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containing one fractionalized instanton (ν = 1/N) and one fractionalized anti-instanton

(ν=−1/N) at large separations, and exhibit the attractive interaction between the instan-

ton constituents and how they behave at shorter separations. We show that the bosonic

interaction potential between the constituents as a function of both the separation and
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separations, which indicates that the ansatz enables us to study bions and the related

physics for a wide range of separations. We also propose different bion ansatze in a cer-
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1 Introduction

In the recent study on QCD-like theories with spatial compactification (L), fractionalized

multi-instanton configurations composed of fractionalized instantons and anti-instantons

have been attracting a great deal of attention. It is stressed by Ünsal and his collab-

orators that these configurations [1–19], which are termed “bions”, have two physical

significances associated with two types of topologically trivial bion configurations called

“magnetic (charged) bions” and “neutral bions”, as seen in the following examples: in

the weak-coupling regime (L ≪ 1/ΛQCD) in QCD(adj.) on R
3 × S1, or in the U(1)N−1

center-symmetric phase [20–29], condensation of magnetic bions (zero topological charge

and nonzero magnetic charge) causes the confinement [3–9]. This confinement mechanism

may remain responsible for the confinement at strong-coupling regime due to the continuity

principle. This argument is also of importance in terms of the recent progress in large-

N volume reduction [30–40]. On the other side, neutral bions (zero topological charge

and zero magnetic charge) can be identified as the infrared renormalon [10–19, 41–43].

Here imaginary ambiguities arising in bion’s amplitude and those arising in non-Borel-

summable perturbative series cancel against each other, and it is expected that full semi-

classical expansion including perturbative and non-perturbative sectors, which is called

“resurgent” expansion [44], leads to unambiguous and self-consistent definition of field the-

ories in the same manner as the Bogomolny-Zinn-Justin (BZJ) prescription in quantum

mechanics [45–47]. However, it is not straightforward to verify these arguments in gauge

theories directly, since it is difficult to find an explicit ansatz of bion configurations.

– 1 –



J
H
E
P
0
6
(
2
0
1
4
)
1
6
4

In order to reach deeper understanding on bions and the associated physics, it is of

great importance to study examples in the low-dimensional models such as CPN−1 mod-

els [12–14], principal chiral models [16, 19] and quantum mechanics [15, 17, 18]. In particu-

lar, the CPN−1 model in 1+1 dimensions has been studied for a long time as a toy model of

the Yang-Mills theory in 3+1 dimensions [48], because of similarities between them such as

dynamical mass gap, asymptotic freedom and the existence of instantons [49]. The CPN−1

model on R
1 × S1 with twisted boundary conditions admits fractionalized instantons (do-

main wall-instantons) as configurations with the minimal topological charge [50–52] (see

also refs. [53–55]). In refs. [12, 13], generic arguments on bion configurations were given in

the CPN−1 model on R
1×S1 with ZN twisted boundary conditions, which is a correspond-

ing situation to U(1)N−1 center-symmetric phase in QCD(adj.), based on the independent

instanton description taking account of interactions between far-separated fractionalized

instantons and anti-instantons. According to the study, the renormalon ambiguity aris-

ing in non-Borel-summable perturbative series is compensated by the amplitude of neutral

bions also in the CPN−1 model. This phenomenon, which is called “resurgence”, works as

follows [12, 13]: the effective interaction action by bosonic exchange between one fraction-

alized instanton Ki and one fractionalized anti-instanton Kj is

Sint(τ) = −8ξ
αi · αj

g2
e−ξτ , ξ ≡ 2π

N
, (1.1)

where τ stands for distance (divided by the compact scale L) between two fractionalized

instantons. Vectors αi, αj are affine co-roots and αi ·αj is an entry of the extended Cartan

matrix. The total bion amplitude including the fermion zero-mode exchange contribution

is mainly given by

Bij ∝ −e−2SI/N

∫ ∞

0
dτ e−V ij

eff
(τ) , (1.2)

with V ij
eff(τ) = Sint(τ) + 2Nfξτ and SI being the instanton action. Nf stands for fermion

flavors. For neutral bion αi ·αi > 0, semiclassical description of independent fractionalized

instantons breaks down since the interaction is attractive and instantons are merged in

the end. Here, the BZJ-prescription, replacing g2 → −g2, works to extract meaningful

information from this amplitude. The prescription turns the interaction (spuriously) into

a repulsive one and the amplitude becomes well-defined as

Bii(g2, Nf ) → B̃ii(−g2, Nf ) ∝ (−g2N/8π)2NfΓ(2Nf )e
−2SI/N . (1.3)

By the use of the analytic continuation in the g2 complex plane, we can continue back to

the original g2. For Nf = 0 case, we then encounter the following imaginary ambiguity in

the amplitude as

B̃ii(g2, 0) ∝
(

log(g2N/8π)− γ ± iπ
)

e−2SI/N . (1.4)

We can rephrase this situation as unstable negative modes of bions give rise to imaginary

ambiguities of the amplitude. The imaginary ambiguity has the same magnitude with

an opposite sign as the leading-order ambiguity (∼ ∓iπe−2SI/N ) arising from the non-

Borel-summable series expanded around the perturbative vacuum. The ambiguities at

– 2 –
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higher orders (∓iπe−4SI/N , ∓iπe−6SI/N , . . .) are cancelled by amplitudes of bion molecules

(2-bion, 3-bion,. . .), and the full trans-series expansion around the perturbative and non-

perturbative vacua results in unambiguous definition of field theories.

Although this generic argument based on far-separated instantons is clear, it is also

worthwhile manifesting and studying an explicit solution or ansatz corresponding to bion

configurations, which can be investigated from short to large separation. In ref. [14], the au-

thors found out non-Bogomol’nyi-Prasad-Sommerfield (BPS) solutions in the CPN−1 model

on R
1×S1 with a ZN twisted boundary condition, and have shown that these solutions can

be critical points, around which the resurgent semi-classical expansion is performed. The

simplest non-BPS solution that they found is a four-instanton configuration composed of

two fractionalized instantons (ν = 1/N) and two fractionalized anti-instantons (ν = −1/N)

for N ≥ 3. (see also [59].) They used the Din-Zakrewski projection method [56–58] gen-

erating a tower of non-BPS solutions from a BPS solution. It is known that all possible

classical solutions are exhausted by this method at least on R
2 and S2 [56–58]. This result

indicates that if a simple bion configuration containing one instanton and one anti-instanton

in the CPN−1 model (N ≥ 2) exists, it may not be a solution of the equation of motion,

but may be some classical configuration which can give significant contributions to path

integrals. If it is true, one question arises what ansatz corresponds to such a bion. If such

an ansatz exists, the other questions arise how the instanton constituents behave at short

separations and whether it is consistent with the amplitude (1.1) obtained in the standard

instanton calculus in a far-separated limit. In the present study, we consider and study

an ansatz corresponding to bions beyond exact solutions. We also consider more general

twisted boundary conditions similar to the “split phase” in QCD(adj.).

