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1 Introduction

The duality between higher spin theories on AdS3 [1, 2] and large N limits of 2d CFTs,

see [3] for a review, can be understood and tested in quite some detail. This applies, in par-

ticular, to the bosonic example of [4], thus suggesting that supersymmetry is not a crucial
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ingredient for these types of dualities. On the other hand, it is believed that the vector-like

higher spin/CFT dualities arise from a full stringy AdS/CFT correspondence upon taking

the tensionless limit and concentrating on the states belonging to the leading Regge tra-

jectory [5–7]. In this context the supersymmetric versions of the dualities naturally arise,

and thus the supersymmetric examples deserve special attention. There have been some

attempts to understand in detail the way in which the higher spin/CFT dualities fit into

string theory, see e.g. [8] for a review as well as the proposal in [9]; however, it is fair to

say that there are still many open questions. The 3d/2d case seems to be a very promising

arena to explore these issues in more detail since both sides of the duality are under very

good quantitive control.

With this vision in mind, the analysis of the N = 4 supersymmetric version of the

higher spin/CFT duality was initiated in [10]. It relates the higher spin theory based on

the Lie algebra shs2[λ] to the Wolf space cosets

su(1)(N + 2)k+N+2

su(N)
(1)
N+k+2 ⊕ u(1)

with λ =
N

N + k + 2
. (1.1)

These theories have ‘large’ N = 4 superconformal symmetry, which is the expected su-

perconformal symmetry of the dual to string theory on AdS3 × S3 × S3 × S1. In a sense

this case is more restrictive than the better explored AdS3 × S3 ×M4 case with M4 = T
4

or M4 = K3, in which case only the small N = 4 superconformal algebra is expected to

appear. In particular, the large N = 4 superconformal algebra contains two affine su(2)

algebras, and the small N = 4 superconformal algebra can be obtained as a contraction in

the limit in which one of the levels is sent to infinity. The other reason for studying the

case with large N = 4 superconformal symmetry is that the dual CFT of string theory is

unknown [11] (see however [12] for a recent proposal), and one may hope that the novel

higher spin perspective may also suggest new avenues for overcoming this impasse. Finally,

it would be very interesting to make contact with the approach based on the integrable

spin chain viewpoint of [13, 14].

The proposal of [10] was subsequently explored further. In particular, the spectrum of

the two descriptions was matched in [15], see also [16] for an earlier analysis, and the asymp-

totic symmetry algebra of the higher spin theory was shown to agree with the ’t Hooft limit

of the Wolf space coset W algebras [17]. While many of the features of this duality mirror

precisely what happens for the original bosonic proposal [4] and its N = 2 supersymmetric

generalisation [18, 19], there is one intriguing difference that was already noticed in [10]:

while the quantum W∞ algebras underlying the bosonic and the N = 2 version exhibit

a triality or quadrality relation [20, 21], respectively, that explains the identification of

the quantisation of the asymptotic symmetry algebra with the dual coset algebra even at

finite N , a similar relation does not seem to exist in the large N = 4 case. It is therefore

interesting to understand the structure of the large N = 4 quantum W∞ algebra in detail.

This is what will be done in this paper. As we shall see, the relevant quantum W∞

algebra is uniquely determined in terms of the levels of the two affine su(2) algebras. As a

consequence, the quantisation of the asymptotic symmetry algebra of the higher spin theory

must coincide with the coset algebra provided that the levels of the two su(2) algebras
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agree, thus explaining the agreement of the symmetries without a triality-like relation. The

absence of such a relation only implies that the quantisation of the asymptotic symmetry

algebra of the higher spin theory based on the finite dimensional higher spin algebra shs2[λ]

with λ = M integer is not isomorphic to the Wolf space coset (1.1) with N = M . In fact,

as we shall also explain in detail, while both algebras truncate to some finitely generated

quantum algebras at integer M , the precise structure of the truncation is rather different

in the two cases.

The paper is organised as follows. In section 2 and 3 we study the structure of the

non-linear large N = 4 W∞ algebra. In particular, we explain our conventions for the

supermultiplets in section 2, and make the most general ansatz for the various OPEs in

section 3.2. We then study the constraints that follow from imposing the associativity of

the OPEs, and describe our results in section 3.3 (as well as appendix B). In section 3.4

we analyse the different truncation patterns of this W∞ algebra, and explain how the

finitely generated symmetry algebras associated to shs2[M ] and the coset algebra at finite

N , respectively, fit into this picture. In section 4 we repeat the analysis for the case of

the linear N = 4 W∞ algebra, and find essentially the same structure. As a non-trivial

consistency check of our analysis we explain in detail in section 4.3 and 4.4 how the two

sets of results are related to one another upon going from the linear to the non-linear

description. Section 5 contains our conclusions, and some of the more technical material

has been relegated to three appendices.

2 The non-linear large N = 4 superconformal algebra

In this section we explain our conventions for the description of the large N = 4 supercon-

formal algebra, its superprimaries and their descendants.

2.1 The OPEs of the superconformal algebra

The non-linear large N = 4 superconformal algebra is generated by the stress energy tensor

T (z)T (w) ∼ c

2(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
, (2.1)

six spin 1 currents A±i, i = 1, 2, 3, which are primary with respect to T and generate an

su(2)k+ ⊕ su(2)k− subalgebra

A±i(z)A±j(w) ∼ k±η
ij

(z − w)2
+

f ij
lA

±l(w)

z − w
, (2.2)

as well as four spin 3
2 supercharges Gαβ which are primary with respect to both T and the

currents A±i

A+i(z)Gαβ(w) ∼
ρiγαG

γβ

z − w
, A−i(z)Gαβ(w) ∼

ρiγβG
αγ

z − w
. (2.3)

Here ρi denotes the spin j = 1
2 representation of su(2), and the su(2) invariant bilinear

form η in eq. (2.2) is defined by ηij = tr ρiρj . Global su(2) ⊕ su(2) symmetry constrains
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the OPEs of the supercharges to take the following most general quadratic form

Gαβ(z)Gγδ(w) ∼ bǫαγǫβδ

(z − w)3
+

[
1

(z−w)2
+

∂

2(z−w)

](
s+ǫβδℓi,αγA

+i + s−ǫαγℓi,βδA
−i
)
(w)

+
1

z − w

[
ǫαγǫβδ(−4T + s++ηijA

+iA+j + s−−ηijA
−iA−j) + s+−ℓi,αγℓj,βδA

+iA−j
]
(w) ,

(2.4)

where ǫαβ is the antisymmetric matrix with ǫ12 = 1, and the matrices ℓi are defined by

ℓi,αβ = ǫαγ ρ
j
γβ ηji . (2.5)

Here ηij is the inverse of η
ij , and in the following we shall routinely use these two matrices

to raise and lower the indices in the adjoint representation. The Jacobi identities fix the

structure constants in eqs. (2.1) and (2.4) to [22] (see also [23])

c =
3(k+ + k− + 2k+k−)

k+ + k− + 2
=

6(k+ + 1)(k− + 1)

k+ + k− + 2
− 3 , b = − 8k+k−

2 + k+ + k−
, (2.6)

s± =
8k∓

2 + k+ + k−
, s±± =

2

2 + k+ + k−
, s+− = − 8

2 + k+ + k−
. (2.7)

In the limit k± → ∞ with the ratio

α =
k−
k+

kept fixed, (2.8)

the wedge modes of the the non-linear large N = 4 superconformal algebra generate the

exceptional Lie superalgebra D(2, 1;α). Conversely, the non-linear large N = 4 supercon-

formal algebra can be constructed as the Drinfel’d-Sokolov reduction of D(2, 1;α) [24].

