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1 Introduction

The existence of the dark matter is an evidence of physics beyond the standard model

(SM). A lot of efforts have been devoted to search for it. In collider experiments, the

dark matter is expected to be detected as a missing component, or momentum unbalance

of visible particles. At LHC, monojet signatures with a large missing transverse energy

(MET) have been studied [1, 2].1 Since no excess has been measured over backgrounds,

production cross sections of the dark matter are constrained.

In the study of the monojet signature, the low-energy effective theory of the dark mat-

ter is considered [5]. Interactions with the SM particles are supposed to be described by

higher dimensional operators. Such an approach is superior, since the result is independent

of details of physics in ultraviolet (UV) energy scale. However, the analysis is not vali-

dated, once the effective theory breaks down. This happens when events do not satisfy the

1Monojet signatures at hadron colliders have been discussed in ref. [3]. Those at Tevatron are in ref. [4].
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perturbative unitarity bound of the effective theory. In this letter, we study the unitarity

bound in the LHC process, pp → χχ̄j, where χ is the dark matter. It will be shown that

the LHC analysis based on the effective theory is not guaranteed when the dark matter is

heavier than O(100) GeV. In the region, a number of signal events violate the unitarity

bound.

Before proceeding to the study of the unitarity bound, let us mention previous works.

In ref. [6], the unitarity bound on the monojet signature was studied. The analysis focused

on the vector effective operator (see section 3.3). Since the center-of-mass (c.m.) energy of

the subprocess, qq̄ → χχ̄, is set to be that of the proton beam, the result looks too strong.

We take the parton distribution functions (PDFs) into account. In refs. [7–9], the validity

of the effective theory of the dark matter was studied by assuming s-channel mediators for

the UV physics. Their result relies on the mediator, whereas the unitarity bound in this

letter is independent of the UV completion.

This letter is organized as follows. In section 2, the unitarity bound is reviewed. The

bound is shown in terms of the helicity amplitudes. In section 3, the effective theory of the

dark matter which we consider is summarized. The helicity amplitudes and the unitarity

bound are listed for each operator. In section 4, the analysis is applied to the current results

of ATLAS and CMS. In section 5, future prospects of the unitarity bound are studied for

LHC at
√
s = 14 TeV. Cut dependence is also discussed. The bound depends on the signal

region, especially on the cut threshold of the jet transverse momentum and the missing

transverse energy. In section 6, we summarize the results.

2 Unitarity bound

From the optical theorem, amplitudes of 2 → 2 scattering processes satisfy the following

relation:

2 Im[Mi→i] =
∑
f

βf

∫
d cos θ

16π
|Mi→f |2, (2.1)

where i and f respectively stand for initial and final states, and θ is the angle between

directions of the initial and final state particles in the c.m. frame. The factor βf is given

by the phase space integral as

βf =

√
[s− (m1 +m2)2][s− (m1 −m2)2]

s
, (2.2)

where m1,2 are masses of the final state particles. It corresponds to the velocity of the

final state particles, if m1 = m2 is satisfied. The scattering processes are described by

the helicity amplitudes [10], where the initial and final state particles are represented by

helicity eigenstates. Wave functions of spin 1/2 and spin 1 particles are summarized in

appendix A. The amplitude, Mi→f , can be expanded by partial waves in terms of the

Wigner d-function, djλfλi(θ), as

Mi→f (cos θ) = 8π
∞∑
j=0

(2j + 1)T ji→fd
j
λfλi

(θ), (2.3)
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where λi (λf ) is the total helicity of the initial (final) state. Here and hereafter, we

consider azimuthally symmetric processes, and φ = 0 is chosen without loss of generality.

The Wigner d-function satisfies the relations,

djλ′,λ(0) = δλ′λ,

∫ 1

−1
d cos θ djλ′,λ(θ)dj

′

λ′,λ(θ) =
2

2j + 1
δj′j . (2.4)

From eqs. (2.1) and (2.3), the following equation is obtained for each mode of j:

2 Im[T ji→i] =
∑
f

βf |T ji→f |
2 = βi|T ji→i|

2 +
∑
f 6=i

βf |T ji→f |
2. (2.5)

The unitarity bound for an elastic channel becomes

βi Re[T ji→i] ≤ 1, βi Im[T ji→i] ≤ 2. (2.6)

For an inelastic scattering amplitude, T ji→f , the perturbative unitarity condition is obtained

for each j as2 ∑
f 6=i

βiβf |T ji→f |
2 ≤ 1. (2.7)

Since dark matter productions are considered in the proton collisions, we require that their

scattering amplitudes satisfy the unitarity bound (2.7).

