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1 Introduction

One of main fields for precision examination of the perturbative Quantum Chromodynamics
(QCD) is the study of the hard exclusive processes with the large momentum transfer
involved. The collinear factorization has been a well-established calculation framework for
more than three decades [1, 2]. In this framework, the amplitudes of many hard exclusive
processes can be expressed as convolutions of the perturbatively calculable hard-kernels
and the universal light-cone distribution amplitudes (LCDAs), in which the short-distance
and long-distance contributions are clearly factorized. For instance, the electromagnetic
form-factor of v*y — 7¥ at large momentum transfer can be expressed as

1
F(Q?) = /o /0 0 Ty (23 Q. 1) (3 ) + O(Mo /QP) (1.1)

where hard-kernel Ty (z; Q2, ;1) contains the short-distance dynamics, while the LCDA of
pion fr¢.(x; p) is a purely non-perturbative object parametrizing the universal hadroniza-
tion effects around the light-like distance. The LCDAs for light hadrons are not perturba-
tively calculable, one has to extract their informations from the experiments, or calculate



or constrain them by various non-perturbative methods, such as QCD sum rules, Lat-
tice simulations. However, the dependence of these LCDAs on the renormalization scale p
are perturbatively calculable. For instance, renormalization scale dependence of the twist-2
LCDA of pion is governed by the celebrated Efremov-Radyushkin-Brodsky-Lepage (ERBL)
equation [3, 4]

d L
dln 2/ on (@) = ;WCF/O Vo(, y) frdm (s 1) (1.2)

where Vjy(z,y) is the so-called Brodsky-Lepage kernel.

For the quarkonium involved exclusive processes, if the momentum transfer square is
much greater than the mass square of the quarkonium, the collinear factorization can be
invoked as well [5, 6]. Many phenomenological applications along this line have been made
for exclusive hard production of charmonium [7-13], exclusive charmonium production in
B meson decays [14-17], etc. All of these applications require the understanding of the
LCDAs for quarkonia.

Different from the LCDAs for the light mesons which relies completely on the dynam-
ics in the non-perturbative regime of QCD, one believes that the LCDAs for quarkonia
can be further factorized into the product of the perturbatively calculable part and non-
perturbative behavior of the wave-functions of quarkonia at origin, due to the nature of
quarkonium as a non-relativistic bound state of heavy quark and anti-quark. The stan-
dard theoretical tool to deal with the heavy quark bound state system is the NRQCD
factorization [18, 19], in which all information of hadronization of quarkonium is encoded
in the NRQCD matrix elements. Thus, there must be connections between the LCDAs
of quarkonia and NRQCD matrix elements. For examples, in [20-22], the authors try to
constrain their models for the LCDAs of quarkonia by relating the moments of LCDAs
with the local NRQCD matrix elements; in [23, 24|, the authors calculated the leading
twist LCDAs of the S-wave quarkonia within the NRQCD framework, and express the
LCDAs in form of the product of perturbatively calculable distribution part and lowest
order NRQCD matrix-element.

Especially, the attempts in [23, 24] open a way to connect the predictions of hard
quarkonium exclusive productions within the collinear factorization directly to those made
within the NRQCD factorization (for examples, the many theoretical calculations based
on NRQCD factorizations [25-38], triggered by the recent experimental measurements
of charmonium exclusive productions at B-factories [39-41]). In particular, in [42, 43],
the authors have shown that the collinear factorization indeed can reproduce the exact
asymptotic behavior of NRQCD predictions at the leading logarithms (LL) and next-to-
leading order (NLO) of the strong coupling as, respectively, for a certain class of the
quarkonium exclusive productions, if one employs the leading twist LCDAs calculated
in [24]; and the ERBL equations can be used to resum the large logarithms appearing the
NRQCD factorization calculations for the exclusive quarkonium productions, while such
resummation cannot be done within the NRQCD factorization.

As a successive work of [42, 43], in this paper, we calculate ten leading twist LCDAs
for the S-wave and P-wave quarkonia, namely 'Sp, 351, 'P; and 3P; (J = 0,1,2) states,



to the NLO of ay and leading order of non-relativistic expansion parameter v, by adopting
methods developed in [23, 24]. For three LCDAs of S-wave quarkonia, we get slightly
different results from those obtained in [23], and confirm the results of LCDA for 1S state
given in [24]. The seven leading twist LCDAs of P-wave quarkonia at NLO are totally
new. All of these leading twist LCDAs at NLO do obey the ERBL equations, and can be
applied to various quarkonium involved hard exclusive processes.

This paper is organized as follows: in section 2, we give the definitions of the leading
twist LCDAs for the S-wave and P-wave quarkonia, in terms of the matrix-elements of a
certain class of non-local QCD operators, and their tree-level forms at the leading order
of v; in section 3, we present our main results of this paper, the LCDAs at the NLO of
a, and leading order of v; in section 4, as applications and non-trivial examinations of our
results, we calculate the v* — ngv, xos7, Z = 197, xQ v (J =0,1,2), J/¢(Y)~v, hgy and
h — J /1y within the collinear factorization, by using the LCDAs we calculate, and show
how we can reproduce the asymptotic behavior of the NLO NRQCD predictions for those
processes exactly; finally, we summarize our work in section 5.

2 The definitions of LCDAs for quarkonia

2.1 Notations

We adopt the following notations for the decompositions of momenta: the momentum of
quarkonium H is P* = mpgv* with v?> = 1, and a 4-vector a* can be decomposed as
at =v-avt+ a‘{— where v-at = 0. We also use the same notation v for the non-relativistic
expansion parameter, which is typical size of the relative velocity of quark and anti-quark
inside a quarkonium. In the context, one should not confuse these two. We also introduce
two light-like vectors n such that n2 = 0 and nyn_ = 2, and any 4-vector a* can be
decomposed as a* = nipan” /2 4+ n_an! /2 + '] with nia; = 0. For convenience, we set
o' = (npont +n_vnl)/2 (apparently nivn_v = 1).

2.2 Defintions of the LCDAs

The leading twist, i.e. twist-2, LCDAs for the S-wave and P-wave quarkonia are defined as
the matrix elements of the proper gauge invariant non-local quark bilinear operators

J0)(w) = (QWe)(wny/2)d+ T(WIQ) (~wn /2), (2.1)

where @ is the heavy quark field in QCD, the Wilson-line

W.(x) = Pexp (igs /_(; dsni A(x + 5n+)> , (2.2)

is a path-ordered exponential with the path along the n, direction, g5 is the SU(3) gauge
coupling and A, (z) = Af,(z)T* (T are the generators of SU(3) group in the fundamental
representation).



