 on the worldsheet, we parametrize the initial

configuration as
T (u, 0) = z0 u , Z(u, 0) = z0 f(u) ,

X1(u, 0) = z0 g(u) , X2(u, 0) = X3(u, 0) = 0 ,
(4.19)

where we set the free functions φ1(u) = u and φ2(0) = 0 so that the boundaries are at

u = 0, β0. If the string endpoints are not perturbed, our numerical calculations describe

the static evolution of the exact solution (4.18).

4.5 Quantities for evaluation

In the non-linear dynamics of the string, we expect to observe formation of cusps. For

detailed analyses, we will in particular use the following quantities for evaluation.
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4.5.1 Cusp formation

Let us consider the profile of the string on a surface with t =constant. There is a cusp if

the string does not change its target space position when the parameter on the string is

varied. Using the u-coordinate as a parameter on the string in the t =constant surface, we

obtain the conditions for the cusp formation as ∂uXI |t=const = 0 where XI ≡ (Z,Xi) and

i = 1, 2, 3. These conditions are rewritten as

JI ≡ T,uXI,v − T,vXI,u = 0 . (4.20)

In our numerical computations, we monitor the roots of JI , which typically appear as

curves on the (u, v)-plane. If these curves overlap at a point, we find cusp formation, and

if the overlap continues in the time evolution, it is implied that the cusps continue to exist.

As an obvious corollary, if (4.20) is satisfied, there is a necessary condition that

XI ,uXJ ,v −XI ,vXJ ,u = 0 (4.21)

is also satisfied. This condition is conveniently utilized for a consistency check of the cusp

formation detected by (4.20).

4.5.2 Energy spectrum in the non-linear theory

We will also study the energy spectrum of the non-linear fluctuations of the string because,

from the spectrum, it is expected to find weak turbulence on the string. Once a dynamical

solution (T (u, v), Z(u, v),X(u, v)) is calculated, we can convert it to the polar-like coordi-

nates introduced in eq. (3.1): r = R(u, v) and φ = Φ(u, v).3 Eliminating the worldsheet

coordinates (u, v) from (T (u, v), R(u, v), Φ(u, v), X2(u, v), X3(u, v)), we can express the

dynamical solution using target space coordinates (t, φ) as

r = R(t, φ), x2 = X2(t, φ), x3 = X3(t, φ) . (4.22)

As in eq. (3.6), we define the non-linear version of the “perturbation” variables χ̂1, χ̂2, χ̂3 as

χ̂1(t, φ) =
R(t, φ)

z0
− 1 , χ̂i(t, φ) =

Xi(t, φ)

z0
(i = 2, 3) . (4.23)

We then decompose χ̂1, χ̂2 and χ̂3 with the eigenfunctions of the linear theory en(φ) and

e′n(φ), which were introduced below eq. (3.8), as

χ̂1 =
∞
∑

n=1

cn(t)en(φ) , χ̂i =
∞
∑

n=1

cin(t)e
′
n(φ) (i = 2, 3) . (4.24)

Using the mode coefficients cn and cin, we define the energy contribution from the n-th

mode εn(t) and the total energy in terms of the linear theory ε(t) as

εn(t) =

√
λz0
4π

[

ċn
2 + ω2

ncn
2 +

∑

i=2,3

(ċin
2 + ω′

n
2cin

2)

]

, ε(t) =
∞
∑

n=1

εn . (4.25)

3Solving Z(u, v)/X1(u, v) = f(φ)/g(φ) for φ, we have φ = Φ(u, v). Then, we can obtain R(u, v) from

R(u, v) = Z(u, v)/f(Φ(u, v)).
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The quantify εn is conserved in linear theory. Therefore, if we find time dependence in εn,

it is a fully non-linear effect. Note that the total energy ε defined in the linear theory is

also time dependent in the non-linear theory although the time dependence is suppressed

by the amplitude of the quench: ε̇/ε = O(ǫ). Since we consider only small ǫ in this paper

(ǫ ∼ 0.01), we do not put emphasis on the time dependence of the total energy. In our

actual numerical calculations, we take a cutoff at n = 50 for evaluating ε in eq. (4.25). Its

cutoff dependence is also not essential for our following arguments on the energy spectrum

on each t-slice.

4.5.3 Forces acting on the heavy quarks

From the dynamical solution of the string, we can read off the time dependence of the

forces acting on the quark and antiquark located at x = xq and xq̄. The force acting on

the quark can be evaluated from the on-shell Nambu-Goto action as

〈Fi(t)〉 =
√
λ

4π
γ−1(δij + γ2vivj)∂

3
zXj |z=0 , (4.26)

where γ = 1/
√

1− (dxq/dt)2. The same formula can be applied to the force acting on the

antiquark 〈F̄ (t)〉 by replacing xq → xq̄. The derivation of this expression is summarized

in appendix D. For our numerical analysis, it is convenient to rewrite this expression in

terms of the (τ, σ)-coordinates. Using the asymptotic expansions (4.14), we obtain

〈F (t)〉 = 3
√
λ

2π

γ2x3

ṫ30
. (4.27)

We need to extract the third order coefficient x3 from our numerical data. For this purpose,

it is convenient to define

Y ≡ X − xq − (T − t0)v − γ2
[

γ2(v · a)v −
(

γ2 − 1

2

)

a

]

Z2 . (4.28)

Using eq. (4.14), we find that this function behaves as Y ≃ [x3 − (v · x3)v]σ
3 near the

boundary. To evaluate x3, we fit numerical data for Y by a function cσ3 in σ ∈ [0, 0.1].

5 Results for the longitudinal quenches

From this section to section 7, we discuss results of numerical computations for our quenches

(i)-(iv). In this section, we firstly treat the longitudinal one-sided quench (i) and then

discuss the longitudinal Z2-symmetric quench (ii).

