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1 Introduction

In recent years CFT in 4d has been receiving an increasing attention. The reason is well-

known, it is due in part to being one of the poles in the AdS/CFT correspondence, in part

to the new applications to strongly correlated systems and in part to the increasing interest

in applying the standard model of elementary particles to very high energy problems and its

coupling to gravity. In turn this has spurred a lot of interest and activity in the theoretical

aspects of conformal symmetry and conformal field theories. Recent reviews on the latter

are [1, 2], older references relevant to the content of this paper are [3, 4]. One of the most

striking recently obtained results is the derivation of the general structures of conformal

covariant correlators and OPE’s of any kind of tensor fields in coordinate space, [5–11].

The analysis of 3-point functions of conserved currents and the energy-momentum tensor

was also considered in momentum space, [12–14].

The above mentioned correlators in coordinate space are in general unregulated expres-

sions, in that they have singularities at coincident points. For convenience we call them

bare. The natural way to regularize them is provided by distribution theory. This is clear

in theory, in practice it is not so simple because, except for the simplest cases, one has to do

with formidable expressions. In the coordinate representation a rather natural technique is

provided by the so-called differential regularization, [15–17]. However this technique does

not seem to be in general algorithmic (see below) and a good deal of guesswork is needed

in order to obtain sensible expressions.

Regularizing correlators is not simply a procedure (legitimately) required by mathe-

matics. Singularities in correlators usually contain useful information. For instance in cor-

relators of currents or energy-momentum tensors singularities provide information about

the coupling to gauge potentials and to gravity, respectively. This is the case of anomalies,

which are a typical result of regularization processes, though independent of them. Regu-

larized correlators are also necessary in the Callan-Symanzik equation, [18]. In summary,

regularizing conformal correlators is the next necessary step after deriving their (unregu-

lated or “bare”) expressions.

As was said above, however, the process of regularizing higher order correlators in

coordinate space representation with differential regularization does not seem to be al-

gorithmic. For definiteness we concentrate here on the 2- and 3-point functions of the

energy-momentum tensor. We show that we have a definite rule to regularize the 2-point

correlators in coordinate space by means of differential regularization, but when we come

to the 3-point function there is a discontinuity which does not allow us to extend the rule

valid for the 2-point one. To understand the origin of the problem we resort to a model,

the model of a free chiral fermion, in momentum representation. Using one-loop Feyn-

man diagrams we can determine completely the 3-point correlator of the e.m. tensor and

regularize it with standard dimensional regularization techniques. The idea is to Fourier

anti-transform it in order to shed light on the regularization in the coordinate represen-

tation. For two reasons we concentrate on the parity-odd part, although the extension to

the parity-even part is straightforward. The first reason is the presence of the Levi-Civita

tensor which limits the number of terms to a more manageable amount, while preserving

all the general features of the problem.

– 2 –
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The second reason is more important: the appearance of the Pontryagin density in

the trace anomaly of this model. This parity-odd anomaly has been recalculated explicitly

in [22] after the first appearance in [19, 20], with different methods. If one uses Feynman

diagram techniques the basic evaluation is that of the triangle diagram. Now, it has been

proved recently (this is one of the general results mentioned above) that the parity-odd part

of the 3-point function of the energy-momentum tensor in the coordinate representation

vanishes identically, [7, 8]. Therefore it would seem that there is a contradiction with the

existence of a parity-odd part in the trace of the e.m. tensor. Although this argument

is rather naive and forgetful of the subtleties of quantum field theory, it seems to be

widespread. Therefore we think it is worth clarifying it. We show below that in fact there is

no contradiction: a vanishing parity-odd “bare” 3-point function of the energy-momentum

tensor must in fact coexist with a nonvanishing parity-odd part of the trace anomaly.

The paper is organized as follows. In the next three sections we thoroughly analyse

the 2d case. The reason is that, although the results are known, in 2d many problems

that will appear in higher dimensions are already present and can be fully solved. So

2d is a useful playground for the rest of the paper. In section 2 and 3 we consider the

problem of regularizing the 2-point function of e.m. tensors in 2d using the techniques of

differential regularization (for the various techniques used, see [25–27]). In section 4 we

analyze the 2-point function of the e.m. tensor using Feynman diagrams techniques. In

section 5 we compute the 2-point function of e.m. tensors in 4d both using differential

regularization and Feynman diagrams. In section 6 we review a general no-go argument

concerning parity-odd contributions in the 3-point function of e.m. tensors, we explicitly

compute the parity-odd part of the correlator of three e.m. tensors in the chiral fermion

model in 4d in coordinate representation and show that it identically vanishes. We repeat

the last computation using Feynman diagrams and regularize it, and show how it gives

rise to the parity-odd trace anomaly. We show that irreducible Lorentz components of

the correlators, in particular those containing the trace and the traceless part of the e.m.

tensor, must be regularized separately. We also discuss the connection of the anomaly

with the e.m. conservation. We show that in general regularization breaks covariance

and counterterms must be subtracted in order to recover it. In section 7 we discuss the

prejudices on the existence of the Pontryagin anomaly.

To complete this introduction we present general formulas for the trace and divergence

of the e.m. tensor. The problem of regularizing the e.m. correlators is strictly connected

with (and clarified by) coupling the system to gravity.

1.1 General formulas for the trace and divergence of the e.m. tensor

In general let us couple the energy-momentum tensor of a theory to a classical external

source jµν . The partition function in terms of j is

Z[jµν ] = 〈0|T { e
i
2

∫
dxTµν(x)jµν(x)}|0〉 = e−iW [jµν ] (1.1)

=

∞∑
n=0

in

2nn!

∫ n∏
i=1

dxi j
µiνi(xi) 〈0|T {Tµ1ν1(x1) . . . Tµnνn(xn)}|0〉,

– 3 –
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where the symbol T denotes a time-ordered product. The generating functional of con-

nected Green functions is1

W [jµν ] =

∞∑
n=1

in+1

2nn!

∫ n∏
i=1

dxi j
µiνi(xi) 〈0|T {Tµ1ν1(x1) · · ·Tµnνn(xn)}|0〉c. (1.2)

We will denote the full one-loop e.m. tensor by

〈〈Tµν(x)〉〉 = 2
δW [j]

δjµν(x)

∣∣∣∣
jµν=hµν

, (1.3)

where hµν is the fluctuation, gµν = ηµν +hµν + . . . and gµν = ηµν −hµν + . . . , with respect

to the flat metric ηµν .2 The fluctuation hµν is the field attached to the external legs in

the Feynman diagrams approach. We can reconstruct the full one-loop e.m. tensor as a

function of hµν by means of the formula

〈〈Tµν(x)〉〉 =
1

n!

∞∑
n=1

∫
dx1 . . .

∫
dxnh

µ1ν1(x1) . . . h
µnνn(xn)

× δ

δhµ1ν1(x1)
. . .

δ

δhµnνn(xn)
〈〈Tµν(x)〉〉

∣∣∣∣
h=0

.

(1.4)

For instance, to first and second order in h the trace is given by

δ

δhλρ(y)
〈〈Tµµ (x)〉〉

∣∣∣∣
h=0

= 2i 〈0|T {Tµµ (x)Tλρ(y)}|0〉 (1.5)

and

δ

δhλρ(y)

δ

δhαβ(z)
〈〈Tµµ (x)〉〉

∣∣∣∣
h=0

= −2i
(
δ(4)(x− y) + δ(4)(x− z)

)
〈0|T {Tλρ(y)Tαβ(z)}|0〉

+2〈0|T {Tµµ (x)Tλρ(y)Tαβ(z)}|0〉, (1.6)

and the divergence by

δ

δhλρ(y)
〈〈∇µTµν(x)〉〉

∣∣∣∣
h=0

= −2i 〈0|T {∂µTµν(x)Tλρ(y)}|0〉 (1.7)

1It should be understood that 〈0|T {Tµ1ν1(x1) · · ·Tµnνn(xn)}|0〉c corresponds to the sum of all Feynman

diagrams of the theory with n external legs. Notice that this is in general different from the n-point

function of e.m. tensors computed by applying the Wick theorem, see for instance [12, 13, 21]. For

example 〈0|T {Tµν(x)Tρσ(y)}|0〉c corresponds to the sum of two terms calculated with the Wick theorem,

〈Tµν (x)Tρσ (y)〉 and 〈 δTµν
δhρσ
〉. In terms of Feynman diagrams the first one corresponds to a bubble diagram

while the second corresponds to a tadpole, both with two external legs. These additional terms containing

functional derivatives of the e.m. tensors correspond in configuration space to contributions at coincident

points. In the computations that are considered in this paper, when regularized, they will not contribute.
2The factor 1

2n
in (1.1) is motivated by the fact that when we expand the action

S[η + h] = S[η] +

∫
ddx

δS

δgµν

∣∣∣
g=η

hµν + · · · ,

the factor δS
δgµν

∣∣∣
g=η

= 1
2
Tµν . Another consequence of this fact will be that the presence of vertices with one

graviton in Feynman diagrams will correspond to insertions of the operator 1
2
Tµν in correlation functions.

– 4 –
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and

δ

δhλρ(y)

δ

δhαβ(z)
〈〈∇µTµν(x)〉〉

∣∣∣∣
h=0

=

i

{
∂

∂x(α
[
δ(x− z)〈0|T {Tβ)ν(x)Tλρ(y)}|0〉

]
+

∂

∂x(λ
[
δ(x− y)〈0|T {Tρ)ν(x)Tαβ(z)}|0〉

]
+2

∂

∂xτ
δ(x− z)ηαβ〈0|T {Tτν(x)Tλρ(y)}|0〉+ 2

∂

∂xτ
δ(x− y)ηλρ〈0|T {Tτν(x)Tαβ(z)}|0〉

+ 2
∂

∂xν
δ(x− z)〈0|T {Tλρ(y)Tαβ(x)}|0〉+ 2

∂

∂xν
δ(x− y)〈0|T {Tλρ(x)Tαβ(z)}|0〉

}
+2 〈0|T {∂µTµν(x)Tλρ(y)Tαβ(z)}|0〉, (1.8)

respectively, where the delta functions are 4-dimensional and the round brackets indicate

symmetrization. These formulas are obtained understanding that gravity is minimally

coupled and that the background is flat. If there is a nontrivial background metric, say g
(0)
µν ,

then we must insert
√
g(0) in the integral in the exponent of (1.1) and, for instance, (1.6)

would be replaced by

1√
g(0)(y)

δ

δhλρ(y)

1√
g(0)(z)

δ

δhαβ(z)
〈〈Tµµ (x)〉〉

∣∣∣∣∣
h=0

(1.9)

= −2i

(
δ(4)(x− y)√

g(0)(y)
+
δ(4)(x− z)√

g(0)(z)

)
〈0|T {Tλρ(y)Tαβ(z)}|0〉+〈0|T {Tµµ (x)Tλρ(y)Tαβ(z)}|0〉

and (1.8) by a much more complicated formula.

2 2-point function of e.m. tensors in 2d and trace anomaly

In this section we regularize the 2-point function of energy-momentum tensors in 2d using

the techniques of differential regularization and we derive the very well-known 2d trace

anomaly. The ambiguities implicit in the regularization procedure allow us to make mani-

fest the interplay between diffeomorphism and trace anomalies.

Let us consider the 2-point function 〈Tµν (x)Tρσ (0)〉. This 2-point function in 2d (i.e.

the “bare” 2-point function) is very well-known and is given by3

〈Tµν (x)Tρσ (0)〉 =
c/2

x4
(Iµρ (x) Iνσ (x) + Iνρ (x) Iµσ (x)− ηµνηρσ) (2.1)

where

Iµν (x) = ηµν − 2
xµxν
x2

(2.2)

and c is the central charge of the theory. For x 6= 0 this 2-point function satisfies the Ward

identities

∂µ 〈Tµν (x)Tρσ (0)〉 = 0, (2.3)〈
Tµµ (x)Tρσ (0)

〉
= 0. (2.4)

3One way of deriving this expression is by using the embedding formalism, see [5], for example.

– 5 –
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The result (2.1) is obtained using the symmetry properties of the indices, dimensional

analysis and eqs. (2.3) and (2.4).

The 2-point function written above are UV singular for x → 0, hence this divergence

has to be dealt with for the correlator to be well-defined everywhere. In this context

the most convenient way to regularize this object is with the technique of differential

regularization. The recipe of differential regularization is: given a function f (x) that needs

to be regularized, find the most general function F (x) such that DF (x) = f (x), where D
is some differential operator, and such that the Fourier transform of DF (x) is well-defined

(alternatively DF (x) has integrable singularities).