2.2 Superprimaries and their descendants

We call a field N = 4 superprimary provided that it is primary with respect to the stress-

energy tensor T , as well as the currents A±i. In addition, we require that the OPEs with

the supercharges Gαβ only have first order poles; in terms of the corresponding state these

conditions are equivalent to requiring that it is annihilated by the positive modes of the

stress-energy tensor, the currents and the supercharges, respectively.

In general, an N = 4 superprimary then transforms in an (irreducible) representa-

tion of the zero modes A±i
0 of su(2) ⊕ su(2); in the following we shall consider the case

where this representation is the singlet representation. We then denote the superconformal

descendants of the superconformal primary V (s) by

component V
(s)
0 V

(s)αβ
1/2 V

(s)±i
1 V

(s)αβ
3/2 V

(s)
2

conformal spin s s+ 1/2 s+ 1 s+ 3/2 s+ 2

su(2)⊕ su(2) spin (0, 0) (1/2, 1/2) (1, 0)⊕ (0, 1) (1/2, 1/2) (0, 0)

. (2.9)

Here s is the conformal dimension of the superprimary field V
(s)
0 , and the structure of the

multiplet is as described in [10], see also [25].
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The precise form of the OPEs of these component fields with the fields of the large

N = 4 superconformal algebra depend, to a certain extent, on our conventions.1 We have

chosen to work with a quasiprimary basis, and the guiding principle for our conventions

has been to minimise the number of non-linear terms. For example, for the OPEs of the

component fields with the stress-energy tensor we make the ansatz

T (z)V
(s)
0 (w) ∼ sV

(s)
0 (w)

(z − w)2
+

∂V
(s)
0 (w)

z − w
,

T (z)V
(s)αβ
1/2 (w) ∼

(s+ 1
2)V

(s)αβ
1/2 (w)

(z − w)2
+

∂V
(s)αβ
1/2 (w)

z − w
,

T (z)V
(s)±i
1 (w) ∼ (s+ 1)V

(s)±i
1 (w)

(z − w)2
+

∂V
(s)±i
1 (w)

z − w
, (2.10)

T (z)V
(s)
3/2(w) ∼

(s+ 3
2)V

(s)αβ
3/2 (w)

(z − w)2
+

∂V
(s)αβ
3/2 (w)

z − w
,

T (z)V
(s)
2 (w) ∼ tV

(s)
0 (w)

(z − w)4
+

sV
(s)
2 (w)

(z − w)2
+

∂V
(s)
2 (w)

z − w
.

Note that these fields are Virasoro primary, except for V
(s)
2 , which is only quasi-primary

if t 6= 0 (as will be generically the case, see below). Similarly, as regards their behaviour

under the current algebra, we postulate

A±i(z)V
(s)
0 (w) ∼ 0 ,

A+i(z)V
(s)αβ
1/2 (w) ∼

ρiγαV
(s)γβ
1/2 (w)

z − w
, A−i(z)V

(s)αβ
1/2 (w) ∼

ρiγβV
(s)αγ
1/2 (w)

z − w
,

A±i(z)V
(s)±j
1 (w) ∼ a±1 η

ijV
(s)
0 (w)

(z − w)2
+

f ij
lV

(s)±l
1 (w)

z − w
, A±i(z)V

(s)∓j
1 (w) ∼ 0 , (2.11)

A+i(z)V
(s)αβ
3/2 (w) ∼

a+3/2ρ
i
γαV

(s)γβ
1/2 (w)

(z − w)2
+

ρiγαV
(s)γβ
3/2 (w)

z − w
,

A−i(z)V
(s)αβ
3/2 (w) ∼

a−3/2ρ
i
γβV

(s)αγ
1/2 (w)

(z − w)2
+

ρiγβV
(s)αγ
3/2 (w)

z − w
,

A±i(z)V
(s)
2 (w) ∼ a±2 V

(s)±i
1 (w)

(z − w)2
.

Thus V
(s)
0 and V

(s)
1/2 are affine-primary, but the higher component fields are not (since there

are double poles in the OPEs with the currents). Our conventions for the OPEs with the

supercharges are given in appendix A, and the associativity of this ansatz with the N = 4

1This is to be contrasted with the case of the linear superconformal algebras where requiring that the

defining OPEs are linear usually leads to a unique choice. In the present case, a linear basis does not exist,

and we need to fix this ambiguity differently.
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fields then implies that we have to choose

t = − 48s(1 + s)(k+ − k−)

(1 + 2s)(2 + k+ + k−)
, (2.12)

a±1 = 4s , a±3/2 = ±8(1 + s)[1 + k± + s(2 + k+ + k−)]

(1 + 2s)(2 + k+ + k−)
, a±2 = ±4(1 + s) , (2.13)

as well as the values given in eq. (A.2).

3 Non-linear large N = 4 W∞ algebra

With these preparations we are now ready to study the structure of the W algebra that

contains in addition to the non-linear large N = 4 superconformal algebra higher spin

multiplets V (s) of spin s = 1, 2, 3, . . . — one multiplet for every positive integer spin.

We shall use the same methods as in [20, 26–28]: first we write down the most gen-

eral ansatz for the OPEs between the higher spin currents that are allowed by the basic

requirements of conformal symmetry. Then we impose the Jacobi identities to solve for

the structure constants in these OPEs. Our primary goal is to understand how many non-

equivalent such W∞ algebras exist, i.e., whether there are any further free parameters, in

addition to k±, that characterise these algebras.

In this section we shall write all OPEs in a quasiprimary basis. The OPEs then take

the general form [29]

Φi(z) Φj(w) =
∑

k

Cij
k

(z − w)hi+hj−hk

∞∑

n=0

(hi − hj + hk)n
n!(2hk)n

(z − w)n ∂nΦk(w) , (3.1)

where Φi, Φj , Φk are quasi-primary operators of conformal dimension hi, hj and hk, respec-

tively, Cij
k are the structure constants and (x)n = Γ(x+n)/Γ(x) denotes the Pochhammer

symbol. In order to improve the readability of the following formulas, we shall always use

the shorthand notation for the singular part of the OPEs of type (3.1)

Φi × Φj ∼
∑

k :hk<hi+hj

Cij
kΦ

k . (3.2)

It should be obvious how to recover the actual singular part of the OPE (3.1) from the

shorthand expression (3.2).