5.1 Cusp formation

We start from the longitudinal one-sided quench (4.1). In figure 7, we show snapshots of

the time evolution of the string for ∆t/L = 2 and ǫ = 0.03. The left panel is just after the

quench, t/L = 2, 2.2, 2.4. We observe that perturbations are induced on the string by the

quench. Late time behavior is shown in the right panel for t/L = 7, 7.2, 7.4, where it is

seen that cusps are formed on the string. The time for the cusp formation is evaluated as
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(b) After the cusp formation

Figure 7. Snapshots of the string time evolution for the longitudinal one-sided quench with

∆t/L = 2, ǫ = 0.03.

t/L ∼ 5 by using (4.20), while the snapshots are taken when it is easy to confirm the cusps

visually. Although the solution plotted in the target space (z, x1)-plane looks singular on

top of the cusps, the fields T (u, v), Z(u, v) and X1(u, v) are indeed smooth on the (u, v)-

plane. Therefore, even after the formation of the cusps, the time evolution can continue

without a breakdown of numerical computations. Physically, however, finite-Nc effects can

be important at cusp singularities, and the time evolution after the cusp formation may

be considered as unphysical without such corrections. We will discuss possible finite-Nc

effects at cusps in section 8. For the present, the dynamics of cusps are discussed without

taking into account these corrections. We find that the cusps appear as a pair. (The cusps

at t/L = 7.0 are magnified in the inset of the right panel.) The propagating speeds of the

two cusps are different, and they continue to propagate on the string.

Following this example, we survey cusp formation by changing quench parameters

using the method described in section 4.5.1. Results are shown in figure 8 when ∆t/L = 2

is fixed and ǫ is varied. In the left panel, the times for the cusp formation for each ǫ are

plotted, and the corresponding locations in the φ-coordinate are shown in the right panel.

The time for the cusp formation becomes longer as the quench amplitude becomes smaller.

It is also seen that the cusp formation times are mildly discretized, as well as the locations

of the formation away from the boundary. This discretization indicates that the cusps

might be difficult to form near the boundary.

The times and locations of the cusp formation tend to degenerate in the very early time

before the first reflection of the initial perturbation wave at X = −L/2 around t/L ∼ 3.5.

Features in this region seem to be influenced by the largeness of the quench and would

be different from late time dynamics. Quenches with large amplitudes will be reported

elsewhere [39].

The cusp formation time becomes longer as the amplitude gets smaller. A natural

question then is if the cusps can be formed for any small amplitude ǫ. As ǫ decreases, how-

ever, the variations in the fields are tinier and tinier, and eventually it becomes numerically

difficult to use the cusp condition (4.20) for finding the cusp formation. To obtain a rea-
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(a) Cusp formation time (b) Corresponding formation points

Figure 8. Cusp formation for various ǫ when ∆t/L = 2. The formation points in (b) correspond

to those at the same time in (a). In the plots, the points are computed at every 0.001 variation of

ǫ for tcusp/L < 8 and every 0.0005 for tcusp/L > 8.

Figure 9. Cusp formation in small ǫ for ∆t/L = 2. The dashed line is a fit of the red points. The

points marked with the boxes are not used for the fit but are consistent with the fit curve. The fit

curve reaches (tcusp/L)
−1 = 0 at ǫ ≃ 7.5× 10−3.

sonable inference, we fit results and extrapolate to smaller ǫ. A result is given in figure 9,

where we fit data points4 at ǫ ≥ 0.01 and tcusp/L ≥ 10 by a polynomial5 a ǫ + b ǫ1/2 + c.

From the extrapolation, we find that there is a critical value ǫcrit below which the cusp

formation time would be infinity. In figure 9, we obtain ǫcrit ≃ 7.5× 10−3.

We repeat this procedure to estimate the critical ǫ for different ∆t/L and see how it

changes. For each ∆t/L, we fit data by a ǫ+b ǫ1/2+c and extrapolate to the limit of infinite

cusp formation time to read off the value of critical ǫ. Results are shown in figure 10. We

find that the critical value scales as (∆t/L)3. A fit of our results is ǫcrit = 9.3×10−4(∆t/L)3.

Note that this scaling may be altered if ∆t/L becomes very long and the wavelength of the

induced wave is comparable with the length of the hanging string. The critical amplitude

in such a case, however, will be also big. For this reason, we do not focus on larger ∆t/L

in this paper.

4The points marked with the purple boxes were not derived from directly computing eq. (4.20) because

of difficulty in small ǫ. We are, however, able to find a suspect of cusp formation by looking at the plot of

the necessary condition (4.21). We do not use these points for the fit, but they look consistent with the fit.
5This fitting function is chosen by our intuition, and other choices for extrapolation could be utilized.
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Figure 10. The dynamical phase diagram for cusp formation. The red points are estimated values

of critical ǫ at different ∆t/L. The dashed curve is a fit given by ǫ = 9.3× 10−4(∆t/L)3. Cusps are

formed above this curve, but not below.

The cusp formation found here is similar to the weakly turbulent instability in the

global AdS [14]: small fluctuations in that AdS propagate between the boundary and the

center and, eventually, the perturbations collapse into a black hole after several bounces. A

difference between our cusp formation and that AdS instability is their critical amplitude

of initial perturbations. The AdS instability occurs for arbitrary small initial perturbations

while our cusps are formed only for ǫ > ǫcrit > 0. By a perturbative study in ref. [14], it has

been suggested that a commensurable spectrum is a necessary condition for the collapse

by arbitrary small perturbations. As in figure 4, the linear spectrum of the string, ωn and

ω′
n, are commensurable only for n → ∞. Because of the non-commensurable spectrum of

the string, we need finite perturbations for the cusp formation.

5.2 Energy spectrum in the non-linear theory

Given the formation of cusps, we look into the time dependence in the energy spectrum

following the procedure described in section 4.5.2. For samples, we focus on the following

four cases: (a) ∆t/L = 2, ǫ = 0.005, (b) ∆t/L = 2, ǫ = 0.01, (c) ∆t/L = 2, ǫ = 0.03, and

(d) ∆t/L = 4, ǫ = 0.07. With the parameters (a), cusps do not form on the string, while

cusps are created for (b), (c) and (d). In figure 11, we show the time dependence of the

energy spectra for these parameters. The dashed curves are the energy spectra computed

in the linear theory; see appendix C for the calculations. Although the spectra are defined

only for integer n, for visibility of the plot these results are generalized to continuous n.