In our case we have two guiding principles: the Ward identities and dimensional anal-

ysis. Differential regularization tells that our 2-point function should be some differential

operator applied to a function, i.e.

〈Tµν (x)Tρσ (0)〉 = Dµνρσ (f (x)) , (2.5)

while conservation requires that the differential operator Dµνρσ be transverse, i.e.

∂µDµνρσ = · · · = ∂σDµνρσ = 0. (2.6)

The most general transverse operator with four derivatives, symmetric in µ,ν and in ρ,σ

that one can write is

Dµνρσ = αD(1)
µνρσ + βD(2)

µνρσ, (2.7)

where

D(1)
µνρσ = ∂µ∂ν∂ρ∂σ − (ηµν∂ρ∂σ + ηρσ∂µ∂ν)2 + ηµνηρσ22, (2.8)

D(2)
µνρσ = ∂µ∂ν∂ρ∂σ −

1

2
(ηµρ∂ν∂σ + ηνρ∂µ∂σ + ηµσ∂ν∂ρ + ηνσ∂µ∂ρ)2

+
1

2
(ηµρηνσ + ηνρηµσ)22. (2.9)

One important fact about these differential operators is that they may not be traceless.

Indeed, by taking the trace we find

ηµνD(1)
µνρσ = ηµνD(2)

µνρσ = − (∂ρ∂σ − ηρσ2)2. (2.10)

Dimensional analysis tells us that the function f (x) in (2.5) can be at most a function of

log µ2x2 since the l.h.s. of (2.5) scales like 1/x4 and this scaling is already saturated by

the differential operator with four derivatives. Notice that we have introduced an arbitrary

mass scale µ to make the argument of the log dimensionless. Let us write the most general

ansatz for (2.5):

〈Tµν (x)Tρσ (0)〉 = D(1)
µνρσ

[
α1 log µ2x2 + α2

(
log µ2x2

)2
+ · · ·

]
+D(2)

µνρσ

[
β1 log µ2x2 + β2

(
log µ2x2

)2
+ · · ·

]
. (2.11)

– 6 –
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Now our task is to fix the coefficients αi and βj for (2.11) to match (2.1) for x 6= 0. As it

turns out we only need terms up to log2 (otherwise one cannot avoid logarithmic terms for

x 6= 0) The matching gives us

α1 = − c

24
− β1, α2 = −β2 = − c

96
,

thus

〈Tµν (x)Tρσ (0)〉 = − c

24
D(1)
µνρσ

(
log µ2x2

)
− c

96

(
D(1)
µνρσ −D(2)

µνρσ

) (
log µ2x2

)2
. (2.12)

Notice that β1 is absent in the final result. Indeed, the term with coefficient β1 is

−
(
D(1)
µνρσ −D(2)

µνρσ

) (
log µ2x2

)
(2.13)

and this term identically vanishes in 2d. If we take the trace of (2.12) we find that〈
Tµµ (x)Tρσ (0)

〉
= − c

48
ηµνD(1)

µνρσ

(
log µ2x2

)
=

c

48
(∂ρ∂σ − ηρσ2)2 log µ2x2.

These terms have support only at x = 0, for in 2d the d’Alembertian of a log is a delta

function, more precisely

2 log µ2x2 = 4πδ2 (x) . (2.14)

Therefore we find the anomalous Ward identity〈
Tµµ (x)Tρσ (y)

〉
= c

π

12
(∂ρ∂σ − ηρσ2) δ2 (x− y) , (2.15)

If we consider our theory in the presence of a background metric g which is a perturbation of

flat spacetime, i.e. gρσ(y) = ηρσ+hρσ(y)+· · · , eq. (2.15) gives rise to the lowest contribution

to the ‘full one-loop’ trace of the e.m. tensor, namely

〈〈Tµµ 〉〉 = c
π

12
(∂µ∂ν − ηµν2)hµν , (2.16)

which coincides with the lowest contribution of the expansion in h of the Ricci scalar, i.e.

R = (∂µ∂ν − ηµν2)hµν +O(h2). (2.17)

Covariance requires that the higher order corrections in h to the ‘full one-loop’ trace of

the e.m. tensor in the presence of a background metric g to be such that we recover the

covariant expression

〈〈Tµµ 〉〉 = c
π

12
R. (2.18)

For a free chiral fermion c = 1/4π2, vide section 4 or appendix A. We are authorized to use

the covariant expression (2.18) because the energy-momentum tensor is conserved (there

are no diffemorphism anomalies).

Using the above results it is easy to verify the Callan-Symanzik equation for the 2-

point function (2.12). The Callan-Symanzik differential operator reduces to the logarithmic

derivative with respect to µ, because both beta functions and anomalous dimensions vanish

in the case we are considering. We get

µ
∂

∂µ
〈Tµν (x)Tρσ (0)〉 ∼

(
D(1)
µνρσ −D(2)

µνρσ

) (
log µ2x2

)
= 0. (2.19)

We see that requiring that the regularized correlator satisfies conservation at x = 0 implies

the appearance of a trace anomaly. However this is not the end of the story, since there

are ambiguities in the regularization process we have so far disregarded.

– 7 –
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2.1 Ambiguities

The ambiguity arises from the fact that we can add to (2.12) terms that have support only

in x = 0. The most general modification of the parity-even part that would affect only its

expression for x = 0 is given by

Aµνρσ = A (ηµν∂ρ∂σ + ηρσ∂µ∂ν)2 log µ2x2

+B (ηµρ∂ν∂σ + ηνρ∂µ∂σ + ηµσ∂ν∂ρ + ηνσ∂µ∂ρ)2 log µ2x2

+C (ηµρηνσ + ηνρηµσ)22 log µ2x2

+Dηµνηρσ22 log µ2x2. (2.20)

We remark that this term is in general neither conserved nor traceless

∂µAµνρσ = 4π ((A+ 2B)∂ν∂ρ∂σ + (A+D)ηρσ∂ν2

+ (B + C) (ηρν∂σ2 + ησν∂ρ2)) δ(2)(x) (2.21)

Aµµρσ = 4π ((2A+ 4B)∂ρ∂σ + (A+ 2C + 2D)ηρσ2) δ(2)(x) (2.22)

We notice that by imposing (2.21) to vanish imply that also (2.22) will vanish. We may

wonder whether using this ambiguity we can cancel the trace anomaly. This can certainly

be done by choosing 2A+4B = −A−2C−2D and adjusting the overall coefficient. But this

operation gives rise to a diffeomorphism anomaly. Its form is far from appealing and not

particularly illuminating, so we do not write it down (see however [23, 24]). In other words

the anomaly (2.18) is a non-trivial cocycle of the overall symmetry diffeomorphisms plus

Weyl transformations. As was discussed in [23, 24] it may take different forms, either as a

pure diffeomorphism anomaly or a pure trace anomaly. In general both components may be

nonvanishing. It is obvious that, in practice, it is more useful to preserve diffeomorphism

invariance, so that the cocycle takes the form (2.18).

3 Parity-odd terms in 2d

In this section we compute all possible “bare” parity-odd terms in the 2-point function of

the energy-momentum tensor in 2d. We follow three methods, the first two are general

while the third is based on a specific model. Needless to say all methods give the same

results up to ambiguities.

3.1 Using symmetries

The first method is very simple-minded, it consists in writing the most general expression

T odd
µνρσ(x) linear in the antisymmetric tensor εαβ with the right dimensions which is symmet-

ric and traceless in µ, ν and ρ, σ separately, is symmetric in the exchange (µ, ν) ↔ (ρ, σ),

and is conserved. The calculation is tedious but straightforward. The result is as follows.

Let us define

Tµνρσ =
1

x4
(Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x)− ηµνηρσ) , (3.1)

– 8 –
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and

T odd
µνρσ(x) =

e

4

(
εµλT

λ
νρσ (x) + ενλTµ

λ
ρσ (x) + ερλTµν

λ
σ (x) + εσλTµνρ

λ (x)
)
. (3.2)

where e is an undetermined constant. We assume (3.2) to represent 〈Tµν(x)Tρσ(0)〉odd. It

satisfies all the desired properties (it is traceless and conserved). In order to make sure

that it is conformal covariant, we have to check that it is chirally split. To this end we

introduce the light-cone coordinates x± = x0 ± x1. It is not hard to verify that

〈T++(x)T−−(0)〉odd = 0. (3.3)

3.2 The embedding formalism

The second method is the embedding formalism [5, 6], which consists in using the fact that

conformal covariance in d dimensions can be linearly realized in d+2. After constructing a

covariant expression in d+ 2 one projects to d dimensional Minkowski space. In particular

for d = 2 the method works as follows. We write the most general parity-odd contribution

to the 2-point function of a symmetric 2-tensor in 4d which, in addition, is transverse:

〈TAB (X)TCD (Y )〉odd =
1

(X · Y )2

[
εAICJ

XIY J

X · Y

(
ηBD −

XDYB
X · Y

)
+A↔ B

]
+ C ↔ D.

(3.4)

This term is symmetric on A, B and C, D and is transverse with respect to XA, XB,

YC and YD. Our next step is to project this quantity to 2d. The projected correlator is

given by

〈Tµν (x)Tρσ (y)〉odd =
∂XA

∂xµ
∂XB

∂xν
∂Y C

∂yρ
∂Y D

∂yσ
〈TAB (X)TCD (Y )〉odd . (3.5)

We recall that
∂XA

∂xµ
= δA−2xµ + δAµ ≡

(
0, 2xµ, δ

a
µ

)
, A = +,−, a. (3.6)

The contractions with the ε-tensor give rise to a determinant, namely

εAICJ
∂XA

∂xµ
XI ∂Y

C

∂yρ
Y J ≡

∣∣∣∣∣∣∣
0 1 0 1

2xµ x
2 2yρ y

2

δaµ xi δcρ yj

∣∣∣∣∣∣∣ . (3.7)

The translational invariance of the problem allows us to rewrite it in the form∣∣∣∣∣∣∣
0 1 0 1

2 (x− y)µ (x− y)2 0 0

δaµ (x− y)i δcρ 0

∣∣∣∣∣∣∣ = −

∣∣∣∣∣ 2 (x− y)µ (x− y)2 0

δaµ (x− y)i δcρ

∣∣∣∣∣ . (3.8)

For convenience, let us relabel x− y → x. This determinant is straightforward to compute

and it gives us

−

∣∣∣∣∣ 2xµ x2 0

δaµ xi δcρ

∣∣∣∣∣ = −
(

2xµ

∣∣∣ xi δcρ ∣∣∣− x2 ∣∣∣ δaµ δcρ ∣∣∣) = −
(
2xµεαρx

α − x2εµρ
)
. (3.9)
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Thus, the projected correlator is given by

〈Tµν (x)Tρσ (0)〉odd =
e

x4

[
εαρ

(
δαµ − 2

xµx
α

x2

)(
ηνσ − 2

xνxσ
x2

)
+ µ↔ ν

]
+ ρ↔ σ. (3.10)

In terms of Iµν (x) we have

〈Tµν (x)Tρσ (0)〉odd =
e

x4
[
εαρ
(
Iαµ (x) Iνσ (x) + Iαν (x) Iµσ (x)

)
+εασ

(
Iαµ (x) Iνρ (x) + Iαν (x) Iµρ (x)

)]
.

(3.11)

This correlator satisfies both tracelessness and conservation, as it can be verified by a direct

computation, but it is not symmetric under the exchange of µ, ν with ρ, σ. Thus, our final

expression is (3.11) symmetrized in (µ, ν)↔ (ρ, σ):

〈Tµν (x)Tρσ (0)〉odd =
e

x4
[
εαµ

(
Iαρ (x) Iνσ (x) + Iασ (x) Iνρ (x)

)
+ εαν

(
Iαρ (x) Iµσ (x) + Iασ (x) Iµρ (x)

)
+ εαρ

(
Iαµ (x) Iνσ (x) + Iαν (x) Iµσ (x)

)
+εασ

(
Iαµ (x) Iνρ (x) + Iαν (x) Iµρ (x)

)]
.