3.1 Composite fields

In order to be able to write down the most general ansatz for the OPEs of the higher spin

fields in a quasiprimary basis we first need to find all the quasiprimary operators at every

spin. A convenient (albeit somewhat formal) way of doing this is as follows. We introduce

a ‘mark’ for every field of the algebra

component A±i Gαβ T V
(s)
0 V

(s)αβ
1/2 V

(s)±i
1 V

(s)αβ
3/2 V

(s)
2

mark y±0,1 y0,3/2 y0,2 ys,0 ys,1/2 y±s,1 ys,3/2 ys,2
. (3.3)
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Then, the marked character of the full W∞ algebra takes the form

χ∞ = χ0 · χhs , (3.4)

where χ0 is the character of the large N = 4 superconformal algebra

χ0 =

∞∏

n=1

∏ 1

2

m,m′=− 1

2

(1 + y0, 3
2

z2m+ z2m
′

− qn+
1

2 )

(1− y0,2qn+1)
∏1

m=−1(1− y+0,1z
2m
+ qn)(1− y−0,1z

2m
− qn)

, (3.5)

z± are the chemical potentials for the two su(2) algebras, and χhs counts the states gener-

ated by the higher spin fields

χhs=

∞∏

s=1

∞∏

n=s

∏ 1

2

m,m′=− 1

2

(1 + ys, 1
2

z2m+ z2m
′

− qn+
1

2 )(1 + ys, 3
2

z2m+ z2m
′

− qn+
3

2 )

(1− ys,0qn)(1− ys,2qn+2)
∏1

m=−1(1− y+s,1z
2m
+ qn+1)(1− y−s,1z

2m
− qn+1)

. (3.6)

The quasiprimary fields at spin s are then counted by the ‘multiplicities’ ds, where

χ∞ = 1 +
∑

s∈N/2

dsq
s

1− q
. (3.7)

The first few ds are explicitly

d1 = y1,0 + y+0,1ch1(z+) + y−0,1ch1(z−) ,

d 3

2

=
(
y0, 3

2

+ y1, 1
2

)
ch 1

2

(z+)ch 1

2

(z−) ,

d2 = [y0,2 + y2,0 + (y1,0)
2 + (y+0,1)

2 + (y−0,1)
2
]
+
(
y+1,1 + y+0,1y1,0

)
ch1(z+) +

+ (y−1,1 + y−0,1y1,0)ch1(z−) + y+1,1y
−
1,1ch1(z+)ch1(z−) ,

d 5

2

=
[
y1, 3

2

+ y2, 1
2

+ (y1,0 + y+0,1 + y−0,1)(y0, 3
2

+ y1, 1
2

)
]
ch 1

2

(z+)ch 1

2

(z−) +

+ y+0,1(y0, 3
2

+ y1, 1
2

)ch 3

2

(z+)ch 1

2

(z−) + y−0,1(y0, 3
2

+ y1, 1
2

)ch 1

2

(z+)ch 3

2

(z−) ,

d3 =
{
y3,0 + y1,2 + y1,0

[
y0,2 + y2,0 + (y1,0)

2 + (y+0,1)
2 + (y−0,1)

2
]
+ y+0,1y

+
1,1 + y−0,1y

−
1,1 +

+ y0, 3
2

y1, 1
2

}
+
{
y+2,1 + y1,0

(
y+1,1 + y+0,1 + y1,0y

+
0,1

)
+ y+0,1[y0,2 + y2,0 + y+0,1 + y+1,1 +

+ (y+0,1)
2 + (y−0,1)

2] + y0, 3
2

+ y0, 3
2

y1, 1
2

+ (y1, 1
2

)2
}
ch1(z+) +

{
y−2,1 + y1,0

(
y−1,1 + y−0,1 +

+ y1,0y
−
0,1

)
+ y−0,1[y0,2 + y2,0 + y−0,1 + y−1,1 + (y−0,1)

2 + (y+0,1)
2] + y0, 3

2

+ y0, 3
2

y1, 1
2

+

+ (y1, 1
2

)2
}
ch1(z−) +

[
y0, 3

2

y1, 1
2

+ y+1,1y
−
0,1 + y+0,1y

−
1,1 + y+0,1y

−
0,1y1,0 + y+0,1y

−
0,1

]
×

× ch1(z+)ch1(z−) +
[
y+1,1y

+
0,1 + (y+0,1)

2y1,0
]
ch2(z+) +

[
y−1,1y

−
0,1 + (y−0,1)

2y1,0
]
×

× ch2(z−) + (y+0,1)
3ch3(z+) + (y−0,1)

3ch3(z−) + (y+0,1)
2y−0,1ch2(z+)ch1(z−) +

+ (y−0,1)
2y+0,1ch1(z+)ch2(z−) ,
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where chj(z) =
∑j

m=−j z
2m is the character of the su(2) representation of spin j. From the

explicit expressions for ds we can verify that all quasiprimaries up to spin 3 are given by

s = 1 : V
(1)
0 , A±i ,

s = 3/2 : Gαβ , V
(1)αβ
1/2 ,

s = 2 : T , V
(2)
0 , V

(1)±i
1 , [V

(1)
0 V

(1)
0 ] , [A±iV

(1)
0 ] , [A±iA±j ] , [A+iA−j ] ,

s = 5/2 : V
(1)αβ
3/2 , V

(2)αβ
1/2 , [V

(1)
0 V

(1)αβ
1/2 ] , [V

(1)
0 Gαβ ] , [A±iV

(1)αβ
1/2 ] , [A±iGαβ ] ,

s = 3 : V
(3)
0 , V

(2)±i
1 , V

(1)
2 , [V

(1)
0 V

(2)
0 ] , [V

(1)
0 V

(1)±i
1 ] , [V

(1)
0 [V

(1)
0 V

(1)
0 ]] ,

[V
(1)αβ
1/2 V

(1)γδ
1/2 ] , [GαβV

(1)γδ
1/2 ] , [GαβGγδ] , [A±iV

(2)
0 ] , [A±iV

(1)±j
1 ] ,

[A±iV
(1)∓j
1 ] , [A±iV

(1)
0 ]−1 , [A±i[V

(1)
0 V

(1)
0 ]] , [A±i[A±jV

(1)
0 ]] ,

[A+i[A−jV
(1)
0 ]] , [TV

(1)
0 ] , [A±i[A±jA±l]] , [A±i[A±jA∓l]] , [TA±i] ,

[A±iA±j ]−1 , [A+iA−j ]−1 .

