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1 Introduction

Since the discovery of the J/ψ, heavy quarkonia, with their clearly separated multiple

momentum scales, have been serving as ideal systems to test our understanding of QCD

bound states and their hadronization processes. Unfortunately, a theoretically and phe-

nomenologically satisfying framework is still lacking for heavy quarkonium production. The

problem is more acute with the recently discovered XY Z-mesons, since the production of

these exotic mesons requires good understanding of the production of conventional heavy

quarkonia [1, 2].

A phenomenologically successful model for heavy quarkonium production is based on

the non-relativistic QCD (NRQCD) factorization [3, 4], which factorizes the production

cross section into the production of a heavy quark pair, multiplied by the transition for

the pair to transmute into the observed quarkonium. The production of the heavy quark

pair is effectively perturbative and is organized in powers of αs and v, the relative velocity

of the heavy quark in the pair’s rest frame; and the corresponding transition is nonper-

turbative and is represented by a set of NRQCD long-distance matrix elements (LDMEs).

If the factorization is correct to all orders in αs, these LDMEs will be universal, i.e. pro-

cess independent. For heavy quarkonium production, although a formal proof of NRQCD

factorization to all orders in αs is still lacking, it has been shown to be valid at the next-

to-leading order (NLO) in many processes. With certain modification, it also works at the

next-to-next-to-leading order (NNLO) in some specific cases [5–7]. Phenomenologically,

NLO NRQCD factorization calculations successfully explain the transverse momentum pT
distribution of many heavy quarkonium states with a few NRQCD LDMEs fitted from the

data [1, 2].

Nevertheless, the current NRQCD factorization formalism is far from perfect in de-

scribing data on the heavy quarkonium production at high pT . It is understood now that

the fixed-order NRQCD calculation suffers from large high-order corrections, due to the

large power enhancement in the forms of p2
T /m

2
Q and the large log(p2

T /m
2
Q)-type logarithms

from high orders in αs [8], where mQ is the mass of heavy quark. For example, the NLO

NRQCD calculation for the yield of J/ψ is orders of magnitude larger than the leading

order (LO) calculation for 3S
[1]
1 and 3P

[8]
J channels at pT & 15 GeV [9–12]. Although the

most phenomenologically important leading power contribution is claimed to be included

in the NLO NRQCD calculation [11, 13], the existence of large logarithm may potentially

undermine the convergence of αs expansion at large pT � mQ.

Recently, a new QCD factorization formalism has been proposed to study heavy

quarkonium production at large pT [8, 14–18]. In this formalism, the cross section is

expanded by powers of m2
Q/p

2
T . It was proved to all orders in αs that the dominant leading-

power (LP) terms, as well as the next-to-leading power (NLP) terms, can be systematically

factorized into the perturbatively calculable hard parts for producing a single parton (or a

heavy quark pair at NLP), convoluted with corresponding single parton (or heavy quark

pair) fragmentation functions (FFs) to the observed heavy quarkonium. All nonpertur-

bative contributions are included in these FFs, whose scale dependence is determined by

a closed set of evolution equations with perturbatively calculable evolution kernels. By
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solving the evolution equations, large perturbative log(p2
T /m

2
Q)-type logarithms could be

resummed to all orders in αs. Because of the systematic treatment of the powers of p2
T /m

2
Q

and log(p2
T /m

2
Q), the QCD factorization is expected to converge faster in αs expansion

than the NRQCD factorization.

With the LO partonic hard parts for hadronic production of heavy quarkonia at high

pT calculated in ref. [18], and the evolution kernels of FFs available in refs. [8, 16, 17], a

set of FFs at some input scale µ0 & 2mQ is needed and necessary for evaluating the rate

of heavy quarkonium production, and for any phenomenological application of the QCD

factorization formalism. These input FFs are only unknowns in the QCD factorization

framework, and are sensitive to the observed heavy quarkonium states and their polar-

izations. In principle, these input FFs should be extracted from data, like the case for

pion and kaon production at high pT . Nonetheless, this task is extremely hard in practice,

especially with the inclusion of NLP contributions. For example, it requires at least four

one-variable single parton FFs and six three-variable heavy quark pair FFs for evaluat-

ing the production rate of polarization-summed J/ψ [19, 20]. The number of FFs should

double for calculating the cross section of producing polarized J/ψ.

However, different from the pion and kaon FFs, the heavy quarkonium FFs have an

intrinsic large scale mQ � ΛQCD, thus they are partially perturbative. As early as in 1993,

Braaten, Cheung and Yuan proposed to apply the Color-Singlet Model and the NRQCD

factorization to further separate the perturbative and nonperturbative contributions to the

input FFs [21, 22]. By choosing the input QCD factorization scale µ0 & 2mQ and NRQCD

factorization scale µΛ ∼ mQ, neither µ2
0/m

2
Q nor m2

Q/µ
2
Λ is large, and consequently, the

NRQCD expansion of the input FFs is expected to have a fast convergence. In refs. [19,

20], we calculated the polarization-summed input FFs in the framework of the NRQCD

factorization. We derived, up to the NLO in αs, the perturbative hard parts for an energetic

single parton (or a heavy quark pair) to fragment into a heavy quark pair in all possible

S-wave and P -wave NRQCD states, while the NRQCD LDMEs cover the nonperturbative

transition rate for the pair to transmute into the observed heavy quarkonium.1 These input

FFs are needed for evaluating the factorized LP and NLP contributions to the production

of polarization-summed heavy quarkonia.

With our calculated input FFs, the first test of the QCD factorization formalism for

heavy quarkonium production is shown in ref. [23]. It was found that without the resum-

mation of large logarithms, the simple and fully analytical LO calculation in the QCD

factorization approach successfully reproduces the very complicated and numerical NLO

NRQCD calculations for the yield of J/ψ at pT & 15 GeV, for all phenomenologically im-

portant and relevant channels. It is very important to note that the NLP contribution,

although suppressed by a factor of m2
Q/p

2
T compared to the LP contribution, are crucial for

1S
[8]
0 and 3S

[1]
1 channels even when pT approaches 100 GeV. A similar calculation with only

the LP contribution cannot reproduce these two channels [24]. This finding clearly demon-

strates the importance of the NLP contributions to the heavy quarkonium production.

1Most single parton input FFs in refs. [19] are not new. See refs. [19, 20] for the details and references

therein.
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Since the polarization is an important observable for exploring the production mech-

anism of heavy quarkonium [25–27], it is critically important to study the production

of polarized heavy quarkonia in the framework of the QCD factorization formalism, which

requires a set of polarized input FFs. In this paper, we extend our work on the polarization-

summed input FFs [19, 20] to the study of the polarized input FFs by using the NRQCD

factorization approach. Different from the production of unpolarized heavy quarkonia, we

show that, if the polarization of the produced heavy quarkonium is observed, many more

NRQCD channels at the same order in v expansion are needed. Especially, off-diagonal

channels are needed for the production of some heavy quarkonia even at the leading power

in v. We demonstrate that conservation laws, angular momentum addition rules, and veloc-

ity scaling rules, as well as the heavy quark symmetry, are very important for constraining

the size of contributions from various channels.

Similar to the polarization-summed input FFs [19, 20], the intermediate steps in de-

riving the polarized input FFs require the perturbative treatment of ultraviolet (UV) and

infrared (IR) divergences. Conventional dimensional regularization (CDR) is the most con-

venient tool to regularize all these divergences. However the application of CDR on the po-

larized input FFs is not straightforward, since the definitions of polarized NRQCD LDMEs

in an arbitrary d-dimension are very non-trivial. In principle, one needs to consider the

coupling of two d-dimensional heavy quark spinors, and L-S coupling if the orbital angular

momentum is nonzero, e.g., for the 3P
[1]
J channels. In this paper, by requiring the symme-

tries to be preserved when generalizing the polarized NRQCD LDMEs from 4-dimensions

to d-dimensions, we provide a simple scheme to separate the contributions with different

J and |Jz|.
The rest of this paper is organized as follows. In section 2, in terms of the NRQCD

factorization formalism, we derive, by using conservation laws and angular momentum

addition rules, all nonvanishing NRQCD LDMEs for the production of polarized heavy

quarkonia. We single out the derivation of the nonvanishing NRQCD LDMEs that con-

tribute to polar angular distribution of heavy quarkonium production, which are of the

most phenomenological interest. We also discuss how velocity scaling rules help simplify

problems in practice. Then in section 3, we introduce a scheme to define these polarized

NRQCD LDMEs in an arbitrary d-dimension. In section 4, we outline the technical steps

needed for calculating the single-parton and heavy quark-antiquark pair (QQ̄ pair) FFs

within the NRQCD factorization approach. Since the calculation is very similar to that

for the polarization-summed case, which has already been explained in great details in

refs. [19, 20], we do not repeat it in this paper, but providing all mathematical tools spe-

cific to the calculation of polarized input FFs in appendix A. Finally in section 5, we briefly

discuss the impact of our results for the polarized J/ψ production. All of our results on

the polarized input FFs are listed in appendixes B and C. In appendix B.5, we compare

our full results of single parton FFs with some input FFs available in the literature.

2 Heavy quarkonium polarization in NRQCD factorization

In this section, we start from experimental observables to find all allowed NRQCD channels

for polarized heavy quarkonium production. In subsection 2.1, we drive the most general
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selection rules for nonvanishing NRQCD channels, by employing only the conservation laws

and angular momentum addition rules. These selection rules are valid for any observables

related to the heavy quarkonium polarization. Then in subsection 2.2, we focus on the

polar angular distribution of decay products of produced heavy quarkonia, and derive

more selection rules for this specific observable. Finally in subsection 2.3, we adopt the

NRQCD power counting rules to find the relative importance of the survived channels for

the polar angular distribution.

2.1 General selection rules

Experimentally, the polarization of a produced heavy quarkonium is determined by mea-

suring the angular distribution of its decay products in its rest frame. Taking J/ψ as an

example, the angular distribution of the decaying l+l− lepton pair can be parameterized

as (see ref. [28] for a thorough discussion, and [29] for a recent review)

dσJ/ψ(→l+l−)

dΩ
∝ 1 + λθ cos2 θ + λϕ sin2 θ cos 2ϕ+ λθϕ sin 2θ cosϕ

+ λ⊥ϕ sin2 θ sin 2ϕ+ λ⊥θϕ sin 2θ sinϕ,

(2.1)

where θ and ϕ are the polar angle and the azimuthal angle of l+ respect to a chosen z-axis

of the pair’s rest frame, respectively.