The purpose of our work is to study an explicit ansatz corresponding to topologically

trivial bion configurations in the CPN−1 on R
1 × S1 with several twisted boundary con-

ditions, and show how the instanton constituents behave at an arbitrary separation. For

the ZN twisted boundary condition, we consider a simple neutral-bion ansatz, which yields

configuration involving one fractionalized instanton (ν = 1/N) and one fractionalized anti-

instanton (ν = −1/N) in the well-separated limit. By studying separation dependence of

the total action, we exhibit the attractive interaction between the instanton constituents

and how they are merged in the end, which means that the configuration has a negative

mode. By looking into N -dependence of the interaction potential as a function of the sepa-

ration in comparison with the result in the standard instanton calculus (1.1), we show that

our ansatz is consistent with (1.1) even from short to large separations. Our ansatz can be

used to study bions and related physics for a wide range of separations. For the non-ZN

twisted boundary conditions with N = 3, which we term a “split” boundary condition, we

find out a different fractionalized instanton-anti-instanton ansatz. We again show that the

configuration has a negative mode. We extend the ansatz to general N ≥ 3 cases, and find

that the interaction potential between the instantons has qualitatively the same properties

as (1.1) up to some factors in the extended versions. This fact indicates universality of

resurgence based on neutral bions for general boundary conditions.

In section 2 we introduce CPN−1 models with some notations for calculations. In

section 3 we first introduce ZN twisted boundary conditions and discuss how fractionalized
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instantons emerge. We then propose a specific ansatz for neutral bions, and discuss the

properties. In section 4 we consider non-ZN twisted boundary conditions, and discuss

bion-like configurations for the cases. Section 5 is devoted to a summary.

2 CP
N−1 model

Let ω(x) be an N -component vector of complex scalar fields, and n(x) be a normalized

complex N -component vector composed from ω: n(x) ≡ ω(x)/|ω(x)| with |ω| =
√
ω†ω.

Then, the action and topological charge representing π2(CP
N−1) ≃ Z of the CPN−1 model

in Euclidean two dimensions are given by (see, e.g., refs. [56–58])

S =
1

g2

∫

d2x(Dµn)
†(Dµn) , (2.1)

Q =

∫

d2x iǫµν(Dµn)
†(Dνn) =

∫

d2xǫµν∂µAν , (2.2)

respectively, where d2x ≡ dx1dx2 and µ, ν = 1, 2. Here, we have defined the covariant

derivative by Dµ = ∂µ − iAµ with a composite gauge field Aµ(x) ≡ −in†∂µn.

The action S and topological charge Q can be expressed in terms of the projection

operator P ≡ nn† = ωω†

ω†ω
and using the complex coordinate z ≡ x1 + ix2,

S =
2

g2

∫

d2xTr [∂zP∂z̄P] , (2.3)

Q = 2

∫

d2xTr [P(∂z̄P∂zP− ∂zP∂z̄P)] . (2.4)

All through this paper, we focus the geometry R
1×S1 and configurations on it satisfy-

ing periodicity in the x2 direction with compactification scale L. For all the configurations

considered in the present paper, the action density and the topological charge density are

reduced to be functions of x1 after the integration over x2:

S =
1

g2π

∫

dx1s(x1) =
1

g2π

∫

dx1Tr [∂zP∂z̄P] , (2.5)

Q =
1

π

∫

dx1q(x1) =
1

π

∫

dx1Tr [P(∂z̄P∂zP− ∂zP∂z̄P)] , (2.6)

where we have defined the action density s(x1) and the charge density q(x1) depending only

on x1. We note that the action and charge with the factor 1/(2π) yield integers or multiples

of 1/N after x1 integration. In this paper, we omit the coupling 1/g2 for simplicity.

The CP 1 model is equivalent to the O(3) nonlinear sigma model, described by three

real scalar fields m(x) = (m1(x),m2(x),m3(x))T with a constraint m(x)2 = 1. More

explicitly,

m(x) = n†(x)~σn(x) =
ω†(x)~σω(x)

ω†(x)ω(x)
(2.7)

=
(ω∗1ω2 + ω∗2ω1,−iω∗1ω2 + iω∗2ω1, |ω1|2 − |ω2|2)

ω†(x)ω(x)
,

with the Pauli matrices ~σ. Then, the action is

S =
1

g2

∫

d2x∂µm · ∂µm. (2.8)

– 4 –
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3 Fractionalized instantons and neutral-bion configuration in ZN twisted

boundary conditions

3.1 ZN twisted boundary conditions

In the present section, we propose a neutral bion ansatz for a ZN twisted boundary condi-

tion in the CPN−1 model on R
1 × S1. ZN twisted boundary conditions in a compactified

direction is expressed as [12–14]

ω(x1, x2 + L) = Ωω(x1, x2) , Ω = diag.
[

1, e2πi/N , e4πi/N , · · ·, e2(N−1)πi/N
]

. (3.1)

In SU(N) gauge theories with adjoint quarks, this ZN twisted boundary condition cor-

responds to the vacuum with the gauge symmetry breaking SU(N) → U(1)N−1, where

Wilson-loop holonomy in the compactified direction is given by

〈A2〉 = (0, 2π/N, · · ·, 2(N − 1)π/N) , for N ≥ 3 , (3.2)

and

〈A2〉 = (−π/2, π/2) , for N = 2 , (3.3)

where A2 is the gauge field in the compactified direction. (See also [60–63] for topics

related to ZN twisted boundary conditions.) We here omit permutation copies. We note

that the gauge field defined in the CPN−1 model (2.2) also has the same Wilson-loop

holonomy for ZN twisted boundary condition. Difference between (3.1) and (3.3) for N =

2 is just superficial and unphysical, since two different ansatz of ω(x) with an overall

boundary condition factor e−iπ/2 result in the same projection field P(x) as we will show

later. Fractionalized instantons (domain wall-instantons) carry the minimum topological

charges in the CPN−1 model on R
1 × S1 with a twisted boundary condition [50–52]. For

simplicity, we begin with the CP 1 model and generalize the argument to the CPN−1

model subsequently. From next subsection we make all the dimensionful quantities and

parameters dimensionless by using the compact scale L (L → 1) unless we have a special

reason to recover it.