High frequencies in the energy spectra are suppressed when the cusps are not formed.

In figure 11(a), the spectrum can be well approximated by the linear theory just after

the quench (t/L = 2). Although it slightly deviates from the linear theory as the time

increases, we do not find any remarkable change in the late time.

In contrast, the energy spectra show power law behaviors in the cases of cusp formation.

In figure 11(b), although the spectrum can be well approximated by the linear theory just

after the quench, we see the growth of the spectrum in high frequencies as time passes,

For instance, the data can be also fit with a ǫ2+b ǫ+c, and a qualitatively consistent result can be obtained.
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apparently because of the nonlinearity in the time evolution equations. In figure 11(c)

and 11(d), the spectra deviate from those in the linear theory even at t = ∆t, and this

indicates that the nonlinearity evolves even in the quenching time, 0 < t < ∆t. For

these three cases, we find a direct energy cascade: the energy is transferred to higher n-

modes during the time evolution. Eventually, power law spectra are observed, and these

behaviors persist until the time of cusp formation. (See magenta points.)6 In particular,

as seen in 11(b), the time for reaching the power law behavior can be rather earlier than

that for the cusp formation, and once realized, the behavior lasts until the cusps are

formed.7 Hence, the cusp formation on the string can be regarded as a variation of weak

turbulence [14].8

We fit the power law spectra by εn ∝ n−a. Just before the cusp formation, we obtain

a = 1.313±0.171, a = 1.354±0.128 and a = 1.432±0.017 for (b), (c) and (d), respectively.

The exponents are distributed around a ∼ 1.4.

5.3 Time-dependence of the forces acting on the heavy quarks

Following the procedure in section 4.5.3, we compute the forces acting on the quark and

antiquark as functions of time. Since the string motion is now restricted in the (z, x1)-

plane, only the x1-components of the forces are non-zero. In figure 12, we plot the forces

〈F1(t)〉 and 〈F̄1(t)〉 for ǫ = 0.005 and ∆t/L = 2. For these parameters, cusps do not form

on the string. Figure 12(a) is for the early stage in the time evolution (0 ≤ t/L ≤ 20), and

figure 12(b) for a long period (0 ≤ t/L ≤ 160). In figure 12(a), pulse-like oscillations are

repeated at regular time intervals. The period corresponds to the timescale for the fluctua-

tion induced by the quench (4.1) to go back and forth between the two boundaries. Because

of the dispersive spectrum in the linear perturbation, the initially localized oscillations tend

to spread as time increases as in figure 12(b), and there is no way for them to converge

again. We can also see that 〈F1(t)〉 < 0 and 〈F̄1(t)〉 > 0 throughout the time evolution,

and this implies that the force between the quark and antiquark is always attractive.

For the parameters where the cusps form on the string, the time evolution of the

forces is different from the previous example. In figure 13, we show 〈F1(t)〉 and 〈F̄1(t)〉
for ǫ = 1.0 × 10−2 and ∆t/L = 2, where figures (a) and (b) are for 0 ≤ t/L ≤ 13 and

for 0 ≤ t/L ≤ 30, respectively. In figure (b), we take the absolute values of the forces,

and plot in the log scale in the vertical axis. We find that the pulse-like oscillations are

getting sharp and amplified as the time increases. The forces can change the sign because

of their large oscillations, and this implies that the force between the quark and antiquark

can be repulsive temporarily. Eventually, when a cusp arrives at the boundary after the

cusp formation, the force diverges.

6After the cusp formation, the function R(t, φ) becomes multi-valued and the energy spectrum is ill-

defined. Therefore, we only show spectra before the cusp formation.
7The string is smooth before the cusp formation, and the energy spectrum εn must fall off faster than

any power law function as n → ∞. Hence, it is indicated that the power law spectrum will be no longer

maintained at n ≫ 50, while many numerical efforts are necessary for computing the spectrum in such a

region.
8The AdS weak turbulence was found to be characterized by a Kolmogorov-Zakharov scaling [40].
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(a) ∆t/L = 2, ǫ = 0.005 (no cusp)
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(b) ∆t/L = 2, ǫ = 0.01 (cusp)
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(c) ∆t/L = 2, ǫ = 0.03 (cusp)
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(d) ∆t/L = 4, ǫ = 0.07 (cusp)

Figure 11. Time dependence of the energy spectrum. For the parameters (a), cusps do not form

on the string. For the parameters (b), (c) and (d), cusps are created on the string. The dashed

curves are the energy spectra computed in the linear theory. Red points are spectra just after the

quench. Magenta points correspond to the time for cusp formation. For (b), (c) and (d), the energy

is transferred to higher modes as time increases, and eventually power law spectra are reached.

In (b), light blue points indicate the time when the spectrum realizes the power law, which lasts

until the cusp formation. We fit the magenta points by ε ∝ n−a, and the results are plotted with

dotted lines.
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(a) 0 ≤ t/L ≤ 20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120 140 160

(b) 0 ≤ t/L ≤ 160

Figure 12. Time dependence of the forces acting on the quark and the antiquark for the longi-

tudinal one-sided quench with ǫ = 5.0 × 10−3 and ∆t/L = 2. In this case, cusps do not form on

the string.
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(a) 0 ≤ t/L ≤ 13
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Figure 13. Time dependence of the forces acting on the quark and the antiquark for the longitu-

dinal one-sided quench with ǫ = 1.0 × 10−2 and ∆t/L = 2. For these parameters, cusps form on

the string. Pulse-like oscillations in the forces are getting amplified as time increases and diverge

eventually.

A mathematical explanation why the forces diverge after the cusp formation is given

as follows. Near the AdS boundary, the time dependent solution is well approximated

by eq. (4.14). The conditions for the cusp are then given by ∂σZ = 0 and ∂σX = 0 as

discussed in section 4.5.1. The latter condition is automatically satisfied near the boundary

because of ∂σX ∼ σ, while the former gives ṫ0 = 0. In eq. (4.27), the denominator has ṫ0,

and it appears that the numerator does not cancel the zero in the denominator. Hence, it

is natural that the force diverges when the cusp arrives at the boundary.