Similarly, one can do the decomposition for any heavy quarkonium state, such as χcJ
(see [30–32]). In the narrow-width approximation for producing a heavy quarkonium, all

the coefficients λ’s in eq. (2.1) and corresponding coefficients for other heavy quarkonium

states can be related to the heavy quarkonium’s spin density matrix ρH
JHz ,J̃

H
z

, where JHz (J̃Hz )

is the z-component of the spin of the heavy quarkonium H in the amplitude (complex

conjugate of the amplitude). Here the quantum interference with JHz 6= J̃Hz is allowed.

Comparing theoretical predictions of these λ’s with the data serves as an important test

of the theory [33, 34].

Within the framework of the NRQCD factorization [4], the heavy quarkonium’s spin

density matrix can be factorized as

ρH
JHz ,J̃

H
z

=
∑
n,ñ

ρ̂
[QQ̄]
n,ñ 〈0|O

H(JHz ,J̃
H
z )

[QQ̄(n,ñ)]
|0〉, (2.2)

where the scale dependence is suppressed. ρ̂
[QQ̄]
n,ñ is the spin density matrix of the polarized

intermediate QQ̄ pair with quantum numbers n = 2S+1L
[b]
J,Jz

and ñ = 2S̃+1L̃
[b̃]

J̃ ,J̃z
in the

amplitude and the complex conjugate of the amplitude, respectively, where S(S̃), L(L̃),

J(J̃), and Jz(J̃z) are spin, orbital angular momentum, total angular momentum and total

angular momentum along the z-axis of the pair in the amplitude (complex conjugate of the

amplitude), respectively. Similarly, b, b̃ = 1 or 8 represent the color-singlet or color-octet

state of the produced pair. In eq. (2.2), the NRQCD LDMEs 〈0|OH(JHz ,J̃
H
z )

[QQ̄(n,ñ)]
|0〉 represent

nonperturbative probabilities for the intermediate [QQ̄(n, ñ)] states to hadronize into the

polarized heavy quarkonium H(JHz , J̃
H
z ). In principle, for each channel with the definite n

– 5 –
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JH , JH
z JH , J̃H

z

JX JX
z

J̃ , J̃zJ, Jz

Q Q̄

Figure 1. Schematic picture of angular momentum coupling in the hadronization from QQ̄-pair

to heavy quarkonium H.

and ñ in eq. (2.2), there are still many LDMEs from contributions at different powers of v2.

In this section, we do not try to explicitly separate different LDMEs contributing to the

same channel in eq. (2.2), since we only focus on the selection rules for different channels.

The summation in eq. (2.2) runs over all n and ñ, but, the LDMEs 〈0|OH(JHz ,J̃
H
z )

[QQ̄(n,ñ)]
|0〉

vanish for some combinations of n and ñ. A particular channel [QQ̄(n, ñ)] can contribute

to the spin density matrix only when n and ñ have the same conserved quantum numbers.

For example, b = b̃ and (−1)L+1 = (−1)L̃+1, since the color and parity are always conserved

in QED and QCD. With color b = b̃, the state of the heavy quark pair, [QQ̄(n, ñ)] defined

in NRQCD, should be an eigenstate of charge conjugation, which leads to (−1)L+S =

(−1)L̃+S̃ . Combining this with the conservation of color and parity, we obtain the following

selection rules:

b = b̃, S = S̃, |L− L̃| = 0, 2, 4 · · · , (2.3)

for the LDMEs 〈0|OH(JHz ,J̃
H
z )

[QQ̄(n,ñ)]
|0〉 in eq. (2.2).

Furthermore, angular momentum addition rules can provide more constraints on the

choice of n and ñ for the LDMEs 〈0|OH(JHz ,J̃
H
z )

[QQ̄(n,ñ)]
|0〉. These nonperturbative NRQCD LDMEs

can be represented schematically by the diagram in figure 1, which is shown in cut diagram

notation, in which the amplitude and its complex conjugate are combined into a forward

hadronization diagram for a heavy quark pair to evolve into the heavy quarkonium H and

unobserved particles X, and the final state is identified by a vertical line. In figure 1, JH is

the total angular momentum of the heavy quarkonium H, JHz (J̃Hz ) is its z-component in

the amplitude (complex conjugate of the amplitude), and JX and JXz are the total angular

momentum and its z-component of the unobserved particles X, respectively, which also

include the relative orbital angular momentum between H and X. By summing over all

possible states of X, the NRQCD LDMEs, as shown in figure 1, can be expressed as

〈0|OH(JHz ,J̃
H
z )

[QQ̄(n,ñ)]
|0〉 ∝

∑
X

∑
JX,JXz

A(JH, JX ; J, J̃)〈J̃ , J̃z|JH, J̃Hz ;JX, JXz 〉〈JH, JHz ;JX, JXz |J, Jz〉,

(2.4)

– 6 –
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where the coefficient A(JH , JX ; J, J̃) depends on the dynamics, but, is independent of the

z-component of any angular momentum due to the rotational invariance of QCD. Eq. (2.4)

leads to the following constraints,

|J − J̃ | ≤ 2JH , and Jz − J̃z = JHz − J̃Hz . (2.5)

Eqs. (2.3) and (2.5) summarize all the constraints for the NRQCD LDMEs in eq. (2.2)

for the production of a polarized H that decays into two bodies, with the measured full

angular distribution of the decaying products, like the J/ψ-production in eq. (2.1).

The constraints in eq. (2.5) can be modified if the angular distribution of the decay

products is integrated. As we will show in the next subsection, the polar angle θ-distribution

(after the integration of the azimuthal angle of the decaying products) depends only on the

diagonal entries of the heavy quarkonium spin density matrix ρH
JHz ,J

H
z

. Thus, only the diag-

onal LDMEs 〈0|OH(JHz ,J
H
z )

[QQ̄(n,ñ)]
|0〉, with J̃Hz = JHz , are needed for the θ-distribution of heavy

quarkonium production, and therefore, the constraints in eq. (2.5) can be simplified to

|J − J̃ | ≤ 2JH , and Jz = J̃z, (for the polar θ-distribution). (2.6)

For the yield of a polarization-summed heavy quarkonium H, we integrate over both the

polar θ and azimuthal ϕ distribution of the decay products, and consequently, we only need

〈0|OH
[QQ̄(n,ñ)]

|0〉 ≡
∑

JHz
〈0|OH(JHz ,J

H
z )

[QQ̄(n,ñ)]
|0〉. By choosing J̃Hz = JHz and summing over JHz in

eq. (2.4), the orthonormality condition of angular momentum requires

J = J̃ , and Jz = J̃z, (for producing a polarization-summed H). (2.7)

That is, for the yield of a polarization-summed H, only the fully diagonal entries in both

J and Jz of the heavy quarkonium spin density matrix are needed.

2.2 Nonvanishing channels for the polar angular distribution

In this paper, we focus on the polar angular distribution, which is of the most phenomeno-

logical interest. For J/ψ production, the polar angular distribution means the λθ term in

eq. (2.1). By integrating the azimuthal angle ϕ from 0 to 2π on both sides of eq. (2.1),

we obtain

dσJ/ψ(→l+l−)

d cos θ
∝ 1 + λθ cos2 θ. (2.8)

In the narrow-width approximation, the polar angular distribution for producing the J/ψ

that decays into a lepton l+l− pair can be expressed as

dσJ/ψ(→l+l−)

d cos θ
=

∑
J
J/ψ
z ,J̃

J/ψ
z

ρ
J/ψ

J
J/ψ
z ,J̃

J/ψ
z

× εi(JJ/ψz )Mi,j
decayε

∗
j (J̃

J/ψ
z ) (2.9)

whereMdecay is the decay matrix element of J/ψ, and εi(J
J/ψ
z ) and ε∗

ĩ
(J̃

J/ψ
z ) are the polar-

ization vectors of the J/ψ in the decay amplitude and its complex conjugate, respectively.

Due to the parity conservation and the rotational invariance about the z-axis after the

– 7 –
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integration of azimuthal angle, ϕ, the decay matrix for the polar angular distribution must

have the structure Mi,j
decay = c1 δ

i,j + c2 δ
i,zδj,z, where c1 and c2 are the coefficients deter-

mined by the dynamics. That is, only the diagonal entries, i.e. the terms with J
J/ψ
z = J̃

J/ψ
z

of the J/ψ spin density matrix, ρH
JHz ,J̃

H
z

in eq. (2.2), can contribute to the polar angular

distribution in eq. (2.9) [29].

Furthermore, because of the parity and time-reversal invariance of QED, we have

εi(J
J/ψ
z )Mi,j

decayε
∗
j (J

J/ψ
z ) = εi(−JJ/ψz )Mi,j

decayε
∗
j (−J

J/ψ
z ). Consequently, the polar angular

distribution depends only on the combination of ρ
J/ψ

J
J/ψ
z ,J

J/ψ
z

+ρ
J/ψ

−JJ/ψz ,−JJ/ψz

. Similar argument

also applies to the production of other heavy quarkonium states. That is, the polar angular

distribution of the decaying products from any produced heavy quarkonium H depends only

on the combination of the spin density matrices: ρH
JHz ,J

H
z

+ ρH−JHz ,−JHz
.

Therefore, we can use the selection rules in eqs. (2.3) and (2.6) to find out all relevant

QQ̄-pair channels (n, ñ) that contribute to the polar angular distribution. In addition to

all diagonal channels with n = ñ, there are also many offdiagonal channels. For example,

if n is S-wave, all S-D mixing channels are allowed; and if n is P -wave, there are P -P

mixing channels as well as P -F mixing channels:(
1S

[b]
0 ,

1D
[b]
2,0

)
,

(
3S

[b]
1,Jz

, 3D
[b]

J̃ ,Jz

)
,

(
3P

[b]
J,Jz

, 3P
[b]

J̃ ,Jz

)
,(

1P
[b]
1,Jz

, 1F
[b]
3,Jz

) (
3P

[b]
J,Jz

, 3F
[b]

J̃ ,Jz

)
, (2.10)

where b = 1, 8 labels the color of the QQ̄ pair.