3 Effective Lagrangian

In this letter, productions of the dark matter at LHC are studied. The dark matter is

assumed to be a Dirac fermion. It is produced through the scattering of partons with a

monojet j as

pp→ qq̄j → χχ̄j, pp→ ggj → χχ̄j. (3.1)

In the second step of each process, the dark matters are produced through the parton-

scattering subprocesses, ii → χχ̄ (i = q or g). We consider that the subprocesses are

represented by the effective theory. The following higher dimensional operators are studied:

the scalar, pseudo-scalar, vector, axial-vector and gluon interactions between the dark

matter and quarks/gluons. Their definitions are given in the subsections.

The perturbative unitarity bound (2.7) is applied to subprocesses of the monojet pro-

cess (3.1). Scattering amplitude of the subprocess ii→ χχ̄ is enhanced when
√
s̄ is compa-

rable to or larger than the suppression scale of the effective operator. Here and hereafter,√
s̄ denotes the c.m. energy of the subprocess, i.e., the invariant mass of the dark matters.

Thus, the unitarity bound may be essential when we test the validity of the analysis of the

monojet process within the effective theory. It is stressed that the bound is independent

of the UV physics. This cannot be evaded, for instance, by modifying the mediators.

2If initial (final) state particles are identical, the unitarity bound is obtained by replacing βi → βi/2

(βf → βf/2) for 2→ 2 scatterings.
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In eq. (2.7), βi = 1 is satisfied, while βf for the final state particle (dark matter)

becomes

βf =

√
1−

4m2
DM

s̄
, (3.2)

where mDM is the mass of the dark matter. In the following, the unitarity bound is indi-

vidually studied for each effective operator, and interferences among them are discarded.

Some remarks on these procedures are discussed in section 4.3.

3.1 Scalar operator

The scalar effective operator is defined as

L =
1

Λ2
S

(χ̄χ)(q̄q), (3.3)

where χ is a Dirac dark matter, and q is the up-type or down-type quark. It is dimension-6

operator with the suppression scale ΛS . The dark matter production proceeds through the

scattering of the quarks. In the partial wave expansion, the helicity amplitudes of qq̄ → χχ̄

are calculated as

T j=0
(+,+)i→(+,+)f

= T j=0
(+,+)i→(−,−)f =

1

8π

s̄

Λ2
S

√
1−

4m2
DM

s̄
, (3.4)

by using the wave functions in the helicity basis (see appendix A). In the subscriptions,

(λa, λb)i and (λc, λd)f are helicities of the initial and the final state particles in the scattering

process a + b → c + d, respectively. Since they are spin 1/2 states, ± means λ = ±1/2.

The particle b (d) propagates the opposite direction to the particle a (c) in the c.m. frame.

Its helicity is defined as −λ in the convention of this letter. Thus, the total helicity in

the Wigner d-function, djλfλi(θ), satisfies λi = λa − λb and λf = λc − λd. The scattering

proceeds only when the initial helicity is either (+,+)i or (−,−)i. In the above, the initial

helicity (+,+)i is chosen. If all the helicities are flipped as +↔ −, the amplitudes become

the same as above, while the other helicity amplitudes are zero.

In eq. (2.7), only the amplitude with j = 0 provides a non-trivial bound. The summa-

tion runs over the final state, f = (+,+)f , (+,−)f , (−,+)f , (−,−)f , though amplitudes of

two of them vanish according to eq. (3.4). The unitarity bound becomes

ΛS ≥

[
s̄2

32π2

(
1−

4m2
DM

s̄

)3/2
]1/4

. (3.5)

If we turn on only the scalar operator (3.3) in the effective theory, the monojet process takes

place when the initial helicity is either (+,+)i or (−,−)i. All the scatterings are constrained

by the above condition. The LHC signal events are required to satisfy the condition (3.5)

not to ruin the calculation. Otherwise, the effective approach to the scattering rate is not

validated, but rather, the UV physics is needed for the analysis.
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3.2 Psuedo-scalar operator