5.4 Z2-symmetric quench

When the two endpoints of the string are simultaneously quenched in the opposite direc-

tions with the same amplitude, there is a new contribution from the one-sided quench that

the propagating waves collide at the Z2-symmetric point X = 0, and cusps are expected to

form on the collision. This case is equivalent to impose the Neumann boundary condition

at X = 0. Such a condition is typically imposed in probe D-brane embeddings. We would

like to emphasize that understanding the difference between this case and the case with-

out the Neumann condition would be important for distinguishing mechanisms for cusp

formation whether the cusps are formed spontaneously as discussed in previous sections or

formed with a help of the collisions or the Neumann condition.

We investigate the cusp formation by computing the condition (4.20). Results are

shown in figure 14 for varying ǫ with ∆t/L = 2 fixed. The left panel shows the times

for (4.20) to be satisfied for the first time, and the corresponding φ-coordinates are plotted

in the right panel. We find that there are two kinds of cusp formation and wave collisions

at the Z2-symmetric point: one is cusp formation by the wave collision, and the first cusp

formation in this case is marked with red points in the plots, since in this case these

cusps disappear once the colliding waves pass. The other is that cusps are formed on the

propagating waves in the same way as in the one-sided quench, and the cusp formation

for this case is marked with green triangles. The times for the cusp formation are clearly
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(a) Cusp formation times (b) Corresponding formation points

Figure 14. Cusp formation times for the Z2-symmetric quench with ∆t = 2. Cusp creation by

wave collisions around φ = β0/2 are plotted with red dots, while events apart from that point and

in the same way as the one-sided quench are plotted with green triangles.

discretized, and the locations are concentrated to φ = β0/2. The small change in the

formation time is because the propagating speed of the wave slightly varies for different ǫ.

Closely looking at the results in evaluating (4.20), we find that even numbers of cusps

are created for the first case (red points). In the bulk coordinates, the cusp formation is

seen at very close to φ = β0/2 and one might naively think that only one cusp was generated

at a point. In the worldvolume results, however, when the waves collide at φ = β0/2, we

find that a pair of cusps whose orientations are opposite are created, and then these cusps

pair-annihilate shortly when the waves pass by. Hence, the cusps created by the collision

do not propagate away from that point, and therefore these instantaneous cusps are not

observed in the force at the boundary. In this case, other formation of cusps in the same

way as that in the one-sided quench also happens afterward.

In the cases of the green triangles in figure 14, the cusps are formed slightly before the

collision point, and these cusps subsequently collide at the Z2-symmetric point. In fact, it

is seen in figure 14(a) that these points go ahead of the cusp formation by the collisions.

These cusps then continue traveling on the string, inferring that the waves are already

magnified enough for forming cusps.

In the Z2-symmetric case, it is convenient to evaluate the time evolution of the world-

sheet Ricci scalar at φ = β0/2 since many events of the cusp formation occur there. The

Ricci scalar is given by

R =
2(γuv,uγuv,v − γuvγuv,uv)

γ3uv
. (5.1)

For the static configuration, this monotonically changes from R = −2/ℓ2 at φ = 0 to

R = −4/ℓ2 at φ = β0/2, and because of this coordinate dependence it might be desirable

to compare the Ricci scalar at a fixed φ. The Ricci scalar diverges on top of a cusp, and

the cusp formation condition (4.20) is consistent with the divergence of the Ricci scalar

since γuv in the denominator becomes zero when (4.20) is satisfied. Practically, as we use

discretized computations, the Ricci scalar does not exactly become infinity, while at least

it becomes huge. Results of the Ricci scalar representing the cusp formation at second,
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Figure 15. Ricci scalar evaluated at φ = β0/2 when ∆t/L = 2.
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Figure 16. Snapshots of the string in the transverse linear quench. We set the parameters as

∆t/L = 2, ǫ = 0.03.

third, and forth collisions are shown in figure 15. In these results, the absolute value of the

Ricci scalar suddenly becomes huge at the cusp formation, and come back to of order one

when the waves pass. In our setup, the numerical evolution does not breakdown after the

Ricci scalar diverges in contrast to the D3/D7 case [10–12], although finite-Nc corrections

may have to be taken into account.

6 Results for the transverse linear quench

6.1 Cusp formation

In this section, we study the string dynamics induced by the transverse linear quench (4.4).

With such a quench, the string moves in the (3+1)-dimensions spanned by (t, z, x1, x2).

Snapshots of string configurations under a quench with parameters ∆t/L = 2 and ǫ = 0.03

are shown in figure 16. The left panel is just after the quench, t/L = 2, 2.2, 2.4, where

we do not find cusps. However, in the right panel for late time t/L = 15, 15.2, 15.4, we

find cusps on the string. This demonstrates that cusps can form in the transverse linear

quench. For quenches with smaller amplitudes (ǫ . 0.02), we did not find cusp formation

for the period we computed the time evolution.
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linear theory
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Figure 17. Time dependence of the energy spectrum in the transverse linear quench with ∆t/L = 2

and ǫ = 0.03. Magenta points correspond to the time for the cusp formation. We fit them by ε ∝ n−a

and show the result by a dotted line.

6.2 Energy spectrum in the non-linear theory

We expect to see nonlinear origin for the cusp formation in the energy spectrum also in

the case of the transverse linear quench. In figure 17, we show the time dependence of

the energy spectrum when the parameters are ∆t/L = 2 and ǫ = 0.03. The time for the

cusp formation is t/L = 14.45 for these parameters. Red points are just after the quench,

and magenta points correspond to the time at cusp formation. We find the direct energy

cascade as in section 5.2, and eventually the spectrum obeys a power law until the time of

cusp formation. Thus, also in the transverse linear quench, we find the turbulent behavior

toward the cusp formation. Fitting the spectrum by ε ∝ n−a, we obtain a = −1.533±0.133.

The exponent has similar value as that for the longitudinal quench.