Here we have introduced a modified normal ordered product [ΦiΦj ], which is characterised

by the property that it defines a quasiprimary operator provided that Φi and Φj are

quasiprimary. More precisely, this modified normal ordered product differs from the stan-

dard normal ordered product (ΦiΦj) by the descendants of the quasiprimary operators

appearing in the singular part of the OPE (3.1)

(ΦiΦj) = [ΦiΦj ] +
∑

k

Cij
k

(
2hi − 1

hi + hj − hk

)
Γ(2hk)

Γ(hi + hj + hk)
∂hi+hj−hkΦk . (3.8)

We have also introduced the following quasiprimary fields2

[A±iV
(1)
0 ]−1 =

1

2
(∂A±iV

(1)
0 )− 1

2
(A±i∂V

(1)
0 ) ,

[A±iA±j ]−1 =
1

2
(∂A±iA±j)− 1

2
(A±i∂A±j)− 1

12
f ij

l∂
2A±l ,

[A+iA−j ]−1 =
1

2
(∂A+iA−j)− 1

2
(A+i∂A−j) .

We can also deduce from the marked character the number of (composite) N = 4

superprimary fields that transform in the singlet representation (0; 0) of su(2) ⊕ su(2) at

spin s. To this end we expand the marked character with y±0,1 = y0,3/2 = y0,2 = 1 and

ys,0 = ys,1/2 = y±s,1 = ys,3/2 = ys,2 = ys, in terms of characters of N = 4 superprimaries

χ∞ = χ0 +
∑

s∈N/2

esq
s ×

∞∏

n=1

∏ 1

2

m,m′=− 1

2

(1 + z2m+ z2m
′

− qn−
1

2 )

(1− qn)
∏1

m=−1(1− z2m+ qn)(1− z2m− qn)
, (3.9)

where es is the ‘multiplicity’ of the N = 4 superprimaries at spin s. We can further

decompose es into su(2) ⊕ su(2) characters to get the ‘multiplicity’ of the superprimaries

2These fields can be rewritten in terms of the normal ordered product N (Φi, ∂nΦj) defined in [30].
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in a given representation

es =
∑

l+,l−

es(l+, l−) chl+(z+) chl−(z−) . (3.10)

The first few values of es(0, 0) are then

e1(0, 0) = y1 ,

e2(0, 0) = y2 + y21 ,

e3(0, 0) = y3 + y31 + y1y2 , (3.11)

and it is not hard to convince oneself that es(0, 0) = 0 for all half-integer values of s. Thus,

at spin s = 2 there is a single composite superprimary of the form [V
(1)
0 V

(1)
0 ] + · · · , which

can be used to redefine V
(2)
0 , while at spin s = 3 there are two composite superprimaries

of the form [V
(1)
0 [V

(1)
0 V

(1)
0 ]] + · · · and [V

(1)
0 V

(2)
0 ] + · · · , which can be used to redefine V

(3)
0 .

3.2 Ansatz for OPEs

With these preparations we can now make the most general ansatz for the OPEs between

the various higher spin fields (up to total spin 4). Our ansatz will obviously need to respect

the su(2)⊕ su(2) symmetry (coming from the zero modes of the currents). At total spin 2

and 5
2 , the most general ansatz is then

V
(1)
0 × V

(1)
0 ∼ n1I + 0 · V (1)

0 , V
(1)
0 × V

(1)αβ
1/2 ∼ w1G

αβ + 0 · V (1)αβ
1/2 . (3.12)

Here the coefficient in front of V
(1)
0 vanishes because a single spin one current can only

generate an abelian Kac-Moody algebra. It is also clear that the coefficient in front of

V
(1)αβ
1/2 must vanish because, by conformal symmetry, the 3-point function

〈V (1)
0 (z)V

(1)αβ
1/2 (w)V

(1)γδ
1/2 (v)〉 (3.13)

is symmetric under the exchange of w and v, which however is incompatible with the

fermionic nature of these fields.

At total spin 3 the most general ansatz for the OPEs is then

V
(1)
0 × V

(1)+i
1 ∼ w2A

+i + w3[A
+iV

(1)
0 ] + w4V

(1)+i
1 ,

V
(1)
0 × V

(1)−i
1 ∼ w5A

−i + w6[A
−iV

(1)
0 ] + w7V

(1)−i
1 ,

V
(1)αβ
1/2 × V

(1)γδ
1/2 ∼ ǫαγǫβδ

(
w8I + w9V

(1)
0 + w10T + w11[A

+iA+
i] + w12[A

−iA−
i] +

+ w13[V
(1)
0 V

(1)
0 ] + w14V

(2)
0

)
+ ǫβδℓi,αγ

(
w15A

+i + w16[A
+iV

(1)
0 ] +

+ w17V
(1)+i
1

)
+ ǫαγℓi,βδ

(
w18A

−i + w19[A
−iV

(1)
0 ] + w20V

(1)−i
1

)
+

+ ℓi,αγℓj,βδw21[A
+iA−j ] ,

V
(1)
0 × V

(2)
0 ∼ w22V

(1)
0 + w23T + w24[A

+iA+
i] + w25[A

−iA−
i] + w26[V

(1)
0 V

(1)
0 ] +

+ w27V
(2)
0 , (3.14)
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where the identity operator I cannot appear in the last OPE because the two point function

〈V (1)
0 (z)V

(2)
0 (w)〉 vanishes.

Similarly, the most general ansatz for the OPEs of total spin 7
2 is

V
(1)
0 × V

(1)αβ
3/2 ∼ w28G

αβ + w29V
(1)αβ
1/2 + w30V

(1)αβ
3/2 + w31V

(2)αβ
1/2 + w32[V

(1)
0 Gαβ ] +

+ w33[V
(1)
0 V

(1)αβ
1/2 ] + ρi,γα

(
w34[A

+iV
(1)γβ
1/2 ] + w35[A

+iGγβ ]
)
+

+ ρi,γβ
(
w36[A

−iV
(1)αγ
1/2 ] + w37[A

−iGαγ ]
)
,

V
(1)
0 × V

(2)αβ
1/2 ∼ 0 ·Gαβ + w38V

(1)αβ
1/2 + · · ·+ ρi,γβ

(
w45[A

−iV
(1)αγ
1/2 ] + w46[A

−iGαγ ]
)
,

V
(1)αβ
1/2 × V

(2)
0 ∼ 0 ·Gαβ + w47V

(1)αβ
1/2 + · · ·+ ρi,γβ

(
w54[A

−iV
(1)αγ
1/2 ] + w55[A

−iGαγ ]
)
,

V
(1)αβ
1/2 × V

(1)+i
1 ∼ ρiγα

{
w56G

γβ + w57V
(1)γβ
1/2 + w58V

(1)γβ
3/2 + w59V

(2)γβ
1/2 + w60[V

(1)
0 Gγβ ] +

+ w61[V
(1)
0 V

(1)γβ
1/2 ] + ρj,δγ

(
w62[A

+jV
(1)δβ
1/2 ] + w63[A

+jGδβ ]
)
+

+ ρj,δβ
(
w64[A

−jV
(1)γδ
1/2 ] + w65[A

−jGγδ]
)}

+

+ w66[A
+iV

(1)αβ
1/2 ] + w67[A

+iGαβ ] ,

V
(1)αβ
1/2 × V

(1)−i
1 ∼ ρiγβ

{
w68G

αγ + w69V
(1)αγ
1/2 + w70V

(1)αγ
3/2 + w71V

(2)αγ
1/2 + w72[V

(1)
0 Gαγ ] +

+ w73[V
(1)
0 V

(1)αγ
1/2 ] + ρj,δγ

(
w74[A

−jV
(1)αδ
1/2 ] + w75[A

−jGαδ]
)
+

+ ρj,δα
(
w76[A

+jV
(1)δγ
1/2 ] + w77[A

+jGδγ ]
)}

+

+ w78[A
−iV

(1)αβ
1/2 ] + w79[A

−iGαβ ] . (3.15)