The pseudo-scalar effective operator is defined with the suppression scale ΛP as

L =
1

Λ2
P

(χ̄γ5χ)(q̄γ5q), (3.6)

where q is quarks, q = u, d. The situation is similar to that of the scalar operator in

section 3.1. The helicity amplitudes of qq̄ → χχ̄ are calculated as

T j=0
(+,+)i→(+,+)f

= −T j=0
(+,+)i→(−,−)f =

−1

8π

s̄

Λ2
P

, (3.7)

and the same for +↔ −. The other amplitudes vanish. The unitarity bound becomes

ΛP ≥

[
s̄2

32π2

√
1−

4m2
DM

s̄

]1/4
. (3.8)

3.3 Vector operator

The vector effective operator is defined with the suppression scale ΛV as

L =
1

Λ2
V

(χ̄γµχ)(q̄γµq), (3.9)

where q is quarks, q = u, d. The helicity amplitudes of qq̄ → χχ̄ become

T j=1
(+,−)i→(+,−)f = T j=1

(+,−)i→(−,+)f
=
−1

12π

s̄

Λ2
V

, (3.10)

T j=1
(+,−)i→(+,+)f

= T j=1
(+,−)i→(−,−)f =

−1

6
√

2π

mDM

√
s̄

Λ2
V

, (3.11)

and the same for + ↔ −. The amplitudes become non-zero when the initial helicity is

either (+,−)i or (−,+)i, because the interaction is vector-like. The scattering with the

final state helicity, (+,+)f or (−,−)f , takes place by flipping the chirality with the dark

matter mass. In the partial wave expansion, only the amplitude with j = 1 is non-zero due

to the initial state helicity. The amplitude with (−,+)i is obtained by flipping the above

helicities as + ↔ −. The other helicity amplitudes vanish. Since the initial helicity is

either (+,−)i or (−,+)i to induce the monojet process, the LHC signal events is required

to satisfy the unitarity bound,

ΛV ≥

[
s̄(s̄+ 2m2

DM)

72π2

√
1−

4m2
DM

s̄

]1/4
. (3.12)

3.4 Axial-vector operator

The axial-vector effective operator is defined with the suppression scale ΛA as

L =
1

Λ2
A

(χ̄γµγ5χ)(q̄γµγ5q), (3.13)
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where q is quarks, q = u, d. The situation is similar to that of the vector operator in

section 3.3. The helicity amplitudes of qq̄ → χχ̄ become

T j=1
(+,−)i→(+,−)f = −T j=1

(+,−)i→(−,+)f
=
−1

12π

s̄

Λ2
A

√
1−

4m2
DM

s̄
, (3.14)

and the same for +↔ −. The unitarity bound is

ΛA ≥

[
s̄2

72π2

(
1−

4m2
DM

s̄

)3/2
]1/4

. (3.15)

3.5 Gluon operator

The gluon effective operator is defined as

L =
αS

16πΛ3
K

(χ̄χ)GaµνG
aµν , (3.16)

where Gaµν is the field strength of the gluon, and αS is the strong coupling constant. It

is dimension-7 operator with the suppression scale ΛK . The dark matter is produced in

the monojet process through the scattering of gluons. By using the wave functions of the

massless vector as well as that of the spin 1/2 particle in A, the helicity amplitudes of

gg → χχ̄ are calculated as

T j=0
(+,+)i→(+,+)f

= T j=0
(+,+)i→(−,−)f = − αS

64π2

s̄
√
s̄− 4m2

DM

Λ3
K

, (3.17)

where (λa, λb)i is helicities of the initial state gluons, and (λc, λd)f is those of the final state

dark matters. Since the gluon is a spin 1 particle, ± in the initial state means λ = ±1.

As expected from the angular momentum conservation, the helicity amplitudes become

non-zero when the total helicity is equal to zero, j = 0. The amplitudes with the opposite

helicities, +↔ −, become the same as above, whereas the others are zero. From eq. (2.7),

the unitarity bound for the gluon operator becomes

ΛK ≥

[
α2
s s̄

3

2048π4

(
1−

4m2
DM

s̄

)3/2
]1/6

. (3.18)

Similarly to the previous operators, the monojet process is required to satisfy the condi-

tion (2.7), otherwise the effective theory approach is not appropriate to calculate the cross

section.