The ten non-vanishing twist-2 LCDAs of the S-wave and P-wave quarkonia are de-
fined as!

(H('So, P)|J[ys)(w)[0) = —ifpny P /0 1 da e+ P2 G p(wm, ) (2.3)
U?@Shlie*ﬂJUHO@ﬁ>=—4vaWWMi:Aldwe“"+P@_”mévCMW%u), (2.4)
(H(*S1, P,e")J[y$)(w)[0) = =i frny Pet® /0 1 dx e+ PR G (wm, ) (2.5)
(H(' Py, P,e")|T[75)(w)]0) = iframianye* /0 ' o P/ 29 4 (sm,p),  (2.6)
(H(' Py, P,e")|T[y]75) (w)[0) =i fiany PeT® /0 o e P12 gl (am, ) (2.7)
(H(*Po, P)|J[1](w)|0) = fsny P /O e et PE12 go(m, ) (2.8)
(H(*Py, P,e*)|J[y5)(w)]0) = i fsamzan.ie* /01 dx eiwwp(x_lﬂ)ﬂgg,ax(l‘;maﬂ), (2.9)
(H(Py, P,e")| T[T 5] (w)]0) =i fani Pt /O o e P12 g (am, ) (2.10)

2 1
T m?n+an+65*aﬁ/ dx ewmrp(z_lmﬁbg’(fﬂ;m, m), (2.11)
0

(HCPy, P e")|J[1)(w)]0) =

1
W@EiﬁWﬂﬂMﬂ®=h%WMﬁW”/ch#m”““%ﬂmmw% (2.12)
0

where f, e* and QAS(:C) are decay constants, polarization vectors/tensors, and twist-2 LCDAs
of corresponding quarkonia, respectively. x denotes the light-cone fractions, and p is the
renormalization scale. In whole of this paper, we will also adopt the notation z =1 — =z
for any light-cone fraction x € [0, 1].

Due to the discrete C, P, and T symmetries, one can check that, when w — 0, we have

1 ~
/M%A)AMMA)AmmFm (2.13)

and corresponding integrals of the rest LCDAs do not vanish. Thus, we set the normaliza-
tion conditions for the LCDAs as following

/d:ﬂqﬁp /d:ngb /d Lo (x /da:qu /dm , (2.14)

/dmmﬂX%—D—AdwmﬂX%—D—Admﬂﬂx—D—L (2.15)

"Here we follow the definitions of the LCDAs for P-wave mesons in series papers by K.C. Yang
et al. [45-48], by setting z = wny /2, and p* = ny Pn" /2. Thus p- z = ny Pw/2.



Then, some decay constants defined above can be related to the following matrix-elements
of local operators

(H("So, P)|Qy"5Q10
(H(*S1, P,e")|Q"Q|0) = —ifymye™,

) = —ifpP", (2.16)
) (2.17)
(H(*S1, P,e)|Qio""QI0) = ifi (n)(P!e™ — PYe™), (2.18)
) (2.19)
) (2.20)

(H(*Py, P,e")|Qic" 75Q|0) = —ifia(n)(P!e™ — PYe™),
(HCPy, P,e®)| Q" 75Q|0) = —ifsa(u)maac™.

In practical calculations, it is convenient to use the Fourier transformed form of the
non-local operator defined in eq. (2.1)

QILl(@) = [(@QWo)(wny /2 T(WIQ)(—wms/2)|

= [ G2 e QW) wn 2 DOV Q) (s /D), (221)

27r
which are invariant under the re-parametrization n, — any and n_ — o~ 'n_. We have
(H(*S1, P)|Qlys)(2)[0) = ~ifpdp(x). (2.22)
(HCS1LPNQE@I0) = —if ™6 (@), (223)
(H(S1, P,e")|Qn)()[0) = —ifieidi(x), (2.24)
(H('Py, P,*)|Qlys] (2)]0) = —z’fmm“mg M (@), (2.25)
(H('Py, P,")|Q ) (2)]0) = —z‘fmei%lA( ), (2.26)
(H(*Po, P)|Q[)(2)[0) = fsds(x), (2.27)
(H(Py, P,*)|Qlys) (2)]0) = —z’ngm“”*e (@), (2.28)

of
maniang et . I

(HCP, P2 QUI@I0) = fr™ ) (x).

(HCPr, P.e")QNyEs)(2)|0) = _éfSAEL ¢3A( )5 (2.29)
(2.30)

(HEPy, Pe) QRN ()0) = 700

P ot (x). (2.31)

Here we suppress the dependence of all quantities on the renormalization scale p.

2.3 NRQCD factorization for the LCDAs

Since quarkonia are non-relativistic bound states of heavy quark and anti quark, all of the
LCDASs of quarkonia can be factorized into products of perturbatively calculable distribu-
tion parts and non-perturbative NRQCD matrix elements, as what done in [23, 24]. This
means that, schematically, at operator level, we have the matching equation

Z O (ar, ) Op 3P, (2.32)



where n denotes the order of v-expansion, Cf(z, u) is the short-distance coefficient as a
distribution over the light-cone fraction x, and ONRQCD is the relevant NRQCD operator
which scales O(v™) in the NRQCD power counting. Thus, the LCDAs of quarkonia can be
expressed as

(H|Q[T)(x, 1)|0) ~ Zcr (z, ) (H|OF 3P0} . (2.33)
n=0

At the lowest order of v, the matrix elements of the following relevant NRQCD effective
operators will be involved in our calculation:

0(150) = 7;1)759(1):
OH(351) = &U'Y#’va

5:| Xwv s

O (1P1) = [(—2> i

OCRy) = 1y [—\}3 < ;) BT} Xv s (2.34)
oM CR) = et (-3 ) Br %] e

0"CR) = 3 (=) [Proot] owe.
0" (Py) = G, [( > B 79] .

Here we use the four-component notations as in [44] for the NRQCD Lagrangian,

ﬁIﬁ%QCD = 1;11 (Z'U -D— (LDFTL)(LDW> 'lpv + Xo <ZU - D+ (ILDQT(;DTM)) Xv sy (235)

2m

where m is the pole mass of the heavy quark, v, and x, are the effective fields of the
heavy-quark and anti-heavy-quark, respectively, satlsfymg Yiby, = 1y and YXo = —Xo-

DV = 9t — g5 A* is the covariant derivative, and D D — B# 5 — 8 —2igsA*. And
a(T“b? = (ab by + a4 b)) /2 — at - b7 (9" — v*v”)/(d — 1) with d = 4 means the symmetric
3-D traceless part of rank-2 tensor a’?b%.