In order to explain the above notation we note that the general ansatz for the OPEs

V
(1)
0 × V

(1)αβ
3/2 , V

(1)
0 × V

(2)αβ
1/2 and V

(1)αβ
1/2 × V

(2)
0 all have the same form, except that the

actual structure constants will in general be different; we have therefore labelled the struc-

ture constants of the latter two OPEs using the same ordering as for the first. We hope

this compact notation does not lead to any confusion. We should also mention that the

coefficient in front of Gαβ in the OPE V
(1)
0 ×V

(2)αβ
1/2 must vanish because the two operators

belong to different superprimary multiplets and hence cannot generate the superconformal

family of the identity. The same remark applies to the OPE V
(1)αβ
1/2 × V

(2)
0 .

The general ansatz for the OPEs of total spin 4 is given in appendix B.

3.3 Jacobi identities

Next we want to determine the actual structure constants, using the requirement that the

W algebra must have associative OPEs, i.e., (A(z)B(w))C(v) = A(z)(B(w)C(v)). Using

usual contour deformation arguments, see e.g. [31], this amounts to the condition that for

all triplets A,B,C of W algebra generators we have the identity

[A[BC]p]q − (−1)|A||B|[B[AC]q]p =
∞∑

l=1

(
q − 1

l − 1

)
[[AB]lC]p+q−l , p, q > 0 , (3.16)

where [AB]p is the operator that multiplies the p-th order pole in the OPE of A with B,

etc. This condition is believed to be equivalent to the requirement that the corresponding
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Jacobi identities are satisfied, and we shall denote the set of equations (3.16) by A×B×C.

To compute these identities we use the packages OPEdefs and OPEconf of Thielemans,

see [31, 32].

We shall proceed level by level. First we solve all the Jacobi identities that can be

computed with the OPEs of section 3.2. The first two OPEs (3.12) allow one to analyse

the Jacobi identities

T × V
(1)
0 × V

(1)
0 , A±i × V

(1)
0 × V

(1)
0 , V

(1)
0 × V

(1)
0 × V

(1)
0 , Gαβ × V

(1)
0 × V

(1)
0 ,

T × V
(1)
0 × V

(1)αβ
1/2 , A±i × V

(1)
0 × V

(1)αβ
1/2 , V

(1)
0 × V

(1)
0 × V

(1)αβ
1/2 .

It turns out that all of these are trivially satisfied. At one level higher, i.e. with the

OPEs (3.14), one can compute the next group of Jacobi identities

T× V
(1)
0 × V

(1)±i
1 , A±i × V

(1)
0 × V

(1)±j
1 , V

(1)
0 × V

(1)
0 × V

(1)±j
1 ,

T× V
(1)αβ
1/2 × V

(1)γδ
1/2 , A±i × V

(1)αβ
1/2 × V

(1)γδ
1/2 , V

(1)
0 × V

(1)αβ
1/2 × V

(1)γδ
1/2 ,

T× V
(1)
0 × V

(2)
0 , A±i × V

(1)
0 × V

(2)
0 , V

(1)
0 × V

(1)
0 × V

(2)
0 , Gαβ × V

(1)
0 × V

(1)γδ
1/2 .

These are satisfied provided the only non-zero structure constants in the OPEs (3.14) are

n1 = − 2k−k+
2 + k− + k+

, w1 = 1 , w2 = − 8k−
2 + k− + k+

,

w5 = − 8k+
2 + k− + k+

, w8 = − 8k−k+
2 + k− + k+

, w10 = −4 ,

w11 =
2

2 + k− + k+
, w12 =

2

2 + k− + k+
, w15 =

8k−
2 + k− + k+

,

w18 =
8k+

2 + k− + k+
, w21 = − 8

2 + k− + k+
, (3.17)

where we have chosen to normalise V
(1)
0 , and consequently all the other fields in the su-

permultiplet V (1), by fixing w1 = 1. We remark that the only structure constant that is

at this level not fixed is w22. In fact, w22 cannot be determined in this manner because it

reflects the freedom of redefining V
(2)
0 by a multiple of [V

(1)
0 V

(1)
0 ] + · · · , see eq. (3.11). We

shall therefore, in the following, use this freedom to set

w22 = 0 . (3.18)

Note that it follows from the structure of the OPEs (3.14) and the form of the structure

constants (3.17) that no simple operator of spin 2 appears on the r.h.s. of these OPEs. As

a consequence, we can also already now compute the special Jacobi identity

V
(1)αβ
1/2 × V

(1)γδ
1/2 × V

(1)µν
1/2 . (3.19)

However, as it turns out, this identity is automatically satisfied.

Next we turn to the Jacobi identities that can be computed with the OPEs (3.15).

In order to proceed efficiently, we first impose for all OPEs A × B the Jacobi identity
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T ×A×B, i.e., we ensure that the conformal symmetry is respected. Then it follows from

eq. (3.16) that in order to compute a Jacobi identity for a triplet of generators A,B,C

for which the spins sum up to s, it is sufficient to know the OPEs between all pairs of

generators for which the spins sum up to s− 1. Thus, with the OPEs (3.15) (as well as the

OPEs from above), we can compute the Jacobi identities for all triplets of generators for

which the spins sum up to 9
2 . Solving these identities we find that the non-zero structure

constants in the OPEs (3.15) must equal

w28 = − 16 (−k− + k+)

3 (2 + k− + k+)
,

w30 = w70 ,

w31 = 1 ,

w32 = −4 (−k− + k+) (5 + 4k− + 4k+ + 2k−k+)Kw70 ,

w33 = −4 (−k− + k+) (5 + 4k− + 4k+ + 2k−k+)K ,

w34 = −8 (2 + k− + 2k+)
(
−2− k− − k+ + 2k−k+ + 2k2−k+

)
Kw70

2 + k− + k+
,

w35 =
8 (2 + k− + 2k+)

(
−2− k− − k+ + 2k−k+ + 2k2−k+

)
K

2 + k− + k+
,

w36 =
8 (2 + 2k− + k+)