4 Present status

The monojet signature has been studied at LHC with
√
s = 8 TeV [1, 2]. No excess has been

measured over the backgrounds, and the suppression scale Λ is constrained from below.

Since the beam energy is much higher than the limit on Λ, a part of the signal events

may violate the unitarity condition (2.7). In this section, we apply the above perturbative

unitarity bounds to the current study of the monojet signature at ATLAS and CMS.

– 6 –
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Figure 1. Unitarity bound (red lines) and monojet constraint (blue lines) on the suppression scale

Λ. The solid lines are obtained for ATLAS with
√
s = 8 TeV and L = 10.5 fb−1, while the dashed

lines are for CMS with
√
s = 8 TeV and L = 19.5 fb−1.
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4.1 ATLAS at 8 TeV

In ref. [1], the monojet signature is studied by ATLAS. The energy and integrated lumi-

nosity are
√
s = 8 TeV and L = 10.5 fb−1, respectively. The monojet signals are searched

for with the following cuts. At first, they are chosen by the preselection conditions:

• The missing transverse energy satisfies Emiss
T > 120 GeV.

• The leading jet is required to have pT > 120 GeV in |η| < 2.

• At most two hard jets with pT > 30 GeV and |η| < 4.5 are allowed.

• The second-leading jet satisfies ∆φ(j2, E
miss
T ) > 0.5.

• The events are vetoed, if the events include reconstructed leptons.

The trigger conditions are included in this preselection. Their efficiencies are sufficiently

good. After the preselection, the dark matter signals are studied in the signal region SR3

of ref. [1], which is defined to be:

• The leading jet and MET satisfy pT (j1) > 350 GeV and Emiss
T > 350 GeV.

Since no excess has been observed in the experimental data over the backgrounds, the dark

matter production cross section, σ × A × ε, is limited to be less than 0.05 pb at 95% CL,

where A and ε are acceptance and efficiency, respectively. In this letter, let us call this as

the monojet limit.

For the analysis of the unitarity, the monojet events are generated by the Monte Carlo

simulation. The model file is constructed by FeynRules v2.0.20 [11]. The events, pp→ χχ̄j,

are generated at the leading order by MadGraph5 v2.1.0 [12] with CTEQ6L1 PDFs [13].

The renormalization scale of αs is set by following the convention of MadGraph5, particu-

larly, the geometric mean of (m2
DM +p2T )1/2 for the gluon effective operator. The generated

events are interfaced to Pythia v6.426 [14] for the parton shower and hadronization, and

to Delphes v3.0.12 [15] for the detector simulation. The default ATLAS card of Delphes

is used for the detector setup, but the jet radius parameter R = 0.4 is set for the anti-kt

algorithm in accord with the ATLAS analysis. In order to validate this procedure, the

monojet limit is calculated for the vector, axial-vector and gluon effective operators. We

checked that our results agree very well with the ATLAS ones [1].

The unitarity bound is imposed on the signal events that pass the ATLAS SR3 cut

condition. In figure 1, the bounds on the suppression scale Λ are shown by the red solid

lines for each effective operator. For mDM . 200 GeV, the bound is insensitive to the dark

matter mass. It becomes stronger when the mass is larger, regardless of the phase space

suppression, since larger s̄ is required to satisfy the SR3 cut conditions. In the figure,

the numbers associated to the red lines mean that, among the total signal events that

pass the SR3 cut condition, 95%, 90% and 80% of the events satisfy the unitarity bound,

respectively. In other words, the signal events include 5%, 10% and 20% of the events for

which the effective Lagrangian approach breaks down. They should be calculated with UV

completions. Since we do not know what the UV physics is, we naively adopt a theoretical

– 8 –
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uncertainty to the number of signal events by 5%, 10% and 20%, respectively, by assigning

100% errors to the number of the unitarity-violating events. The uncertainty is added to

those already included in the ATLAS analysis.

The unitarity bound is compared with the monojet limit. The monojet limit from

ATLAS is displayed by the solid blue line in figure 1. It becomes weaker for heavier dark

matter masses, since larger energy is required to produce dark matters. If the unitarity

bound is stronger than the monojet limit, the effective theory approach is not appropriate

for the analysis.