At tree-level, within the color-singlet model, we have?

(nQlO(*80)[0) = (O(*S)),
(U/T|O(381)]0) = e*(O(" o))
(hqlO"(*P1)|0) = £ (O(*Py))
(x| OCRy)|0) = (O Ry)), (2.36)
(@O CR) = kg (= (97 = BE) = (9 = 52£0)) OC R,
(x@|0"(°P1)[0) = e (O(Ry)),
(X@2|0" (P P)|0) = e (O(*Py)),

2Here we have used the spin symmetry of heavy quark system to relate the various matrix elements of
S-wave operators and P-wave operators.



with

<O(15’0)> = 4/ 2NC\ / 2M"7Q \/ZRIO(O) R (237)
(OCP)) = V/2Ney/2My o (i) \/ER/ﬂ(O)’ (2.38)

at the leading order of as and v-expansions. Here R,;(r) denotes the radial Schrodinger
wave function of the quarkonium with radial quantum number n and orbit-angular mo-
mentum [, and the prime denotes a derivative with the respect of r.

2.4 Tree-level matching

The short distance coefficient Ct(x, ) can be extracted, most conveniently, through match-

ing the matrix-elements between the vacuum and state of a colorless pair of free heavy quark

and anti quark with non-relativistic relative motion. In this subsection, we illustrate how to

do the matching at tree level. The generalization to the NLO calculation is straightforward.
We start with the heavy quark and anti-quark pair with the momenta

Pl =mot + g, ph=mut ", piy=m?, (2.39)

where the residual momenta ¢ and ¢ in the rest frame of heavy quark pair scale like
@ =3 ~mv? = —g and 7] = \cﬂ ~ muv, where v < 1. The total momentum of heavy
quark pair

Pt =pl +ph=mpv", my=vVP?2x2m+ 0. (2.40)

The on-shell spinors of quark and anti-quark can be expanded in v as

u(pr) > (1 ; ;fn) wn(pr). wo(pr) =

o(ps) ~ (1 - 2&) vo(pa) vo(pa) =+ o). (2.42)

Thus, at tree-level, we have

(@ ()@ (p)|QI)()[0)
_ 5ab/62i:6i(m1/2)wn+P+iwn+qu(p1)d.,.rv(pg)
ab n.d
S (m C1ja- n:]‘i) a(p1 )it To(ps)
5ab , nyq \ _
= 25 ((o6 - v - 0w - 12 L) woa T
#0a = 1/2) g m o) (T ) + O02) ). (2.43)

where we define § = (¢ — ¢)/2, and a, b are color indices for the quark and anti-quark.



For illustration, when I' = 5, we have

Uy (P11 47500 (p2) = vl (p1) V500 (p2) ~ nyv(QQ|O(150)|0) (2.44)
1

%ﬂv(pl) {d. 7475} vo(p2) = %%(m)[%ﬁ#]%%(m) ~ f(@@nwoﬂ(gf’lﬂo) , (2.45)

:%Uv(pl)d—i-%’)ﬂv(pﬂ — ”;i?qav(pl)%%(m) L ;(QQ’”+#OM(1P1)|O> . (2.46)
Thus,
(Qsl(z)) = 6(x —1/2) <;<0( So)) + f”*“ 5 (0" (P )))
Ny n4 P

(= 1/2) nyvngy

P n.P (O*(' 1))+ O(?). (2.47)

With the normalization conditions for the LCDAs set by (2.14), (2.15), we have
oD (@) = PV (x) =z —1/2), V(@) =5z -1/2)/2, (2.48)

and

1= iots. 19 =i-o0R). 19 =i

(OCR)), (249)
mp mig mimsA

where the superscript (0) denotes the quantity at the leading order of «s. Note we have
used the fact that nyv/ny P =1/mpy.
Similarly, one can get

A0 (@) = 70 (@) = 610 (@) = 02 - 1/2), (2.50)
69 (2) = 93y (2) = )V (2) = 670 () = ~0'(x — 1/2) /2, (2.51)
and
19 = 150 = o0s0), 10 =T (0CR), (2.52)
2 /2
1 =- v far) = —;%4@(3130», (2.53)
7O — o _ _%(O(fﬂpo» . (2.54)
T

3 The calculations of the LCDAs at NLO

3.1 Matching procedure by method of threshold expansion

To extract the short-distance coefficients C[t(x, ) at NLO of a, through the matching
equation (2.33), we have to calculate one-loop corrections to the matrix elements of both
Q[I')(z, u) and ONRQCD in general matching procedure as what done in [23].



However, in this work, we will adopt the method of threshold expansion [49] to simplify

the matching procedure so that we do not need to calculate the one-loop corrections to the

NRQCD

matrix elements of effective operators O This is equivalent to what done in [24].

In Feynman gauge, at one-loop level, the bare matrix element of Q[I'](z) is written as?

(Q* (1)@ (02) QT (2)]0) ™ = 5755 (x - “”“) wp1)it+To(p2) (3.1)

TL+P TL+P

O [ OV P24 D~ P2t map) (1 nik
were [ vt Py (+ =5~ 7p)

)
s u(p)+(f + /2 +m)g+Tu(p2) (0 x—lf% — 5 (2~ 2y
—40F5b/[dk] e e - — 2 ()g[(ij/Q 7) ]< ),
s o alp)iaT( - F/2+m)ﬂ+v(pz)( (-3 -28) -5 (s _gipj;))
CF“/ [dk] 0 Py (k= @)[(k — 0)[(k — P/2)2 — m?)

where +ie prescription for the propagators are understood, as = g2/(4m)? is the running
2_

strong coupling, Cp = A;CT: with N, = 3 is rank-2 Casimir in the fundamental represen-

tation of SU(3) group, and

~(4m)? feEu2\© d%k
k] = = < Amr > (2m)d

with d = 4—2¢ and vg = 0.5772. .. being the Euler constant. In the following calculations,
we will use the dimensional regularization (DR) to regulate both of the ultraviolet and
infrared divergences.