3.2 Fractionalized instantons

In this subsection, we illustrate fractionalized instantons in the CP 1 model satisfying a Z2

twisted boundary condition (3.1) as

ω(x1, x2 + 1) = diag.[1, eπi]ω(x1, x2) = diag.[1,−1]ω(x1, x2), (3.4)

(m1(x1, x2 + 1),m2(x1, x2 + 1),m3(x1, x2 + 1))

= (−m1(x1, x2),−m2(x1, x2),m
3(x1, x2 + 1)) , (3.5)

on R
1 × S1 with the unexplicit unit compactification scale L.1 Here, we have used the

relation (2.8) for the second equation.

1Fractionalized instantons can also exist even in R
2 when the target space has a sigularity, e.g. [64],

and/or a U(1) isometry is gauged with a potential term, e.g. [65].

– 5 –
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(a) ωL (b) ωR

(c) ω∗
L (d) ω∗

R

Figure 1. Fractionalized instantons in the CP 1 model with the Z2 twisted boundary condition,

corresponding to (a) ωL, (b) ωR, (c) ω
∗

L
, and (d) ω∗

R
(in which we have taken the phase modulus to

be θ = −π/2). The horizontal and vertical directions are x1 and x2, respectively. The symbols ⊙, ⊗,
←,→, ↑ and ↓ denote m = (0, 0, 1), (0, 0,−1), (−1, 0, 0), (1, 0, 0), (0, 1, 0) and (0,−1, 0), respectively.
The shaded regions imply domain walls with m3 ∼ 0. The ↑ and ↓ at the boundaries at x2 = +1

and x2 = 0 are identified by the twisted boundary condition. The domain wall charges are (a) +1,

(b) −1, (c) +1, (d) −1, and the instanton charges Q are (a) +1/2, (b) +1/2, (c) −1/2, (d) −1/2.

Using the complex coordinate z = x1+ix2 on R
1×S1, fractionalized instanton solutions

are given by

ωL =
(

1, λeiθe+πz
)T

, ωR =
(

1, λeiθe−πz
)T

,

ω∗
L =

(

1, λeiθe+πz̄
)T

, ω∗
R =

(

1, λeiθe−πz̄
)T

, (3.6)

with real constants λ and θ which are moduli. The configurations ωL and ωR are BPS which

are holomorphic and depend on z, while their complex conjugate ω∗
L and ω∗

R are anti-BPS

which are anti-holomorphic and depend on z̄ only. Figure 1 shows configurations in m(x)

of these solutions. The configuration ωL (ω∗
L) goes to n = (1, 0) (m = (0, 0, 1)) denoted

by ⊙ at x1 → −∞ and to n = (0, 1) (m = (0, 0,−1)) denoted by ⊗ at x1 → +∞. The

configuration ωR (ω∗
R) goes to n = (0, 1) (m = (0, 0,−1)) at x1 → −∞ and to ω = (1, 0)

(m = (0, 0,+1)) at x1 → +∞. The configurations ωL (ω∗
L) and ωR (ω∗

R) can be regarded

as a domain wall and anti-domain wall, respectively. A domain wall at each constant x2

– 6 –
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0:
31
mS

1
3

m

1
3

m

2
S

N:

S:

(a) (b) (c)

Figure 2. (a) Domain wall, and (b) and (c) fractionalized instantons in the target space S2.

(b) corresponds to the configurations ωR and ω∗

L
while (c) corresponds to the configurations ωL

and ω∗

R
.

slice corresponds to a path connecting the north pole m = (0, 0,+1) and the south pole

m = (0, 0,−1) in the target space, as illustrated in figure 2(a). A U(1) modulus is localized

on these domain walls characterizing which point on the equator in the target space a

domain wall passes through [66, 67]. This U(1) modulus is twisted along the domain wall

to satisfy the boundary condition at x2 = 0 and x2 = 1. When one changes a constant x2
slice from x2 = 0 to x2 = 1, a path in the target space changes with sweeping a half of the

sphere as the target space, as shown in figure 2(b) and (c). Therefore, these configurations

give maps from the space R × S1 to a half of the target space. BPS configurations ωL

and ωR carry a half of the unit instanton charge, Q = 1/2, while anti-BPS configurations

ω∗
L and ω∗

R carry Q = −1/2. This fact also can be understood by noting that the U(1)

modulus is twisted half along the domain wall [68, 69, 77, 78].

Fractionalized instantons can exist in the CPN−1 model too. The configuration (3.6)

of the CP 1 model can be generalized into the N -vector ω for the CPN−1 model with the

ZN twisted boundary condition in eq. (3.1) as

ωL =
(

0, · · · , 0, 1, λeiθe+2πz/N , 0, · · ·
)T

, ωR =
(

0, · · · , 0, 1, λeiθe−2πz/N , 0, · · ·, 0
)T

. (3.7)

3.3 Neutral bions

A neutral bion configuration is a composite of a fractionalized instanton and fractional-

ized anti-intanton with the total instanton charge canceled out. Let us discuss the CP 1

model first. From the solutions in eq. (3.6) and their complex conjugates, it is reason-

able to consider the following ansatz for the CP 1 model satisfying a Z2 twisted boundary

condition (3.1) as

ω =
(

1 + λ2e
iθ2eπ(z+z̄), λ1e

iθ1eπz
)T

, (3.8)

constructed from fractionalized instantons ωL and ω∗
R in eq. (3.6). As we mentioned, the

ansatz ω = e−πz/2
(

1 + λ2e
iθ2eπ(z+z̄), λ1e

iθ1eπz
)T

also gives the same P(x), thus these are

equivalent. λ1 ≥ 0, λ2 ≥ 0, 0 ≤ θ1, θ2 < 2π are all real parameters characterizing the

configuration associated with this ansatz, as λ2
1/λ2 and λ2 govern a relative separation and

– 7 –
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Figure 3. Neutral bion. This is a composite of fractionalized instantons ωL and ω∗

R
, where we

have introduced a relative phase. The notation is the same as figure 1.

s(x1) q(x1)

0 2 4−4 −2

0

2

4

−4

−2

0 2 4−4 −2

0

2

4

−4

−2

x1 x1

λ1 = 1000 λ2 = 1 λ1 = 1000 λ2 = 1

Figure 4. Action density s(x1) and topological charge density q(x1) for the configuration of

eq. (3.8) for λ1 = 1000, λ2 = 1 and θ2 = 0. The distance between the peaks of two fractionalized

instantons is given by ∼ 4.3976, which is consistent with the separation (1/π) log(10002) obtained

from eq. (3.21).

a center location between the instanton constituents respectively. We have no parameter

characterizing the size of fractionalized instantons in the present ansatz. For λ2
1 ≫ λ2, this

configuration is composed of two components, a BPS fractionalized instanton (S = 1/2,

Q = 1/2) and a BPS fractionalized anti-instanton (S = 1/2, Q = −1/2), which are

separately located as shown in figure 3. Figure 4 shows the action and topological charge

densities of this configuration.