Since the polar angular distribution is proportional to the sum of two spin density

matrices with the opposite signed z-component of quarkonium angular momentum, we

introduce the reduced spin density matrices as

ρH|JHz |
≡ 1

2

(
ρHJHz ,JHz

+ ρH−JHz ,−JHz

)
≡ ρHλ (2.11)

with λ = L, T, TT, · · · , corresponding to |JHz | = 0, 1, 2, · · · , respectively. From the NRQCD

factorization in eq. (2.2), and using 〈0|OH(JHz ,J
H
z )

[QQ̄(n,ñ)]
|0〉 = 〈0|OH(−JHz ,−JHz )

[QQ̄(−ñ,−n)]
|0〉, where −n ≡

2S+1L
[b]
J,−Jz and similarly for −ñ, which is an immediate consequence of the time-reversal

invariance of QCD, we find that the reduced spin density matrices in eq. (2.11) can be

factorized as,

ρHλ =
∑
n,ñ

1

2

(
ρ̂

[QQ̄]
n,ñ + ρ̂

[QQ̄]
−ñ,−n

) 1

2

(
〈0|OHλ

[QQ̄(n,ñ)]
|0〉+ 〈0|OHλ

[QQ̄(−ñ,−n)]
|0〉
)
, (2.12)

where the reduced NRQCD operators are defined as

OHλ ≡
∑
|JHz |

OH(JHz ,J
H
z ) =

1

2

(
OH(JHz ,J

H
z ) +OH(−JHz ,−JHz )

)
, (2.13)

where the subscript λ is defined right below eq. (2.11).

– 8 –
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Quarkonium Essential channels

ηQ(nS) (1S
[1]
0 )[v0], (3S

[8]
1,L)[v3], (3S

[8]
1,T )[v3]

ψ(nS),Υ(nS) (3S
[1]
1,λ)[v0], (1S

[8]
0 )[v3], (3S

[8]
1,λ)[v4], (3,λP [8])[v4]

hQ(nP ) (1P
[1]
1,λ)[v0], (1S

[8]
0 )[v0], (3S

[8]
1,L)[v3], (3S

[8]
1,T )[v3]

χQJ(nP ) (3P
[1]
J,λ)[v0], (3S

[8]
1,L)[v0], (3S

[8]
1,T )[v0]

Table 1. Essential channels for various polarized heavy quarkonium production, with relative

power-counting of each channel explicitly. λ represents the polarization of the heavy quarkonium,

and could be L, T or TT depending on the specific state. Q can be either charm or bottom.

2.3 NRQCD power counting

The general discussions in last subsection were based only on the symmetry properties

of QED and QCD. In principle, one needs all allowed QQ̄ channels for any quarkonium

production. In practice, however, different channels are not equally important. The relative

importance of different channels in power of v is governed by the velocity scaling rule of

NRQCD [4].

To derive the scaling rule, one first expands the wave function of a physical heavy

quarkonium H into different Fock states in NRQCD effective field theory. For a conven-

tional heavy quarkonium, its dominant Fock state is a QQ̄-pair Fock state with a definite

quantum number, which is the same as the one usually used to denote the produced quarko-

nium, while all other Fock states are suppressed by powers of v. The relative suppression

can be estimated by color multipole expansion: the suppression is at O(v) if two Fock states

are related by a color electric dipole transition (E1); and the suppression is at O(v3/2) if the

two Fock states are related by a color magnetic dipole transition (M1) [4]. Therefore, the

expansion for the wave function of a heavy quarkonium H with quantum number 2S+1LJ
can be expressed as,

|H(2S+1LJ)〉 = O(1)|QQ̄(2S+1L
[1]
J )〉+O(v)|QQ̄(2S+1(L± 1)

[8]
J ′ )g〉

+O(v3/2)|QQ̄(3−2SL
[8]
J ′ )g〉+O(v2)|QQ̄(2S+1L′

[1,8]
J ′ )gg〉+ · · · .

(2.14)

In addition to the suppression caused by the Fock states expansion, there is another sup-

pression factor at O(vL+L̃) for the QQ̄-pair channel (n, ñ) because of the derivative opera-

tion associated with the orbital angular momentum of the operators. Based on these power

counting rules, one can easily work out the relative importance in v of different channels

for the production of a given heavy quarkonium. We list the relative power counting of

phenomenologically important channels for S-wave and P -wave quarkonium production in

table 1. Three general conclusions are in order:

• First, a channel mixing between different waves is always suppressed by at least

O(v2). For example, the
(

1S
[b]
0 ,

1D
[b]
2,0

)
channel in eq. (2.10) is always suppressed by

O(v2) comparing with
(

1S
[b]
0 ,

1S
[b]
0

)
channel for any quarkonium state.
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• Second, a channel mixing between different total angular momentum but the same

orbital angular momentum can be expressed in terms of a “diagonal” channel up

to O(v2) correction. For example, the mixing channels
(

3P
[8]
J,Jz

, 3P
[8]

J̃ ,Jz

)
in eq. (2.10)

contributes to the production of H = J/ψ, ψ(nS) or Υ(ns). If we assume the heavy

quark spin symmetry, the spin of the intermediate QQ̄-pair in the amplitude, Sz,

and that in the complex-conjugate amplitude, S̃z, should equal to the spin of the

hadron JHz . Furthermore, the NRQCD LDMEs corresponding to the mixing channel

and the channel with Sz = S̃z = JHz are equal to each other due to heavy quark

spin symmetry. As a result, we can define a “diagonal” channel
(

3,SzP [8], 3,SzP [8]
)

to

study heavy quarkonium production, in which the spin of the QQ̄-pair is Sz, and the

orbital angular momentum is summed over. As heavy quark spin symmetry holds

up to O(v2) correction [4], this approximate treatment is valid at the same order of

the precision.

• Third, for any heavy quarkonium state, there is at least one S-wave channel which

contributes at leading power in v; for any P -wave and higher-wave heavy quarkonium

state, there is at least one P -wave channel which contributes at leading power in v;

and so on. Thus lower-wave channels are usually more important.

With this consideration, we will calculate only S-wave and P -wave channels in this paper,

including the “diagonal” channels
(

3,SzP [b], 3,SzP [b]
)

reduced from P -P mixing channels in

eq. (2.10), and leave a complete treatment of offdiagonal channels and higher-wave channels

for future study. Since it involves only diagonal channels in our treatment (up to O(v2)

corrections), the factorization formula in eq. (2.12) can be further simplified to

ρHλ ≈
∑
n

1

2

(
ρ̂[QQ̄]
n,n + ρ̂

[QQ̄]
−n,−n

) 1

2

(
〈0|OHλ

[QQ̄(n,n)]
|0〉+ 〈0|OHλ

[QQ̄(−n,−n)]
|0〉
)

≡
∑
nλ′

ρ̂[QQ̄]
nλ′
〈0|OHλ

[QQ̄(nλ′ )]
|0〉,

(2.15)

where, similar to the parameter λ defined in eq. (2.11) for the z-components of heavy

quarkonium angular momentum JH , we introduced a parameter, λ′ = L, T, TT, · · · repre-

senting the z-component of the QQ̄-pair’s angular momentum, |Jz| = 0, 1, 2, · · · , respec-

tively. For example,

ρ̂[QQ̄]
nT

=
∑

n(|Jz |=1)

1

2

(
ρ̂[QQ̄]
n,n + ρ̂

[QQ̄]
−n,−n

)
≡
∑
|Jz |=1

ρ̂
[QQ̄]
(n,n) ,

〈0|OHλ
[QQ̄(nT )]

|0〉 =
∑

n(|Jz |=1)

1

2

(
〈0|OHλ

[QQ̄(n,n)]
|0〉+ 〈0|OHλ

[QQ̄(−n,−n)]
|0〉
)

≡
∑
|Jz |=1

〈0|OHλ
[QQ̄(n,n)]

|0〉.

(2.16)

To relate our results in this paper to polarization-summed results, we sum over the polar-
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ization λ in eq. (2.15), and obtain∑
λ

ρHλ ≈
∑
nλ′

ρ̂[QQ̄]
nλ′

∑
λ

〈0|OHλ
[QQ̄(nλ′ )]

|0〉 =
∑
nλ′

ρ̂[QQ̄]
nλ′

1

2J + 1
〈0|OH[QQ̄(n̄)]|0〉, (2.17)

where 〈0|OH
[QQ̄(n̄)]

|0〉 =
∑

Jz
〈0|OH

[QQ̄(n,n)]
|0〉 is the usual polarization-summed NRQCD

LDME. To obtain the second equal sign in eq. (2.17), we have used the factor that the

summation
∑

λ〈0|O
Hλ
[QQ̄(nλ′ )]

|0〉 is independent of λ′ because of rotation invariance.

Our calculations in this paper should be sufficient for the current phenomenological

study of S-wave and P -wave heavy quarkonium production. In the next section, we provide

a simple scheme to define all these operators in d-dimensions.

3 Definition of polarized NRQCD LDMEs in d dimensions

In refs. [19, 20], we calculated both the single parton and heavy quark pair FFs for an

polarization-summed heavy quarkonium. We used CDR to regularize all the UV and IR

divergences. By doing this, we implicitly generalized the polarization-summed NRQCD

LDMEs to arbitrary d-dimensions. With Jz of the heavy quarkonium summed over, this

generalization is simple since there is no special direction in the heavy quarkonium rest

frame. In this polarization-summed case, the possible generalization can be achieved by

extending the SO(3) symmetry to the SO(d − 1) symmetry [19, 20]. That is, we demand

all QQ̄-pair channels to be covariant under the action of SO(d− 1) rotation group, similar

to the 4-dimensions case.

The situation is more complicated with the quarkonium’s polarization observed, where

a specific z-axis direction needs to be specified. For example, in the hadron helicity frame,

the z-axis is chosen to be along the moving direction of the heavy quarkonium in the

Laboratory frame. To separate contributions with the same J but different |Jz|, we need

to know more details of the SO(d− 1) rotation group. The situation could be more severe

with angular momentum couplings, such as the L-S coupling, which is exactly what we

have in the NRQCD factorization.

In this section, we provide a simple scheme to separate the contributions with different

J and |Jz|, which is required for the calculation of the polar angle distribution of the decay

products, like the λθ in eq. (2.8). In our scheme, we only require: (1) the wave function of

the heavy quark pair preserves all the symmetries about the z-axis when it is generalized to

d-dimensions, and (2) the d-dimensional polarization-summed NRQCD LDMEs in refs. [19,

20] are recovered after adding up corresponding polarized ones. Consequently, the following

rules are valid for S-wave and P -wave channels,

• Case 1: for 3S1 and 1P1, the wave functions of the heavy quark pair with |Jz| = 1 (or

Jz = 0) in its rest frame are antisymmetric (or symmetric) when flipping the direction

of all axes except ẑ axe. Note that, it is hard to define the rotation operation in d

dimensions, but the flipping operation described here is always well-defined.2

2We effectively assume that in both 4-dimensions and d-dimensions, the operation of rotating π rad

about the z-axis is well defined, and is equivalent to flipping the direction of all axes except z-axis.
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• Case 2: for 3PJ , the wave function with J = 0 is a scalar, i.e. it has a SO(d − 1)

symmetry. Wave functions with J = 2 (or J = 1) are symmetric (or anti-symmetric)

tensors in their orbital and spin indices, and are constructed to be traceless.