(
−2− k− − k+ + 2k−k+ + 2k−k

2
+

)
Kw70

2 + k− + k+
,

w37 = −8 (2 + 2k− + k+)
(
−2− k− − k+ + 2k−k+ + 2k−k

2
+

)
K

2 + k− + k+
,

w39 = −1− w2
70 ,

w40 = −w70 ,

w41 = 4 (−k− + k+) (5 + 4k− + 4k+ + 2k−k+)
(
1 + w2

70

)
K ,

w43 =
8 (2 + k− + 2k+)

(
−2− k− − k+ + 2k−k+ + 2k2−k+

) (
1 + w2

70

)
K

2 + k− + k+
,

w45 = −8 (2 + 2k− + k+)
(
−2− k− − k+ + 2k−k+ + 2k−k

2
+

) (
1 + w2

70

)
K

2 + k− + k+
,

w48 = 1 + w2
70 ,

w49 = w70 ,

w50 = −4 (−k− + k+) (5 + 4k− + 4k+ + 2k−k+)
(
1 + w2

70

)
K ,

w52 = −8 (2 + k− + 2k+)
(
−2− k− − k+ + 2k−k+ + 2k2−k+

) (
1 + w2

70

)
K

2 + k− + k+
,

w54 =
8 (2 + 2k− + k+)

(
−2− k− − k+ + 2k−k+ + 2k−k

2
+

) (
1 + w2

70

)
K

2 + k− + k+
,

w56 =
4 (1 + k− + 2k+)

2 + k− + k+
,

w58 = −w70 ,

w59 = −1 ,
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w60 = 4 (−k− + k+) (5 + 4k− + 4k+ + 2k−k+)w70K ,

w61 = 4 (−k− + k+) (5 + 4k− + 4k+ + 2k−k+)K ,

w62 =
8 (2 + k− + 2k+)

(
−2− k− − k+ + 2k−k+ + 2k2−k+

)
Kw70

2 + k− + k+
,

w63 = −8 (2 + k− + 2k+)
(
−2− k− − k+ + 2k−k+ + 2k2−k+

)
K

2 + k− + k+
,

w64 = −8 (2 + 2k− + k+)
(
−2− k− − k+ + 2k−k+ + 2k−k

2
+

)
Kw70

2 + k− + k+
,

w65 =
8k− (−1 + k+) (1 + k+) (2 + k− + 2k+)K

2 + k− + k+
,

w67 =
4

2 + k− + k+
,

w68 =
4 (1 + 2k− + k+)

2 + k− + k+
,

w70 ,

w71 = 1 ,

w72 = −4 (−k− + k+) (5 + 4k− + 4k+ + 2k−k+)Kw70 ,

w73 = −4 (−k− + k+) (5 + 4k− + 4k+ + 2k−k+)K ,

w74 =
8 (2 + 2k− + k+)

(
−2− k− − k+ + 2k−k+ + 2k−k

2
+

)
Kw70

2 + k− + k+
,

w75 = −8 (2 + 2k− + k+)
(
−2− k− − k+ + 2k−k+ + 2k−k

2
+

)
K

2 + k− + k+
,

w76 = −8 (2 + k− + 2k+)
(
−2− k− − k+ + 2k−k+ + 2k2−k+

)
Kw70

2 + k− + k+
,

w77 =
8 (−1 + k−) (1 + k−) k+ (2 + 2k− + k+)K

2 + k− + k+
,

w79 =
4

2 + k− + k+
, (3.20)

where K is a shorthand notation for the frequently occurring expression

K =
1

−4− 4k− − k2− − 4k+ + 3k−k+ + 4k2−k+ − k2+ + 4k−k2+ + 3k2−k
2
+

, (3.21)

and we have chosen to normalize V (2) by fixing w31 = 1. Notice that the structure constants

in the OPEs (3.15) are uniquely determined by k± and w70; there are no field redefinitions

that render the structure constant w70 redundant so, in principle it can either get fixed

by the higher Jacobi identities or, if it does not, describe a genuine parameter of the W∞

algebra.

With the next set of OPEs (B.1) we can compute the Jacobi identities A×B ×C for

all triplets of generators for which the spins sum up to 5. Solving these identities we find

in particular that

w129 = w161 = 0 ,

– 13 –



J
H
E
P
0
6
(
2
0
1
4
)
1
1
7

which means that no W∞ algebra generator of spin 3 can appear in the singular part of

the OPEs V
(2)
0 × V

(1)±i
1 and, obviously, also in V

(1)+i
1 × V

(1)−j
1 and V

(2)
0 × V

(2)
0 . For this

reason, the OPEs (B.1) are also sufficient to compute the special Jacobi identities

V
(2)
0 × V

(2)
0 × V

(2)
0 , V

(2)
0 × V

(2)
0 × V

(1)±i
1 , V

(2)
0 × V

(1)+i
1 × V

(1)−j
1 . (3.22)

Solving in addition these identities we find, first of all that

w70 = 0 , (3.23)

and, secondly, that the following structure constants remain undetermined

w80 , w81 , w85 , w89 , w90 , (3.24)

while all the other structure constants in the OPEs (B.1) are uniquely fixed in terms of

these and k±; the explicit expressions for those structure constants that are non-zero are

given in appendix B.2.

Let us now try to understand the meaning of the free parameters in eq. (3.24). Firstly,

just like w22, the structure constants w80 and w81 are redundant because they can be set

to any value by absorbing into V
(3)
0 a linear combination of the two composite N = 4

superprimary fields at spin 3, see the discussion following eq. (3.11); we shall fix this

redefinition freedom of V
(3)
0 by setting

w80 = w81 = 0 . (3.25)

Secondly, we note that there is a similarity between w70 and w85, w89, w90 — they all

appear in front of operators that violate the parity ‘symmetry’ of the OPEs

V (s) 7→ (−1)sV (s) , (3.26)

that is a natural symmetry of the underlying higher spin algebra shs2[λ]. In fact, a careful

inspection of the structure constants (3.17), (3.20), and (3.23) shows that w85, w89, w90

are the only structure constants that violate this symmetry. We have gone one level higher

with the ansatz for the OPEs and verified that, in perfect analogy with what happened

to w70, these parity violating structure constants are required to vanish by the next set of

Jacobi identities for which the spins sum up to 9
2

w85 = w89 = w90 = 0 . (3.27)

We interpret this fact as evidence for a mechanism by which the consistency of the W∞

algebra imposes (dynamically) the parity symmetry (3.26) on all the OPEs. Furthermore, if

we assume that the parity symmetry (3.26) holds generally, then all the structure constants

could again be determined uniquely in terms of k±, modulo the redefinition freedom of the

generators. We take this as a strong indication that the most general N = 4 W∞ algebra

with the above field content does not have any other parameters except for k±.
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3.4 Truncations

Given the higher spin/CFT duality of [10] we expect the large N = 4 W∞ algebra to

exhibit two kinds of truncations. First, for suitable values of µ (namely µ ∈ Z\{0, 1}),
the underlying higher spin algebra shs2[µ] can be truncated to a finite dimensional Lie

algebra, and one may therefore expect that this will also be reflected in the corresponding

W∞ algebra. Second, the dual Wolf space cosets should be finitely generated, and thus

we should expect the W∞ algebra to truncate for positive integer values of k±. Unlike

the situation with less supersymmetry [20, 21], these two truncation phenomena seem to

be of different nature (see also the discussion in [10]), and we shall therefore study them

separately.