6.3 Time-dependence of forces acting on the heavy quarks

We turn to the time-dependence of the forces acting on the quark and the antiquark in the

transverse linear quench. Since the motion of the string is in the (z, x1, x2)-space, the x1-

and x2-components of the forces can be non-zero. In figure 18(a), we show 〈F 〉 and 〈F̄ 〉
as functions of time for ∆t/L = 2 and ǫ = 0.01, with which cusps do not appear on the

string. Similar to the longitudinal quench, pulse-like oscillations are repeated at intervals.

Although there are sharp peaks, they are always O(1) in units of λ−1/2L2. We also find

that 〈F1(t)〉 < 0 and 〈F̄1(t)〉 > 0. Thus, the force between quarks is always attractive.

In figure 18(b), we show the absolute values of the forces for ∆t/L = 2 and ǫ = 0.03,

where cusps are formed as seen in section 6.1. The pulses are getting sharp and amplified as

time increases, and eventually after the cusp formation, the forces diverge when the cusps

arrive at the boundaries. We also monitored ṫ0, which is in the denominator in eq. (4.27),

at the boundaries, and found that it is consistent with zero at t/L ≃ 13.6 and 15.9 at

x = xq and xq̄, respectively.
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Figure 18. Forces acting on the quark and the antiquark in the transverse linear quench. We fix

the time scale of the quench as ∆t/L = 2. Left and right panels are for ǫ = 0.01 and ǫ = 0.03,

respectively. In the right panel, we take the absolute values of the forces, and the vertical axis is

log scale.
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Figure 19. Time dependence of the energy spectrum for the transverse circular quench with

∆t/L = 2 and ǫ = 0.02.

7 Results for the transverse circular quench

Finally, we study the string dynamics induced by the transverse circular quench (4.5).

The string moves in all (4+1)-dimensions spanned by (t, z, x1, x2, x3). For the transverse

circular quench, we did not find any cusp formation at least for modest parameters: around

at ǫ ∼ 0.01 and ∆t/L ∼ 1. Nevertheless, we found an interesting behavior in the energy

spectrum. In figure 19, we show the time dependence of the energy spectrum for parameters

∆t/L = 2 and ǫ = 0.02. In the early time evolution until t/L . 14, there is a direct energy

cascade: the energy is transferred from large to small scales, and eventually the spectrum

obeys a power law at t/L ∼ 14. Fitting the numerical data at t/L = 14, we obtain

εn ∝ n−2.019±0.029. For t/L & 14, however, we find that this turns into an inverse energy

cascade: the energy is transferred to the large scale. Thus, in contrast to the previous low

dimensional cases, the power law once realized at an intermediate time t/L = 14 is not

maintained in the late time.
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Figure 20. Snapshots of the string in the transverse circular quench with ∆t/L = 2 and ǫ = 0.02.

In the left and right figures, we project the profiles of the string into (x1, x2, z)- and (x1, x3, z)-

spaces, respectively.
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Figure 21. Time dependence of the forces acting on the quark and the antiquark for the transverse

circular quench with ǫ = 0.02 and ∆t/L = 2.

In figure 20, we show snapshots of string configurations around the “turning point”

of the energy cascade: t/L = 14, 14.2, 14.4. Since the string motion is in the (4 + 1)-

dimensions, we project the string profile into (x1, x2, z)- and (x1, x3, z)-spaces. Although

cusp-like points can be seen in the right figure, these are not real cusps: we find that

although roots of JZ , JX2
and JX3

become close at t/L ≃ 14, JX1
is not zero at the point.

(See eq. (4.20).) However, the perturbation variable χ̂3 defined in eq. (4.23) becomes cuspy,

namely, its energy is transferred to the small scale. Hence the direct energy cascade appears

in t/L . 14. After t/L ≃ 14, the cuspy shape gets loose because of the dispersive spectrum

in the linear perturbation.

In figure 21, we show the time dependence of the forces acting on the quark and the

antiquark for ǫ = 0.02 and ∆t/L = 2. We do not find the divergence of the forces. However,

the forces are magnified until t/L ≃ 14 and can be repulsive at some time intervals (〈F1〉 > 0

and 〈F̄1〉 < 0) even though there is no cusp formation. The magnitude of the forces in the

late time is not as big as that period, reflecting the looseness in the cuspy shape.
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8 Summary and discussion

We studied nonlinear dynamics of the flux tube between an external quark-antiquark pair

in N = 4 SYM theory using the AdS/CFT duality. We numerically computed the time

evolution of the string in AdS dual to the flux tube when we perturbed the positions

of the string endpoints to induce string motions. We considered four kinds of quenches

that were chosen to represent typical string motions: (i) longitudinal one-sided quench,

(ii) longitudinal Z2-symmetric quench, (iii) transverse linear quench, and (iv) transverse

circular quench. (See eqs. (4.1)–(4.5) and figure 6.) For (i)-(iii), we found cusp formation on

the string. In the time evolution of the energy spectrum, we observed the weak turbulence,

that is, the energy was transferred to the small scale, and the energy spectrum eventually

obeyed a power law until the time of the cusp formation. The cusp formation occurred

only when the amplitude of the quench was larger than a critical value, ǫ > ǫcrit, and

the dependence of its magnitude on the quench duration ∆t was given by a simple form

ǫcrit ∝ (∆t/L)3 in small ∆t/L. When the cusps arrived at the AdS boundary, we observed

the divergence of the force between the quark pair. For (iv), we found no cusp formation.

Nevertheless, we observed a direct energy cascade and the power law spectrum for a while.

However, in late time the direct cascade turned into an inverse energy cascade, where the

energy was transferred to the large scale. There was no divergence of the force between

the quark pair.

How can we understand the weak turbulence of the string in view of gauge theory?

Eigen normal modes en of the fundamental string studied in section 3 can be regarded as

the excited states |n〉 of the flux tube in the gauge theory side. Hence, the fluctuating

string solution, such as R(t, φ) = z0 +
∑

n cn(t)en(φ), corresponds to

|ψ〉 = |0〉+
∞
∑

n=1

cn(t)|n〉 (8.1)

in the boundary theory, where |0〉 is the ground state. The weak turbulence implies that

|cn(t)| with n ≫ 1 tends to increase as a function of time. Therefore, in the late time,

the probability of observing highly excited states is high compared to the linear theory.