• Case 3: for 3P2, the wave functions with |Jz| = 1 can be separated from those with

|Jz| = 0, 2 by requiring that they are antisymmetric under flipping the direction of

all axes except z, similar to the Case 1 above. The wave functions with Jz = 0 and

|Jz| = 2 can be further separated by requiring the wave function with Jz = 0 to have

a SO(d− 2) symmetry in the space perpendicular to z-axis.

• Case 4: for 3P1, the wave functions with |Jz| = 1 can be singled out by requiring that

they are antisymmetric under flipping the direction of all axes except z, similar to

the Case 1 above. We define the symmetric part under this operation as the wave

function with Jz = 0.3

Notice that in d-dimensions, there is no unique way to group states into categories with

different J and |Jz|. Different grouping methods are equally good as long as they are

consistent and give the correct decomposition at d = 4. They could serve as different

schemes in the dimensional regularization.

As an example, we consider the polarized LDMEs for J/ψ production below, which

is of great phenomenological interest, while giving definitions of all S-wave and P -wave

NRQCD LDMEs in appendix A. The most important [QQ̄(n)] channels in eq. (2.15) for

J/ψ production are 3S
[1]
1 , 3S

[8]
1 , 1S

[8]
0 and 3P

[8]
J (see table. 1). For 3S

[1]
1 channel, the wave

function for polarization-summed QQ̄-pair in its rest frame can be chosen as a (d − 1)

dimensional vector4

|ΨQQ̄[3S1]〉 = cjψ†σjχ|0〉 (3.1)

where ψ (χ) is the annihilation (the creation) operator for a heavy quark (a heavy anti-

quark) in the center of mass frame of the pair, {ψ†σjχ|0〉} with j = 1 . . . (d − 1) are the

basis states/vectors of the Hilbert space for |ΨQQ̄[3S1]〉, and cj are the corresponding coor-

dinates. In this Hilbert space with d = 4, the 3 × 3 matrix representation of the flipping

operation described in the Case 1 above is diag(−1,−1, 1), which can be easily generalized

to (d− 1)× (d− 1) matrix representation:

Dflip
i,j = diag(−1, · · · ,−1, 1), (3.2)

3Different from the 4-dimension case, wave functions with |Jz| = 0, 1, 2 for 3P1 channel are allowed in

d-dimensions. Wave functions with |Jz| = 1 are transversely polarized at d = 4. Wave functions with

|Jz| = 2 have different parity from wave functions with |Jz| = 1, and vanish at d = 4. It is then natural to

consider |Jz| = 2 wave functions as longitudinally polarized in d-dimensions.
4The coupling of two spinors in d-dimensions also have high-spin representations. On the one hand, their

contribution to spin-0 and spin-1 representation is at least suppressed by v3 because of the heavy quark

spin symmetry [35]. On the other hand, one could always ignore them by using a different dimensional

regularization scheme, where spinors are in 4-dimensions.

Here we only consider the components at leading powers in v, relativistic corrections can be constructed

by inserting covariant derivatives, as in ref. [4].
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where ellipsis represents (d−4) copies of −1. With eq. (3.2), we separate the “longitudinal

polarization” space spanned by the basis state {ψ†σzχ|0〉} from the “transverse polariza-

tion” space spanned by the basis states {ψ†σj⊥χ|0〉}, with j⊥ includes all values of j defined

in eq. (3.1), except j = z. We could then construct the definitions of polarized NRQCD

LDMEs for [QQ̄(3S
[1]
1 )] in d-dimensions as

OHλ(3S
[1]
1,T ) =

1

d− 2

1

2Nc
χ†σj⊥ψ(a†HλaHλ)ψ†σj⊥χ, (3.3a)

OHλ(3S
[1]
1,L) =

1

2Nc
χ†σzψ(a†HλaHλ)ψ†σzχ, (3.3b)

where the summation of j⊥ is suppressed, aHλ is the annihilation operator of heavy quarko-

nium H with polarization λ, and 1
(d−2)(2Nc)

is a normalization factor. The corresponding

NRQCD LDMEs for 3S
[8]
1 channel can be obtained by removing 1/(2Nc) in eq. (3.3) and

inserting one SU(N) color matrices T a to the operator of each heavy quark pair.

For J/ψ production, the analysis of the 3P
[8]
J channel is greatly simplified if we assume

the heavy quark spin symmetry, as explained at the end of subsection 2.3. Since the spin of

the produced J/ψ must be the same as the spin of the intermediate QQ̄-pair in the leading

power of v, the orbital angular momentum of the heavy quark pair can be effectively

summed over. In this way, we can apply the same flipping operation as in eq. (3.2), but

only to the spin index, and we obtain

OHλ(3,TP [8]) =
1

(d− 1)(d− 2)
χ†
(
− i

2

←→
D kσj⊥

)
T aψ(a†HλaHλ)ψ†

(
− i

2

←→
D kσj⊥

)
T aχ,

(3.4a)

OHλ(3,LP [8]) =
1

(d− 1)
χ†
(
− i

2

←→
D jσz

)
T aψ(a†HλaHλ)ψ†

(
− i

2

←→
D jσz

)
T aχ, (3.4b)

where

ψ†
←→
Dχ ≡ ψ†(Dχ)− (Dψ)†χ. (3.5)

A complete treatment of the 3P
[8]
J channel without summing over the orbital angular mo-

mentum needs QQ̄ channels offdiagonal in (n, ñ), as analyzed in section 2. For simplicity,

we do not consider individual offdiagonal LDMEs as their overall contributions can be

included in the LDMEs in eq. (3.4).

4 NRQCD factorization on input FFs

The NRQCD factorization formula derived in eq. (2.15) can also be applied to FFs at the

initial scale µ0. To be specific, the input single parton FFs and the QQ̄-pair FFs to a
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polarized heavy quarkonium can be written in the following factorized form5

Df→Hλ′ (z;mQ, µ0) =
∑
nλ

d̂f→[QQ̄(nλ)](z;mQ, µ0, µΛ)〈OHλ′
[QQ̄(nλ)]

(µΛ)〉, (4.1a)

D[QQ̄(κ)]→Hλ′ (z, ζ1, ζ2;mQ, µ0) =
∑
nλ

d̂[QQ̄](κ)→[QQ̄(nλ)](z, ζ1, ζ2;mQ, µ0, µΛ)〈OHλ′
[QQ̄(nλ)]

(µΛ)〉,

(4.1b)

where µ0 & 2mQ is the QCD factorization scale, µΛ ∼ mQ is the NRQCD factorization

scale, and λ (λ′) denotes the polarization of the intermediate NRQCD QQ̄ pair (observed

heavy quarkonium H). In eq. (4.1a), f = Q, Q̄, q, q̄, g is the flavor of the fragmenting

parton, and the variable z is the light-cone momentum fraction of the parton taken by the

quarkonium H. In eq. (4.1b), κ = v[1,8], a[1,8] or t[1,8] represents the vector, axial-vector or

tensor spin states of the fragmenting heavy quark pair, respectively, where the superscript

labels the singlet (1) or octet (8) color state of the pair. The variables ζ1 and ζ2 in eq. (4.1b),

defined in refs. [19, 20], represent the relative light-cone momentum fractions of the heavy

quark pair in the amplitude and its complex conjugate, respectively.

The short-distance coefficients (SDCs), d̂’s in eq. (4.1), are insensitive to any particular

quarkonium state Hλ′ , which is an immediate consequence of the factorization. We can

derive these SDCs by replacing the final heavy quarkonium state by an asymptotic heavy

quark pair [QQ̄(n′λ′)],

Df→[QQ̄(n′
λ′ )]

(z;mQ) =
∑
nλ

d̂f→[QQ̄(nλ)](z;mQ)〈O[QQ̄(n′
λ′ )]

[QQ̄(nλ)]
〉, (4.2a)

D[QQ̄](κ)→[QQ̄(n′
λ′ )]

(z, ζ1, ζ2;mQ) =
∑
nλ

d̂[QQ̄](κ)→[QQ̄(nλ)](z, ζ1, ζ2;mQ)〈O[QQ̄(n′
λ′ )]

[QQ̄(nλ)]
〉, (4.2b)

where the dependence on the factorization scales is suppressed. In eq. (4.2), the l.h.s. can

be calculated with perturbative QCD, while the LDMEs on the r.h.s. can be calculated

with perturbative NRQCD. By matching the l.h.s. and the r.h.s. , the SDCs can be obtained

order by order in αs.

In this paper, we follow the convention used in refs. [19, 20], and expand the SDCs as

Df→Hλ′ (z;mQ, µ0)

=
∑
nλ

παs

{
d̂

(1)

f→[QQ̄(nλ)]
(z;mQ, µ0, µΛ) (4.3a)

+

(
αs
π

)
d̂

(2)

f→[QQ̄(nλ)]
(z;mQ, µ0, µΛ) +O(α2

s)

}
×
〈OHλ′

[QQ̄(nλ)]
(µΛ)〉

m2L+3
Q

,

5In this paper we work in the hadron helicity frame, in which the mixed fragmentation with a single

parton in the amplitude and a heavy quark pair in the complex conjugate of the amplitude does not exist,

following the same argument in section IIB of ref. [8].
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D[QQ̄(κ)]→Hλ′ (z, ζ1, ζ2, µ0;mQ)

=
∑
nλ

{
d̂

(0)

[QQ̄(κ)]→[QQ̄(nλ)]
(z, ζ1, ζ2, µ0;mQ, µΛ) (4.3b)

+
(αs
π

)
d̂

(1)

[QQ̄(κ)]→[QQ̄(nλ)]
(z, ζ1, ζ2, µ0;mQ, µΛ) +O(α2

s)

}
×
〈OHλ′

[QQ̄(nλ)]
(µΛ)〉

m2L+1
Q

.

Now with the d-dimensional polarized NRQCD LDMEs and the projection operators

derived from these LDMEs, we can apply CDR to regularize all the divergences in the cal-

culation of the l.h.s. of eq. (4.2), with a particular polarized [QQ̄(n′λ′)] state. In the NLO

perturbative calculation of the l.h.s. , there exists (1) UV divergences, which are removed by

QCD renormalization and the renormalization of composite operators; (2) rapidity diver-

gence, which are canceled when adding up all Feynman diagrams; (3) Coulomb divergence

and IR divergence, which are canceled between the l.h.s. and the NRQCD LDMEs on the

r.h.s. , if NRQCD factorization is valid. The cancellation of the Coulomb divergence and

IR divergence needs NLO calculation of polarized NRQCD LDMEs, which are also given

in appendix A.