The superposition ansatz such as ours has been studied long for Yang-Mills instantons

and CPN−1 instantons on S2 and R
2 (see [70–72] for example). On the other hand, for

these theories, a multiple-type ansatz has been also investigated [73–76], in relation to

the study on “zindons”. However, due to the fixed twisted boundary condition, it is not

straightforward to construct an ansatz for the present case, with keeping, non-triviality of

configurations, finite energy and the boundary conditions. The twisted boundary condition

strongly restricts patterns of ansatz. This is why we begin with the simple ansatz (3.8).

It is notable that the action density and topological charge density are independent of θ1.

– 8 –
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The operators P, ∂zP, ∂z̄P, ∂zP∂z̄P and ∂z̄P∂zP have the following form as
(

a b e−iθ1

c e+iθ1 d

)

, (3.9)

where a, b, c and d are some functions of z and z̄ including λ1, λ2 and θ2 as parameters.

Then, it is obvious that both s(x1) ∼ Tr[∂zP∂z̄P] and q(x1) = Tr[P(∂z̄P∂zP − ∂zP∂z̄P)]

have no θ1 dependence. It means that θ1 corresponds to a bosonic zero mode, which does

not cost the configuration energy. On the other hand, the configuration depends on θ2.

For now we assume θ2 = 0, and will consider θ2 6= 0 cases later.

The total action and the net topological charge in the large-separation limit are given by

S = 1, Q = 0 , (3.10)

respectively. We note that the topological charge is zero for any values of separation, and

this configuration corresponds to a topologically trivial vacuum.

Generalization of this configuration into the CPN−1 model is straightforward as

ω =
(

0, · · ·, 0, 1 + λ2e
iθ2e2π(z+z̄)/N , λ1e

iθ1e2πz/N , 0, · · ·, 0
)T

. (3.11)

The corresponding configuration again has no θ1 dependence. For λ2
1 ≫ λ2, this config-

uration corresponds to a 1/N instanton (S = 1/N , Q = 1/N) and a 1/N anti-instanton

(S = 1/N , Q = −1/N) at large separations. The total action and the net topological

charge in this large-separation limit are given by

S = 2/N, Q = 0 , (3.12)

respectively.

As x1 varies from −∞ to ∞, the normalized complex vector n(x1) takes the following

three different values, which we denote as n1, n2, n3,

n1 = (1, 0, · · ·, 0)T → n2 = (0, 1, · · ·, 0)T → n3 = (1, 0, · · ·, 0)T , (3.13)

for λ2
1 > λ2. The above three domains are divided by two critical points corresponding to

the locations of the two kinks. As shown in [12, 13], the two affine co-roots αi and αj ,

which correspond to the two kinks (fractionalized instantons) in figure 4 are given by

αi = n2 − n1 , (3.14)

αj = −(n3 − n2) , (3.15)

which satisfies

n(x1 =∞) = n(x1 = −∞) + αi − αj . (3.16)

In the present case, αi and αj are identical, which we define as αi = αj ≡ α. It is given by

α = (0, 1, · · ·, 0)T − (1, 0, · · ·, 0)T = (−1, 1, · · ·, 0)T . (3.17)

We note that αi · αj = α · α > 0 for this case.
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Figure 5. The
√

λ2
1/λ2 dependence of the total action S with θ2 = 0 for (3.8). The action is

independent of λ2 for λ2
1/λ2 fixed. The configuration is changed from S = 1 to S = 0, due to the

attractive force.

The explicit form of the action density s(x1) for general N is given by

s(x1) =
4π2

N2
(

1 + (λ2
1 + 2λ2 cos θ2)e4πx1/N + λ2

2e
8πx1/N

)4 ×
[

2(λ2
1e

4πx1/N − λ2
1λ

2
2e

12πx1/N )2

+ (λ1e
2πx1/N + 2λ1λ2e

iθ2e6πx1/N + λ1λ2e
iθ2(λ2

1 + λ2e
iθ2)e10πx1/N )×

(λ1e
2πx1/N + 2λ1λ2e

−iθ2e6πx1/N + λ1λ2e
−iθ2(λ2

1 + λ2e
−iθ2)e10πx1/N )

+ (λ1(λ
2
1 + λ2e

iθ2)e6πx1/N + 2λ1λ
2
2e

10πx1/N + λ1λ
3
2e

−iθ2e14πx1/N )×

(λ1(λ
2
1 + λ2e

−iθ2)e6πx1/N + 2λ1λ
2
2e

10πx1/N + λ1λ
3
2e

iθ2e14πx1/N )
]

. (3.18)

Figure 5 depicts the
√

λ2
1/λ2 dependence of the total action S with θ2 = 0 for N = 2.

We will from now look into the attractive interaction between the two fractionalized

instantons. In order to understand precise separation dependence of action and interaction

force, we need to know the exact separation between the two components of fractionalized

instantons in our configuration. The positions τ1 and τ2 of fractionalized instantons and

fractionalized anti-instantons in the x1-coordinate are given by the balance conditions

1 = λ1e
2πτ1/N → τ1 =

N

2π
log

(

1

λ1

)

, (3.19)

λ2e
4πτ2/N = λ1e

2πτ2/N → τ2 =
N

2π
log

(

λ1

λ2

)

, (3.20)

respectively. Then, the separation τ between them is given by

τ = τ2 − τ1 =
N

2π
log

(

λ2
1

λ2

)

. (3.21)

For τ ≥ 0, τ can be interpreted as separation between the fractionalized-instanton compo-

nents. The definition of separation depends on N for this configuration. As noted in the
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Figure 6. The τ = (1/π) log λ2
1/λ2 dependence of the total action S and the force F = −dS

dτ
with

θ2 = 0 for (3.8). For τ ≥ 0, we can interpret τ as separation between the instanton constituents.

The configuration is changed from S = 1 to S = 0, due to the attractive force. The configuration

for τ & 1 corresponds to neutral bions.

caption in figure 4, this definition of separation precisely describes the distance between

the locations of two fractionalized instantons.

Figure 6 depicts the separation τ dependence of the total action S and the static force

F = −dS
dτ with λ2 = 1 fixed for N = 2. It indicates that the total action monotonically

decreases as τ gets smaller, and the interaction force is negative for wide τ range. It

clearly shows that the fractionalized-instanton constituents exert an attractive force. To

be precise, as will be shown later, the interaction force is exponentially suppressed for large

separation τ ≫ 1 or the merged limit τ ≪ 0 (λ2
1/λ2 ≪ 1). It indicates that our ansatz

yields intermediate configurations between two (approximate) solutions, a two-separated

fractionalized-instanton solution (S = 1, Q = 0) and a trivial perturbative vacuum (S = 0,

Q = 0). Our analysis is easily generalized to λ2 6= 1, where we find that the total action is

independent of λ2 if λ2
1/λ2 or τ are fixed. From this analysis, we see that the location of

the center of mass λ2 corresponds to a bosonic zero mode while λ2
1/λ2 to a negative mode.