Similar phenomenon has been found in the D3/D7 system dual to N = 2 supersymmetric

QCD [10–12], where a direct energy cascade was found in the fluctuations on the D7-

brane and regarded as production of many heavy mesons in the SQCD. In that paper, this

phenomenon was referred as “turbulent meson condensation”. Although the endpoints of

the flux tube we considered are regarded as nondynamical and infinitely heavy quarks, the

string turbulence found in this paper would be regarded as the microscopic picture of the

turbulent meson condensation.

We found cusp formation when the motion of the string is restricted in (2 + 1)- and

(3+1)-dimensions. The divergence of the forces acting on the quarks is accompanied by the

cusp singularities, where we expect that finite-Nc effects will become important. These will

contain quantum effects of the string, and such effects may resolve the cusp singularities

and the divergence of the forces. Nevertheless, the cusp formation in the classical sense can

give us observable effects: finite-Nc effects will also appear as gravitational backreactions.
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If these are taken into account, a strong gravitational wave will be emitted at the onset of

the cusp formation.9 For cosmic strings in flat spacetime, gravitational wave bursts from

cusps have been studied in ref. [42], and it has been found that their spectra obey a power

law in the high-frequency regime. It would be nice to compute the gravitational waves

from the string in AdS5 and find the power law spectrum. The description in the dual field

theory may be the power law spectrum in gluon jets from the flux tube.

When the motion of the string is in (4+1)-dimensions, we did not find cusp formation.

Hence, in AdS5 spacetime, the cusp formation on the string is not a general phenomenon

but accidental one. This implies that the dual phenomenon to the cusp formation is

not ubiquitous in the (3 + 1)-dimensional boundary field theory. However, if we consider

the many-body system of quark-antiquark pairs, it is possible that the time evolution of

some flux tubes happens to be restricted in lower dimensional spaces approximately,10 and

such flux tubes would be able to emit the gluon jets with the approximately power law

spectrum, which is characteristic to the cusp formation. Besides, gravitational wave bursts

in the presence of extra dimensions were discussed in [43, 44]. Even though real cusps are

not formed, there may be some gluon emission from cuspy shapes.

There are some future directions in our work. In this paper, we only considered modest

values for the amplitude of the quench, ǫ ∼ 0.01. For a large value of ǫ, we expect that

the string can even plunge into the Poincare horizon because of the strong perturbation.

This will demonstrate a non-equilibrium process of breaking of the flux tube. It is also

straightforward to take into account finite temperature effects in this process. It will be

also interesting to consider the string motions in confined geometries [17]. In the theories

dual to these backgrounds, the quark-antiquark potential is linear, and the presence of such

potential may affect conditions for cusp formation. Studying nonlinear string dynamics in

such geometries may give new insights into understanding the QCD flux tubes and non-

equilibrium processes in realistic QCD.

Closed strings rotating in AdS and having cusps were constructed in ref. [45]. Although

our dynamical cusp formation on an open string is different from the existence of cusps

in those steady solutions, it may be interesting to obtain useful information from such

configurations. In [10], the universal exponent in the power law was deduced from a

stationary solution called critical embedding in the D3/D7-brane system in the presence of

a constant electric field, and results in time dependent computations obeyed that universal

value. In our setup, we do not have a corresponding static cuspy configuration, but our

power law exponents, distributed around 1.4, may be naturally understood from cuspy

stationary strings in AdS.

Ultimately, it will be important to understand the mechanism relevant for the the tur-

bulent behavior. For the integrable Wilson loops such as those in AdS5× S5, the turbulent

behavior may be studied with the techniques of integrability.

In non-linear systems, there may be underlying chaos. In [46], closed strings moving

in Schwarzschild-AdS background were studied from the viewpoint of chaos. It may be

9In the asymptotically flat spacetime, gravitational self-interaction of cosmic strings has been perturba-

tively studied in ref. [41]. This work suggests that cusps survive the backreaction.
10We thank Claude Warnick for pointing out this argument.
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interesting if chaos is seen also in the motion of open strings and the turbulent behavior is

understood, particularly in non-integrable situations.
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A Numerical methods

In this appendix, we explain our numerical method for solving the equations of motion of

the string (4.11). Basic ideas are explained in appendix A in [9].

We found that the original form of the equations of motion (4.11) is numerically unsta-

ble. To stabilize the numerical evolution, it is effective to use the constraints (4.8). From

them, we have

T,u =
√

Z2
,u +X2

,u , T,v =
√

Z2
,v +X2

,v , (A.1)

where we choose the positive signs for the square roots since we take ∂u and ∂v as future

directed vectors. Eliminating T,u and T,v from eq. (4.11), we obtain

T,uv =
1

Z
[(Z2

,u +X2
,u)

1/2Z,v + (Z2
,v +X2

,v)
1/2Z,u] ,

Z,uv =
1

Z
[(Z2

,u +X2
,u)

1/2(Z2
,v +X2

,v)
1/2 + Z,uZ,v −X,u ·X,v] ,

X,uv =
1

Z
(X,uZ,v +X,vZ,u) .

(A.2)

The evolution equations in these expressions are found numerically stable.

To numerically solve (A.2), we discretize the world volume (u, v)-coordinates with the

grid spacing h as shown in figure 22. Let us denote the fields (T, Z, X) by Ψ. At a point C

apart from the boundary, the fields and their derivatives are discretized with second-order

accuracy as

Ψ,uv|C =
ΨN −ΨE −ΨW +ΨS

h2
, Ψ,u|C =

ΨN −ΨE +ΨW −ΨS

2h
,

Ψ,v|C =
ΨN +ΨE −ΨW −ΨS

2h
, Ψ|C =

ΨE +ΨW

2
. (A.3)

Discretization error is O(h2). Substituting these into the evolution equations (A.2), we

obtain nonlinear equations to determine ΨN by using known data of ΨE , ΨW , and ΨS .

We use the Newton-Raphson method for solving the coupled nonlinear equations.
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Figure 22. Discretization of the world volume.