Apparently, we have to fix the scheme to treat 5 in DR. In the literature, two
schemes about 75 in DR are widely-used, one is the naive dimensional regularization (NDR)
scheme [50], in which {y5,7"} =0, {v*,7"} = 2¢"” and g}, = d; the other is the t'Hooft-
Veltman (HV) scheme [51, 52], in which v5 = i7%y!'y%y3, and {y*,v5} =0 for p =0,1,2,3
but [y*,75] = 0 for p =4,...,d — 1. In this paper, we will compute the NLO corrections
to the LCDAs in both the NDR and HV schemes.

The commonly used method to deal with the spinor bilinear @(p;) - - - v(p2) in NRQCD
community, is to transform it into a trace of Dirac matrices Tr[v(p2)u(p;) - - -] by replacing
v(p2)u(p1) with the proper spin-singlet or spin-triplet projectors. In many cases, the s
involved trace is unavoidable. In contrast to the HV scheme, in which such traces involving
~v5 are defined uniquely and consistently, the NDR scheme for traces involving 5 are
generally ill-defined. Thus, the additional care should be paid in evaluating the odd-number
of 5s involved trace. For instance, in [53] the authors proposed a strategy to treat traces
involving an odd number of ~5s in the NDR scheme, by which one can easily reproduce
the celebrated Adler-Bell-Jakiw anomaly, and other ~5 involved loop calculations that are
consistent with those obtained in the HV scheme.

¥Here we set the momentum of gluon in the loop as k — g as in [49]. And note that p1» = P/2 4+ g, the
momenta of quark and anti-quark propagator will be k + P/2 and P/2 — k, respectively.



However, in this paper, we will not use the trace techniques to calculate the spinor
bilinear u(p1) - - - v(p2). In general, we have to deal with a spinor bilinear like

u(py) 4T v(p2) (3.2)

where 77, I" originates from the vertex of Q[I'](z), and the ellipses denote complex of Dirac
matrices product from the QCD vertex and quark propagators. As we have seen in section 2,
' = 1,v,7%,7¢75, and we set n'y, v*, v* and both the external momenta within 4
dimensions. Then, no matter in the NDR or HV scheme, 74 either commutes or anti-
commutes with I" from Q[I']. The loop momentum k can be decomposed into

I3 7

= n+k% n n,k% R (3.3)
in which kﬁ can run over the extra dimension p = 4,...,d — 1. Therefore, (3.1) can be
simplified to

- n U T'v
<Qa(p1)Qb<p2)‘Q[F](.T)|0>bare — §abs (1‘ _ -‘rpl) (pl)d-i- (pZ) (34)
n+P ’I’Z+P

o [ GV E P2 i T(F — P24 m)ylp) (1 sk
#ge0ro® [lan n Pk — 2Pk + PJ27 — ik — P2 —m?]’ <”““ Ta n+P>

n T — 1 _ ngk) r — P
—O[;C’Féab/[dkﬁ +¢(Z;ri/(2) c g[( 2 7)? ﬁ(;l Pj?é? - ”Z;]P)) Uit Felee)

n oL _mngkN s nepy
_ZiCFéab/[dk]Q +nlj_PnP+/(2 (6 g[(k 2 ]TL[+]1:) Pj2>2 — n’;;]P)) ﬂ(p1)7¢+Fv(p2),

where implicitly

[dk] =

(4m)? (e p?\© dnykd® 2k dn_k
i < iy > 2(2m)d

We will expand the loop integrals in small parameter v ~ |g]/m by the threshold
expansion technique developed in [49]. The most important momentum regions are hard
region (where loop momentum k* ~ m), soft region (where k* ~ muv), potential region
(where k* ~ m(v?, 7)), ultra-soft region (where k* ~ mwv?). The contributions from the
low-energy regions, i.e. (ultra)-soft and potential regions, are reproduced by the one-loop
corrections to the matrix elements of effective operators in matching equation (2.33). Thus,
to get the NLO part of the short distance coefficient Cr ,,(x, i), we only need to calculate
the contributions from the hard region.

After the tedious expansions of integrands in hard region, we get various complicated
spinor bilinears with complicated spin structures. At first, we try to use only identities
{4} = 29", {1H+,I'} = 0or [if+, '] = 0 and on-shell conditions for the external spinors
as much as possible, for which identities hold in both NDR and HV schemes, to simplify
the spin-structures. And in the end, it turns out that the only structures which cannot be

,10,



simplified further for which the ~5 schemes do matter are

4

VT, and Y771 Typ, . (3.5)
We define v1/ 1Ty, = ¢y, pif+ I so that
2—d, I'=1,
d—2 ’ I'= 75
_ 3.6
Cﬁ+r d _ 4’ F — ,.yi , ( )
4— da r= 7?75 )
in the NDR scheme and
2—d, I'=1,
6—d, I'= V5
_ 3.7
T d—4, T=91, o0
d— 47 = 7?75 )

in the HV scheme.

Thus, the hard part of the bare matrix element up to O(v) is

(Q(p1)Q"(p2)|QIT](2)[0) x5

(1

— gab ty (p1)1+ Loy (p2)
TL+P

{5

) (a: -1_
Ol D)
+47_‘_CF/[dk]

neb) (—am? 3, ok /(d —2)  cgr (nik/nv)?)
2 +ie[k? 4+ Pk +i€|[k? — P - k + ie]

oy (k — P/2)

3

o (x —~1
Qg 2
—MCF/[dk]

T B2+ ie]
59 @y (p1) {d, 4T} vo(p2)

"T}“») =0(x=3) / 2n, (k+ P/2)
<[k2+P-k+z'e]

)}

[k2 — P -k + i€]

=

2m ny P

o 5 (m —1_ ,%’i) ((c;+F — 8m2/k2)k2 /(d — 2) + ¢4, (n+k/n+v)2)
T /[dk] (k2 +ie][k2 + P - k +i€][k2 — P - k + ie]

s 6(e—5-2%) =06 =3) / on, (k4 P2) 2. (k- P/2)

MCF/[dk] ST <[k2er-k:+ie] [k2iP-k+ie]>}

“Here, we would like to emphasize that, even though we use spinor decomposition technique instead

of trace technique, the NDR scheme is still algebraically inconsistent in contrast to the HV scheme. One

can possiblly obtain the different results with different manipulations or strategies for spin-structure sim-

plifications. The strategy of calculations in the NDR scheme in this paper, which are conventional in the

literatures, such as in [54, 55], is to try using identities, such as {y",~v"}=2¢"" and the on-shell conditions

of external momenta as much as possible, and identify the scheme-dependent spin-structures (here the

spin structures listed in (3.5)) for final treatment that relies on the anti-commuting properties of 5 in the