These polarized SDCs and the polarization-summed SDCs are not independent. With

the definitions of the polarized NRQCD LDMEs in appendix A, one can obtain the relation

d̂
(1 or 2)

f→[QQ̄(n)]
=

1

NNR
n

∑
λ

d̂
(1 or 2)

f→[QQ̄(nλ)]
, (4.4a)

d̂
(0 or 1)

[QQ̄(κ)]→[QQ̄(n)]
=

1

NNR
n

∑
λ

d̂
(0 or 1)

[QQ̄(κ)]→[QQ̄(nλ)]
, (4.4b)

where d̂
(1 or 2)

f→[QQ̄(n)]
and d̂

(0 or 1)

[QQ̄(κ)]→[QQ̄(n)]
are the polarization-summed SDCs, and NNR

n are

number of polarization states for the channel n, both of which can be found in refs. [19, 20].

The summation of λ runs over all polarization states of n. In appendix B and C, we only

list the d̂
(1 or 2)

f→[QQ̄(nλ)]
and d̂

(0 or 1)

[QQ̄(κ)]→[QQ̄(nλ)]
for one polarization state for 3S1, 1P1, and 3P1

channels, and two polarization states for 3P2 channel. One can derive the rest by using the

relations in eq. (4.4).

5 Discussion and summary

In this paper, we derived all nonvanishing channels of producing a heavy-quark pair (n, ñ)

for polarized heavy quarkonium production in NRQCD factorization. We introduced a

scheme to generalize the polarized NRQCD LDMEs to arbitrary d-dimensions. With these

d-dimensional NRQCD LDMEs, we apply CDR to calculate the single-parton and heavy-

quark pair FFs, up to the NLO in αs, for the production of all polarized S-wave and

P -wave heavy quarkonium at the input scale µ0 & 2mQ. We find that all perturbative

divergences are canceled at this order, and all derived SDCs are finite as expected. With

our results, as well as the evolution kernels and the hard parts calculated in refs. [8, 18],

the QCD factorization formalism can be used to generate predictions for the polarization
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3S
[1]
1

3S
[8]
1

3P
[8]
J

1S
[8]
0

g T

v[1] L

v[8] L L

a[1]

a[8] T Un

Table 2. Contributions of LO FFs to the J/ψ polarization. The labels “T”, “L”, and “Un”

represent transversely polarized, longitudinally polarized, and unpolarized J/ψ, respectively.

of produced heavy quarkonia in the hadron helicity frame, which have been measured at

the Tevatron and the LHC.

In addition to the surprisingly large NLP contribution to the yield of J/ψ [23], our

results in this paper further demonstrate the potential importance of the NLP to the

J/ψ polarization. In table 2, we show the LO contributions from different channels to

the J/ψ polarization. The single-quark fragmentations are not important since they are

suppressed at large z [19]. The contribution with a fragmenting QQ̄ pair in a tensor

state is suppressed by the hard part [18]. These suppressed channels are not showed in

table 2. For completeness, we also list the 1S
[8]
0 channel, which contributes to unpolarized

J/ψ production.

Contrary to the contribution at the LP, most production channels at the NLP con-

tribute to longitudinally polarized J/ψ. Recall that the NLP contributes to the production

rate, both directly by the NLP term in the factorized cross section, and indirectly through

the mixed kernels in the evolution equations of the single-parton FFs (see ref. [8] for more

details). Especially, the indirect contribution can increase the longitudinal component of

produced J/ψ from gluon fragmentation when the gluon FF is evolved from the input scale

µ0 & 2mQ to the hard scale µ ∼ pT . Although the details need more studies, we believe

our results in this paper will be very helpful for understanding the polarization of heavy

quarkonium production.
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A Polarized NRQCD LDMEs

This appendix is organized as follows. In subsection A.1, we list the definitions of all

essential d-dimensional polarized NRQCD LDMEs with the S-wave and P -wave heavy-

quark pair. In subsection A.2, we present the projection operators for the calculation of

SDCs. In subsection A.3, we expand the polarized NRQCD LDMEs to NLO in αs, which

are necessary for the full cancellation of IR divergences in the NLO calculation of SDCs.

A.1 NRQCD LDMEs

With the method expained in section 3, we give our definitions of normalized NRQCD four-

fermion operators for polarized heavy quarkonium production in an arbitrary dimension d.

OHλ(3S
[8]
1,T ) =

1

(d− 2)
χ†σj⊥ T aψ(a†HλaHλ)ψ†σj⊥ T aχ, (A.1a)

OHλ(3S
[8]
1,L) = χ†σz T aψ(a†HλaHλ)ψ†σz T aχ, (A.1b)

OHλ(1P
[8]
1,T ) =

1

(d− 2)
χ†
(
− i

2

←→
D j⊥

)
T aψ(a†HλaHλ)ψ†

(
− i

2

←→
D j⊥

)
T aχ, (A.1c)

OHλ(1P
[8]
1,L) = χ†

(
− i

2

←→
D z

)
T aψ(a†HλaHλ)ψ†

(
− i

2

←→
D z

)
T aχ, (A.1d)

OHλ(3P
[8]
1,T ) =

1

2(d− 2)
χ†(− i

2

←→
D [ j⊥ σz])T aψ(a†HλaHλ)ψ†(− i

2

←→
D [ j⊥ σz])T aχ, (A.1e)

OHλ(3P
[8]
1,L) =

1

2(d− 2)(d− 3)
χ†
(
− i

2

←→
D [ j⊥ σk⊥]

)
T aψ

(a†HλaHλ)ψ†
(
− i

2

←→
D [ j⊥ σk⊥]

)
T aχ,

(A.1f)

OHλ(3P
[8]
2,TT ) =

2

(d−1)(d−2)−2
χ†
(
− i

2

(
1

2

←→
D { j⊥ σk⊥}− δ

j⊥k⊥

d−2

←→
D T · σT

))
T aψ

(a†HλaHλ)ψ†
(
− i

2

(
1

2

←→
D { j⊥ σk⊥} − δj⊥k⊥

d− 2

←→
D T · σT

))
T aχ,

(A.1g)

OHλ(3P
[8]
2,T ) =

1

2(d− 2)
χ†
(
− i

2

←→
D { j⊥ σz}

)
T aψ(a†HλaHλ)ψ†

(
− i

2

←→
D { j⊥ σz}

)
T aχ,

(A.1h)

OHλ(3P
[8]
2,L) =

d− 2

d− 1
χ†
(
− i

2

(
←→
D z σz − 1

d− 2

←→
D T · σT

))
T aψ

(a†HλaHλ)ψ†
(
− i

2

(
←→
D z σz − 1

d− 2

←→
D T · σT

))
T aχ,

(A.1i)

OHλ(3P
[8]
0 ) =

1

d− 1
χ†
(
− i

2

←→
D · σ

)
T aψ(a†HλaHλ)ψ†

(
− i

2

←→
D · σ

)
T aχ, (A.1j)

OHλ(1S
[8]
0 ) = χ† T aψ(a†HλaHλ)ψ† T aχ, (A.1k)
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where the summations of j⊥ and k⊥ run over all directions perpendicular to ẑ-axis, and

ψ†
←→
Dχ ≡ ψ†(Dχ)− (Dψ)†χ, (A.2a)

←→
D T · σT ≡

←→
D · σ −

←→
D zσz, (A.2b)

←→
D [ j⊥ σk⊥] ≡

←→
D j⊥ σk⊥ −

←→
D k⊥ σj⊥ , (A.2c)

←→
D { j⊥ σk⊥} ≡

←→
D j⊥ σk⊥ +

←→
D k⊥ σj⊥ . (A.2d)

Subscripts TT , T , and L represent the non-relativistic QQ̄ pair with |Jz| = 2, |Jz| = 1 and

Jz = 0, respectively. Polarization of the heavy quarkonium H is labelled by λ, which can

be TT , T and L, depending on the specific JHz state of the H. For completeness, we also

list the operators for states 3P0 and 1S0, which are unpolarized.

As mentioned at the end of section 3, the 3P
[8]
J channel can be greatly simplified by using

the heavy quark spin symmetry, so that we only need two NRQCD LDMEs in eq. (3.4):

OHλ(3,TP [8]) =
1

(d−1)(d−2)
χ†
(
− i

2

←→
D kσj⊥

)
T aψ(a†HλaHλ)ψ†

(
− i

2

←→
D kσj⊥

)
T aχ,

(A.3a)

OHλ(3,LP [8]) =
1

(d− 1)
χ†
(
− i

2

←→
D jσz

)
T aψ(a†HλaHλ)ψ†

(
− i

2

←→
D jσz

)
T aχ, (A.3b)

The color-singlet operators can be obtained from their color-octet counterparts in eqs. (A.1)

and (A.3) by removing the two T a’s and multiplying the factor 1/(2Nc).

The LDMEs defined in eqs. (A.1) and (A.3) have been normalized by the number of

spin states,

NNR
3S1,T

= NNR
1P1,T

= NNR
3P1,T

= NNR
3P2,T

= d− 2, (A.4a)

NNR
3S1,L

= NNR
1P1,L

= NNR
3P2,L

= 1, (A.4b)

NNR
3P1,L

=
1

2
(d− 2)(d− 3), (A.4c)

NNR
3P2,TT

=
1

2
(d− 1)(d− 2)− 1, (A.4d)

NNR
3,TP = (d− 1)(d− 2), (A.4e)

NNR
3,LP = d− 1. (A.4f)

By adding the number of spin states with the same J but different |Jz|, we can retrieve

the normalization factor for unpolarized heavy-quark-pair in refs. [19, 20]. With the def-

initions above, it is straightforward to check that adding up all operators with the same

J but different |Jz| weighted by the number of spin states, we reproduce the conventional

definitions of unpolarized NRQCD LDMEs at arbitrary d dimension,

〈OHλ
[QQ̄(n)]

(µΛ)〉 =
∑
nλ′

NNR
nλ′
〈OHλ

[QQ̄(nλ′ )]
(µΛ)〉, (A.5)

which correspond to definitions in ref. [4] by setting d = 4.6

6Note that our definitions of color singlet NRQCD LDMEs differ from the definitions in ref. [4] by a

factor of 1/(2Nc), while the definitions of color octet NRQCD LDMEs are the same.
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A.2 Projection operators

With the definitions of d-dimensional polarized NRQCD LDMEs, we derive the projection

operators in the same way as in the polarization-summed case,

PNR
3S1,T

= PNR
1P1,T

= Pββ
′

⊥ (p), (A.6a)

PNR
3S1,L

= PNR
1P1,L

= Pββ
′

‖ (p), (A.6b)