(3.12)

From (3.12) we notice a tensorial structure very similar to the parity-even part of the

2-point function of Tµν , namely

Tµνρσ (x) =
1

x4
(Iµρ (x) Iνσ (x) + Iνρ (x) Iµσ (x)− ηµνηρσ) (3.13)

and it turns out that we may write (3.12) in terms of the partity-even part, i.e.

〈Tµν (x)Tρσ (0)〉odd =
e

2

(
εαµT

α
νρσ (x) + εανT

α
µ ρσ (x) + εαρT

α
µν σ (x) + εαρT

α
µνρ (x)

)
.

(3.14)

This result looks different from (3.2) but it is not hard to show that, for x 6= 0, they are

proportional: e = 3
4e

Still another method to derive the same result is to use a free fermion model. This is

deferred to appendix A.

3.3 Differential regularization of the parity-odd part

The task of regularizing the parity-odd terms is very much simplified by the fact that we

are able to write them in terms of the parity-even part, see (3.14). We can therefore use

the same regularization as in section 2. Let us start by the regularization that preserves

diffeomorphisms for the parity-even part, eq. (2.12):

Tµνρσ (x) = − 1

12
D(1)
µνρσ

(
log µ2x2

)
− 1

48

(
D(1)
µνρσ −D(2)

µνρσ

) (
log µ2x2

)2
. (3.15)

Regularizing (3.14) with (3.15) leads to a trace anomaly〈
Tµµ (x)Tρσ (0)

〉
odd

=
πe

24
(ερα∂

α∂σ + εσα∂
α∂ρ) δ

2 (x) , (3.16)
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and a diffeomorphism anomaly

∂µ 〈Tµν (x)Tρσ (0)〉odd =
πe

24
ενα∂

α (ηρσ2− ∂ρ∂σ) δ2 (x) . (3.17)

In the presence of a background metric g the anomalous Ward-Identities (3.16) and (3.17)

give rise to the following ‘full one-loop’ functions

〈〈Tµµ (x)〉〉 =
πe

24
ελα∂α (gρσ∂λgρσ + gρσ∂ρgλσ) , (3.18)

〈〈∇µTµν(x)〉〉 =
πe

24
ενα∂

αR. (3.19)

The second is the well-known covariant form of the diffeomorphism anomaly. The consistent

form of the same anomaly is

〈〈∇µTµν(x)〉〉 ∼ εµρ∂µ∂αΓαρν . (3.20)

We remark however that in 2d the two forms (3.19) and (3.20) collapse to the same form

to the lowest order, since

2εµν∂
µ (∂α∂β − ηαβ2) = εµα (∂µ∂ν∂β − ηνβ∂µ2 + (α↔ β))

We see that, in any case, the diffeomorphism anomaly is accompanied by the a trace

anomaly.

3.4 Ambiguities in the parity-odd part

We know that the regularization used above is not the ultimate one, because there are

ambiguities. They entail a modification of the parity-odd part given by

Aodd
µνρσ = εαµA

α
νρσ + εανA

α
µ ρσ + εαρA

α
µν σ + εαρA

α
µνρ , (3.21)

where the r.h.s. is written in terms of (2.20), which explicitly is

Aodd
µνρσ = A [ηµν (ερα∂

α∂σ + εσα∂
α∂ρ) + ηρσ (εµα∂

α∂ν + ενα∂
α∂µ)]2 log µ2x2

+B [εµα (ηνρ∂
α∂σ + ηνσ∂

α∂ρ) + ενα (ηµρ∂
α∂σ + ηµσ∂

α∂ρ)

+ερα (ησµ∂
α∂ν + ησν∂

α∂µ) + εσα (ηρµ∂
α∂ν + ηρν∂

α∂µ)]2 log µ2x2.

(3.22)

The trace and the divergence of (3.22) are given by:

ηµνAµνρσ = 8π (A+ 2B) (ερα∂
α∂σ + εσα∂

α∂ρ) δ
2 (x) , (3.23)

∂µAµνρσ = π (Bηνρ2 + (A+B) ∂ν∂ρ) εσα∂
αδ2 (x)

+4π (Bηνσ2 + (A+B) ∂ν∂σ) ερα∂
αδ2 (x) (3.24)

+4π (Aηρσ2 + 2B∂ρ∂σ) ενα∂
αδ2 (x) .

Using these ambiguities we can recast the expressions (3.16) and (3.17) in the form〈
Tµµ (x)Tρσ (0)

〉
odd

=
(

8π (A+ 2B) +
πe

24

)
(ερα∂

α∂σ + εσα∂
α∂ρ) δ

2 (x) , (3.25)

∂µ 〈Tµν (x)Tρσ (0)〉odd = 4π (Bηνρ2 + (A+B) ∂ν∂ρ) εσα∂
αδ2 (x)

+4π (Bηνσ2 + (A+B) ∂ν∂σ) ερα∂
αδ2 (x) (3.26)

+ενα∂
α
((

4πA+
πe

24

)
ηρσ2 +

(
8πB − πe

24

)
∂ρ∂σ

)
δ2 (x) .
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If we impose that (3.25) is zero we find

A = − e

192
− 2B, (3.27)

which implies that (3.26) takes the form

∂µ 〈Tµν (x)Tρσ (0)〉odd = 4π
[
Bηνρ2−

( e

192
+B

)
∂ν∂ρ

]
εσα∂

αδ2 (x)

+ 4π
[
Bηνσ2−

( e

192
+B

)
∂ν∂σ

]
ερα∂

αδ2 (x)

− ενα∂α
[(πe

48
+ 8πB

)
ηρσ2−

(
8πB − πe

24

)
∂ρ∂σ

]
δ2 (x) .

(3.28)

The choice (3.27) allows us to eliminate the trace anomaly (3.18) but by doing so the

diffeo anomaly becomes (3.28), which will not imply a covariant expression for 〈〈Tµν〉〉 for

any choice of B. Thus, the most general regularization that one can write is given by the

equations (3.25) and (3.26). An important point of (3.26) is that there is no choice of A

and B for which it is zero, hence inevitably we will have a diffeomorphism anomaly, unless

the overall factor e = 0, which depends of course on the specific model.

4 The Feynman diagrams method in 2d

It is interesting and instructive to derive the results above using Feynman diagrams. There

is only one non-trivial contribution that comes from the bubble diagram with one incoming

and one outgoing line with momentum k and an internal momentum p (see figure 1). The

pertinent Feynman rule is

=
i

8

[(
p+ p′

)
µ
γν +

(
p+ p′

)
ν
γµ

] 1 + γ∗
2

. (4.1)

The relevant 2-point function is4

〈Tµν(x)Tλρ(y)〉 = 4

∫
d2k

(2π)2
e−ik(x−y)Tµνλρ(k) (4.2)

with

Tµνλρ(k) = − 1

64

∫
d2k

(2π)2
tr

(
1

/p
(2p− k)µγν

1

/p− /k
(2p− k)λγρ

1 + γ∗
2

)
+

{
µ↔ ν

λ↔ ρ

}
. (4.3)

Taking the trace and regularizing by introducing extra components of the momentum

running around the loop, p→ p+ ` (` = `2, . . . , `δ+2), we get

T
µ
µλρ(k) =− 1

32

∫
d2p

(2π)2

∫
dδ`

(2π)δ
tr

(
/p+ /̀

p2 − `2
(
2/p+ 2/̀− /q

)
/p+ /̀− /k

(p− k)2 − `2
(2p− k)λγρ

1 + γ∗
2

) (4.4)
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Figure 1. The relevant Feynman diagram for the computation.

and the symmetrization λ ↔ ρ is understood from now on. Introducing, as usual, a

Feynman parametrization of the integral in (4.4) and using the results in appendix (C) one

finally gets for the even part

(Teven)µµλρ (k) =
1

192π

(
ηλρk

2 + kλkρ
)
, (4.5)

which corresponds to the trace anomaly

〈〈Tµµ 〉〉 = − 1

48π

(
2h+ ∂λ∂ρh

λρ
)

+O
(
h2
)
. (4.6)

For the odd part we get instead

(Todd)µµλρ (k) = − 1

192π
(εσρkσkλ + (εσλkσkρ) , (4.7)

which corresponds to the trace anomaly

〈〈Tµµ 〉〉 =
1

24π
εσρ ∂σ∂λh

λρ +O
(
h2
)
. (4.8)

The trace anomaly (4.6) is not the expected covariant one. The only possible explanation

is that our regularization has broken diffeomorphism invariance. In order to check that we

have to compute the divergence of the energy-momentum tensor with the same method.

The relevant Feynman diagram contribution is (after regularization)

Dνλρ(k) =− 1

64

∫
d2p

(2π)2

∫
dδ`

(2π)δ

tr

(
/p+ /̀

p2 − `2
(2p− k)µk

µ γν
/p+ /̀− /k

(p− k)2 − `2
(2p− k)λγρ

1 + γ∗
2

+
/p+ /̀

p2 − `2
(2p− k)ν /k

/p+ /̀− /k
(p− k)2 − `2

(2p− k)λγρ
1 + γ∗

2

)
.

(4.9)

Explicit evaluation gives for the even part

(Deven)νλρ (k) = − 1

96π
ηλρkνk

2, (4.10)

4The factor of 4 in (4.2) is produced by the fact that the vertex (4.1) corresponds to the insertion of
1
2
Tµν , not simply Tµν , in the correlator, as explained in the footnote in (1.1).
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which corresponds to the diffeomorphism anomaly

∇µ〈〈Tµν〉〉 =
1

12π
ξν∂ν�h+O

(
h2
)
. (4.11)

For the odd part we get instead

(Dodd)νλρ (k) = − 1

192π
kσ (εσρηνλ − ενρkλ) k2 + {λ↔ ρ}, (4.12)

which corresponds to the anomaly

∇µ〈〈Tµν〉〉 = − 1

96π
εσρ
(
∂σ∂λ∂νh

λ
ρ − ∂σ�hρν

)
. (4.13)

Using the lowest order Weyl transformation

δωhµν = 2ω ηµν , (4.14)

and diffeo transformation

δξhµν = ∂µξν + ∂νξµ, (4.15)

it is easy to prove that the consistency relations

δωAω = 0, δξAω + δξAω = 0, δξAξ = 0, (4.16)

hold, where

Aω = −
∫
d2x ω〈〈Tµµ 〉〉, and Aξ =

∫
d2x ξν∇µ〈〈Tµν〉〉. (4.17)

For the even part A(e) it is possible to add a counterterm to the action and restore covari-

ance. The couterterm is

C = − 1

96π

∫
d2xh�h. (4.18)

After this operation the divergence of the e.m. tensor vanishes and the trace anomaly

becomes

A(e)
ω → A(e)

ω + δωC =
1

48π

∫
d2xω

(
∂λ∂ρh

λρ −�h
)
, (4.19)

which is the expected one (see above).

Similarly the parity-odd anomalies (4.7) and (4.13) satisfy the consistency rela-

tions (4.16). One can add an odd counterterm to eliminate the odd trace anomaly but

this is definitely a less interesting operation.

The results obtained in this section are well-known. The methods we have used to

derive them teach us important lessons. The first concerns dimensional regularization. If

not explicitly stated it is often understood in the literature that dimensional regularization

of Feynman diagrams leads to covariant results. We have seen explicitly that this is not

true, and a reconstruction of covariance with counterterms is inevitable. In view of the
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discussion on 3-points correlator of the e.m. tensor in section 6.4 we notice that the piece

of (4.4)

∆T
µ
µλρ(k)=−1

8

∫
d2p

(2π)2

∫
dδ`

(2π)δ
tr

(
/p+ /̀

p2 − `2
2/̀

/p+ /̀− /k
(p− k)2 − `2

(2p− k)λγρ
1 + γ∗

2

)
(4.20)

contributes in an essential way to both even and odd anomalies. Without this piece the

result of the calculation would be inconsistent. It marks the difference between first reg-

ularizing and then taking the trace of the e.m. tensor or first taking the trace and then

regularizing. From the above it is obvious that the second procedure is the correct one. In

other words every irreducible Lorentz component of tensors must be regularized separately.

This is the second important lesson. We will return to this point also in the final section.

5 2-point correlator of e.m. tensors in 4d

In this section we are going to discuss the 2-point correlator of the e.m. tensors in 4d. The

expression in coordinate representation is well-known. We would like here to regularize it

with the differential regularization method, and, later on, compare it with the expression

obtained in momentum space with Feynman diagram techniques.