For the vector operator, the unitarity bound is satisfied in a wide dark matter mass

range of the monojet limit. The ATLAS analysis includes about 10% (5%) events violating

the unitarity condition for mDM < 700 GeV (600 GeV). According to ref. [1], systematic

uncertainties in the theoretical calculation comes from PDFs, renormalization/factorization

scales and modelling of ISR/FSR jets, apart from the unitarity. They are typically esti-

mated to be about 10% for the vector operator with small dark matter masses, and become

larger as the dark matter is heavier. Thus, the monojet limit is reliable for mDM < 600–

700 GeV, at least, in terms of the above unitarity condition.

The axial-vector operator has a similar result as the vector one. The systematic un-

certainties in the theoretical calculation are also expected to be similar to the vector case.

If the theoretical uncertainty from the unitarity is required to be less than 10% (5%),

the dark matter is constrained to be lighter than mDM < 500 GeV (400 GeV) to use the

monojet limit. If the dark matter is heavier than it, the theoretical uncertainty becomes

large. On the other hand, the scalar and pseudo-scalar effective operators have stronger

bounds from the unitarity condition compared to the monojet limit, as found in figure 1.

The monojet analyses pass the unitarity conditions in mDM < 200–300 GeV for the scalar

operator and in mDM < 300–400 GeV for the pseudo-scalar operator, if the uncertainty

from the unitarity is required to be less than 5-10%.

The unitarity bound becomes much stronger against the monojet limit for the gluon

operator. The former bound on the suppression scale is naively given by the c.m. energy

of the subprocess. As the dimension of the effective operator increases, the bound tends to

be stronger, as noticed by comparing the gluon operator with the others in section 3. On

the other hand, the systematic uncertainties in the theoretical calculation are estimated to

be large for the gluon initial state, according to ref. [1]. They are typically ∼ 30% or larger

for the gluon operator. If the uncertainty from the unitarity violation is limited to be less

than 20%, the dark matter mass is bounded to be smaller than 300 GeV for the monojet

limit. As a result, the analysis of the ATLAS monojet limit is safe in terms of the unitarity

bounds up to mDM = O(100) GeV, depending on the effective operators. For heavier dark

matters, additional theoretical uncertainty should be assigned together with those already

taken into account in the monojet limit.

4.2 CMS at 8 TeV

CMS analyzes the monojet signatures similarly with ATLAS. It provides a stronger limit

than ATLAS, since CMS have analyzed more data. In ref. [2], the integrated luminosity

– 9 –
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is L = 19.5 fb−1 for
√
s = 8 TeV. In order to study the monojet signals, the events are

selected by the following preselection cuts:

• The event has MET with Emiss
T > 200 GeV.

• The leading jet satisfies pT (j1) > 110 GeV in |η(j1)| < 2.4.

• Events with more than two jets with pT > 30 GeV and |η| < 4.5 are vetoed.

• The second jet is allowed, provided that it satisfies ∆φ(j1, j2) < 2.5.

• The event is discarded if it includes reconstructed leptons or taus.

The trigger conditions are included in these cuts with sufficiently good efficiencies. The

dark matter signals are analyzed in the signal region:

• MET satisfies Emiss
T > 400 GeV.

Since no excess has been observed, the number of signals is limited to be less than 434 at

95% CL. In this letter, the signal events are simulated in the same way as section 4.1, but

the default CMS card of Delphes is used for the detector simulation with the jet radius

R = 0.5 in accord with the CMS analysis. We checked that the calculated monojet limits

agree well with the CMS result [2].

In figure 1, the unitarity bounds and the monojet constraints are shown by the dashed

lines. The latter is stronger than the ATLAS result, since the analyzed luminosity is larger.

On the other hand, the unitarity bound is almost the same as the ATLAS one with the

SR3 cut conditions. In ATLAS, pT (j1) > 350 GeV and Emiss
T > 350 GeV are imposed,

whereas CMS uses Emiss
T > 400 GeV. Since the transverse momentum of the jet is equal to

that of the χχ̄ pair at the parton level, the CMS cut condition is substantially close to that

of ATLAS except for a small difference of the energy threshold. Although the unitarity

bound depends on the cut condition, as will be discussed in section 5, this difference is

sufficiently small. Therefore, the unitarity bound of CMS becomes almost the same as that

of ATLAS.