3.4.1 The higher spin truncation

As already explained in [10], if we set µ = −N or µ = N + 1 with N ∈ N, then the

higher spin algebra shs2[µ] can be truncated to an algebra that is generated by D(2, 1;α),

the first N − 1 supermultiplets V (s) with s = 1, . . . , N − 1, as well as ‘half’ of the N -th

supermultiplet

V̂ (N)± = {V (N)
0 , V

(N)αβ
1/2 , V

(N)±i
1 } , (3.28)

where the plus case arises for µ = −N and the minus case for µ = N + 1.

Let us concentrate in the following on the case µ = N+1 for which the minus truncation

of (3.28) arises; the other case works similarly. In order for the multiplet to truncate in the

actual W∞ algebra the missing states, i.e., the states that would be there in V (N) but are

absent in V (N)−, must actually be null; thus the higher spin analysis predicts null-vectors

which turn out to be of the form (see also [17])

s = N + 1 : V
(N)−i
1 + κ[A−iV

(N)
0 ] ,

s = N+ 3
2 : V

(N)αβ
3/2 + κ[GαβV

(N)
0 ]− 2κρi,γα[A

+iV
(N)γβ
1/2 ] ,

s = N + 2 : V
(N)
2 − 4κ[TV

(N)
0 ]− κǫαγǫβδ[G

αβV
(N)γδ
1/2 ] + 1

2κ
2[[A+

iA
+i]V

(N)
0 ] +

+ 1
2κ

2[[A−
iA

−i]V
(N)
0 ]− κ[A+

iV
(N)+i
1 ] , (3.29)

where κ = −4N/k−. These solutions appear for k− given by3

k− = −N(2 + k+)

1 +N
. (3.30)

Here the κ-dependent terms are required to make the states in eq. (3.29) primary with

respect to the stress-energy tensor and the current fields. In the ‘t Hooft limit, k± → ∞
with the ratio α = k−/k+ kept fixed, α → −N/(1+N) which corresponds precisely to µ =

N+1. In this limit the constant κ vanishes and we recover the truncation exhibited in [10].

We have checked that these vectors are singular with respect to the (non-linear) large

N = 4 superconformal algebra, but we expect that they actually lie in an ideal of the full

W∞ algebra (that can be consistently quotiened out). Given our detailed understanding

3There is a second solution k− = 1 to which we will return below. This fact was also noticed in [17].
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of the latter, we can check this at least for N = 1 and N = 2. To illustrate these checks,

consider first the case N = 1. It follows from (3.14) that

V
(1)
0 ×

(
V

(1)−i
1 + κ[A−iV

(1)
0 ]

)
= (w5 − κn1)A

−i , (3.31)

where we have used that [A−iV
(1)
0 ] = (A−iV

(1)
0 ), as well as w6 = w7 = 0, see eq. (3.17).

Since the left-hand-side should lie in the ideal (but A−i does not) consistency requires that

the prefactor vanishes, w5 − κn1 = 0; this turns out to be true, using eq. (3.17) for N = 1.

A somewhat more trivial test is that in the OPE V
(1)
0 ×V

(2)
0 the coefficient w22 of V

(1)
0

vanishes; this is automatically the case for our definition of V
(2)
0 , see the discussion around

eq. (3.18). Less trivially, in the OPEs

V
(1)
0 × V

(2)
1/2 , and V

(1)
1/2 × V

(2)
0 (3.32)

in eq. (3.15), the right-hand-side is indeed null because the coefficients of the terms that

do not break parity, i.e., V
(1)
1/2 and [A−iV

(1)
1/2 ] vanish, and V

(1)
3/2 enters only in the combina-

tion (3.29), i.e. w41/w39 = w50/w48 = κ and w43/w39 = w52/w48 = −2κ. The fact that the

whole multiplet V (2) is null also follows from the vanishing of the central term n2 in the

OPEs V
(2)
0 × V

(2)
0 , see appendix B.2.

The analysis for N = 2 is similar, except for one interesting subtlety. The only OPE

on which we can test this truncation is V
(1)
0 × V

(2)−i
1 , for which we find

V
(1)
0 ×

(
V

(2)−i
1 +κ[A−iV

(2)
0 ]

)
=w143V

(1)−i
1 +(w144+κw22)[A

−iV
(1)
0 ]+w152ǫαγr

i
βδ[G

αβV
(1)γδ
1/2 ] .

(3.33)

The right hand side does not depend on κ because V
(1)
0 has a regular OPE with V

(2)
0 , and,

on the face of it, it does not vanish. This is a consequence of the fact that the actual

null-vector of the full W∞ algebra requires a specific choice for V
(2)
0 , which in the above

conventions corresponds not to w22 = 0 (see eq. (3.18)), but rather to

w22 = −32(k+ − 1)(1 + 2k+)

3k+(2 + k+)
. (3.34)

With this choice of V
(2)
0 and setting k− to equal eq. (3.30) with N = 2, the right-hand-side

of (3.33) is indeed zero, i.e., w143 = w144 + κw22 = w152 = 0.

3.4.2 The coset truncation

Recall that the Wolf space coset algebra (written in bosonic form)

su(N + 2)k ⊕ so(4N)1
su(N)k+2 ⊕ u(1)

(3.35)

has a non-linear large N = 4 superconformal symmetry with k+ = k and k− = N . For

k and N large, the higher spin content of the above coset algebra agrees with the large

N = 4 W∞ algebra for spins sufficiently small compared to k and N , see [10] for a simple

higher spin counting argument or [15] for a more involved proof based on characters.

Furthermore, it was confirmed in [17], that the asymptotic symmetry algebras match. It is
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therefore very natural to expect that the N = 4 W∞ algebra truncates to the above coset

algebra at positive integer levels k±. The case with N = 3 was also discussed in [33].