5.1 Differential regularization of the correlator

The unregulated 2-point function of e.m. tensors in arbitrary dimension d in coordinate

representation is given by

〈Tµν (x)Tρσ (0)〉 =
c/2

x2d

(
Iµρ (x) Iνσ (x) + Iνρ (x) Iµσ (x)− 2

d
ηµνηρσ

)
(5.1)

where

Iµν (x) = ηµν − 2
xµxν
x2

. (5.2)

As before, it can be regularized by writing down a differential operator which, acting on

an integrable function, generates it for x 6= 0. One possibility for d ≥ 3 is the following5

〈Tµν (x)Tρσ (0)〉 = − c/2

2 (d− 2)2 d (d2 − 1)
D(1)
µνρσ

(
1

x2d−4

)
+

c/2

2 (d− 2)2 d (d+ 1)
D(2)
µνρσ

(
1

x2d−4

)
, (5.3)

5Notice that for d > 4, the function 1/x2d−4 is indeed integrable, while we have a function which is log

divergent for d = 4 and linearly divergent for d = 3 and in both cases we need a regularization. In the spirit

of differential regularization, we may use the following identities

d = 3 :
1

x2
=

1

2
2 log µ2x2,

d = 4 :
1

x4
= −1

4
2

log µ2x2

x2
,

where log µ2x2 and
(
log µ2x2

)
/x2 are integrable functions in the respective dimension.
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where

D(1)
µνρσ = ∂µ∂ν∂ρ∂σ − (ηµν∂ρ∂σ + ηρσ∂µ∂ν)2 + ηµνηρσ22, (5.4)

D(2)
µνρσ = ∂µ∂ν∂ρ∂σ −

1

2
(ηµρ∂ν∂σ + ηνρ∂µ∂σ + ηµσ∂ν∂ρ + ηνσ∂µ∂ρ)2

+
1

2
(ηµρηνσ + ηνρηµσ)22. (5.5)

Both these operators are conserved but not traceless:

ηµνD(1)
µνρσ = − (d− 1) (∂ρ∂σ − ηρσ2)2, (5.6)

ηµνD(2)
µνρσ = − (∂ρ∂σ − ηρσ2)2, (5.7)

nonetheless (5.3) is both conserved and traceless. The expression (5.3) coincides with (5.1)

for x 6= 0, it is conserved and traceless.

There are, as usual, ambiguities in the definitions of the operators (5.4) and (5.5) for

x = 0. Particularly, in d = 4 we may consider the most general modification that one could

add to the expression (5.3), namely

Aµνρσ =
[
A∂µ∂ν∂ρ∂σ2 +B (ηµρ∂ν∂σ + ηνρ∂µ∂σ + ηµσ∂ν∂ρ + ηνσ∂µ∂ρ)2

2

+C (ηµν∂ρ∂σ + ηρσ∂µ∂ν)22 +D (ηµρηνσ + ηνρηµσ)23 + Eηµνηρσ2
3
] 1

x2
. (5.8)

Conservation of A requires

C = −A+ 2D, D = −B, E = A+ 2B. (5.9)

With these conditions the trace of A is

Aµµρσ = −4π2 (3A+ 4B) (ηρσ2− ∂ρ∂σ)2δ (x) . (5.10)

This corresponds to the trivial anomaly 2R, which can be subtracted away by adding

a local Weyl invariant counterterm to the action. The existence of a definition of our

differential operators which do not imply in the existence of this anomaly reflects the fact

that it is a trivial anomaly.

5.2 2-point correlator with Feynman diagrams

The computation is very similar to the one in 2d. Again, the only diagram that contributes

is the one of figure 1 and we have6

〈Tµν(x)Tλρ(y)〉 = 4

∫
d4k

(2π)4
e−ik(x−y)T̃µνλρ(k) (5.11)

where

T̃µνλρ(k) =− 1

64

∫
d4p

(2π)4
tr

(
1

/p
(2p− k)µγν

1

/p− /k
(2p− k)λγρ

1 + γ5
2

)
+

{
µ↔ ν

λ↔ ρ

}
(5.12)

6For the factor of 4 in (5.11), see the footnote in section 4.
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To evaluate it we use dimensional regularization. After introducing the Feynman

parameter x and shifting p as follows: p→ p− (1− x)k, (5.12) writes7

T̃µνλρ(k) = − 1

32

∫ 1

0
dx

∫
d4p

(2π)4

∫
dδ`

(2π)δ
(2p+ (1− 2x)k)µ(2p+ (1− 2x)k)λ

(p2 + x(1− x)k2 − `2)2
(5.13)

×
[
(p+ (1− x)k)σ(p− xk)τ (ησνητρ − ηστηνρ + ησρηντ − iεσντρ)− `2ηνρ

]
After the integrations (first `, then p, then x) one finds8

T̃µνλρ(k) = D̃µνλρ(k) + F̃µνλρ(k) + L̃µνλρ(k) (5.14)

where

D̃µνλρ(k) =− i

32(4π)2
1

15δ

[
8kµkνkλkρ + 4k2 (kµkνηλρ + kλkρηµν)

− 6k2 (kµkληνρ + kνkληµρ + kµkρηνλ + kνkρηµλ)

− 4k4ηµνηλρ + 6k4 (ηµληνρ + ηµρηνλ)
] (5.15)

which is divergent for δ → 0, but conserved and traceless,

L̃µνλρ(k) =− i

32(4π)2
log k2

30

[
8kµkνkλkρ + 4k2 (kµkνηλρ + kλkρηµν)

− 6k2 (kµkληνρ + kνkληµρ + kµkρηνλ + kνkρηµλ)

− 4k4ηµνηλρ + 6k4 (ηµληνρ + ηµρηνλ)
] (5.16)

which is also conserved and traceless, and

F̃µνλρ(k) =− i

32(4π)2
1

30

[
8

(
γ − log 4π +

31

450

)
kµkνkλkρ

+ 2

(
1− γ + log 4π +

31

150

)
k2 (kµkληνρ + kνkληµρ + kµkρηνλ + kνkρηµλ)

+ k4
(

10

3
− 4γ + 4 log 4π − 47

225

)
ηµνηλρ

− k4
(

17

3
− 6γ + 6 log 4π

)
(ηµληνρ + ηµρηνλ)

−k2
(

4− 4γ + 4 log 4π +
47

450

)
(kµkνηλρ + kλkρηµν)

]
(5.17)

which is neither conserved nor traceless.

Let us consider first L̃. We recall the Fourier transform∫
d4x eikx

1

x2
log µ2x2 =

4π2i

k2

(
log 2− γ − log

k2

µ2

)
. (5.18)

Therefore, up to the term proportional to (log 2 − γ), by Fourier transforming (5.3) we

obtain precisely (5.16) with c = 1/π4, in agreement with the results of [3, 4]. The term

7We use the mostly minus signature for the metric.
8To do integration properly we have to Wick rotate the momenta and, after integration rotate them

back to the Lorentzian signature. We understand this here.
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proportional to (log 2−γ) is to be added to (5.17). Now the divergence of T̃ contains three

independent terms proportional to k2kνkλkρ, k
4kνηλρ and k4(kληνρ + kρηνλ), respectively,

while the trace contains two independent terms proportional to k2kλkρ and k4ηλρ. On

the other hand the ambiguity (5.8) contains the same 5 independent terms with arbitrary

coefficients. Therefore it is always possible to set to zero both the divergence and the

trace of T̃ by subtracting suitable counterterms. In the same way one can argue with the

divergent term D̃. This term deserves a comment: it is traceless and divergenceless, but

it is infinite, so it must be subtracted away along with the F̃ term. Both F and D, the

Fourier anti-transforms of F̃ and D̃, are contact terms and they can be written in a compact

form as

〈〈Tµν(x)〉〉 = A′∂µ∂ν∂λ∂ρh
λρ(x) +B′

(
�∂µ∂λh

λ
ν (x) + �∂ν∂λh

λ
µ(x)

)
+ C ′ηµν�

2h(x)

+D′�2hµν(x) + E′
(
�∂µ∂νh(x) + ηµν�∂λ∂ρh

λρ(x)
)

(5.19)

where h = hλλ and A′, B′, C ′, D′, E′ are numerical coefficients that contain also a part ∼ 1
δ .

The local term to be subtracted from the action is proportional to∫
d4x

(
A′

2
hµν∂µ∂ν∂λ∂ρh

λρ +B′hµν�∂µ∂λh
λ
ν

+
C ′

2
h�2h+

D′

2
hµν�2hµν + E′hµν�∂µ∂νh

)
(5.20)

We can conclude that the (regularized) Feynman diagram approach to the 2-point corre-

lator is equivalent to regularizing the 2-point function calculated with the Wick theorem

approach. But we can draw also another, less pleasant, conclusion. Like in 2d, the Feyn-

man diagrams coupled to dimensional regularization may also produce unwelcome terms,

such as the D and F terms above, which must be subtracted away by hand.

Finally we notice that, once (5.20) has been subtracted away, not only the nonvanishing

trace and divergence of the em tensor disappear, but the full contact term (5.19) gets

canceled. Thus the regularized 2-point correlator of the e.m. tensor coincides with the

“bare” expression.

6 The 3-point correlator

The calculation of the 3-point correlator brings new elements into the game. First and

foremost new (nontrivial) anomalies, but also an enormous complexity as compared to the

2-point correlator. In this section we first show that generically at non-coincident points the

3-point function of e.m. tensors in 4d does not possess a parity-odd contribution due to the

permutation symmetry of the correlator. Then we compute the “bare” 3-point correlator by

means of the Wick theorem in the same specific chiral fermionic model considered above,

disregarding regularization. We find that, as expected, the parity-odd part identically

vanishes. Subsequently we compute the same amplitude using Feynman diagrams and

regularize it. It turns out that not only the parity-even but also the parity-odd trace of

the e.m. tensor is nonvanishing. We will explain this apparent paradox in section 7.
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6.1 No-go for parity-odd contributions

In this subsection we will review the fact that in four dimensions there are no parity-

odd “bare” contributions to the 3-point function of energy-momentum tensors, which has

already been emphasized in [7, 8].

A very powerful tool to analyse which tensorial structures can exist in a given cor-

relation function in a CFT is the embedding formalism as it was formulated in [6]. In

their language, to construct conformally covariant tensorial structures becomes a game of

putting together building blocks respecting the tensorial requirements of your correlator.

Particularly for the 3-point function of e.m. tensors we have seven building blocks. These

building blocks are written in terms of points Pi of the six-dimensional embedding space

and lightlike polarization vectors Zi. Three of them depend on two points, namely

H12 = −2 [(Z1 · Z2) (P1 · P2)− (Z1 · P2) (Z2 · P1)] , (6.1)

H23 = −2 [(Z2 · Z3) (P2 · P3)− (Z2 · P3) (Z3 · P2)] , (6.2)

H13 = −2 [(Z1 · Z3) (P1 · P3)− (Z1 · P3) (Z3 · P1)] . (6.3)

Four of them depend on three points, three being parity-even, namely

V1 =
(Z1 · P2) (P1 · P3)− (Z1 · P3) (P1 · P2)

P2 · P3
, (6.4)

V2 =
(Z2 · P3) (P2 · P1)− (Z2 · P1) (P2 · P3)

P3 · P1
, (6.5)

V3 =
(Z3 · P1) (P3 · P2)− (Z3 · P2) (P3 · P1)

P1 · P2
, (6.6)

while the last one is parity-odd, being the only object that one may construct with an

epsilon tensor, i.e.

O123 = ε (Z1, Z2, Z3, P1, P2, P3) . (6.7)

Our job now is to put together these objects to form a conformally covariant object

with the tensorial structure of the 3-point function of e.m. tensors. Particularly, the

objects that we will construct must present twice each polarization vector Zi, since each Zi
is associated with one index of the i-th e.m. tensor. Since we are interested on parity-odd

terms we will necessarily have the building block O123 which already takes care of one

factor of each Zi, thus it is clear that our only options are

T1 = O123V1V2V3, (6.8)

T2 = O123 (V1H23 + V2H13 + V3H12) . (6.9)

In the following we will show that both T1 and T2 are antisymmetric under the permu-

tation of 1 and 2 for example, which forbids them to be present in the 3-point function of

e.m. tensors. By inspection of the expressions (6.1)–(6.7) we see that under the exchange
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of 1 and 2 our building blocks change as follows:

H12 → H12,

H23 → H13,

H13 → H23,

V1 → −V2,
V2 → −V1,
V3 → −V3,

O123 → O123.