PNR
3P1,T

=
1

2

(
Pαα

′
⊥ (p)Pββ

′

‖ (p) + Pββ
′

⊥ (p)Pαα
′

‖ (p)− Pαβ
′

⊥ (p)Pβα
′

‖ (p)

−Pβα
′

⊥ (p)Pαβ
′

‖ (p)
)
, (A.6c)

PNR
3P1,L

=
1

2

(
Pαα

′
⊥ (p)Pββ

′

⊥ (p)− Pαβ
′

⊥ (p)Pβα
′

⊥ (p)
)
, (A.6d)

PNR
3P2,TT

=
1

2

(
Pαα

′
⊥ (p)Pββ

′

⊥ (p) + Pαβ
′

⊥ (p)Pα
′β
⊥ (p)

)
− 1

d− 2
Pαβ⊥ (p)Pα

′β′

⊥ (p), (A.6e)

PNR
3P2,T

=
1

2

(
Pαα

′
⊥ (p)Pββ

′

‖ (p) + Pββ
′

⊥ (p)Pαα
′

‖ (p) + Pαβ
′

⊥ (p)Pβα
′

‖ (p)

+Pβα
′

⊥ (p)Pαβ
′

‖ (p)
)
, (A.6f)

PNR
3P2,L

=
d− 2

d− 1

(
Pαβ‖ (p)− 1

d− 2
Pαβ⊥ (p)

)(
Pα
′β′

‖ (p)− 1

d− 2
Pα
′β′

⊥ (p)

)
, (A.6g)

PNR
3P0

=
1

d− 1
Pαβ(p)Pα

′β′(p), (A.6h)

PNR
1S0

= 1, (A.6i)

PNR
3,TP = Pαα

′
(p)Pββ

′

⊥ (p), (A.6j)

PNR
3,LP = Pαα

′
(p)Pββ

′

‖ (p), (A.6k)

where the superscript “NR” refers to NRQCD, and

Pαα
′

⊥ (p) = −gαα′ +
pαn̂α

′
+ pα

′
n̂α

p · n̂
− p2

(p · n̂)2
n̂αn̂α

′
, (A.7a)

Pαα
′

‖ (p) =
pαpα

′

p2
− pαn̂α

′
+ pα

′
n̂α

p · n̂
+

p2

(p · n̂)2
n̂αn̂α

′
, (A.7b)

Pαα
′
(p) = Pαα

′

‖ (p) + Pαα
′

⊥ (p) = −gαα′ +
pαpα

′

p2
. (A.7c)

α and β (α′ and β′) are the indices for the orbital angular momentum and spin of the

heavy quark pair in the amplitude (complex conjugate of the amplitude), respectively. By

adding up all projection operators with different |Jz| but the same J , we can get the same

unpolarized projection operators in refs. [19, 20]. By setting d = 4 for the PNR
3P2,λ

with

λ = L, T, TT , we retrieve the results in ref. [37].

A.3 Expand the polarized LDMEs to NLO in perturbative NRQCD

To complete the cancelation of all IR divergences in the NLO calculation of SDCs, we

need to expand the polarized NRQCD LDMEs to NLO in powers of αs, the same as what
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was done in the polarization-summed case. We calculate the NLO NRQCD corrections for

four-fermion operators using similar method as described in ref. [38]. For our purpose, we

only give the NLO correction of 4-fermion S-wave operators:

〈O[QQ̄]λ(1S
[1]
0 )〉 = 〈O[QQ̄]λ(1S

[1]
0 )〉LO

− Cε
1

2Nc

{
(d− 2)〈O[QQ̄]λ(1P

[8]
1,T )〉LO + 〈O[QQ̄]λ(1P

[8]
1,L)〉LO

}
,

(A.8a)

〈O[QQ̄]λ(1S
[8]
0 )〉 = 〈O[QQ̄]λ(1S

[8]
0 )〉LO

− Cε
{
CF

(
(d− 2)〈O[QQ̄]λ(1P

[1]
1,T )〉LO + 〈O[QQ̄]λ(1P

[1]
1,L)〉LO

)
+BF

(
(d− 2)〈O[QQ̄]λ(1P

[8]
1,T )〉LO + 〈O[QQ̄]λ(1P

[8]
1,L)〉LO

)}
,

(A.8b)

〈O[QQ̄]λ(3S
[1]
1,T )〉 = 〈O[QQ̄]λ(3S

[1]
1,T )〉LO − Cε

1

2Nc
W

[8]
T , (A.8c)

〈O[QQ̄]λ(3S
[1]
1,L)〉 = 〈O[QQ̄]λ(3S

[1]
1,L)〉LO − Cε

1

2Nc
W

[8]
L , (A.8d)

〈O[QQ̄]λ(3S
[8]
1,T )〉 = 〈O[QQ̄]λ(3S

[8]
1,T )〉LO − Cε

{
CF W

[1]
T +BF W

[8]
T

}
, (A.8e)

〈O[QQ̄]λ(3S
[8]
1,L)〉 = 〈O[QQ̄]λ(3S

[8]
1,L)〉LO − Cε

{
CF W

[1]
L +BF W

[8]
L

}
, (A.8f)

where CF = N2
c−1

2Nc
, BF = N2

c−4
4Nc

and Cε = 4αs
3πm2

Q

1
εIR

(4πe−γE )ε
( µr
µΛ

)ε
. In eq. (A.8), W

[1,8]
L

and W
[1,8]
T are defined as

W
[b]
T = (d− 1)〈O[QQ̄]λ(3,TP [b])〉LO + · · ·

=
1

d− 1
〈O[QQ̄]λ(3P

[b]
0 )〉LO +

1

2
〈O[QQ̄]λ(3P

[b]
1,T )〉LO

+
d− 3

2
〈O[QQ̄]λ(3P

[b]
1,L)〉LO +

(d− 1)(d− 2)− 2

2(d− 2)
〈O[QQ̄]λ(3P

[b]
2,TT )〉

+
1

2
〈O[QQ̄]λ(3P

[b]
2,T )〉LO +

1

(d− 1)(d− 2)
〈O[QQ̄]λ(3P

[b]
2,L)〉LO + · · · ,

(A.9a)

W
[b]
L = (d− 1)〈O[QQ̄]λ(3,LP [b])〉LO + · · ·

=
1

d− 1
〈O[QQ̄]λ(3P

[b]
0 )〉LO +

d− 2

2
〈O[QQ̄]λ(3P

[b]
1,T )〉LO

+
d− 2

2
〈O[QQ̄]λ(3P

[b]
2,T )〉LO +

d− 2

d− 1
〈O[QQ̄]λ(3P

[b]
2,L)〉LO + · · · ,

(A.9b)

where 〈O[QQ̄]λ(3,TP [b])〉LO and 〈O[QQ̄]λ(3,LP [b])〉LO are the leading order terms of LDMEs of

NRQCD operators in eqs. (A.3), respectively, and ellipsis denotes terms that are irrelevant

for our calculation.

To derive the expressions in eqs. (A.8), we replace d by (4− 2ε) only for the dimension

of loop momentum in the calculation while keeping d’s in other places untouched, and

define a renormalization scheme for LDMEs to subtract all terms that are proportional to

CUVε , which is the same as Cε by replacing εIR by εUV . Our renormalization scheme is

similar to the conventional MS scheme, but not exactly the same. The advantage of our
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renormalization scheme is that, if LDMEs are defined differently by a factor of 1 + O(ε),

the d dependence in eqs. (A.8) will be modified correspondingly, but the calculated finite

short-distance coefficients given in the next two appendixes are unaltered .

B Single-parton fragmentation functions to a polarized heavy quarko-

nium

In this appendix we list the SDCs for all single-parton fragmentation functions to S-wave

and P -wave polarized QQ̄-pair up to order O(α2
s) defined in eq. (4.3a). The polarized

FFs and unpolarized FFs are related by eq. (4.4). Therefore for outgoing QQ̄ with n + 1

polarizations, we only give n polarized FFs below. The other one can be derived by using

eq. (4.4) and the unpolarized FFs calculated in ref. [19]. All channels that vanish for all

polarizations are not listed.

B.1 Gluon FFs

Leading order:

d̂
(1)

g→[QQ̄(3S
[8]
1,L)]

= 0. (B.1)

Next-to-leading order:

d̂
(2)

g→[QQ̄(3P
[1]
1,L)]

=
1

3Nc

{
δ(1− z)

[
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

]
+ z(2z2 − z + 1)

1

(1− z)+

}
,

(B.2)

d̂
(2)

g→[QQ̄(3P
[1]
2,L)]

=
1

9Ncz4

{
δ(1− z)

[
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

]
+ 2z4 1

(1− z)+
− 216(z − 2)(z − 1)2 ln(1− z)

− z(2z5 + 5z4 + 38z3 − 468z2 + 864z − 432)

}
,

(B.3)

d̂
(2)

g→[QQ̄(3P
[1]
2,T )]

=
1

3Ncz4

{
δ(1− z)

[
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2

]
+ 2z4 1

(1− z)+

− 48(z4 − 5z3 + 10z2 − 10z + 4) ln(1− z)

− 2z(z5 + 4z4 − 55z3 + 152z2 − 192z + 96)

}
,

(B.4)

d̂
(2)

g→[QQ̄(3S
[8]
1,L)]

=
Nc

(N2
c − 1)

1− z
z

, (B.5)

d̂
(2)

g→[QQ̄(1P
[8]
1,T )]

=
Nc

3(N2
c − 1)

1− z
z2

[
z3 + 3z2 − 12z + 3(3z − 4) ln(1− z)

]
, (B.6)

d̂
(2)

g→[QQ̄(3P
[8]
1,L)]

=
BF
CF
× d̂ (2)

g→[QQ̄(3P
[1]
1,L)]

, (B.7)

d̂
(2)

g→[QQ̄(3P
[8]
2,L or T )]

=
BF
CF
× d̂ (2)

g→[QQ̄(3P
[8]
2,L or T )]

, (B.8)
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B.2 Different quark FFs

d̂
(2)

q→[QQ̄(3S
[8]
1,L)]

=
2(1− z)2

Ncz(η z2 − 4z + 4)
, (B.9)

where η = m2
q/m

2
Q.

B.3 Same quark FFs

d̂
(2)

Q→[QQ̄(3S
[1]
1,L)]

=
(N2

c − 1)2

6N3
c

z(1− z)2

(z − 2)6
(3z4 − 24z3 + 64z2 − 32z + 16), (B.10)

d̂
(2)

Q→[QQ̄(1P
[1]
1,L)]