If we compare the unitarity bound with the monojet limit, the conclusion is similar to

the above analysis in section 4.1. The CMS monojet analyses are safe against the unitarity

bound in the region mDM < O(100) GeV, depending on the effective operators. In detail,

the upper bounds on the dark matter mass in these analyses become higher by about

100 GeV compared to ATLAS.

4.3 Discussions

In this section, we have studied the unitarity bound on the dark matter monojet analyses

at LHC. The unitarity conditions are calculated for 2 → 2 scatterings, whereas the the

monojet processes (3.1) are 2→ 3 processes. Although it is possible to derive the unitarity

condition for 2 → 3 scatterings, it turns out to be too weak to restrict the effective oper-

ators. Instead, we focus on 2 → 2 subprocesses of the dark matter effective vertices. For

such vertices, one of the initial particles becomes off-shell. If the virtuality is sufficiently

– 10 –
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small, the unitarity conditions would be applicable. In detail, monojet processes include

three types of diagrams with respect to the effective vertex: 2 → 2, 1 → 3 and 2 → 3

scatterings. Here, 1→ 3 subprocesses mean diagrams of s-channel quark/gluon exchanges,

e.g., pp → q∗ → χχ̄q for the vector effective operator, while 2 → 2 subprocesses represent

t-channel diagrams. At LHC with
√
s = 8 TeV, 1 → 3 and 2 → 3 contributions amount

to at most ∼ 10% of the signal events. Further, for 2 → 2 subprocesses the virtuality

of an initial particle is represented by the momentum transfer Q2 of the off-shell particle.

We checked that Q2 is typically less than ∼ 10% of s̄ for the signal events that violate

the unitarity bound. The virtuality becomes smaller for signals of heavier dark matters.

Thus, the effect of the off-shellness is considered to be subdominant in the analysis of the

unitarity.

So far, the unitarity bounds and the monojet limits have been discussed for each

effective operator. Even if there are multiple operators simultaneously, the conclusion does

not change except for the quantitative details. It may be instructive how to apply the above

analysis to general cases. When there are multiple effective operators, they contribute to

the signal events simultaneously. If a scattering amplitude of an operator interferes with

others, the unitarity bound is derived from the helicity amplitude as in section 3. The

amplitude may not be represented by a single term in the partial wave expansion. Then,

the constraint is imposed on each term by eq. (2.7). On the other hand, if a process

includes scattering amplitudes which do not interfere with each other, the unitarity bound

is derived for each scattering rate, and the monojet analysis is tested against the bound in

the same way as explored in this section.

5 Prospects for LHC 14TeV

As the collision energy increases, the unitarity bound becomes stronger, since the c.m. en-

ergy of the subprocess tends to be larger. The bound is estimated for LHC at
√
s = 14 TeV.

In order to simulate the bound, the same event preselection as ATLAS 8 TeV is imposed.

The signal region, pT (j1) > 500 GeV and Emiss
T > 500 GeV, is set as a test case. The result

is shown in figure 2. It is found that the behaviour of the unitarity bound is the same

as that obtained at
√
s = 8 TeV, whereas the bound on the suppression scale increases by

about 300 GeV for the scalar, pseudo-scalar, vector and axial-vector operators. And, it

becomes stronger by about 100 GeV for the gluon operator.

The unitarity bound depends on cut conditions to select signals. If stronger cut on

pT (j1) or Emiss
T is imposed, the signal events are likely to have larger c.m. energy, s̄,

in the subprocess ii → χχ̄. Thus, the unitarity bound becomes stronger when the cut

threshold is tightened. In figure 3, the cut dependence is displayed for dark matter masses,

mDM = 100 and 1000 GeV. Here, the preselection of the signal events is the same as

ATLAS 8 TeV in section 4.1, while the signal region is defined such that the events satisfy

pT (j1) and Emiss
T larger than the cut threshold momentum/energy (the horizontal axis).