NDR scheme.
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4§ n4.q Uy(p1)1f+T v (p2) _ 5z _1
Tl+P ’I’L+P 2

ni P (nok - ) 5 (- - 2k

(n4v)? ny P

Qg
+ECF /[dk] [k + i€]?[k2 + P - k + i€|[k? — P - k + i¢]

a . /[dk;] ) (ac — % — %) dey, rmnyk/nyv
ar ¥ (k2 +ie][k2+ P -k +ic][k2 — Pk + ie]

mor f1an Smeg,rlnak/nsu)kd /(- 26 (x — 5 - i)

T Cr (k2 +i€]2[k2 + P -k + i€][k2 — P - k + i€]
o & (z—3) ong(k+P/2)  2n,(k+ P/2)
_MCF/[dk] [n+k][k2—25—ie] <[k‘2:-P -k + ie] [k?iP-kﬂ'e])
a 5(*'”_%_%)_5(%_%) 2ny (k+ P/2) 2ny(k+ P/2)
O [ k] s ][R + id <[k2er-k+ie] * [k2ip.k+ie]>
) nyP (n_k:— %) . n, P
k2 + ie] [n k]
89 iy (p1) [d, 7+ vo(p2) o 0 (m —2- %)
Tom nyP MCF/[dk] (k2 +i€][k2 + P -k +i€][k2 — P - k + ie]
nyk k2
X {4m2n:v (—2+cmp —267L+F7(d —LZ)k2>} +O(?). (3.8)

The hard part of the renormalized matrix-element is

1
(Q(p1) Q" (p2)|QIT)(2)|0)i55a = Zé’s/o dyZy, v(a,y)(Q" (p1)Q"(p2) QL] (v)|0)pard »  (3.9)

where the on-shell renormalization constant for the heavy quark is
3 2
78 =1-2cp (2 +3m s +4), (3.10)
47 € m2

and the renormalization kernels for the operator Q[I'](z) in the MS scheme are

Qg 2
Zm%(x,y) = Zm(:c,y) =0(x—y)— ECFg%(x,y), (3.11)
Qg 2
Ly (T:Y) = Zp v (w,y) = 0(z —y) — ECFEVJ_(x, v), (3.12)

with the Brodsky-Lepage kernel being

Vo(z,y) = E:i <1+

)9(w—y)+§<1+ >0(y—a;)L, (3.13)

Vi(a,y) = Vole,y) — [‘ze@c — )+ 200y - xﬂ . (3.14)

— 12 —



Therefore, schematically, the final matching equation up to O(v) goes to

(Q%(p1)Q"(p2)|QIT](2)|0)}5a

= > Cralz, m)(Q(p1)Q"(p2)| ONF¥™P|0) + O(v?) . (3.15)
n=0,1

Before we close the description of our matching procedure, one last thing we have
to mention, is that in general covariant gauge, we should get additional contributions
to (3.1). However, since we are calculating the on-shell matrix elements of gauge invariant
operators, such additional contributions should vanish in the end. And we check that, by
our strategy to simplify the spin-structures, no matter whether we are in the NDR scheme
or HV scheme, such additional terms in general covariant gauge do vanish, as they should.
This guarantees the gauge invariance of our results.

3.2 Final results for LCDAs of quarkonia

Giving the concrete I' in (3.15), we can simplify the spin structures further, and decompose
them into the matrix elements of the effective operators in (2.34), as we did in the previous
section. By use of the loop integrals given in appendix A, we obtain the short-distance
coefficients Cr ,(z, pt). Imposing the normalization conditions given in (2.14) and (2.15),
we reach the final results for the LCDAs at the NLO of ay and leading order of v.

The three LCDAs for the S-wave quarkonia are

SISV L [ (R, T CH S e |

[(11_612)20(1 - 23:)] . + A1620(1 — 2z)] | + (z < ;f)} , (3.16)
N - Qs 2 _
o (5 1) = p (a5 ) — 4(:) Cr [(ln m —1> (4z0(1—2x) + 4:U9(2:U—1))] ) (3.17)

and the corresponding decay constants are

fp = {1 + ajéﬁ” Cr (=6 + 4A)} Trjp(o&s@) , (3.18)

fo= {1+ 25 Per 9} o s, (3.19)
« 2 )

ft = {1 n Z(:)CF <—ln:12 - 8) } m7<0(150)>- (3.20)

Here, A = 0 for the NDR scheme, and A = 1 for the HV scheme.
Similarly, the seven LCDAs for the P-wave quarkonia are

Ol (@) = —0'(z — 1/2)/2

s {_ [ <ln » u? 3) 4z(5 — 83(1714—_4236;)20(1 — 27)

++

,13,



<fA>1LA(l’; p) =

bs (s ) =

<Z;|:)|,A($E p) =

&?%A(Jﬁ p) =
|

T(i’fJ #) =

o p1) =

B [835(7 —4z)0(1 — 256)] — A[16z0(1 — 22)]
+

(1 —2x)2

_ [8260(1 — 22) Ciresa

[(1 mp ]+++ (z )} : (3.21)
A Qg 8xz0(2x — 1 8xzH(1 — 2x
i (s 1) — 455) Cr [ q E ST ) q E 2y )} . (3.22)
—§'(x—1/2)/2

o (1) 12 4z(5 — 8z + 422)0(1 — 2x)
o O {‘ Kln m2(1—20)? 1) (1—20)? L
[ 8z(7 = 8z)0(1 — 2x) _[8z0(1 — 2x) Cr o

R s W v IR | SR
N as(p) 8xxf(2x — 1)  8zzh(1 — 2x)
dv(@in) = = —Cr [ (1— 22)2 (1— 22)2 L+
AW o 626001 — 20 + 1626(2 — 1)] . (3.24)

4
—8(z—1/2)/2

+ 2580, {_ Kln m2(1u2 2x)2> 16? 0(12;)22:6)] o [W] o

- [W] e :i‘)} , (3.25)
—0(x—1/2)/2

e[ (g )
[T t0m0l 2] = a1 2] e CJECED

5z — 1/2)/2

+2 e, {_ Kl“ mz<1ﬂ—2 20y 2) 16? 9—(129322%)} -

and the decay constants are

{32»@19(_1 2332:6)} - [8:5;)(_1 2;;6)} e x)} , (3.27)
Fua = {1 - O‘j‘f:)op (21117’52 + % - §A> } %w(?’Pg)), (3.28)
fin = {1 + az(:)cF (— In :52 — 4) } %(0(3130)) , (3.29)
o= {1- e (Sl -5) } zprtoCm, (3.30)
fon = {1 + O‘Zﬁf) Cp(—4+ 4A)} m‘f; (OFR)), (3.31)
£ = {1 - O‘zﬁf)cp (3 ln:; + 6)} :n\g? (OGP, (3.32)
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r={1-2Wc, (iln“i %)} azlocr). (3.3