The two constituents are getting closer and finally are merged by the attractive force,

as shown in figure 7. The resultant configuration at τ = −∞ (λ2
1/λ2 = 0) is given by

ω(τ = −∞) →
(

1 + λ2e
π(z+z̄), 0

)T
, (3.22)

for N = 2, and

ω(τ = −∞) →
(

0, · · ·, 0, 1 + λ2e
iθ2e2π(z+z̄)/N , 0, 0, · · ·, 0

)T
. (3.23)

for general N , with the quantum number

S = 0, Q = 0 , (3.24)

which is identical to a trivial vacuum.

Here we discuss the characteristic size of neutral bions. As shown in [12, 13], the size

of “charged” bions Nf > 0 is clearly determined since the instanton constituents are bound
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Figure 7. Action density s(x1) (up) and charge density q(x1) (down) of the configuration of eq. (3.8)

for λ2
1/λ2 = 100, 25, 1, 10−4 (τ = 1.47, 1.02, 0,−2.93) for λ2 = 1 and θ2 = 0. The configurations for

λ2
1/λ2 = 100, 25 correspond to neutral bions.

due to the balance of bosonic repulsive and fermionic attractive forces. This calculation

can be extended to the case of Nf = 0, and it gives the length scale of charged bions

as τ∗ = N
2π log 8π

g2N
, which reads τ∗ = 0.5 ∼ 1.5 for N = O(1) with g2 = 1. On the

other hand, the calculation of the neutral bion size is not straightforward since its bosonic

interaction is attractive and it requires analytic continuation of g2 to negative values and its

returning back to positive values. However, taking into account the fact that the actions of

neutral and charged bions in the amplitudes are common except for the imaginary part, we

speculate that neutral bions have a similar size or length scale to that of the charged bions

τ∗ ∼ 1. In the rest of the paper, we assume that the neutral bions arise from the separation

scale τ & 1. We thus regard our ansatz as the neutral bions only for the separation τ > 1.

We will discuss whether this assumption is appropriate or not in terms of BZJ-prescription

in section 5.

We now investigate interaction part of the action for this configuration, to compare

our concrete ansatz to the far-separated instanton argument (1.1) in refs. [12, 13]. The

interaction part of the action density is written as the action density s(x1) minus the one

fractionalized-instanton density and one fractionalized-anti-instanton density sν=1/N (x1)+

sν=−1/N (x1),

sint(x1) = s(x1)− (sν=1/N (x1) + sν=−1/N (x1)) . (3.25)

The integrated interaction action is then given by

Sint(N, τ) =
1

π

∫

dx sint(x1) . (3.26)

In figure 8, we plot the logarithm of the total interaction action Sint(N, τ) as a function

of τ for N = 2, 3, 4. For τ & 1 region, log(−Sint(N, τ)) can be well approximated by

analytic lines,

log [−Sint(N, τ)] ∼ −ξ(N) τ + C(N) , (τ & 1) , (3.27)
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Figure 8. Plot of log(−Sint(N, τ)) as a function of τ for N = 2 (left), N = 3 (center) and N = 4

(right) for (3.11) (red curves with triangle points). For τ > 1, the curve is almost equivalent to

−(2π/N)τ + C(N) (blue curves).

where ξ(N) is a slope and C(N) is a y-intercept. In figure 8 we simultaneously depict these

analytic lines for the three cases. The slopes ξ of the approximate lines read ξ ∼ π for

N = 2, ξ ∼ 2π/3 for N = 3 and ξ ∼ π/2 for N = 4, which indicates that the slope ξ can

be generally expressed as

ξ(N) ∼ 2π

N
. (3.28)

Therefore we observe that the interaction action can be written as the following form for

τ & 1 region,

Sint(N, τ) ∼ − eC e−ξτ , ξ =
2π

N
, (τ & 1) . (3.29)

This ξ is equivalent to the (dimensionless) lowest Kaluza-Klein spectrum LmLKK , which

is given as LmLKK = |qi − qj | = 2π/N , where qi and qj are two nonzero components of

Wilson-loop holonomy in (3.2), (3.3).

We next determine the N dependence of the y-intercept C(N). In figure 9 we plot

exponential of the intercept exp[C(N)] as a function of N for N = 2, 3, 4, 5, 6, 7. We

find out that this dependence is well approximated by exp[C(N)] ∼ 4/N , and depict it

simultaneously in the figure. This result shows that the interaction action for τ & 1 can

be written as

Sint(N, τ) ∼ − 4

N
e−ξτ , ξ =

2π

N
, (τ & 1) . (3.30)

It means, for a wide range of separations τ & 1, the interaction part of the action for

our configuration is consistent with the neutral bion action (1.1) obtained from the far-

separated instanton calculation up to 2π factor, which we introduced for convenience, as

Sint(N, τ) = −8ξ (αi · αj) e
−ξτ = −8π

N
e−ξτ , ξ =

2π

N
, (3.31)

with αi · αj = α · α = 1 for our ansatz following the Lie algebra notation in [12, 13].

We have shown that our ansatz (3.8) gives a configuration consistent to (1.1) except in

the merged region τ < 1. It means that (3.8) is a good ansatz describing the neutral bion,

and can be identified as an infrared renormalon since the imaginary part of its amplitude

obtained through the BZJ-prescription (g2 → −g2) and analytic continuation cancels the
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Figure 9. The coefficient of the interaction action exp[C(N)] in eq. (3.29) as a function of N for

N = 2, 3, 4, 5, 6, 7 for the Ansatz (3.11) (blue points). The coefficient can be approximated by 4/N

(a red curve).

notorious ambiguity arising in the Borel re-summation of the perturbative series. By use

of the present ansatz, we can study properties of bions and the related physics, not only

at large separation τ ≫ 1, but also at short separation τ & 1.

We here discuss a physical meaning of our ansatz for the merged region τ < 1. The

coincidence of the interactive actions for τ & 1 (figure 8) implies that the neutral bion scale

can be determined by such a coincidence point, or τ ∼ 1 for this case, which is consistent

with the charged bion scale. On the other hand, for the region τ < 1, the configurations

(see the right two columns in figure 7) are regarded as those around the perturbative

vacuum rather than the bion saddle. It means that, in the semi-classical calculation, these

configurations correspond to fluctuations around the perturbative saddle, but not around

the bion saddle point. It is also notable that our ansatz connects these two different saddle

points continuously by a single parameter. We will briefly discuss how to classify the

parameter regions into the two sectors in section 5.