The equations for the boundary time evolution (4.15) become coupled nonlinear equa-

tions of TN and XN . (ZN = 0 is trivially imposed.) The form at σ = 0 is

TN = TS +
√

4Z2
W + (XN −XS)2 , XN = xq(TN ) , (A.4)

where we used a relation for Z, ZE = −ZW , derived from the boundary condition Z,uv = 0.

At the other boundary σ = β0, ZW and xq in (A.4) are replaced with ZE and xq̄. These

equations are also solved by using the Newton-Raphson method.

B Error analysis

In this section, we estimate errors in our numerical calculations. We define

C̃1 =
1

L2
(−T 2

,u + Z2
,u +X2

,u) , C̃2 =
1

L2
(−T 2

,v + Z2
,v +X2

,v) . (B.1)

These constraints should be zero for exact solutions. Hence, these can be nice indicators

of our numerical errors. For visibility of the constraint violation, we introduce

Cmax(v) = max
fixed v

(|C̃1|, |C̃2|) , (B.2)

where we take the maximum value when we vary u on a fixed v surface. We also choose

the bigger of the two constraints, |C̃1| and |C̃2|. Introducing an integer N such that the

mesh size is given by h = β0/N , we plot Cmax(v) for several values of N in figure 23. We

see that the constraint violation is small (Cmax ∼ 10−3 even for N = 200) and behaves

as Cmax ∝ 1/N2. This is consistent with the fact that our numerical method has the

second order accuracy. In this paper, we mainly set N = 800. Then, the constraint

violation is O(10−4).

C Energy spectrum in the linear theory

In this appendix, we derive the energy spectrum induced in the linear theory of section 3

when a quench is added on the boundary. The equations of motion for the perturbation
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Figure 23. Constraint violation for several resolutions, N = 200, 400, 800, 1600. (a) Longitudinal

one-sided quench with ∆t/L = 2 and ǫ = 0.01. (b) Transverse linear quench with ∆t/L = 2 and

ǫ = 0.03. (c) Transverse circular quench with ∆t/L = 2 and ǫ = 0.02. For (a) and (b), the right

ends of the figures correspond to the times for the cusp formation.

variables (χ1, χ2, χ3) are given in eq. (3.8). Here, we focus on the longitudinal mode χ1

for simplicity and denote it as χ1 = χ. Application to transverse modes is straightforward.

For the quench, we consider the following boundary conditions for χ:

χ(t, φ = 0) = χb(t) , χ(t, φ = β0) = 0 , (C.1)

where χb(t) is the quench function assumed to have a compact support at 0 < t < ∆t. We

also assume that the solution is trivial before the quench, χ(t ≤ 0, φ) = 0.

We firstly consider a time independent solution to (3.8),

HS(φ) = 0 . (C.2)

A solution is given by

S(φ) = − 1

A

∫ φ

β0

dφ′

h(φ′)
, (C.3)

where A ≡
∫ β0

0 dφ′/h(φ′) is a constant for normalization. Near the boundaries the function

S behaves as

S = 1− 1

3AΓ2
0

φ3 + · · · (φ ∼ 0) , S =
1

3AΓ2
0

(β0 − φ)3 + · · · (φ ∼ β0) . (C.4)

Let us introduce the quench χb(t). Using the function S, we define χ̃ as

χ(t, φ) = χ̃(t, φ) + χb(t)S(φ) . (C.5)

The new variable χ̃ satisfies trivial boundary conditions, χ̃(t, φ = 0) = χ̃(t, φ = β0) = 0.

The equation of motion for χ̃ becomes

(∂2
t +H)χ̃ = −χ̈b(t)S(φ) , (C.6)

where we used eq. (C.2).

To solve the equation, we consider a Green’s equation:

(∂2
t +H)G(t, t′;φ, φ′) = δ(t− t′)δ(φ− φ′) , (C.7)
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where G is the Green’s function. By using G, a special solution to eq. (C.6) can be written

in the form

χ̃ = −
∫ ∞

−∞
dt′

∫ β0

0
dφ′G(t, t′;φ, φ′)χ̈b(t

′)S(φ′) . (C.8)

Operating
∫ t′+ǫ
t′−ǫ dt on both sides of the Green’s equation and taking the limit of ǫ → 0, we

obtain the junction condition as

∂tG|t=t′+0
t=t′−0 = δ(φ− φ′) . (C.9)

For t < t′, we assume the Green’s function is trivial: G = 0. For t > t′, the Green’s

function can be written as

G =
∑

n

[an sinωn(t− t′) + bn cosωn(t− t′)]en(φ) , (C.10)

From the continuity of G at t = t′ we have bn = 0, and then from the junction condi-

tion (C.9), we find that an satisfies

∑

n

anωnen(φ) = δ(φ− φ′) . (C.11)

Operating (en, ∗) to the above equation, we obtain

an =
1

ωn
γ(φ′)en(φ

′) . (C.12)

Thus, the Green’s function can be written as

G(t, t′;φ, φ′) =







0 (t < t′) ,

∑

n ω
−1
n sinωn(t− t′) γ(φ′)en(φ

′)en(φ) (t > t′) .
(C.13)

Since the Green’s function is zero at t < t′, the special solution obtained from eq. (C.8) is

also zero before the quench, t < 0, and this is nothing but the solution we are looking for.

After the quench t > T , the solution becomes

χ = −
∑

n

ω−1
n Snen(φ)

∫ T

0
dt′χ̈0(t

′) sinωn(t− t′)

=
∑

n

ωnSnen(φ)

∫ T

0
dt′χb(t

′) sinωn(t− t′) ,

(C.14)

where Sn ≡ (S, en). Note that χ̃ = χ after the quench. At the second equality, we

integrated by parts twice.