= {1 _ O‘jlgf)c (31 L 10)} 2% (OCR) . (3.34)

In the above expressions, the + 4 +, ++ and +-functions are defined as

1 1
/0 dz[f(2)]11v9(z) = /0 dzf(z)(g(z) — g(1/2) - ¢'(1/2)(z — 1/2)
"(1/2)

(z 1/2) ), (3.35)
/ da(f ()] 149(z / def(2)(g(x) — 9(1/2) — ¢/ (1/2)(x — 1/2)),  (3.36)
/ dxlf (2)] g (z) = / drf(x)(g(x) — 9(1/2)). (3.37)
0 0

One can check that our results for éM(m; i) preserve the normalizations
n (2.14), (2.15), and far¢nr(x; 1) satisfy the ERBL equations

. el 12 1 R
M2d,i? (fM¢M($)> = 82(H F . dyVM(a:,y) (fM(bM(y)) . (3.38)

For the decay constants which can be defined by the local QCD currents, such as
fr, fv, f&, flLA and f34, we find that our results at NLO of ag and in the NDR scheme
agree with those in literature [56]. The decay constants, such as flLA, fss f3lA, fr, and f:ﬁ-,
are actually the first Gegenbauer moments of the corresponding LCDAs, which satisfy the
renormalization group equation that they should obey [3, 4],

%(fs,fsA,fT) = —%;CF <§> (fs, faa, fr), (3.39)
dlnu s (fia 1) = =2 Cr(3)(fia, f1). (3.40)

We also compare our results for the LCDAs of S-wave quarkonia with those in [23, 24].
In [23], the authors give all three leading twist LCDAs for S-wave quarkonia, but we find
that their results do not lead to correct decay constants at NLO of o after integration over
the light fraction either in the NDR scheme or in the HV scheme. In [24], only fpop(x) is
calculated, and we find that our results in the NDR scheme agree with theirs.

3.3 Some related quantities

In the practical applications of the leading twist LCDAs, since the lowest order hard-kernels
Ty (z) for many hard exclusive processes are in form of 1/x or 1/Z, the inverse moments
of the LCDAs are crucial for final amplitudes.

We define

Rr= -z, I'=PV,Vi,14,14,,5,34,3A,,T), T\ . (3.41)

,15,



We have

R /1qu ()t =24 % Cp ((6— 4n2)1 s +4(1+4A)In2 2r” (3.42)
— = — n2)n— - — .
P TOPLT 1 x 4 m?2 3 )
1 s u? 2
R'/ dzd), (z, p) =2 Z‘—ﬂ F<(6 4ln2)lnﬁ—4l 2—7;), (3.43)
I 1 Qg u? 272
Rl, deA(x - =24 0p ((6—4m2)n Ty —4(1—4A) 24— - ), (3.44)
Ri/ dzoi( )3—2+%0 (6—8ln2)ln’u—2+81n2—4—7r2 (3.45)
v A" ar m? 3 ) ’
1 Qg w2 472
Ry d:z:gi)lA($ M)E—Z—FECF (6 — 81n2)lnf—i—81n2+4—7 , (3.46)
1 s 2 272
R/ dzdl(z, 1) ~= 2+Z—7TCF ((2+41n2)1n:r‘b2+41n2+ 73T> (3.47)
1 Qg @2 272
Rs d:cqbs(x M); —2—1—@0}? (—2+41In2) lnm —20In2 — 12—1—7 ,  (3.48)
1 1 s 2 2 2
Rl dmm(:c 0= = 2+Z—7TCF (( 21 4In2)ln T’:L +(4In2— 4)(1+4A)+§>,
(3.49)
i 1 s 2
R3A dx¢3A(:c M); _2+ECF 21nm—81n2—8 ; (3.50)
1 R 1 « 2
RJT‘/O da:d)%‘(x,p); =—-2+ 4—;0}? (21n — 401n2+40> (3.51)

with A = 0 for the NDR scheme and A = 1 for the HV scheme.

4 Applications

In this section, we will apply our results for the LCDAs of quarkonia to calculate the hard
exclusive processes v* — 1Y, XV, Z = 1Q7, XQJY: J/V(Y)v, hgvy and h — J /1~y within
the collinear factorization.® We also compare our results with the asymptotic behavior
of the corresponding predictions in the NRQCD factorization. These comparisons can be
regarded as a non-trivial test of our results.

4.1 ~* = 197, Xq@s7 in the collinear factorization

For the hard exclusive process 7*(Q,e+) — H(p)y(p',e,) with the momenta in the light-
cone coordinates

i nt nf
P =n_p 5 p“—n+pf+n P (4.1)

°In [42], the authors have considered the v* — 7,y and h — Y+ in the collinear factorization at the
leading logarithm level, and used ERBL equations to resum the large logarithms. The applications in
this paper are a kind of extension of the work in [42] at the NLO of a5, but we shall not consider the
resummation here.
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and the polarization vectors e+ and e, for the virtual and real photon, respectively, when
m%/Q* < 1 (Q* = (p+ p')?), we expect the light-cone factorization formula for the
transition amplitude

M(’Y*(Q,EW*) — H(p)FY(plag’Y))
1
— iy, [ o (G T QP HGI Qb )0

+7TH(55 Q% )<H(p)|Q[1](w;u)\0>> +0(mi/Q°). (4.2)

Here e is the elementary electric charge, e the fractional electric charge of the quark @

inside of meson H, /" = e"P7n_,n,/2 where e/ is the Levi-Cevita tensor with €p23 =

+1, TII;’V(.I; Q?, ;1) are the perturbatively calculable hard-kernels, the matrix-elements of

Q[v5](z; 1) and Q[1](x; ) are eventually the appropriate leading-twist LCDAs of meson H.
In [57], the hard-kernels have been obtained at the NLO of s which are

1 a [ 2 Tlnx
TE(2: Q% ) = =41+ —= 21 In?z — —
w(2;Q%, 1) ;z»{ +47TCF _ —(3+2Inz)In —Q2—7j6+ n°z » 9]}
+(z T, (4.3)
1 « [ 2 Zlnz
Vi 2 _ - s 25 _
TH(vavN)—x{1+47TCF_ (3+2Inz)In —Q2—26+ln z—3 . 9}}
—(z < 7). (4.4)