From these rules it is clear that both T1 and T2 are antisymmetric under the exchange of

1 and 2. Of course the same result holds for the exchanges 1↔ 3 and 2↔ 3.

6.2 The “bare” parity-odd 3-point correlator

Consider a free chiral fermion ψL in four dimensions which has the 2-point function9

〈
ψL (x)ψL (y)

〉
=

i

2π2
γ · (x− y)

(x− y)4
PL, PL =

1− γ5
2

, (6.10)

and the e.m. tensor

Tµν =
i

4

(
ψLγµ

↔
∂ ν ψL + µ↔ ν

)
, where

↔
∂ ν≡ ∂ν−

←
∂ ν . (6.11)

Since we are dealing with a free theory we are able to compute the 3-point function of e.m.

tensors by applying the Wick theorem. Using the explicit form of the e.m. tensor (6.11)

we write

〈Tµν (x)Tρσ (y)Tαβ (z)〉=− i

64

〈
: ψLγµ

↔
∂ ν ψL : (x) : ψLγρ

↔
∂ σ ψL : (y) : ψLγα

↔
∂ β ψL : (z)

〉
+ symmetrization. (6.12)

There are two ways to fully contract these fields, as shown in equation (6.12). Each of

the contractions is composed by a certain tensor with six indices f
(i)
νaσbβc contracted with a

trace of six gamma matrices and a projector PL, namely

f
(1)
νaσbβctr

(
γµγ

aγργ
bγαγ

cPL

)
and f

(2)
νaσbβctr

(
γµγ

aγαγ
bγργ

cPL

)
, (6.13)

where the upper index of f is 1 for the first way of contracting and 2 for the second way.

The ordering of the free indices in the trace are given by the two ways of performing the

full contraction. The functions f
(i)
νaσbβc are composed by eight terms which are the eight

forms of distributing the derivatives in the right hand side of (6.12). We will show that in

9The factor of 1
2π2 in the propagator of a fermion in 4d is needed in order for its Fourier-transform to

give the usual propagator, namely i

/p
.
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reality f (1) and f (2) are the same object. To see this we will only need to exchange a with

c in the expression for the second way of contracting, i.e.

f
(2)
νaσbβctr

(
γµγ

aγαγ
bγργ

cPL

)
= f

(1)
νaσbβctr

(
γµγ

cγαγ
bγργ

aPL

)
. (6.14)

Hence, the sum of the two ways of contracting will simplify to

f
(1)
νaσbβc

[
tr
(
γµγ

aγργ
bγαγ

cPL

)
+ tr

(
γµγ

cγαγ
bγργ

aPL

)]
. (6.15)

It is possible to put the second trace in the form tr
(
γργ

aγµγ
cγαγ

bPL
)
, which reduces our

final expression to

f
(1)
νaσbβc

[
tr
(
γµγ

aγργ
bγαγ

cPL

)
+ tr

(
γργ

aγµγ
cγαγ

bPL

)]
. (6.16)

The trace of six gamma matrices and a gamma five is given by

tr(γµγaγργbγαγcγ5) = 4i (ηµaερbαc − ηµρεabαc + ηρaεµbαc

+ηαcεµaρb − ηbcεµaρα + ηαbεµaρc) .
(6.17)

As one can easily check, the trace (6.17) is antisymmetric under the exchange

(µ↔ ρ, b↔ c), thus the odd part of the correlation function is zero.

Now we will work out what are the functions f (i) and show the relation between f (1)

and f (2) mentioned above. From the first way of contracting we derive the expression

tr

[
γµ∂ν

(
γa∂a

1

(x− y)2
PL

)
γρ∂σ

(
γb∂b

1

(y − z)2
PL

)
γα∂β

(
γc∂c

1

(z − x)2
PL

)]
+ · · · , (6.18)

where the ellipsis stand for the seven other ways of organizing the derivatives ∂ν , ∂σ and

∂β . From (6.18) we see that we will have some expression that we call f (1) contracted with

tr
(
γµγ

aγργ
bγαγ

cPL
)
. The expression for f (1) can be read off from (6.18):

f
(1)
νaσbβc = ∂xν∂

x
a

1

(x− y)
2 ∂

y
σ∂

y
b

1

(y − z)
2 ∂

z
β∂

z
c

1

(z − x)
2 − ∂

y
σ∂

x
a

1

(x− y)
2 ∂

z
β∂

y
b

1

(y − z)
2 ∂

x
ν∂

z
c

1

(z − x)
2

−∂yσ∂xν∂xa
1

(x− y)
2

[
∂yb

1

(y − z)
2 ∂

z
β∂

z
c

1

(z − x)
2 − ∂

z
β∂

y
b

1

(y − z)
2 ∂

z
c

1

(z − x)
2

]

−∂zβ∂yσ∂
y
b

1

(y − z)
2

[
∂xν∂

x
a

1

(x− y)
2 ∂

z
c

1

(z − x)
2 − ∂

x
a

1

(x− y)
2 ∂

x
ν∂

z
c

1

(z − x)
2

]

−∂xν∂zβ∂zc
1

(z − x)
2

[
∂xa

1

(x− y)
2 ∂

y
σ∂

y
b

1

(y − z)
2 − ∂

y
σ∂

x
a

1

(x− y)
2 ∂

y
b

1

(y − z)
2

]
. (6.19)

The second way of contracting give us the expression

tr

[
γµ∂ν

(
γa∂a

1

(x− z)2
PL

)
γα∂β

(
γb∂b

1

(z − y)2
PL

)
γα∂β

(
γc∂c

1

(y − x)2
PL

)]
+ · · · ,

(6.20)
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from where we may read off the expression for f (2):

f
(2)
νaσbβc = ∂xν∂

x
a

1

(x− z)
2 ∂

z
β∂

z
b

1

(z − y)
2 ∂

y
σ∂

y
c

1

(y − x)
2 − ∂

z
β∂

x
a

1

(x− z)
2 ∂

y
σ∂

z
b

1

(z − y)
2 ∂

x
ν∂

y
c

1

(y − x)
2

−∂xν∂yσ∂yc
1

(y − x)
2

[
∂xa

1

(x− z)
2 ∂

z
β∂

z
b

1

(z − y)
2 − ∂

z
β∂

x
a

1

(x− z)
2 ∂

z
b

1

(z − y)
2

]

−∂yσ∂zβ∂zb
1

(z − y)
2

[
∂xν∂

x
a

1

(x− z)
2 ∂

y
c

1

(y − x)
2 − ∂

x
a

1

(x− z)
2 ∂

x
ν∂

y
c

1

(y − x)
2

]

−∂zβ∂xν∂xa
1

(x− z)
2

[
∂zb

1

(z − y)
2 ∂

y
σ∂

y
c

1

(y − x)
2 − ∂

y
σ∂

z
b

1

(z − y)
2 ∂

y
c

1

(y − x)
2

]
. (6.21)

It is now a straightforward exercise to check that if one exchanges a with c in the expression

of f
(2)
νaσbβc one gets f

(1)
νaσbβc, i.e.

f
(2)
νcσbβa = f

(1)
νaσbβc. (6.22)

We remind the reader that in this computation we have ignored coincident point singulari-

ties. The next task will be to take them into account, which will be done in momentu space.

6.3 Relevant Fourier transforms

In the next subsection, in order to compute the 3-point amplitude of the e.m. tensor,

with the Feynman diagram technique we will use (momentum space) Feynman diagrams.

Although essentially equivalent to the Wick theorem they lend themselves more naturally

to regularization. The two techniques are related by Fourier transform. Hereby we collect

a series of Fourier transforms of distributions that are used in our calculations. The source

is [28]. The notation is as follows

F [φ(x)](k) ≡ φ̃(k) =

∫
d4x eikxφ(x), φ(x) =

∫
d4k

(2π)4
e−ikxφ̃(k)

In particular ∫
d4x eikx

1

x2
=

4π2i

k2
, (6.23)∫

d4x eikx
log x2µ2

x2
= −4π2i

k2
log

(
−k2

µ̄2

)
, (6.24)

where µ̄2 ≡ 2µ2e−γ , γ = 0.57721 . . . being the Euler constant. As we have seen this is

essentially what one needs to compute the Fourier transform of the 2-point correlator. The

novel feature in the calculation of the 3-point correlator is the appearance of products of

similar expressions in different points, a prototype being

1

(x− y)2(x− z)2(y − z)2
. (6.25)
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This is singular at coincident points and has a non-integrable singularity at x = y = z = 0.

Ignoring this let us proceed to Fourier-transforming it∫
d4x d4y d4z

ei(k1x+k2y−qz)

(x− y)2(x− z)2(y − z)2
=

∫
d4x d4y d4z

ei(k1x+k2y+(k1+k2−q)z)

(x− y)2x2y2
(6.26)

= (2π)4δ(q − k1 − k2)
∫
d4x d4y

ei(k1x+k2y)

(x− y)2x2y2
.

Let us set f(x, y) = 1
(x−y)2x2y2 . Then, using the convolution theorem, the Fourier transform

of f with respect to x is

Fx[f(x, y)](k1) =

∫
d4x eik1xf(x, y) =

1

y2

∫
d4x

eik1x

x2(x− y)2

=
1

y2

∫
d4p

(2π)4
Fx
[

1

x2

]
(k1 − p)Fx

[
1

(x− y)2

]
(p)

= − 1

y2

∫
d4p

eipy

p2(p− k1)2
. (6.27)

Therefore ∫
d4x d4y

ei(k1x+k2y)

(x− y)2x2y2
=

∫
d4y eik2y Fx[f(x, y)](k1)

= −i(2π)6
∫

d4p

(2π)4
1

p2(p− k1)2(p+ k2)2
. (6.28)

We can now compute the r.h.s. of (6.28) in the usual way by introducing a Feynman

parametrization in terms of two parameters u, v:∫
d4p

(2π)4
1

p2(p− k1)2(p+ k2)2
=

∫ 1

0
du

∫ 1−u

0
dv

∫
d4p′

(2π)4
1

(p′2 − `2 + ∆)3
(6.29)

where p′ = p− uk1 + vk2 and ∆ = u(1− u)k21 + v(1− v)k22 + 2uv k1k2. Performing the p′

integral one gets∫ 1

0
du

∫ 1−u

0
dv

∫
d4p

(2π)4

∫
dδ`

(2π)δ
1

(p2 − `2 + ∆)3
=

i

2(4π)2

∫ 1

0
du

∫ 1−u

0
dv

1

∆
(6.30)

Our attitude will be to define the regularization of (6.25) as the Fourier anti-transform of

the (6.30).

In general, however, the expressions we have to do with are not as simple as (6.30)

and the integrals as simple as (6.28). The typical integral of the type (6.28) contains a

polynomial of p, k1, k2 in the numerator of the integrand. In this case we have two ways

to proceed: either we extend the running momentum p to extra dimensions (dimensional

regularization), as we have done in 2d, carry out the integration and Fourier-anti-transform

the final result, or we reduce the calculations to a differential operator applied to the

Fourier-anti-transform of (6.30) (differential regularization). Usually the former procedure

is more convenient, while in many cases the latter is problematic.

Other analogous expressions are obtained in appendix D.
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6.4 The parity-odd 3-point correlator with Feynman diagrams

This section is devoted to the same calculation as in subsection (6.2), but with Feynman

diagram techniques. In order to compute the 3-point function of the energy-momentum

tensor for a chiral fermion, it is very convenient to couple it minimally to gravity and

extract from the corresponding action the Feynman rules, as in [22, 30]. The relevant

formalism and notation is reviewed in appendix B. Due to the non polynomial character of

the action the diagrams contributing to the trace anomaly are infinitely many. Fortunately,

using diffeomorphism invariance, it is enough to determine the lowest order contributions

and consistency takes care of the rest. There are two potential lowest order diagrams that

may contribute. The first contribution, the bubble graph, turns out to give a vanishing

contribution. The important term comes from the triangle graph. This has an incoming

line with momentum q = k1 + k2 with Lorentz indices µ, ν. The two outgoing lines have

momenta k1, k2 with Lorentz labels λ, ρ and α, β, respectively. The contribution is formally

written as

T
(1)
µναβλρ(k1, k2) =− 1

512

∫
d4p

(2π)4
tr

[(
1

/p

(
(2p− k1)λγρ + (λ↔ ρ)

) 1

/p− /k1
(6.31)

×
(
(2p− 2k1 − k2)αγβ + (α↔β)

) 1

/p−/q
(
(2p− q)µγν + (µ↔ν)

))1+γ5
2

]
to which the cross graph contribution T

(2)
µναβλρ(k1, k2) = T

(1)
µνλραβ(k2, k1) has to be added.