We here make a comment on cases for θ2 6= 0. For 0 < θ2 < π/2, the interaction

force is qualitatively the same as the case for θ2 = 0, or attractive. For π/2 ≤ θ2 ≤ π,

things change: the potential barrier emerges around
√

λ2
1/λ2 = 1 (τ = 0), and the height

becomes infinite for θ2 = π as shown in figure 10. Of course, this does not mean that the

interaction is repulsive since θ2 is also a dynamical field variable and should relax eventually

to θ2 = 0 in order to minimize the total action. The result indicates that θ2 corresponds

to a positive mode.

4 Bions with non-ZN twisted boundary conditions

The configuration discussed in the previous section is specific to the ZN twisted boundary

condition. In this section we consider different boundary conditions and bion-like configu-

rations. We here begin with the CP 2 model and extend the result to the CPN−1.
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Figure 10. The
√

λ2
1/λ2 dependence of the total action S for the configuration in eq. (3.8) for

θ2 = 0.75π, 0.9π, π.

We first consider the following twisted boundary condition for CP 2

ω(x1, x2 + L) = Ωω(x1, x2) , Ω = diag.
[

eπi, eπi, 1
]

= diag.
[

1, 1, e−πi
]

eπi . (4.1)

This boundary condition corresponds to the vacuum

〈A2〉 = (π, π, 0) , (4.2)

where we omit permutation copies. In gauge theory, this boundary condition is realized by

special Wilson-loop holonomy in the exotic gauge-broken phase in SU(3) gauge theory with

adjoint quarks [20, 21], where the gauge symmetry is broken as SU(3) → SU(2)×U(1). In

this vacuum two elements of the Wilson-loop holonomy have the same value, but the other

has a different one. This phase is called “split phase”, thus we term the above boundary

condition a “split” twisted boundary condition. Although how a neutral bion works in the

split vacuum has not yet been elucidated, it is worth investigating bion-like configurations

in this vacuum.

4.1 Bions for the split twisted boundary condition

We first consider a configuration in CP 2 satisfying the split twisted boundary condi-

tion (4.1),

ω =
(

1, λ2e
iθ2eπ(z+z̄), λ1e

iθ1eπz
)T

, (4.3)

This is an ansatz beyond the simple superposition ansatz. For λ2
1 ≫ λ2, this configuration

is composed of a BPS fractionalized instanton (S = 1/2, Q = 1/2) and a BPS fractionalized

anti-instanton (S = 1/2, Q = −1/2) in figure 11. The total action and the net topological

charge in a far-separated limit are given by

S = 1, Q = 0 . (4.4)

We note the action density and topological charge density are independent of the parame-

ters θ1 and θ2. Figure 12 depicts
√

λ2
1/λ2 dependence of the total action S for (4.3). The

total action is independent of λ2 with λ2
1/λ2 fixed.
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Figure 11. Action density s(x1) and topological charge density q(x1) for the configuration in

eq. (4.3) for λ1 = 1000 and λ2 = 1. The distance between two fractionalized instantons is ∼ 4.3976,

which is consistent with the (1/π) log(10002) in eq. (4.6).
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Figure 12. The
√

λ2
1/λ2 dependence of the total action S for the configuration in eq. (4.3). It is

independent of λ2 (corresponding to the center of two fractionalized instantons) with λ2
1/λ2 fixed.

The configuration is changed from S = 1 to S = 1/2, due to the attractive force.

For this ansatz, the normalized complex vector n(x1) takes the following three different

values as x1 varies from −∞ to ∞,

n1 = (1, 0, 0)T → n2 = (0, 0, 1)T → n3 = (0, 1, 0)T , (4.5)

for λ2
1 > λ2. For this case, the entry of extended Cartan matrix is again positive αi ·αj > 0.

The separation τ is given by

τ =
1

π
log

(

λ2
1

λ2

)

, (4.6)

which is obtained from the balance conditions [50–52, 79–83],

1 = λ1e
πτ1 → τ1 =

1

π
log

(

1

λ1

)

, (4.7)

λ2e
2πτ2 = λ1e

πτ2 → τ2 =
1

π
log

(

λ1

λ2

)

, (4.8)
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Figure 13. The τ = (1/π) log λ2
1/λ2 dependence of the total action S and the force F = −dS

dτ
for

the configuration in eq. (4.3). For τ ≥ 0, we can interpret τ as the separation between the instanton

constituents. The configuration is changed from S = 1 to S = 1/2 with Q = 0 conserved, due to

the attractive force. The configuration for τ & 1 corresponds to neutral bions.

with τ = τ2− τ1. For τ ≥ 0, τ stands for a separation between the fractionalized-instanton

constituents. In figure 13 we depicts τ dependence of the total action S and the static force

F = −dS
dτ for (4.3). The result indicates that the force is negative for −∞ < τ <∞, and the

fractionalized instanton constituents have an attractive force. As with the configuration in

the previous section, the two fractionalized instantons are merged by the attractive force,

and finally resulting in the configuration,

ω(τ = −∞) →
(

1, λ2e
iθ2eπ(z+z̄), 0

)T
, (4.9)

at τ = −∞ (λ2
1/λ2 = 0) with

S = 1/2, Q = 0 . (4.10)

From this analysis, we see that λ2, θ1 and θ2 correspond to bosonic zero modes while λ2
1/λ2

to a negative mode.

The interaction part of the action takes the same form as that in the previous section

Sint(τ) = 1
π

∫

dxsint(x1). In figure 14, we plot the logarithm of the interaction action

Sint(τ) as a function of τ for the present case (4.3). For τ & 2 region, log(−Sint(τ)) is

approximated by

log [−Sint(τ)] ∼ −6 τ + 1.9657 , (τ & 2) . (4.11)

Therefore, the interaction action can be written as the following form for τ & 2 region,

Sint(τ) ∼ − 7.14 e−6τ . (τ & 2) . (4.12)

This is qualitatively consistent with (1.1), while the coefficients are different from ξ(3) and

C(3) in Z3 twisted boundary conditions. Although how the coefficients are fixed needs

to be uncovered, we at least argue that neutral bion-type configurations exist also for the

split boundary condition with N = 3, which are responsible for the cancellation of infrared

renormalon ambiguity.
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Figure 14. Plot of log(−Sint(τ)) as a function of τ for (4.3) (a red curve with triangle points). For

τ > 2, the curve is almost equivalent to −6τ + 1.97 (a blue curve).
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Figure 15. Action density s(x1) and topological charge density q(x1) for the configuration of

eq. (4.13) for λ1 = 1000 and λ2 = 1. The distance between two fractionalized instantons is ∼ 6.596,

which is consistent with the (3/2π) log(10002) in eq. (4.18).