Actually we did a recalculation of the hard-kernels TII;’V by using evanescent operator
technique proposed in [58], and obtain the same results as in [57] if we adopt the NDR
scheme to treat 5. For the problem we consider here, the evanescent operator is

- pv

QF (w3 p) = QYA 1/2)(ws 1) — == Qbsles ). (45)

which tree-level matrix-element vanishes in 4-dimension, but can contribute a term pro-
portional to d —4 in d-dimensional loop-calculation in general. If the one-loop coefficient of
the tree-level matrix-element Q%” contains a pole in term of 1 /e, an additional finite renor-
malization is required to make sure the matrix-element of Q’f; at one-loop level vanishes
in the end [58]. In the NDR scheme, tree-level matrix-element of Q% does not vanish in
d-dimension, thus we are required to do the corresponding finite renormalization. However,
in the HV scheme, tree-level matrix-element of Q% does vanish even in d-dimension, so
that we do not need to do the additional finite renormalization. This leaves us a great
convenience to get the hard-kernels in the HV scheme, even before we get those in the
NDR scheme. Thus, in the HV scheme, the hard-kernels read as

2
Th (2 Q% p) = ;{1—#;‘;0}7 [ (3+2Inz)In —Q2 +ln29§+ Zln 9]}
+(x < 2), (4.6)
i @) :1{1+%CF [_(3+2lni’)l 2ot +51nx—9]}
T T dmr ~0% e .
—(z 1) . (4.7)
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Note that T} in the HV scheme is actually identical to T} in (4.4), but 7% in the HV
scheme is different from T} in (4.3).

Straightforwardly, we apply the LCDAs of quarkonia obtained in the previous section,
we have the NLO amplitudes

~

. 1
. k 1 v *
ZM(/Y (Qa 8’7*) - UQ(P)V(P/a 8’7)) = 5626226!1 67*M5'y1/f77Q /0 deII{D(xa sz H)¢P($a :U‘)

(O("S0))

nQ
. 1
. * ? v * in
ZM(7 (Q7 57*) — XQl(pyg)’Y(p/ng» = §€2€é€i Ew*ug'ynyA/O deIJ;(x§ Q27 M)(b‘?‘,A(x; M)
3
0 f 0.

2
=—2e’ep)el e e pel, {1+Z;CF [(3—2111 2)L +1n?2+4+31In2-9 — 7;} } . (4.8)

=—2v2e*eq e e e,

2
Cr [(321n2)L fIn22— ln277;] } , (4.9)

Xle

. * . *fS !
IMOY (@ ey) = XV 6y)) = —ie*egeys - €37 i Ty (; Q% 1) ds (w; p)
3 2
_.22W**<O(Pﬂ)> Qs o 2 _
= ideeq€ | ey pel, \/gmiQo 1+ 47TCF (1-2In2)L+1n"2+9In2 3 . (4.10)

1
IM(Y(Q,e4+) = xQ2(p)Y (P, e5)) = —ieQeéew* 5:% ; da Ty (z;Q°, ) ‘:‘r(fmﬂ)

3P s 2
— _iseQeéej”aWef;yw\/é;’» {HZTCF [(1—2111 2)L 4+ 1n*2-31In2—6— 7;} } (4.11)
mXQ2

with L = In = m22_ € One can check that, although both of the hard-kernels and LCDAs
are dependent on the 75 schemes in loop calculations, the amplitudes of v* — 79~y and
v* — xq@17 are independent of the schemes of 75 as they should be.

By squaring the amplitudes, one can easily reproduce the asymptotic behavior of the
ratios between the NLO and tree-level cross-sections of eTe™ — 1.y, xesv(J = 0,1,2)
in [32]. The authors adopted the trace technique proposed in [53]. Since only one s is
involved in the trace, their results are essentially consistent with the results obtained in
the HV scheme.

4.2  Z =197, xXQJ7,J/¥(Y)y, hgy in the collinear factorization

The Z boson interacts with quark-anti-quark pair through the tree-level weak interaction as
. . g =
Ly00 =i———Q" — Z 4.12
e zQQ Z4cos9WQ7 (9v — 9475)QZ, ( )

where g is the weak coupling in SU(2);, x U(1)y electro-weak gauge theory, Oy the Weinberg
angle, gy = 1 — 8sin% /3 and g4 = 1 for the up-type quark, and gy = —1 + 4sin? Oy /3
and g4 = —1 for the down-type quark.

Thus, through the vectorial interaction, Z can decay to ngv, xqQJ7 as v, the cor-
responding decay amplitudes in the light-cone framework are just similar to v* — H~y
by replacing the prefactor 6262Q with ggveeq/(4cosby ), ey« with the polarization vector
of Z boson £z, and Q? with mQZ Through the axial-vectorial interaction, Z can decay
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to J/¢Y(Y)y, hgy as well. The corresponding factorization formula can be reached simi-
larly, i.e.

M(Z(Q.22) + Hp) (0. 55)
=0 g, [ (ST ) H ORI )

4 cos Oy

+ 2 sy ) Qe (53000 ) + Ol ) (1.13)

where H = J/)(Y) or hg, and T4 are the hard-kernels.
In the NDR scheme, 75 is anti-commuting with all v*. Thus, the hard-kernels TI‘{/’A
can be obtained very quickly, by identifying

Ty (xsm%, p) = Tfy (w;m%, p) - Tiy(w;m, p) = Ty (z3m, ) (4.14)

where the NLO expressions of T}I;’V in the NDR scheme are given in (4.3), (4.4).