We regularize (6.31) as usual by introducing extra component of the momentum running

around the loop p→ p+ `, ` = `4, . . . , `δ+4:

T
(1)
µναβλρ(k1, k2) =− 1

512

∫
d4p

(2π)4

∫
dδ`

(2π)δ
tr

(
/p+ /̀

p2 − `2
(2p− k1)λγρ (6.32)

× /p+ /̀− /k1
(p− k1)2 − `2

(2p− 2k1 − k2)αγβ
/p+ /̀− /q

(p− q)2 − `2
(2p− q)µγν

1 + γ5
2

)

where the symmetrization with respect to α ↔ β, λ ↔ ρ and µ ↔ ν is understood. We

should now proceed to the explicit calculation. However one quickly realizes that this

involves a huge number of terms. To find an orientation among the latter it is very useful

to first compute the trace and the divergence of the e.m. tensor in the above formulas.

They are connected to the trace and divergence of the full one-loop e.m. tensor by the

general formulas of section 1.1.

6.4.1 The trace

The trace of (6.33) is

T(1a)µ

µαβλρ(k1, k2) =− 1

256

∫
d4p

(2π)4

∫
dδ`

(2π)δ
tr

(
/p+ /̀

p2 − `2
(2p− k1)λγρ (6.33)

× /p+ /̀− /k1
(p− k1)2 − `2

(2p− 2k1 − k2)αγβ
/p+ /̀− /q

(p− q)2 − `2
(2/p− /q)

1 + γ5
2

)
.
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On the other hand if we first take the trace of (6.31) and then regularize it, we get

T(1b)µ

µαβλρ(k1, k2) =− 1

256

∫
d4p

(2π)4

∫
dδ`

(2π)δ
tr

(
/p+ /̀

p2 − `2
(2p− k1)λγρ (6.34)

× /p+ /̀− /k1
(p−k1)2−`2

(2p− 2k1−k2)αγβ
/p+ /̀− /q

(p− q)2 − `2
(
2/p+ 2/̀−/q

) 1+γ5
2

)
.

The difference between the two is10

∆T(1)µ

µαβλρ(k1, k2) =− 1

128

∫
d4p

(2π)4

∫
dδ`

(2π)δ
tr

(
/p+ /̀

p2 − `2
(2p− k1)λγρ (6.35)

× /p+ /̀− /k1
(p− k1)2 − `2

(2p− 2k1 − k2)αγβ
/p+ /̀− /q

(p− q)2 − `2
/̀

1 + γ5
2

)
.

Similar expressions hold for T(2). Now it is easy to show that (6.34) vanishes along with

the analogous expression for T(2), while (6.35) does not, and in fact the odd-parity part

of (6.36) is precisely the anomalous term computed in [22], which, together with the cross

term coming form T(2), gives rise to the Pontryagin anomaly. More precisely, the two

terms yield

T
µ
µαβλρ(k1, k2) =

1

192(4π)2
kσ1 k

τ
2

(
t
(21)
λραβστ − tλραβστ (k21 + k22 + k1k2)

)
(6.36)

The tensors t and t(21) were defined in [22]. In [22] the external lines were put on shell

(in the de Donder gauge): k21 = k22 = 0. This is the right thing to do, as we shall see,

but it is important to clarify the role of the off-shell terms too. Therefore let us consider

nonvanishing external square momenta. While the remaining terms, when inserted into

the reconstruction formula (1.4), reproduce the Pontryagin density to order h2,

∼ εµνλρ
(
∂µ∂σh

τ
ν ∂λ∂τh

σ
ρ − ∂µ∂σhτν ∂λ∂σhτρ

)
+O(h3), (6.37)

the term proportional to k21 + k22 in (6.36) leads to a term proportional to

εµνλρ∂µ�h
α
ν ∂λhρα. (6.38)

They are both invariant under the Weyl rescaling δhµν = 2ω ηµν . Thus the corresponding

anomalous terms obtained by integrating (6.37) and (6.38) multiplied by the Weyl parame-

ter ω are consistent. But while the first gives rise to a true anomaly, the second one must be

trivial because there is no covariant cocycle containing the ε tensor beside the Pontryagin

one. In fact it is easy to guess the counterterm that cancels it: it is proportional to∫
d4xh εµνλρ∂µ�h

α
ν ∂λhρα (6.39)

10Eqs. (1.4) and (1.6) suggest that the right prescription is (6.35), not (6.34). This has been fully

confirmed by the calculations in 2d. The anomaly is determined by the n-point functions where the entries

are one trace of the e.m. tensor and n − 1 e.m. tensors. We have quoted the ‘wrong’ formula (6.34) on

purpose in order to stress this point.
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where h = hµµ. But this counterterm breaks invariance under general coordinate transfor-

mations, which to lowest order take the form δξhµν = ∂µξν + ∂νξµ (with δξω = 0). Thus

we must expect that off-shell terms break the e.m. tensor conservation. This does not

mean that there are true diff anomalies, but simply that we have to subtract counterterms

(actually, a lot of them, see below) in order to recover a covariant regularization. In other

words taking into account off-shell terms is a very effective way to complicate one’s own

life, while disregarding them does not spoil the result if our aim is to find a covariant

expression of the anomaly. The reason for this is that the equation of motion of gravity

in vacuum

�hµν − ∂µ∂λhλν − ∂ν∂λhλµ + ∂µ∂νh
λ
λ = 0 (6.40)

is covariant. If we impose the De Donder gauge

2∂µh
µ
λ − ∂λh

µ
µ = 0 (6.41)

the last three terms in the r.h.s. of (6.40) vanish and the latter reduces to �hµν = 0.

Therefore choosing this gauge and putting the external legs on shell (as we have just done)

does not break covariance and considerably simplifies the calculations.11

6.4.2 The divergence

The discussion in the previous subsection raises a problem. For not only can we sub-

tract (6.38) via the counterterm (6.39), but also (6.37) can be subtracted away by means

of the counterterm

∼
∫
d4xh εµνλρ

(
∂µ∂σh

τ
ν ∂λ∂τh

σ
ρ − ∂µ∂σhτν ∂λ∂σhτρ

)
+O(h3), (6.42)

as it is easy to verify. This of course generates new terms in the divergence of the e.m.

tensor. Choosing the on-shell option to simplify the problem, they corresponds, in the

momentum notation, to the terms

∼ εβρστ k1νkσ1 kτ2 (k1λk2α − ηαλk1 · k2) + {λ↔ ρ}+ {α↔ β}+ {1↔ 2} (6.43)

where the subscript ν, in coordinate representation, is saturated with the diffeomorphism

parameter ξν .

Let us remark that, when we refer to the lowest order in h, any anomaly appears to be

trivial and can be subtracted (see what we have done above in 2d). This is true also for the

even parity anomalies, but it is an accident of the approximation. What is decisive about

triviality or not of the anomalies is their diff partner. We must arrive at a configuration

in which the diff partner of the trace anomaly vanishes. In this case we can conclude that

a nonvanishing trace anomaly is nontrivial even if it is expressed at the lowest order in h.

This expression will be the lowest order expansion of a covariant expression (much as (6.37)

is). In conclusion we expect that subtracting away (6.37) by means of (6.42) is a forbidden

11Sometimes it oversimplifies them, for instance in 2d or in 4d for the 2-point correlator. In such cases

there is no way but doing the calculations in full, as we have done above.
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operation (it breaks covariance). But it is important to verify it by a direct calculation.

This is what we intend to do in the sequel.

The relevant lowest order contribution to 〈〈∇µTµν〉〉, see (1.8), comes from the 3-point

function 〈0|T {∂µTµν(x)Tλρ(y)Tαβ(z)}|0〉. The latter corresponds to two graphs, the bubble

and the triangle ones (see [22]). The bubble graph contribution vanishes. The triangle

contribution is given by

qµT
(1)
µνλραβ(k1, k2) = − 1

512

∫
d4p

(2π)4
tr

[(
1

/p

(
(2p− k1)λγρ + (λ↔ ρ)

) 1

/p− /k1
(6.44)

×
(
(2p− 2k1 − k2)αγβ + (α↔ β)

) 1

/p− /q
(
(2p− q) · q γν + (2p− q)ν/q

)) 1 + γ5
2

]
to which the cross contribution qµT

(1)
µναβλρ(k2, k1) has to be added. We regulate the integral

as usual with an extra dimensional momentum ` and introduce Feynman parameters as

needed. After a rather lengthy algebra, in particular with explicit use of the identity

ηµνελρστ − ηµλενρστ + ηµρενλστ − ηµσενλρτ + ηµτ ενλρσ = 0, (6.45)

the regularized (6.44) can be recast into the form

D
(1)
νλραβ(k1, k2) ≡ qµ

(
T
(1)
µνλραβ(k1, k2) + T

(1)
µναβλρ(k2, k1)

)
=

i

256

∫ 1

0
dx

∫ 1−x

0
dy

∫
d4p

(2π)4

∫
dδ`

(2π)δ

[
−ενβστ (pρk

σ
1 k

τ
2 + (k1ρk

τ
2 + k2ρk

τ
1 + 2kτ2pρ)p

σ)

+ενβρτ
(
p2(k1 + k2 − p)τ + p·k1 kτ2 − p·k2 kτ1 + (k2 − 2p)·k1pτ

)
+ ενστκηβρ p

σkτ1k
κ
2

+ενρστ (pβk
τ
1k

σ
2 + pσ(k1βk

τ
2 + k2βk

τ
1 − 2pβk

τ
1 )) + `2ενβρτ (p+ k1 − k2)τ

]
× 2p ·(k1 + k2)(2p+ k1)λ(2p− k2)α

[(p+ xk1 − yk2)2 + 2xy k1 ·k2 − `2]3
. (6.46)

This expression does not contain any of the terms (6.43), but of course this is not enough.

We have to prove that all the terms in (6.46) either vanish or are trivial in the sense that

they can be canceled by counterterms that are Weyl invariant. This analysis is carried

out in appendix E, where counterterms are constructed which cancel all the nonvanishing

terms in (6.46) without altering the result of the trace anomaly calculation. Thus the

lowest order expression (6.37) cannot be canceled (except at the price of breaking diffeo-

morphism invariance) and is a genuine covariant expression. It represents the lowest order

approximation of the Pontryagin density.

6.4.3 (Partial) conclusion

The results obtained in this section fully confirm those of [19, 20, 22]. The apparent

contradiction inherent in the fact that the “bare” parity-odd correlator of three energy-

momentum tensors vanishes will be explained in the next section. Here we would like

to draw some conclusion on the regularized e.m. tensor 3-point function. We have seen

that the trace and the traceless part of the correlator must be regularized separately. The
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traceless part of the correlator can be regularized starting from (6.33). We would like to

be able to conclude that the regularized traceless part coincides with the “bare” part, i.e.

it vanishes, but in order to justify this conclusion the calculations are very challenging,

because it is not enough to regularize and compute (6.33), but we must also take into

account all the counterterms (with the exact coefficients) that we have subtracted in order

to guarantee covariance, see appendix E. This can realistically be done only with a computer

algebra program. For the time being, although we believe the regularized traceless part of

the correlator vanishes, we leave its proof as an open problem.

Finally a comment on the parity-even part of the 3-point e.m. tensor correlator. The

calculation of the trace and divergence involves many more terms than in the parity-odd

part, but it does not differ in any essential way from it. Also in the parity-even part it

is necessary to introduce counterterms in order to guarantee covariance and the correct

final expression for the trace anomaly. On the other hand this is pretty clear already in

the 2d case, as we have shown above. Since the results for the parity-even part of the

3-point function, both “bare” and regularized, [3, 4], and relevant even-parity anomalies

are well-known, see [29], we dispense with an explicit calculation.

7 The ugly duckling anomaly

The title is due to the non-overwhelming consideration met so far by the Pontryagin trace

anomaly. Needless to say its presence in the free chiral fermion model is at first sight

surprising. The basic ingredient to evaluate this anomaly in the Feynman diagram approach

is traditionally the triangle diagram, which can be seen as the lowest order approximation of

the 3-point correlator, whose entries are one e.m. trace and two e.m. tensors. On the other

hand, since the “bare” parity-odd part of the 3-point correlator of the e.m. tensor vanishes

on the basis of very general considerations of symmetry, it would seem that even the triangle

diagram contributions should vanish, because the regularization of zero should be zero.