4.2 Bions in extended split boundary conditions

As an extension of the split boundary condition, we consider the following ansatz of the

CP 2 model on R
1 × S1,

ω =
(

1, λ2e
iθ2e

2π
3
(z+z̄), λ1e

iθ1e
2π
3
z
)T

. (4.13)

In this case we no longer regard the boundary condition as the Wilson-loop holonomy in

the split vacuum, rather one specific twisted boundary condition, with Ω = (1, 1, e2πi/3).

We will investigate the ansatz from pure-theoretical interest.

For λ2
1 ≫ λ2, this configuration is composed of two constituents, a BPS fractionalized

instanton (S = 1/3, Q = 1/3) and a BPS fractionalized anti-instanton (S = 1/3, Q =

−1/3), which are separately located as shown in figure 15. The total action and the net

topological charge in this limit are given by

S = 2/3, Q = 0 , (4.14)

respectively. We note that the topological charge is zero and conserved.
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Figure 16. The
√

λ2
1/λ2 dependence of the total action S for the configuration in eq. (4.13). It is

independent of the center location λ2 with λ2
1/λ2 fixed. The configuration is changed from S = 2/3

to S = 1/3 with Q = 0 conserved, due to the attractive force.

We generalize this configuration to the CPN−1 model,

ω =
(

1, λ2e
iθ2e

2π
N

(z+z̄), λ1e
iθ1e

2π
N

z, . . . , 0
)T

. (4.15)

For λ2
1 ≫ λ2, this configuration corresponds to a 1/N instanton (S = 1/N , Q = 1/N) and

a 1/N anti-instanton (S = 1/N , Q = −1/N). The total action and the net topological

charge in this large-separation limit are given by

S = 2/N, Q = 0 , (4.16)

respectively. The explicit form of the action density s(x1) for N is given by

s(x1) =
4π2

N2(1 + λ2
1e

4πx1/N + λ2
2e

8πx1/N )4
×

[

λ2
1e

4πx1/N (1 + λ2
1e

4πx1/N )2 + 2λ2
2e

8πx1/N (1 + λ2
1e

8πx1/N )2

+ λ2
1λ

2
2e

12πx1/N (7 + 6λ2
1e

4πx1/N + 7λ2
2e

8πx1/N + 2λ2
1λ

2
2e

12πx1/N

+ λ4
1e

8πx1/N + λ2
2e

16πx1/N )
]

. (4.17)

Figure 16 depicts the
√

λ2
1/λ2 dependence of the total action S for N = 3. We note that

the total action is independent of the central location λ2 for λ2
1/λ2 fixed.

The separation τ is given by

τ =
N

2π
log

(

λ2
1

λ2

)

, (4.18)

which is obtained from the two balance conditions [50–52, 79–83],

1 = λ1e
2πτ1/N → τ1 =

N

2π
log

(

1

λ1

)

, (4.19)

λ2e
4πτ2/N = λ1e

2πτ2/N → τ2 =
N

2π
log

(

λ1

λ2

)

, (4.20)
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Figure 17. The τ = (3/2π) log λ2
1/λ2 dependence of the total action S and the force F = −dS

dτ
for

the configuration in eq. (4.13). For τ ≥ 0, we can interpret τ as the separation between the instanton

constituents. The configuration is changed from S = 2/3 to S = 1/3 with Q = 0 conserved, due to

the attractive force. The configuration for τ & 1 corresponds to neutral bions.
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Figure 18. Action density s(x1) (up) and charge density q(x1) (down) of the configuration of

eq. (4.13) (N = 3) for λ2
1/λ2 = 100, 25, 1, 10−4 (τ = 2.20, 1.54, 0,−4.40) with λ2 = 1 fixed. The

configurations for λ2
1/λ2 = 100, 25 correspond to neutral bions.

with τ = τ2 − τ1. In figure 17 we depict the τ dependence of the total action S and the

static force F = −dS
dτ for N = 3. The result clearly shows that the fractionalized instanton

constituents have the attractive force.

The two constituents are merged by the attractive force, as shown in figure 18. For

N = 3, the configuration results in the following form

ω(τ = −∞) →
(

1, λ2e
iθ2e

2π
3
(z+z̄), 0

)T
, (4.21)

at τ = −∞ (λ2
1/λ2 = 0) with

S = 1/3, Q = 0 . (4.22)
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Figure 19. Plot of log(−Sint(N, τ)) as a function of τ for N = 3 (left), N = 4 (center) and N = 5

(right) for the configuration in eq. (4.15) (red curves with triangle points). For sufficiently large τ ,

the curve is approximated by −(12/N)τ + C(N) (blue curves).

For general N , the resultant configuration at τ = −∞ (λ2
1/λ2 = 0) is given by

ω(τ = −∞) →
(

1, λ2e
iθ2e

2π
N

(z+z̄) 0, . . . 0
)T

, (4.23)

with

S = 1/N, Q = 0 . (4.24)

We now investigate the interaction part of the action for this configuration. The

interaction action is given by

Sint(N, τ) =
1

π

∫

dxsint(x1) , (4.25)

sint(x1) = s(x1)− (sν=1/N (x1) + sν=−1/N (x1)) . (4.26)

In figure 19, we plot the logarithm of the total interaction action Sint(N, τ) as a function of

τ for N = 2, 3, 4. For sufficiently large separation τ & 4, log(−Sint) can be approximated

by analytic lines,

log [−Sint(N, τ)] ∼ −ξ(N) τ + C(N) , (τ & 4) , (4.27)

where ξ(N) is a slope and C(N) is an y-intercept. For this case, the slope is expressed as

ξ(N) ∼ 12

N
. (4.28)

The interaction action can be written as the following form for large τ region,

Sint(N, τ) ∼ − eC e−ξτ , ξ =
12

N
, (τ & 4) . (4.29)

We next determine the N dependence of C(N). In figure 20 we plot exp[C(N)] for N =

3, 4, 5, 6, 7, 8. We find out that it is approximated by exp[C(N)] ∼ 14.3/N , and depict it

simultaneously in the figure. This result indicates that the interaction action (potential)

for large-separation region can be written as

Sint(N, τ) ∼ −14.3

N
e−ξτ , ξ =

12

N
, (τ & 4) , (4.30)
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Figure 20. Plot of exp[C(N)] (a coefficient of the interaction potential) for N = 3, 4, 5, 6, 7, 8 for

the configuration in eq. (4.15) (blue points). The plot is approximated by 14.3/N (a red curve).

which implies that the interaction part of the action at large τ region is expressed as

Sint(τ) ∝ −ξe−ξτ . (4.31)

This asymptotic form of the interaction potential is qualitatively consistent to (1.1). For

our special boundary conditions in the present subsection, which can no longer be identified

as Wilson-loop holonomy, it is not straightforward to understand the meaning of the values

of ξ and eC . However, as with the case for the ZN twisted boundary condition, it is true

that the prescription (g2 → −g2) and analytic continuation lead to the ambiguity in the

imaginary part of the amplitude for this case too. It implies that the resurgence procedure

based on neutral bions universally works for general boundary conditions and vacua in

field theories.