It is then straightforward to compute the energy spectrum. The mode coefficient

cn = (χ, en) is computed by using (C.14) as

cn(t) = ωnSn

∫ T

0
dt′χb(t

′) sinωn(t− t′) , (C.15)
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and then from eq. (4.25) the energy spectrum for the longitudinal quench in the linear

theory becomes

εn =

√
λz0
4π

[

ċ2n + ω2
nc

2
n

]

=

√
λz0ω

4
nS

2
n

4π
|χ̂(ωn)|2 . (C.16)

where we define χ̂(ω) =
∫

dtχb(t)e
−iωt. The energy spectrum does not depend on t as we

expect. Taking into account the transverse modes, we obtain the energy spectrum as

εn =

√
λz0
4π

[

ω4
nS

2
n|χ̂(ωn)|2 +

∑

i=2,3

ω′
n
4S′

n
2|χ̂i(ωn)|2

]

, (C.17)

where

χ̂i(ω) =

∫

dtχi
b(t, φ = 0)e−iωt , S′ =

g(φ) + Γ0

2Γ0
, S′

n = (S′, en)
′ , (C.18)

and χi
b are the quench functions for χi. The total energy is ε =

∑∞
n=1 εn.

The spectrum (C.17) is defined only for integer n. However, in figures 11, 17 and 19,

we generalize εn to a continuous number by interpolating ωn, Sn, ω
′
n, and S′

n and regarding

them as function of continuous number n for visibility.

D Forces acting on the quark and the antiquark

In this appendix, we derive the formula for the forces acting on the quark endpoints (4.27).

We denote the on-shell Nambu-Goto action as S[xq,xq̄], where xq and xq̄ are the locations

of the string endpoints regarded as the quark and the antiquark, respectively, at the AdS

boundary: X(t, z → 0) = xq,xq̄. The on-shell action relates to the partition function of

the boundary theory as

ZCFT[xq,xq̄] = eiS[xq ,xq̄ ] . (D.1)

In the field theory, the partition function is written as

ZCFT[xq,xq̄] =

∫

Dφ exp (iSSYM[φ] + iSq[φ(xq),xq] + iSq̄[φ(xq̄),xq̄]) , (D.2)

where φ represents the set of the fields in N = 4 super Yang-Mills theory and SSYM is its

action. Sq and Sq̄ denote the actions for the quark and the antiquark, respectively. We

regard xq(t) and xq̄(t) as external fields. The quark action is schematically written as

Sq[φ(xq),xq] =

∫

dt
[

−m
√

1− v2 + Lint[φ(xq),xq]
]

, (D.3)

where m is the quark mass and Lint corresponds to the interaction term with SYM fields,

and the velocity of the quark is introduced as v ≡ dxq/dt. We define the force acting on

the quark as

F =
δ

δxq

∫

dtLint[φ(xq),xq] . (D.4)

The variation of the on-shell Nambu-Goto action is then related to the field theory terms as

δS

δxq
= −i

δ

δxq
lnZCFT = −m(γv)· + 〈F 〉 , (D.5)
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where 〈F 〉 = Z−1
∫

DφF eiSSYM+iSq+iSq̄ , γ = 1/
√
1− v2, and the dot in the upper right of

the parentheses denotes · ≡ d/dt. In the first equality, we used the AdS/CFT duality (D.1).

Now, we evaluate δS/δxq in the gravity side. For this purpose, it is convenient to use

target space coordinates (t, z) as the world sheet coordinates. Then, the position of the

string is specified by x = X(t, z), and the Nambu-Goto action becomes

S = −
√
λ

2π

∫

dtdz
1

z2
[

(1− Ẋ2)(1 +X ′2) + (Ẋ ·X ′)2
]1/2

. (D.6)

The equations of motion are given by
[

−(1 +X ′2)Ẋ + (Ẋ ·X ′)X ′

z2
√
ξ

]·

+

[

(1− Ẋ2)X ′ + (Ẋ ·X ′)Ẋ

z2
√
ξ

]′

= 0 , (D.7)

where · ≡ ∂/∂t, ′ ≡ ∂/∂z, and ξ ≡ (1− Ẋ2)(1 +X ′2) + (Ẋ ·X ′)2. Solving these near the

AdS boundary, we obtain

X = xq(t)−
1

2
γ2az2 + x3z

3 +O(z4) , (D.8)

where a = d2xq/dt
2. Let us consider the variation of the on-shell action with respect to

one of the endpoints of the string, xq, and the other endpoint is fixed, δxq̄ = 0. By defining

Lagrangian as S =
∫

dτdσL, the variation of the action becomes

δS[xq,xq̄] =

∫

dtdz

[

δ(∂aX) · ∂L
∂(∂aX)

+ δX · ∂L
∂X

]

=

∫

dtdz ∂a

(

δX · ∂L
∂(∂aX)

)

= −
∫

dt δX · ∂L
∂X ′

∣

∣

∣

∣

x=xq ,z=ǫ

,

(D.9)

where we take the cutoff at z = ǫ. At the second equality, we used Euler-Lagrange equation,

∂L/∂X = ∂a[∂L/∂(∂aX)]. There is no contribution from the other boundary X = xq̄ and

z = ǫ since δX = 0 there. Substituting eq. (D.8) into eq. (D.9), we obtain

δS[xq,xq̄] =

∫

dt δxq ·
(

−
√
λ

2πǫ
(γv)· +

3
√
λ

2πγ
(x3 + γ2(v · x3)v)

)

. (D.10)

Hence, the upshot for δS/δxq is

δS

δxq
= −

√
λ

2πǫ
(γv)· +

3
√
λ

2πγ
(x3 + γ2(v · x3)v) . (D.11)

Comparing above expression with eq. (D.5), we can see that the first term in (D.11) cor-

responds to a diverging quark mass m ∼ 1/ǫ. This is a natural consequence since we

are considering an infinitely extended string. Setting m =
√
λ/(2πǫ), we obtain the force

acting on the quark from eqs. (D.5) and (D.11) as

〈Fi(t)〉 =
√
λ

4πγ
(δij + γ2vivj)∂

3
zXj |z=0 , (D.12)

where we replaced x3 with ∂3
zX|z=0/6. Note that there can be a finite difference between m

and
√
λ/(2πǫ), and an extra-term proportional to (γv)· may appear in eq. (D.12). However,

it can be eliminated by adding a local counter term proportional to
√
1− v2 in the quark

action Sp. The same formula can be applied to the force acting on the antiquark at xq̄.
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