The remark made in connection with formulas (6.34), (6.35) and (6.36) may seem to

add strength to this argument because it leaves the impression that the Pontryagin anomaly

is something we can do without. After all its existence in the 3-point correlators is related

to the order in which we regularize. One might argue that if we regularize in a specific

order the anomaly disappears, but this is not the case. First of all we remark that what

one does in all kind of anomalies is to regularize the divergence of a current or of the e.m.

tensor, or the trace of the latter, rather than regularizing the current or the e.m. tensor

and then taking the divergence or the trace thereof. In other words the regularization

should be done independently for each irreducible component that enters into play. But,

even forgetting this, in order to make a decision about such an ambiguous occurrence one

must resort to some consistency argument, and this is what we will do below.

In fact the apparent contradiction is based on a misunderstanding, which consists in

assuming that the (unregulated) 3-point correlator in the coordinate representation is the

sole ingredient of the anomaly. This is not true.12 The 3-point correlator of the energy-

12We remark that the parity-even 3-point correlator of the e.m. trace and two e.m. tensors also vanishes

for non-coincident points, but this does not prevent the even parity anomaly from being nonvanishing.
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momentum tensor is one of the possible markers of the trace anomaly, but, as we shall see,

there are infinite many of them and consistency demands that they all agree (the more so

if the correlator is unregulated). Let us start with by clarifying this point.

In subsection 1.1 we have shown how to reconstruct the full one-loop e.m. tensor

starting from the one-loop correlators of the e.m. tensors, see (1.4). What matters here is

that the full one-loop e.m. tensor contains the information about the e.m. tensor correlators

with any number of entries. The first non-trivial one corresponds of course to n = 2.

Now let us apply the reconstruction formula (1.4) to a single chiral fermion theory.

Classically the energy-momentum tensor for a left-handed fermion is

T (L)
µν =

i

4
ψLγµ

↔
∂ νψL + {µ↔ ν} (7.1)

which is both conserved and traceless on shell. An analogous expression holds for a right-

handed fermion. It has been proved in general (and we have shown it above) that the

(unregulated) parity-odd 3-point function in the coordinate representation vanishes. Thus

let us ask ourselves what would happen if parity-odd amplitudes

〈0|T {T (L)
µ1ν1(x1) . . . T

(L)
µnνn(xn)}|0〉odd

to all orders were to vanish. We would have the same also for the right handed counterpart,

while the even-parity amplitudes are equal. Therefore the difference

〈〈T (L)
µν (x)〉〉 − 〈〈T (R)

µν (x)〉〉 = 0 (7.2)

This would imply that the quantum analog of ψγµγ5
↔
∂ νψ + {µ↔ ν} would vanish identi-

cally. This is nonsense, and means that the vanishing of the parity-odd 3-point function

is an accidental occurrence and that the (“bare”) parity-odd amplitudes will generically

be non-vanishing.13 Inserting now these results in the reconstruction formula (1.4) and

resumming the series we would reconstruct the parity-odd anomaly. Let us apply this to

the trace of the quantum energy-momentum tensor. Since the parity-odd amplitudes are

generically nonvanishing we would obtain a nonvanishing trace anomaly. Now the only

possible covariant parity-odd anomaly is the Pontryagin density

P =
1

2

(
εnmlkRnmpqRlk

pq
)

(7.3)

whose first nonvanishing contribution is quadratic in hµν

εµνλρRµν
στRλρστ = 2εµνλρ

(
∂µ∂σh

τ
ν ∂λ∂τh

σ
ρ − ∂µ∂σhτν ∂λ∂σhτρ

)
+ . . . , (7.4)

and can come only from the parity-odd 3-point correlator. But, if the latter vanishes, we

would get an incomplete, and therefore non-covariant, expression for this anomaly.

The conclusion of this argument is: covariance (and consistency) requires that, even

if the (unregulated) parity-odd 3-point function in the coordinate representation vanishes,

13The analogue of the parity-odd 3-point correlator vanishing theorem does not exist for generic ampli-

tudes.
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the corresponding regularized counterpart must be non-vanishing. This is precisely what

was found in [22] with (regularized) Feynman diagram techniques.

The existence of the Pontryagin anomaly is confirmed also by other methods of calcu-

lation: the heat kernel method, see [20, 22] and references therein, and the mass regular-

ization of [30], although the latter method have not been applied with the same accuracy

as the dimensional regularization in the present paper. We should mention also the dis-

persive method which uses unitarity as an input. Of course we do not expect this method

to reproduce this anomaly, which violates unitarity, [22]. In fact using such a method

would be a reversal of the burden of proof. The dispersive argument is very elegant and

powerful, [12, 25, 31], but it assume unitarity. Unitarity is normally given for granted and

assumed by default. But the case presented in this paper is precisely an example in which

this cannot be done.

Finally we would like to notice that the so-called Delbourgo-Salam anomaly, [30], i.e.

the anomaly in the divergence of the chiral current jµ5 = iψ̄γµγ5ψ, is determined by a

term (6.34) in which the factor (2/p − /q) is replaced by /q. If, in such a term, we rewrite /q

as 2/p− (2/p− /q), we see that the second part reproduces the Pontryagin anomaly we have

computed, while the term containing 2/p, once regularized, is easily seen to vanish. In other

words the Pontryagin trace anomaly and the Delbourgo-Salam chiral anomaly come from

the same term.

8 Conclusions

In conclusion, let us summarize what was reviewed and what was shown in this paper. Our

paradigm is always the theory of a free chiral fermion, thus every time that we refer to

Feynman diagram techniques or Wick theorem, we are making reference to these techniques

applied to this specific model.

We started in sections 2, 3 and 4 by reviewing the regularization of the 2-point function

of e.m. tensors in 2d, using both differential regularization and dimensional regularization

of the expression obtained with Feynman diagrams. Demanding the correlator to satisfy

the Ward identity for diffeomorphism invariance we obtain a violation of the Ward identity

for conformal invariance and we recover the known result of the 2d trace anomaly. In

section 5 the analogous result was shown also in 4d where the situation is different because

we are able to regularize the correlator in such a way that both Ward identities are satisfied.

In section 6, moving to the 3-point function of e.m. tensors in 4d, we first noted

a discrepancy between the computations in momentum space through Feynman diagrams

and the computation in coordinate space using the Wick theorem. The direct c omputation

through Wick theorem tells us that there is no (unregulated) parity-odd contribution in

the 3-point correlator of e.m. tensors for the free chiral fermion. This result is indeed

in agreement with the general fact that in 4d there are no parity-odd contribution in the

correlation function of three e.m. tensors which was reviewed in section 6.1. With this

fact in hand one could try to regularize this correlator with the techniques of differential

regularization and would be obliged to conclude that there is no parity-odd trace anomaly

simply because there is no parity-odd contribution to be regularized. On the other hand,
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by doing the computation in momentum space with Feynman diagram techniques we do

find a parity-odd trace anomaly. Is this result forced to be wrong?

We argued in section 7 that these results can perfectly coexist and the result in coor-

dinate space by no means is a no-go for the existence of the Pontryagin anomaly.
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A Direct computation for a chiral fermion in 2d

Consider a free chiral fermion ψL in 2d which has the 2-point function

〈
ψL (x)ψL (y)

〉
=

i

2π

γ · (x− y)

(x− y)2
PL, PL =

1− γ∗
2

, (A.1)

and the e.m. tensor

Tµν =
i

4

(
ψLγµ

↔
∂ ν ψL + µ↔ ν

)
. (A.2)

Before proceeding with the calculation let us recall some definitions:

{γµ, γν} = 2ηµν ⇒
(
γ0
)2

= 1,
(
γi
)2

= −1. (A.3)

Clearly, γ0 = γ0 and γi = −γi. For an arbitrary dimension D the analogous of γ5 will

be denoted γ∗ and it is given by γ∗ = (−i)
D
2
+1 γ0γ1 . . . γD−1, which for D = 2 means

γ∗ = −γ0γ1.
It is straightforward to check that the following relations are true:

γµ = εµνγ
νγ∗, εµνγ

ν = γµγ∗, (A.4)

where we are using the convention where ε01 = 1. It follows

tr(γµγνγ∗) = −2εµν . (A.5)

Our purpose is to compute the 2-point of the em tensor in the theory (A.1). Since we

are dealing with a simple free theory we can use the Wick theorem.

The non-zero part of the correlation function comes from the

〈Tµν (x)Tρσ (y)〉 =
1

16

〈
: ψ̄Lγµ

↔
∂ ν ψL : (x) : ψ̄Lγρ

↔
∂ σ ψL : (y)

〉
+ sym.,
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which is given by the full contraction of this object, namely

〈Tµν (x)Tρσ (y)〉 =
1

16(2π)2
(
tr
[
γµ∂

x
ν

〈
ψL (x) ψ̄L (y)

〉
γρ∂

y
σ

〈
ψL (y) ψ̄L (x)

〉]
+ · · ·

)
+ sym.,

(A.6)

where the ellipsis stand for the three other ways of organizing the derivatives. We may use

the translational invariance of this correlator to shift x→ x− y and y → 0. For simplicity

we will relabel x− y calling it simply x. Since the correlation function is simply a function

of x − y, ∂y = −∂x. Let us also remark that
〈
ψL (x) ψ̄L (y)

〉
= −

〈
ψL (y) ψ̄L (x)

〉
. Thus,

we can exchange all the derivatives on y by derivatives on x and the correlations functions〈
ψL (y) ψ̄L (x)

〉
by
〈
ψL (x) ψ̄L (y)

〉
, which, due to translational invariance, can be written

as
〈
ψL (x− y) ψ̄L (0)

〉
. Therefore,

〈Tµν (x)Tρσ (y)〉 =
1

16(2π)2
(
tr
[
γµ∂ν

〈
ψL (x) ψ̄L (0)

〉
γρ∂σ

〈
ψL (x) ψ̄L (0)

〉]
+ · · ·

)
+ sym.

(A.7)

Using the expression for the 2-point function (A.1) we have

tr
[
γµ∂ν

〈
ψL (x) ψ̄L (0)

〉
γρ∂σ

〈
ψL (x) ψ̄L (0)

〉]
=

1

(2π)2
∂ν

(
xα

x2

)
∂σ

(
xβ

x2

)
tr(γµγαγργβPL),

and analogously for the other terms. One should notice that

tr(γµγβγργαPL) = tr(γργαγµγβPL)

and we are able to rewrite our correlation function as

〈Tµν (x)Tρσ (y)〉 =
1

16

1

(2π)2

[
∂ν

(
xα

x2

)
∂σ

(
xβ

x2

)
−
(
xα

x2

)
∂ν∂σ

(
xβ

x2

)]
× [tr(γµγαγργβPL) + µ↔ ρ] + sym. (A.8)

Exchanging the position of γα and γρ in tr(γµγαγργβPL) we have

tr(γµγαγργβPL) = 2ηαρtr(γµγβPL)− tr(γµγργαγβPL).

Thus

tr(γµγαγργβPL) + µ↔ ρ = 2ηαρtr(γµγβPL) + 2ηαµtr(γργβPL)− tr({γµ, γρ} γαγβPL)

= 2 [ηαρtr(γµγβPL) + ηαµtr(γργβPL)− ηµρtr(γαγβPL)] .

The trace of γµγνPL is straightforward to compute (see appendix):

tr(γµγνPL) =
1

2
[tr(γµγν)− tr(γµγνγ∗)] = ηµν + εµν .

Therefore

tr(γµγαγργβPL)+µ↔ ρ = 2 (ηαρηµβ + ηαµηρβ − ηµρηαβ) + 2 (ηαρεµβ + ηαµερβ − ηµρεαβ) .