In the HV scheme, the extractions of T;I/’A by adopting the evanescent operator tech-
nique [58], are much more involved than extractions of T 5"/ for v* — H~y, since =5 appears
explicitly in the interaction vertex. However, it is straightforward but tedious. In the end,
we get the hard-kernels in the HV scheme which read as

~ 1 I 2 =1n i
TY (x;m%, 1) = x{1+Z;CF —(3+21nf)1n_5;_i6+1n2£_x;1x_9]}
+(z < 7), (4.15)
- 1 I 2 2103
Tf}‘(%m?zvﬂ):g_:{leZjCF (3+21ni)lnm'l;i€+1n2j+5x;x9]}
= Z

Note that T} in the HV scheme is actually identical to T}, in (4.14), but 77 in the HV
scheme is different from T4 in (4.14).
Straightforwardly, we have the NLO amplitudes

M(Z(Q.ez) = J/(X)(p,e)v (P &y))

gaee ~ N
= sy [ TH Q) (4.17)
4 cos Oy 0

_ i 9aceq o SOCSO) [y s g ooy 22— n2 ™
— AT A o el — ~In2-9-— —
"2 cos By L TEHEw . /3(T) TR ( n2)L+n " 31)7

gaeeqQ
8 cos Oy

2
{1+ Z—SCF [(1—21n2)L +In%2-3In2-4— 7;] } , (4.18)
™

M(Z(Q,ez) = hq(p,e)v(p',ey)) =

. gaeeq * <O(3P0)>
—1 Ez - €&
2 cos Oy T ompm

1 ~
5Z'5j<yf1A/0 daTf (3 Q2 )¢1A(x 1)

with L = In mZ One can also check that the amplitude for Z — hg7y is independent

of the scheme to treat vs.
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By squaring the amplitudes, one should easily reproduce the asymptotic behavior of
the ratios between the NLO and tree-level cross-sections of eTe™ — J/4, hey at Z%pole.
In [59, 60], Chen et al. give the asymptotic ratios between the NLO and LO cross section are

oNO(ete™ — 20 — J/4y)

3¢ —
S p—
rsi] olO(ete= — Z0 — J/yr)
2 2
g my 5 T
—%CF {(3—2ln2)ln 2 +1In 2—1n2—5—3} , (4.19)
a9 oNO(ete™ = 70 = hey)
r =
! olO(ete= — Z0 — h.y)
2 2
_ s _ MZ {122 — 4
= 20k {(1 2002) %+ 12— 32— 4 3] . (4.20)

Their results agree with ours for ' Py case, but differ from ours for 35S case, by a constant
term (-4) at O(as). We cannot figure out the source of this discrepancy.

4.3 h — J/¢~ in the collinear factorization

The higgs boson h in the Standard Model interacts with quark-anti-quark pair through the

Yukawa interaction

‘ YQ A
Ly oo =1i—=QQh. 4.21
hQO \/§QQ (4.21)
Here yg = —V/2m/v is the Yukawa coupling where v = 246 GeV is the vacuum expecta-
tion value of the Higgs field, and m is the current mass of quark @ in MS scheme. The
corresponding factorization formula for h — J/1y is

iIMWQ) = J/P(p,ep)v (P 64))

. mceec *

1
= —iees, [ ot /6020l QEYw]0), (322

where €y is the polarization vector of J/v, and the hard-kernel T can be calculated
perturbatively. The NLO hard-kernel is

1 Inzt 2 12—
TH(a:;mi,u):_{1+%C’F[—<3—|—2nx>ln 'l; — + n:v_7]}
T 47 T —my — i€ T

+(z ), (4.23)

with the mass of higgs in the Standard Model my ~ 125 GeV.
Straightforwardly, we have the NLO amplitude

iM(R(Q) = J/b(p, )y (P, €4)) (4.24)
1 2 2

L 537«9( 50)) {1— & o [41n21n T oln?2 — 4ln 247+ QW] } :
2v M /4 7r mé 3

where m, is the pole mass of charm quark.
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Thirty years ago, Shifman et al. [61] had calculated h — J/¢~ to NLO of as in color
singlet model which is equivalent to the NRQCD calculation. The NLO prediction for
h — J/W+, that we quote from eq. (21) in [61], is written as

iM(h = J/W) = iMe(h — /) [1 _ 0‘5(”2”‘;2;)0‘”@(@)} , (4.25)
where
w2 — 2K K — K —
alk) =4 - P20 mo L) 26082 2) 4y + P(1) - F(=1)]  (4.26)

120—k)  2(1—k) it (1— k)2

<4+ +1_K)Farctan\/: <+2+(2I:1)2>1n(2—2n),

with k = m3 /(4m?) + ie and

- ! dy n1—4y(1—y)$ ) = ‘ M—_j —
¢(x)/0y_1/(2x)1 250 D) ,F()/Ody - Liy(—x). (4.27)

The asymptotic behavior of a(k) at kK — oo is

2

—m?2 — 9
" ZE—211122—41112+7;+7]+O(m§/m,%), (4.28)

1
a(k) = 3 [4ln2ln

c

which coincides with eq. (4.24).

5 Summary

In this paper, we calculate ten leading twist LCDAs for the S-wave and P-wave quarkonia
to the NLO of s and leading order of v, in both NDR and HV schemes. We demonstrate
that applications of these LCDAs in some single quarkonium exclusive processes can lead to
correct asymptotic behavior of relevant NRQCD results. This confirms again the conclusion
in [43] that there is a tight connection between the collinear factorization method and
NRQCD factorization method for a certain class of quarkonium exclusive productions.
And also as in [42], together with the ERBL equation, the collinear factorization method
can be used to resum the large logarithms in NRQCD calculations. However, as discussed
in [42, 62], the so-called “endpoint logarithms” in helicity-flipped exclusive processes, lead
to the breakdown of the collinear factorization. Such “endpoint logarithms” seem to be
process-dependent, and how to resum them remains unknown.
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Note added. After this work was finished, we were noticed by the authors of a series of
paper [63, 64], that they calculated the S-wave and P-wave heavy quarkonium fragmenta-
tion functions (FFs) from a heavy quark pair, of which the FF's from a color-singlet heavy
quark pair are related to the LCDAs we calculated in this paper. We are very grateful
to Y.Q. Ma, J.W. Qiu and H. Zhang (the authors of [63, 64]) for enormous communica-
tions and efforts on cross-checking. After correcting some typos and mistakes in original
manuscripts, we get completely consistent results in the NDR scheme.

A Some useful integrals

Here we list some loop integrals which are useful for the NLO computation of LCDAs for
quarkonia in section 3.

f(nik)
/[dk] [kQ-i-ie]”[kQ—l—P-k:—ie][k;? " P ktid (A1)

—1\" 472\ T(n 1 27)"0(2y — 1 2y)"0(1 — 2
() (o) sy v =aimmer) (o5l + )

/ " (k2 + ie] [k? +‘§§”Zk+)%ﬁéz “Pk+tid (A.2)
= <4;§2>6r(a)ggy/oldyf((y— 1/2)n. P) <2(?719<_23;y)21) N 2(3/19(_1%)222)> |

/ K] [k2 + i€]2[k2 +f1(3é+kk)+k§;é2 P k+id (A.3)
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