By calculating the renormalon ambiguity in the Borel re-summation of the perturbative

series for the present non-ZN boundary conditions, we can check if the two ambiguities are

cancelled against each other. In the future work, we will investigate whether resurgence

procedure based on bions or bion-like configuratons still works for non-ZN vacuum such as

split phases and its extensions.

5 Summary and discussion

In this paper, we have revisited topologically trivial configurations in the CPN−1 model

on R
1 × S1 with twisted boundary conditions, to study properties of bions composed of

multiple fractionalized-instantons. In the CPN−1 model with center-symmetric and non-

center-symmetric twisted boundary conditions, we have considered an explicit ansatz of a

configuration containing one fractionalized instanton (ν = 1/N) and one fractionalized anti-

instanton (ν = −1/N), which has an attractive force. We have shown that the separation-

dependence and N -dependence of the interaction potential of the ansatz agree with the

results of the far-separated instanton calculus [12, 13], even at small values of the separation.
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In section 3, we have considered a simple neutral-bion ansatz for the ZN twisted

boundary condition, which represents a molecule of one fractionalized instanton (ν = 1/N)

and one fractionalized anti-instanton (ν = −1/N). From the separation dependence of the

total action we show that the interaction between the instanton constituents are attractive,

thus the configuration has a negative mode. The separation dependence and N -dependence

of the interaction potential between the instanton constituents is compared with the result

in the standard far-separated instanton calculus in eq. (1.1), we show that our ansatz is

consistent with eq. (1.1) even from short to large separations. This result indicates that

our ansatz well describes the neutral bion related to renormalon ambiguity, which can be

used from short (τ & 1) to long (τ ≫ 1) separations.

In section 4, we have proposed bion-like ansatze in non-ZN twisted boundary conditions

including the one corresponding to the split vacuum in QCD(adj.) and its extensions for

N ≥ 3. We have shown that the interaction between the constituents is again attractive. In

this case, we have found that the separation and N dependences of the interaction potential

at large separation is qualitatively consistent to the result for ZN twisted boundary condi-

tions [12, 13] up to a numerical coefficient. It implies that the bion resurgence procedure

universally works for a wide range of boundary conditions and vacua in field theories.

Our ansatz in the CPN−1 model corresponding to bion configurations can be a good

starting point for studying properties of bions and related physics explicitly. Indeed, by

using our ansatz, we can study physics related to neutral bions, not only at large separations

τ ≫ 1, but also at short separations τ & 1, which cannot be reached by the far-separated

instanton approach.

We here discuss how to determine which of the saddle points (perturbative or bion)

configurations around τ ∼ 1 should be classified into. We so far have no systematic way

to classify the parameters to the two associated regions by looking into our ansatz itself.

On the other hand, from the viewpoint of the BZJ-prescription, the length scale where the

imaginary ambiguity in the amplitude for our ansatz gets close to the ambiguity in the

perturbative Borel-sum calculation should be regarded as the neutral bion scale. In our

calculation, this scale is about τ ∼ 1 as shown in figure 8, which is consistent with the

charged bion scale too. Thus, for now, what we can do for this purpose is just to sort out

the configurations by the separation of the instanton constituents based on the plausible

bion size τ ∼ 1, as performed in this paper. Exact classification of the parameter regions

for the two saddles should be pursued in the future study.

As a future work, we consider to study charged bion configurations, whose instanton

constituents have a repulsive interaction in a bosonic sector and also have an attractive

interaction due to the fermion zero mode exchange. Due to the balance between the at-

tractive and repulsive interactions, the size of charged bions will be clearly determined and

there will be no complicated problem on the size of bions for this case. In the Ünsal’s

argument [3, 4], this configuration has great significance in weak-coupling-regime confine-

ment via “bion condensation”. While understanding of phase diagram in the L-madj plane

is required to elucidate its relation to confinement in pure Yang-Mills or QCD theories, it

should be also worth investigating a concrete configuration contributing confinement in a

toy model.
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One straightforward extension will be bions in the Grassmanian sigma model with the

target space SU(N)/[SU(N −M) × SU(M) × U(1)]. Domain walls in the Grassmannian

sigma model were constructed in refs. [79–82, 86, 87]. Fractionalized instantons and bions

can be composed from these solutions with twisting U(1) moduli. While the CP 1 model

with the twisted boundary condition has the Wilson-loop holonomy of a U(1) gauge field,

the Grassmanian sigma model with the twisted boundary condition can have that of a

non-Abelian gauge field. We will see that the Grassmanian sigma model admits charged

bions in addition to neutral bions. The D-brane configurations in refs. [51, 52] will turn

out to be very useful for analyzing this model.

One path to connect our results of bions in the CPN−1 model to QCD may be to

consider a non-Abelian vortex [84–87] in Yang-Mills theory in the Higgs vacuum. U(N)

Yang-Mills theory coupled with suitable number of Higgs matter fields in the fundamental

representation admits a non-Abelian vortex, whose effective theory can be described by

the CPN−1 model. In this case, the Yang-Mills instantons and monopoles become CPN−1

instantons and domain walls, respectively, when trapped inside a vortex [50, 83, 88–91].

Therefore, when the vortex world-sheet is wrapped around S1 with aWilson-loop holonomy,

bions (instanton-monopoles) in Yang-Mills theory can exist inside the vortex as the CPN−1

bions (instanton-domain walls). By taking a un-Higgsing limit, the vortex disappears, and

therefore we expect that they remain as Yang-Mills bions.

The same relation holds between quark matter in high density QCD and the CP 2

model on a non-Abelian vortex [92, 93] (see ref. [94] for a review). This may give a hint

to understand a quark-hadron duality between the confining phase at low density and the

Higgs phase at high density, through a non-Abelian vortex [95].
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[15] G.V. Dunne and M. Ünsal, Generating Non-perturbative Physics from Perturbation Theory,

Phys. Rev. D 89 (2014) 041701 [arXiv:1306.4405] [INSPIRE].

[16] A. Cherman, D. Dorigoni, G.V. Dunne and M. Ünsal, Resurgence in QFT: Unitons, Fractons
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