(A.9)
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It turns out that we are able to rewrite ηµρεαβ as

ηµρεαβ =
1

2
(ηαµερβ − ηβµερα + ηαρεµβ − ηβρεµα)

and using this expression we may rewrite (A.9) as

tr(γµγαγργβPL) + µ↔ ρ = 2 (ηαρηµβ + ηαµηρβ − ηµρηαβ)

+ (ηαρεµβ + ηαµερβ + ηβµερα + ηβρεµα) . (A.10)

Using (A.10) we can compute (A.8) and we find the parity-odd part

〈Tµν (x)Tρσ (0)〉odd =

− 1

4π2

(
εµαx

αxνxρxσ
x8

+
εναx

αxµxρxσ
x8

+
εραx

αxµxνxσ
x8

+
εσαx

αxµxνxρ
x8

− εµαηρνx
αxσ

4x6
− εµαησνx

αxρ
4x6

− εναηρµx
αxσ

4x6
− εναησµx

αxρ
4x6

−εραηµσx
αxν

4x6
− εραηνσx

αxµ
4x6

− εσαηµρx
αxν

4x6
− εσαηνρx

αxµ
4x6

)
.

(A.11)

As a matter of fact, out of this computation we find that the parity-even part matches (2.1)

with c = 1/4π2, in agreement with [3, 4]. The expression (A.11) is traceless, conserved and

can be written as

〈Tµν (x)Tρσ (0)〉odd =
1

32π2
(
εαµT

α
νρσ + εανT

α
µ ρσ + εαρT

α
µν σ + εαρT

α
µνρ

)
, (A.12)

where Tµνρσ is given by the expression (3.1). Hence (A.11) agrees with the null cone result.

B The chiral fermion model in 4d

In this appendix we summarize the formalism and notation of [22], concerning the free

chiral fermion model minimally coupled to gravity. The action is

S =

∫
d4x

√
|g|
[
i

2
ψRγ

µ
↔
∂ µψR −

1

4
εµabcωµabψRγcγ5ψR

]
(B.1)

where it is understood that the derivative applies to ψL and ψL only. We have used the

relation {γa,Σbc} = i εabcdγdγ5. Now one expands

eaµ = δaµ + χaµ + . . . , eµa = δµa + χ̂µa + . . . , and gµν = ηµν + hµν + . . . . (B.2)

Using the defining relations of metric and vierbein one finds

χ̂µν = −χµν and hµν = 2χµν . (B.3)

The spin connection ωm = ωabmΣab, where Σab = 1
4 [γa, γb] are the Lorentz generators, to

lowest order is

ωµab ε
µabc = −εµabc ∂µχaλ χλb + . . . . (B.4)
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Therefore up to second order the action can be written

S =

∫
d4x

[
i

2
(δµa − χµa)ψLγ

a
↔
∂ µψL +

1

4
εµabc ∂µχaλ χ

λ
b ψLγcγ5ψL

]
. (B.5)

Splitting it into free and interacting parts, one can extract Feynman rules. The fermion

propagator is

i

/p+ iε
(B.6)

The two-fermion-one-graviton vertex (Vffg)

− i
8

[
(p− p′)µγν + (p− p′)νγµ

] 1 + γ5
2

(B.7)

The two-fermion-two-graviton vertex (Vffgg) is

1

64
tµνµ′ν′κλ(k − k′)λγκ 1 + γ5

2
(B.8)

where

tµνµ′ν′κλ = ηµµ′ενν′κλ + ηνν′εµµ′κλ + ηµν′ενµ′κλ + ηνµ′εµν′κλ (B.9)

C Regularization formulas in 2d and 4d

In this appendix we collect the regularized integrals that are needed to evaluate the Feyn-

man diagrams in the text both in 2d and 4d. The integrals below are Euclidean integrals.

They are an intermediate results needed in order to compute the Feynman diagrams in the

text. Since the starting points and the final results are Lorentzian, it is understood that

one has to do the appropriate Wick rotations in order to be able to use them.

In 2d, after introducing δ extra dimensions in the internal momentum and a Feynman

parameter u (0 ≤ u ≤ 1), in the limit δ → 0, we have∫
d2p

(2π)2

∫
dδ`

(2π)δ
`2

(p2 + `2 + ∆)2
= − 1

4π∫
d2p

(2π)2

∫
dδ`

(2π)δ
`2p2

(p2 + `2 + ∆)2
=

1

4π
∆ (C.1)

and ∫
d2p

(2π)2

∫
dδ`

(2π)δ
p2

(p2 + `2 + ∆)2
=

1

4π

1

∆∫
d2p

(2π)2

∫
dδ`

(2π)δ
p2

(p2 + `2 + ∆)2
=

1

4π

(
−2

δ
− γ + log(4π)− log ∆

)
∫

d2p

(2π)2

∫
dδ`

(2π)δ
p4

(p2 + `2 + ∆)2
=

1

2π
∆

(
2

δ
− 1 + γ − log(4π) + log ∆

)
(C.2)

where ∆ = u(1− u)k2.

– 34 –



J
H
E
P
0
6
(
2
0
1
5
)
0
2
4

Proceeding in the same way in 4d, with two Feynman parameters u and v, in the limit

δ → 0, beside (6.25), we find∫
d4p

(2π)4

∫
dδ`

(2π)δ
p2

(p2 + `2 + ∆)3
=

1

(4π)2

(
−2

δ
− γ + log(4π)− log ∆

)
∫

d4p

(2π)4

∫
dδ`

(2π)δ
p4

(p2 + `2 + ∆)3
=

∆

2(4π)2

(
−2

δ
− γ + 4 + log(4π)− log ∆

)
(C.3)

and ∫
d4p

(2π)4

∫
dδ`

(2π)δ
`2

(p2 + `2 + ∆)3
= − 1

2(4π)2∫
d4p

(2π)4

∫
dδ`

(2π)δ
`2p2

(p2 + `2 + ∆)3
=

1

(4π)2
∆ (C.4)

where ∆ = u(1− u)k1 + v(1− v)k2 + 2uv k1k2.

D Fourier transforms

In this appendix we expand on the results of section (6.3). Let us start from the following

formal transformations:

− i(2π)6
∫

d4p

(2π)4
k1µ

p2(p− k1)2(p− q)2
= i

∫
d4x d4y ei(k1x+k2y)

∂

∂xµ

(
1

(x− y)2x2y2

)
− i(2π)6

∫
d4p

(2π)4
k2µ

p2(p− k1)2(p− q)2
= i

∫
d4x d4y ei(k1x+k2y)

∂

∂yµ

(
1

(x− y)2x2y2

) (D.1)

According to the procedure outlined in section (6.3), the l.h.s.’s of these equations will be

defined by means of (6.30) and, via Fourier anti-transform, will define the corresponding

regularized rational function in the r.h.s.’s. The generalization to multiple powers of the

momenta k1, k2 in the numerator is straightforward. The (D.1) formulas and the like define

a differential regularization.

In the main body of the paper we have to do with similar integrals in which, however,

the numerator of the integrand contains polynomials of p beside k1 and k2. In this case we

do not know a straightforward way to differentially regularize them and resort instead to

dimensional regularization, in which case other Fourier transforms are needed. For instance∫
d4k1
(2π)4

d4k2
(2π)4

ei(k1(x−z)+k2(y−z))

(k1 + k2)2
(D.2)

=
1

16

∫ d4k̃1
(2π)4

e
ik̃1
(

(x−z)+(y−z)
2

)
k̃21

(∫ d4k̃2
(2π)4

eik̃2(
x−y
2 )

)
=

1

16π2
1

(x− z)2
δ(4)(x− y)

where we set k̃1 = k1 + k2 and k̃2 = k1 − k2. Proceeding in the same way,∫
d4k1
(2π)4

d4k2
(2π)4

ei(k1(x−z)+k2(y−z))

(k1 + k2)2
log (k1 + k2)

2 =

=
1

4π2
δ(4)(x− y)

1

(x− z)2
log

(x− z)2

4
, (D.3)
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and it is understood that∫
d4k1
(2π)4

d4k2
(2π)4

ei(k1(x−z)+k2(y−z) log (k1 + k2)
2 =

= −(∂x + ∂y)
2

∫
d4k1
(2π)4

d4k2
(2π)4

ei(k1(x−z)+k2(y−z)

(k1 + k2)2
log (k1 + k2)

2.

E Conservation of the e.m. tensor

In this appendix we complete the proof of section 6.4.2.

To start with we write down the structure of the various terms in (6.46) in momentum

representation and in coordinate space after applying (1.4)

ενβρτk1 ·k2k1λk1αkτ1 →
∫
ξνενβρτ∂σ∂λ∂α∂

τhλρ∂σhαβ = 0,

ενβρτk1 ·k2k1λk1αkτ2 →
∫
ξνενβρτ∂σ∂λ∂αh

λρ ∂τ∂σhαβ (E.1)

=
1

2

∫
ξνενβρτ∂σ∂

ρ∂αh ∂
τ∂σhαβ , (E.2)

ενβρτk1 ·k2k1λk2αkτ2 →
∫
ξνενβρτ∂σ∂αh

λρ ∂λ∂
τ∂σhαβ , (E.3)

ενβρτk1 ·k2k1λk2αkτ1 →
∫
ξνενβρτ∂σ∂α∂

τhλρ ∂λ∂
σhαβ , (E.4)

and other similar terms obtained by exchanging 1 and 2. Eq. (E.3) is the opposite of (E.4).

In addition we have the term

ηαλενβρτ (k1 ·k2)2kτ1 →
∫
ξνενβρτ∂σ∂κ∂

τhλρ∂κ∂σhαβ (E.5)

and the opposite one obtained by exchanging 1 and 2. All these terms appear with (non-

vanishing) coefficients which are rational numbers or rational numbers multiplied by

2

δ
+ γ − log 4π + log 2k1 ·k2 (E.6)

in the limit δ → 0. The terms proportional to log 2k1 ·k2 will be disregarded here because,

due to the results in appendix D, they corresponds to the 2-point terms of eq. (1.8). All

the other terms have to be canceled by subtracting counterterms from the action. The

important point is that such counterterm must be Weyl invariant to the appropriate order

in h, otherwise they would modify the trace of the e.m. tensor. We show next that this is

in fact true for all the above terms.

The terms (E.1) and (E.5) are trivial, for we have

δω

∫
h εµνλρ∂

µhτν ∂λ�hρτ = 0,

δξ

∫
h εµνλρ∂

µhτν ∂λ�hρτ =

∫
ξνενσρλ∂τ∂

λ∂κh ∂σ∂κh
ρτ , (E.7)
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and

δω

∫
εµνλρ h

µσ ∂τ∂λhρσ �h
ν
τ = 0,

δξ

∫
εµνλρ h

µσ ∂τ∂λhρσ �h
ν
τ = −

∫
ξνεντλρ∂

τ∂κhµσ ∂µ∂κ∂
λhρσ, (E.8)

+2

∫
ξνεντλρ∂

κ∂αhτσ∂κ∂α∂
λhρσ +

1

2

∫
ξνενµτλ∂

τ∂κhµσ∂κ∂
λ∂σh.

Similarly

δω

∫
ενβρτ h

να∂κh
σρ ∂σ∂

τ∂κhβα = 0,

δξ

∫
ενβρτ h

να∂κh
σρ ∂σ∂

τ∂κhβα =

∫
ξνενρβτ ∂σ∂κh

αρ ∂σ∂κ∂τhβα

−1

2

∫
ξνενρβτ ∂

ρ∂κh
στ ∂σ∂

κ∂βh, (E.9)

and

δω

∫
ενβρτ h

νσ∂κh
αρ ∂τ∂σ∂

κhβα = 0,

δξ

∫
ενβρτ h

νσ∂κh
αρ ∂τ∂σ∂

κhβα = −
∫

ξν
(

2ενβρτ ∂κ∂
λhαρ ∂α∂

κ∂τhβα (E.10)

+2ενρβτ ∂κ∂
ρhασ ∂σ∂

κ∂τhβα + 2ενβρτ ∂
κ∂τ∂σh

β
α ∂

α∂κh
ρσ + ενβρτ ∂κ∂

ρhβσ ∂κ∂τ∂σh
)
,

as well as

δω

∫
ενβρτ h

νσ�hαρ ∂τ∂σh
β
α = 0,

δξ

∫
ενβρτ h

νσ�hαρ ∂τ∂σh
β
α =

∫
ξν
(1

2
ενβρτ ∂κ∂

ρhβσ ∂σ∂
κ∂τh (E.11)

−2ενρβτ ∂κ∂
αhρσ ∂σ∂

κ∂τhβα − ενβρτ ∂κ∂ρhασ ∂κ∂τ∂σhβα
)
,

and other similar ones. Using combinations of these relations it is easy to see that all

the terms listed above, which appear in (6.46), see (E.1), (E.3) and (E.4), are in fact

trivial. They can be reabsorbed in a redefinition of the action without altering the already

calculated trace anomaly.
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