It is found that the unitarity bound on the suppression scale increases by 50–100 GeV if

the cut threshold is varied from 500–1000 GeV. Also, the signals with lighter dark matter

are more sensitive to the cut conditions than those with heavier one, though the difference

– 11 –
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Figure 2. Unitarity bound at LHC
√
s = 14 TeV. The preselection is the same as ATLAS 8 TeV,

while the cut condition is set to be pT (j1) > 500 GeV and Emiss
T > 500 GeV.
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Figure 3. Cut dependences of the unitarity bound for the vector operator. The horizontal axes

are the cut threshold of pT (j1) and Emiss
T . For the signal events, the transverse momentum of the

leading jet and MET are required to be larger than the threshold. The vector effective operator is

analyzed with mDM = 100 (left) and 1000 GeV (right). The vertical axes are the suppression scale

of the operator, ΛV .

is small. Backgrounds are expected to be large in the next phase of LHC. Tight cut

conditions can help to suppress them in the analysis of the monojet signature. Then, the

perturbative unitarity bound becomes more significant.

In the figure, the vector effective operator is analyzed to study the cut dependence of

the unitarity bound. The conclusion does not change for the other effective operators.

6 Conclusion

We have studied the effect of the unitarity condition in the monojet process, where the

production of the dark matter is described by the low-energy effective theory. The theoret-

ical calculation of the dark matter signal is, at least, required to satisfy the perturbative

unitarity condition. In this letter, the condition is discussed in detail. It was found that

the LHC analysis based on the effective theory is not appropriate when the dark matter is

heavier than several hundreds GeV. UV physics is required for the analysis of the monojet

signal in larger dark-matter mass regions. The unitarity bound is independent of the UV

physics and cannot be avoided, for instance, by tuning the mediator between the dark

matter and the SM particles.

In this letter, we focused on the monojet signature of the Dirac dark matter. It is

straightforward to apply this analysis to the other setup, such as a scalar dark matter or

the mono-Z, W signatures. These studies will be explored in the near future.

– 13 –
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A Wave functions in helicity basis

A.1 Spin 1/2

In the Dirac representation, spinors in helicity eigenstate which propagate to the (θ, φ)

direction with energy E and helicity λ = ±1/2 are represented as

u(~p, λ) =

( √
E +mχλ(~̂p)

2λ
√
E −mχλ(~̂p)

)
, (A.1)

v(~p, λ) =

( √
E −mχ−λ(~̂p)

−2λ
√
E +mχ−λ(~̂p)

)
, (A.2)

where m is a fermion mass, and the χ spinor is given by

χ1/2(~̂p) =

(
cos θ2
eiφ sin θ

2

)
, χ−1/2(~̂p) =

(
−e−iφ sin θ

2

cos θ2

)
. (A.3)

Spinors in the chiral representation are obtained by rotating the above spinors with the

matrix,

M =
1√
2

(
1 −1

1 1

)
. (A.4)

Explicitly, they are shown as

u(~p, λ) =
1√
2

(√
E +m− 2λ

√
E −m√

E +m+ 2λ
√
E −m

)
χλ, (A.5)

v(~p, λ) =
1√
2

(√
E −m+ 2λ

√
E +m√

E −m− 2λ
√
E +m

)
χ−λ. (A.6)

The χ spinor is the same as eq. (A.3). In this letter, we follow the Jacob-Wick conven-

tion [10] to represent helicity amplitudes. In 2 → 2 scattering amplitudes, the second

spinor, which propagates opposite to the first one in the c.m. frame, has an extra phase.

See e.g. ref. [16] for details.

A.2 Spin 1

Polarization vectors of massless vector fields propagating to the (θ, φ) direction are repre-

sented as

εµ± =
1√
2
e±iφ(0,∓ cos θ cosφ+ i sinφ,∓ cos θ sinφ− i cosφ,± sin θ). (A.7)
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The overall phase is defined in accord with the Jacob-Wick convention [10]. Also, the four

momentum is shown as

p = (p, p sin θ cosφ, p sin θ sinφ, p cos θ). (A.8)

A.3 Wigner d-function

The Wigner d-function is characterized by the representation of the rotation algebra. In-

stead of showing a general result, let us list the explicit functions which are used in this

letter:

d00,0(θ) = 1, d10,0(θ) = cos θ, (A.9)

d11,1(θ) = d1−1,−1(θ) = cos2
θ

2
, d11,−1(θ) = d1−1,1(θ) = sin2 θ

2
, (A.10)

d11,0(θ) = −d1−1,0(θ) = −d10,1(θ) = d10,−1(θ). = −sin θ√
2
, (A.11)
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