=
(N2

c − 1)2

30N3
c

z(1− z)2

(z − 2)8
(55z6 − 232z5 + 236z4 + 224z3

+ 592z2 − 640z + 320), (B.11)

d̂
(2)

Q→[QQ̄(3P
[1]
1,L)]

=
(N2

c − 1)2

15N3
c

z(1− z)2

(z − 2)8
(35z6 − 312z5 + 1136z4

− 2016z3 + 1872z2 − 960z + 320), (B.12)

d̂
(2)

Q→[QQ̄(3P
[1]
2,T )]

=
(N2

c − 1)2

15N3
c

z(1− z)2

(z − 2)8
(75z6 − 580z5 + 1628z4

− 1872z3 + 1328z2 − 512z + 128), (B.13)

d̂
(2)

Q→[QQ̄(3P
[1]
2,TT )]

=
8(N2

c − 1)2

15N3
c

z(1− z)4

(z − 2)8
(5z4 − 32z3 + 68z2 − 32z + 16), (B.14)

d̂
(2)

Q→[QQ̄(3S
[8]
1,L)]

=
1

6N3
c

(1− z)2

z(z − 2)6

[
12N2

c (z − 2)4 − 12Ncz
2(z − 4)(z − 2)2

+ z2(3z4 − 24z3 + 64z2 − 32z + 16)
]
,

(B.15)

d̂
(2)

Q→[QQ̄(1P
[8]
1,L)]

=
1

(N2
c − 1)2

d̂
(2)

Q→[QQ̄(1P
[1]
1,L)]

, (B.16)

d̂
(2)

Q→[QQ̄(3P
[8]
1,L)]

=
1

(N2
c − 1)2

d̂
(2)

Q→[QQ̄(3P
[1]
1,L)]

, (B.17)

d̂
(2)

Q→[QQ̄(3P
[8]
2,T or TT )]

=
1

(N2
c − 1)2

d̂
(2)

Q→[QQ̄(3P
[8]
2,T or TT )]

. (B.18)

B.4 3PJ operators with orbital angular momentum summed

Here, we list the SDCs corresponding to the NRQCD LDMEs 3,λP [1 or 8] defined in eq. (A.3).

d̂
(2)

g→[QQ̄(3,LP [1])]
= − 1

2Ncz2

[
2(z − 1)(z2 + 8z − 12) ln(1− z)

+ z(2z3 + z2 − 28z + 24)
]
, (B.19)

d̂
(2)

g→[QQ̄(3,LP [8])]
=
BF
CF
× d̂ (2)

g→[QQ̄(3,LP [1])]
(B.20)

d̂
(2)

Q→[QQ̄(3,LP [1])]
=

(N2
c − 1)2

6N3
c

z(1− z)2

(z − 2)8
(23z6 − 192z5 + 676z4 − 1120z3

+ 1104z2 − 512z + 192), (B.21)

d̂
(2)

Q→[QQ̄(3,LP [8])]
=

1

(N2
c − 1)2

d̂
(2)

Q→[QQ̄(3,LP [1])]
. (B.22)
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B.5 Comparing with other calculations in the literature

Polarized FFs in g → QQ̄(3S
[8]
1,L) channel has been calculated in refs. [39, 40], our result in

eq. (B.5) confirms their results.

FFs from g → QQ̄(3P
[1]
1 ) and g → QQ̄(3P

[1]
2 ) channels in different polarization states

have been calculated in ref. [41] with cutoff regularization scheme. Comparing their re-

sults with ours in eqs. (B.2), (B.3) and (B.4), we find that if we change log(µ2
Λ/m

2
Q) by

log(µ2
Λ/m

2
Q) + 5/3 in our results, and take into account the different normalization of the

LDMEs, we can reproduce their results in ref. [41]. The 5/3 difference is due to different

regularization scheme and was also realized in the calculation of polarization-summed FFs

by authors of ref. [42]. Therefore, our results of FFs from g → QQ̄(3P
[1]
1 ) and g → QQ̄(3P

[1]
2 )

channels in different polarization states are consistent with the results in ref. [41].

Polarized FFs in q → QQ̄(3S
[8]
1,L), Q → QQ̄(3S

[1]
1,L) and Q → QQ̄(3S

[8]
1,L) channels have

been reported in ref. [36] when we are preparing our paper.7 The authors of ref. [36] present

their results with NRQCD LDMEs defined slightly different from ours. After taking into

account the difference of the LDMEs, our results in eqs. (B.9), (B.10) and (B.15) are

consistent with theirs.

C Double-parton fragmentation functions to a polarized heavy quarko-

nium

In this appendix we list the SDCs, up to order O(αs), for all heavy quark pair fragmentation

functions to a polarized QQ̄-pair in S-wave and P -wave, as defined in eq. (4.3b). The

polarized FFs and unpolarized FFs are related by eq. (4.4). Therefore for outgoing QQ̄

with n+1 polarizations, we only give n polarized FFs below. The other one can be derived

by using eq. (4.4) and the unpolarized FFs calculated in refs. [19, 20]. All channels that

vanish all polarizations are not listed.

C.1 ∆-functions

In our results below, we use the same definitions of ∆-functions as that introduced in

ref. [20]. We repeat these definitions below for readers’ convenience and the completeness,

∆0 = 4 δ(ζ1)δ(ζ2), (C.1)

∆′′0 = 4 z2 δ′(ζ1)δ′(ζ2), (C.2)

∆
[1]
± = 4 [δ(1− z + ζ1)± δ(1− z − ζ1)] [δ(1− z + ζ2)± δ(1− z − ζ2)] , (C.3)

∆
[1]
±
′
= −4 z

{ [
δ′(1− z + ζ1)± δ′(1− z − ζ1)

]
[δ(1− z + ζ2)± δ(1− z − ζ2)]

+ [δ(1− z + ζ1)± δ(1− z − ζ1)]
[
δ′(1− z + ζ2)± δ′(1− z − ζ2)

] }
,

(C.4)

∆
[1]
±
′′

= 4 z2
[
δ′(1− z + ζ1)± δ′(1− z − ζ1)

] [
δ′(1− z + ζ2)± δ′(1− z − ζ2)

]
, (C.5)

∆
[8]
± = 4

{
(N2

c − 2) [δ(1− z + ζ1)δ(1− z + ζ2) + δ(1− z − ζ1)δ(1− z − ζ2)]

∓ 2 [δ(1− z + ζ1)δ(1− z − ζ2) + δ(1− z − ζ1)δ(1− z + ζ2)]
}
,

(C.6)

7Our results were published previously in ref. [43], in which there was a typo for q → QQ̄(3S
[8]
1,L) channel.
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∆
[8]
±
′
= −4 z

{
(N2

c − 2)
[
δ′(1− z + ζ1)δ(1− z + ζ2) + δ(1− z + ζ1)δ′(1− z + ζ2)

+ δ′(1− z − ζ1)δ(1− z − ζ2) + δ(1− z − ζ1)δ′(1− z − ζ2)
]

∓ 2
[
δ′(1− z + ζ1)δ(1− z − ζ2) + δ(1− z + ζ1)δ′(1− z − ζ2)

+ δ′(1− z − ζ1)δ(1− z + ζ2) + δ(1− z − ζ1)δ′(1− z + ζ2)
]}
,

(C.7)

∆
[8]
±
′′

= 4 z2
{

(N2
c − 2)

[
δ′(1− z + ζ1)δ′(1− z + ζ2) + δ′(1− z − ζ1)δ′(1− z − ζ2)

]
∓ 2

[
δ′(1− z + ζ1)δ′(1− z − ζ2) + δ′(1− z − ζ1)δ′(1− z + ζ2)

] }
,

(C.8)

All these ∆-functions are invariant under the transformation (ζ1 → −ζ1, ζ2 → −ζ2) and

the exchange ζ1 ↔ ζ2, including the crossing exchange (ζ1 → −ζ2, ζ2 → −ζ1). In addition,

∆0, ∆
[1]
+ , ∆

[1]
+

′
and ∆

[1]
+

′′
are even in both ζ1 and ζ2, while ∆′′0, ∆

[1]
− , ∆

[1]
−
′

and ∆
[1]
−
′′

are odd

in both ζ1 and ζ2. Under the integration of ζ1 and ζ2 with a well behaved test function,

the asymptotic behaviors of these ∆-functions at z → 1 are

lim
z→1

∆
[1]
+ = O[1], lim

z→1
∆

[1]
− = O[(1− z)2],

lim
z→1

∆
[1]
+

′
= O[(1− z)], lim

z→1
∆

[1]
−
′
= O[(1− z)],

lim
z→1

∆
[1]
+

′′
= O[(1− z)2], lim

z→1
∆

[1]
−
′′

= O[1],

lim
z→1

∆
[8]
± = O[1], lim

z→1
∆

[8]
±
′
= O[(1− z)],

lim
z→1

∆
[8]
±
′′

= O[1],

Therefore,

∆
[1]
−

(1− z)
,

∆
[1]
±
′

(1− z)
,

∆
[1]
+

′′

(1− z)
, and

∆
[8]
±
′

(1− z)

do not exhibit any pole at z = 1.

C.2 Leading order

d̂
(0)

[QQ̄(v[1])]→[QQ̄(3S
[1]
1,T )]

= 0, (C.9)

d̂
(0)

[QQ̄(v[1])]→[QQ̄(3P
[1]
2,TT )]

= 0, (C.10)

d̂
(0)

[QQ̄(v[1])]→[QQ̄(3P
[1]
2,T )]

= 0, (C.11)

d̂
(0)

[QQ̄(a[1])]→[QQ̄(1P
[1]
1,T )]

= 0, (C.12)

d̂
(0)

[QQ̄(a[1])]→[QQ̄(3P
[1]
1,T )]

= 0, (C.13)

d̂
(0)

[QQ̄(t[1])]→[QQ̄(3S
[1]
1,L)]

= 0, (C.14)

d̂
(0)

[QQ̄(t[1])]→[QQ̄(1P
[1]
1,L)]

= 0, (C.15)
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d̂
(0)

[QQ̄(t[1])]→[QQ̄(3P
[1]
1,L)]

= 0, (C.16)

d̂
(0)

[QQ̄(t[1])]→[QQ̄(3P
[1]
2,TT )]

= 0, (C.17)

d̂
(0)

[QQ̄(t[1])]→[QQ̄(3P
[1]
2,L)]

= 0. (C.18)

The corresponding color octet channels also vanish.

C.3 NLO — Vector

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3S
[1]
1,T )]

= 0, (C.19)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3P
[1]
2,T )]

= 0, (C.20)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3P
[1]
2,TT )]

= 0, (C.21)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3S
[8]
1,T )]

=
1

8Nc
(1− z)z∆

[1]
− , (C.22)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(1P
[8]
1,T )]

=
1

12Nc
(1− z)z∆

[1]
− , (C.23)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3P
[8]
1,T )]

=
1

96Nc

{
8∆0δ(1− z)

(
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 6∆

[1]
+

′′
z (1− z)− 3∆

[1]
+

′
z (2z − 3)

+ 4 z∆
[1]
+

[
1

(1− z)+
− 2z + 3

]}
, (C.24)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3P
[8]
2,T )]

=
1

96Nc

{
8∆0δ(1− z)

(
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 6∆

[1]
+

′′
z (1− z)− 3∆

[1]
+

′
z (2z − 1)

+ 4 z∆
[1]
+

[
1

(1− z)+
− 2z + 1

]}
, (C.25)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3P
[8]
2,TT )]

=
1

24Nc
z(1− z)∆

[1]
+ , (C.26)

d̂
(1)

[QQ̄(v[8])]→[QQ̄(3S
[8]
1,T )]

=
1

8Nc(N2
c − 1)

(1− z)z∆
[8]
− , (C.27)

d̂
(1)

[QQ̄(v[8])]→[QQ̄(1P
[8]
1,T )]

=
1

12Nc(N2
c − 1)

(1− z)z∆
[8]
− , (C.28)

d̂
(1)

[QQ̄(v[8])]→[QQ̄(3P
[8]
1,T )]

=
1

96Nc(N2
c − 1)

{
4(N2

c − 4)∆0δ(1− z)

(
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 6∆

[8]
+

′′
z (1− z)− 3∆

[8]
+

′
z (2z − 3)

+ 4 z∆
[8]
+

[
1

(1− z)+
− 2z + 3

]}
, (C.29)
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d̂
(1)

[QQ̄(v[8])]→[QQ̄(3P
[8]
2,T )]

=
1

96Nc(N2
c − 1)

{
4(N2

c − 4)∆0δ(1− z)

(
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 6∆

[8]
+

′′
z (1− z)− 3∆

[8]
+

′
z (2z − 1)

+ 4 z∆
[8]
+

[
1

(1− z)+
− 2z + 1

]}
, (C.30)

d̂
(1)

[QQ̄(v[8])]→[QQ̄(3P
[8]
2,TT )]

=
1

24Nc(N2
c − 1)

z(1− z)∆
[8]
+ , (C.31)

d̂
(1)

[QQ̄(v[8])]→[QQ̄(2S+1L
[1]
J,λ)]

= d̂
(1)

[QQ̄(v[1])]→[QQ̄(2S+1L
[8]
J,λ)]

, (C.32)

where λ is the polarization of the outgoing heavy quark pair.

C.4 NLO — Axial-vector

d̂
(1)

[QQ̄(a[1])]→[QQ̄(1P
[1]
1,T )]

= 0, (C.33)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
[1]
1,T )]

= 0, (C.34)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3S
[8]
1,T )]

=
1

8Nc
z(1− z)∆

[1]
+ , (C.35)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(1P
[8]
1,T )]

=
1

24Nc

{
4∆0δ(1− z)

(
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 2 z∆

[1]
+

[
1

(1− z)+
− 3

2
z

]}
, (C.36)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
[8]
1,T )]

=
1

96Nc
z(1− z)

(
6∆

[1]
−
′′

+ 9∆
[1]
−
′
+ 16∆

[1]
− ), (C.37)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
[8]
2,T )]

=
1

96Nc
z(1− z)

(
6∆

[1]
−
′′

+ 3∆
[1]
−
′
+ 8∆

[1]
− ), (C.38)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
[8]
2,TT )]

=
1

24Nc
z(1− z)∆

[1]
− , (C.39)

d̂
(1)

[QQ̄(a[8])]→[QQ̄(3S
[8]
1,T )]

=
1

8Nc(N2
c − 1)

z(1− z)∆
[8]
+ , (C.40)

d̂
(1)

[QQ̄(a[8])]→[QQ̄(1P
[8]
1,T )]

=
1

24Nc(N2
c − 1)

{
2(N2

c − 4)∆0δ(1− z)

(
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 2 z∆

[8]
+

[
1

(1− z)+
− 3

2
z

]}
, (C.41)

d̂
(1)

[QQ̄(a[8])]→[QQ̄(3P
[8]
1,T )]

=
1

96Nc(N2
c − 1)

z(1− z)
(
6∆

[8]
−
′′

+ 9∆
[8]
−
′
+ 16∆

[8]
− ), (C.42)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
[8]
2,T )]

=
1

96Nc(N2
c − 1)

z(1− z)
(
6∆

[8]
−
′′

+ 3∆
[8]
−
′
+ 8∆

[8]
− ), (C.43)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3P
[8]
2,TT )]

=
1

24Nc(N2
c − 1)

z(1− z)∆
[8]
− , (C.44)

d̂
(1)

[QQ̄(a[8])]→[QQ̄(2S+1L
[1]
J,λ)]

= d̂
(1)

[QQ̄(a[1])]→[QQ̄(2S+1L
[8]
J,λ)]

, (C.45)

where λ is the polarization of the outgoing heavy quark pair.
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C.5 NLO — Tensor

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3S
[1]
1,L)]

= 0, (C.46)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(1P
[1]
1,L)]

= 0, (C.47)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3P
[1]
1,L)]

= 0, (C.48)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3P
[1]
2,TT )]

= 0, (C.49)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3P
[1]
2,L)]

= 0, (C.50)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3S
[8]
1,L)]

=
1

16Nc
z(1− z)∆

[1]
− , (C.51)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(1P
[8]
1,L)]

=
1

48Nc
z(1− z)∆

[1]
− , (C.52)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3P
[8]
1,L)]

=
1

48Nc

{
2∆0δ(1− z)

(
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ z∆

[1]
+

[
1

(1− z)+
− 4z + 1

]}
, (C.53)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3P
[8]
2,TT )]

=
1

24Nc

{
2∆0δ(1− z)

(
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ z∆

[1]
+

[
1

(1− z)+
− z + 1

]}
, (C.54)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3P
[8]
2,L)]

=
1

288Nc

{
4∆0δ(1− z)

(
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ 12 z∆

[1]
+

′′
(1− z)− 3 z∆

[1]
+

′
(3z − 2)

+ 2 z∆
[1]
+

[
1

(1− z)+
− 7z + 5

]}
, (C.55)

d̂
(1)

[QQ̄(t[8])]→[QQ̄(3S
[8]
1,L)]

=
1

16Nc(N2
c − 1)

z(1− z)∆
[8]
− , (C.56)

d̂
(1)

[QQ̄(t[8])]→[QQ̄(1P
[8]
1,L)]

=
1

48Nc(N2
c − 1)

z(1− z)∆
[8]
− , (C.57)

d̂
(1)

[QQ̄(t[8])]→[QQ̄(3P
[8]
1,L)]

=
1

48Nc(N2
c − 1)

{
(N2

c − 4)∆0δ(1− z)

(
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ z∆

[8]
+

[
1

(1− z)+
− 4z + 1

]}
, (C.58)

d̂
(1)

[QQ̄(t[8])]→[QQ̄(3P
[8]
2,TT )]

=
1

24Nc(N2
c − 1)

{
(N2

c − 4)∆0δ(1− z)

(
− ln

[
µ2

Λ

m2
Q

]
+ 2 ln 2 +

1

2

)
+ z∆

[8]
+

[
1

(1− z)+
− z + 1

]}
, (C.59)

d̂
(1)

[QQ̄(t[8])]→[QQ̄(3P
[8]
2,L)]

=
1

288Nc(N2
c − 1)

{
2(N2

c − 4)∆0δ(1− z)

(
− ln

[
µ2

Λ

m2
Q

]
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+ 2 ln 2 +
1

2

)
+ 12 z∆

[8]
+

′′
(1− z)− 3 z∆

[8]
+

′
(3z − 2)

+ 2 z∆
[8]
+

[
1

(1− z)+
− 7z + 5

]}
, (C.60)

d̂
(1)

[QQ̄(t[8])]→[QQ̄(2S+1L
[1]
J,λ)]

= d̂
(1)

[QQ̄(t[1])]→[QQ̄(2S+1L
[8]
J,λ)]

, (C.61)

where λ is the polarization of the outgoing heavy quark pair.

C.6 3PJ operators with orbital angular momentum summed

In this subsection, we list all SDCs corresponding to the NRQCD LDMEs 3,λP [1 or 8] defined

in eq. (A.3).

C.6.1 Leading order

d̂
(0)

[QQ̄(v[1])]→[QQ̄(3,TP [1])]
= 0, (C.62)

d̂
(0)

[QQ̄(a[1])]→[QQ̄(3,LP [1])]
= 0, (C.63)

d̂
(0)

[QQ̄(t[1])]→[QQ̄(3,LP [1])]
= 0. (C.64)

The corresponding color octet channels also vanish.

C.6.2 Next-to-leading order

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3,TP [1])]
= 0, (C.65)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3,LP [1])]
= 0, (C.66)

d̂
(1)

[QQ̄(t[1])]→[QQ̄(3,LP [1])]
= 0, (C.67)

d̂
(1)

[QQ̄(v[1])]→[QQ̄(3,TP [8])]
=

1

8Nc
z(1− z)

{
∆

[1]
+ ln

[
µ2

0

m2
Q

]
−∆

[1]
+

[
2 ln(2(1− z))− 1

]
+ ∆

[1]
+

′
+ ∆

[1]
+

′′
}
, (C.68)

d̂
(1)

[QQ̄(v[8])]→[QQ̄(3,TP [1])]
= d̂

(1)

[QQ̄(v[1])]→[QQ̄(3,TP [8])]
, (C.69)

d̂
(1)

[QQ̄(v[8])]→[QQ̄(3,TP [8])]
=

1

8Nc(N2
c − 1)

z(1− z)

{
∆

[8]
+ ln

[
µ2

0

m2
Q

]
−∆

[8]
+

[
2 ln(2(1− z))− 1

]
+ ∆

[8]
+

′
+ ∆

[8]
+

′′
}
, (C.70)

d̂
(1)

[QQ̄(a[1])]→[QQ̄(3,LP [8])]
=

1

16Nc
z(1− z)

{
(∆

[1]
− + ∆

[1]
−
′
+ ∆

[1]
−
′′
)

[
ln

[
µ2
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d̂
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=

1

16Nc
z(1− z)(2∆

[1]
+ + ∆

[1]
+

′
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), (C.74)
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(1)

[QQ̄(t[1])]→[QQ̄(3,LP [8])]
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