The first hint on the form of the coset truncation can be obtained by comparing the

vacuum character of the coset algebra (3.35) to the W∞ algebra. The first deviation can

be computed with the help of eq. (3.24) of [15] and the su(N) modification rules of [34],

and for large enough k one finds

χcoset = χ∞ − qN+1
N+1∑

l−=0

chl−(z−) +O(qN+ 3

2 ) . (3.36)

For example, for k− = N = 1 these null vectors appear at conformal dimension 2 and are

given by

(l+, l−) = (0, 2) : [A−iA−j ] + [A−jA−i]− 2
3η

ij [A−
lA

−l] ,

(l+, l−) = (0, 1) : V
(1)−i
1 − 4[A−iV

(1)
0 ] ,

(l+, l−) = (0, 0) : V
(2)
0 , (3.37)

where the first vector corresponds to the lowest affine null vector of the su(2)1 vacuum

representation, while the fact that V
(2)
0 is null follows from the vanishing of its 2-point

function, i.e., n2 vanishes (without inducing poles in any other structure constants). The

existence of the second null vector, explained by the fact that the representation of su(2)k−
with spin l− = 1 is not integrable at k− = 1, implies that V (1) truncates to a short

representation V̂ (1) (and, in fact, all supermultiplets V (s) truncate this way). The null

vectors (3.37) and the ideal generated by them suggest that only the generators of the

superconformal algebra and V̂ (1) survive the truncation, although, in contradistinction with

the situation in the previous subsection, the remaining generators must satisfy infinitely

many additional constraints to account for the affine su(2)1 null vectors.

For k− = 2 the first set of null vectors that are predicted by eq. (3.36) appear at

conformal dimension 3, and they correspond to the lowest null vector of the su(2)2 vacuum

representation, which has spin (l+, l−) = (0, 3), the lowest null vector of the su(2)2 represen-

tation generated by the affine primary V
(2)−i
1 −4[A−iV

(2)
0 ], which has spin (l+, l−) = (0, 2),

the unique superprimary with spin (l+, l−) = (0, 1) at conformal dimension 3

(V
(2)−i
1 − 4[A−iV

(2)
0 ]) + 4(k++1)(10+11k+)

19k2
+
+18k+−16

(
[V

(1)
0 (V

(1)−i
1 − 2[A−iV

(1)
0 ])]

)
+

+
8(k++6)(2k2+−5)ǫαγriβδ
(k++4)(19k2

+
+18k+−16)

(
[V

(1)αβ
1/2 V

(1)γδ
1/2 ]− k2++3k+−1

2k2
+
−5

[GαβGγδ]
)
+

+ 32(k+−4)(k++1)(k++6)
(k++4)(19k2

+
+18k+−16)

[TA−i]− 16(k+−4)k+(k++1)(k++6)
5(k++4)2(19k2

+
+18k+−16)

f i
jl[A

−jA−l]−1 −

− 16(k+−4)(k++1)(k++5)(k++6)
5(k++4)219k2

+
+18k+−16)

(
[[A−

jA
−j ]A−i] + 5

(k++5) [[A
+
jA

+j ]A−i]
)
, (3.38)

as well as V
(3)
0 (with spin (l+, l−) = (0, 0)). A non-trivial check of the fact that the

latter two superprimaries are null is that their OPEs with V
(1)
0 vanish indeed. Again, it is

tempting to believe that only the superconformal algebra and the first two supermultiplets

V (1) and V (2) survive the truncation, but it is clear from the affine representation theory

that they must satisfy infinitely many additional constraints.
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In general, we expect that for arbitrary integer values of k± the coset algebra is gen-

erated by A±i, T , Gαβ as well as the first min(k−, k+) supermultiplets. Furthermore,

there are infinitely many additional constraints of spin s ≥ min(k−, k+), accounting for the

various su(2)k± null vectors.

4 Linear large N = 4 W∞ algebra

In the previous sections we have discussed the structure of the ‘non-linear’ large N = 4 W∞

algebra that contains, in addition to the non-linear large N = 4 superconformal algebra

Ãγ , muliplets of spin s = 1, 2, . . .. The non-linear large N = 4 superconformal algebra Ãγ

can be obtained, upon quotienting out the free fermions and the u(1) current [22] from

the linear Aγ algebra, see [22, 35–39] for some early literature on the subject. The same

construction can also be applied to the ‘linear version’ of the full W∞ algebra. One may

therefore suspect that the structure of the ‘linear’ W∞ algebra will also be characterised

just by the levels k± of the two affine su(2) algebras.4

In order to confirm this we shall, in this section, repeat the above analysis for the

linear case. Since the techniques are largely the same, we shall be relatively brief.

4.1 The linear N = 4 superconformal algebra Aγ

The linear large N = 4 superconformal algebra Aγ contains in addition to the energy

momentum tensor, the current algebra

su(2)k+ ⊕ su(2)k− ⊕ u(1) , (4.1)

as well as four supercharges Ga and four free fermions Qa both of which transform in the(
1
2 ,

1
2

)
0
with respect to the above current algebra. We shall denote the u(1) current by

U , while the currents of su(2) ⊕ su(2) are A±,i with i = 1, 2, 3. The central charge of the

Virasoro algebra equals

c =
6 k+ k−
k+ + k−

, and γ =
k−

k+ + k−
, (γ = 1− γ) . (4.2)

Apart from the standard TT OPE, the additional OPEs defining Aγ are

Ga(z)Gb(w) ∼ 2c

3

δab

(z − w)3
− 8

γ α+,i
ab A+,i + γ α−,i

ab A−,i

(z − w)2

−4
γ α+,i

ab ∂A+,i + γ α−
ab ∂A

−,i

z − w
+

2 δab T

z − w
, (4.3)

A±,i(z)A±,j(w) ∼ −k±

2

δij

(z − w)2
+

ǫijk A±,k

z − w
, (4.4)

Qa(z)Qb(w) ∼ −k+ + k−

2

δab

z − w
, (4.5)

4To avoid confusion we should stress that the full ‘linear’ W∞ algebra is in fact also non-linear — by the

qualifier ‘linear’ we only mean that it contains the linear large N = 4 superconformal algebra as a subalgebra

(rather than the non-linear Ãγ algebra). The fact that this algebra cannot be completely linearised was

already noticed, on the level of the dual asymptotic symmetry algebra, in [17].
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U(z)U(w) ∼ −k+ + k−

2

1

(z − w)2
, (4.6)

A±,i(z)Ga(w) ∼ ∓ 2 k±

k+ + k−
α±,i
ab Qb

(z − w)2
+

α±,i
ab Gb

z − w
, (4.7)

A±,i(z)Qa(w) ∼ α±,i
ab Qb

z − w
, (4.8)

Qa(z)Gb(w) ∼ 2
α+,i
ab A+,i − α−,i

ab A−,i

z − w
+

δab U

z − w
, (4.9)

Qa(z)U(w) ∼ 0 , (4.10)

U(z)Ga(w) ∼ Qa

(z − w)2
. (4.11)

Here the matrices α±,i
ab are the so(4) generators5

α±,i
ab = 1

2(±δia δ
4
b ∓ δib δ

4
a + ǫiab) , (4.12)

obeying the (anti)-commutation relations

[α±,i, α±,j ] = −ǫijk α±,k , [α±,i, α∓,j ] = 0 , {α±,i, α±,j} = −1
2δ

ij . (4.13)

4.2 The general linear multiplet

For the description of the linear W∞ algebra we now need to add a linear N = 4 multiplet

whose components close under the OPE with Aγ [40, 41] (see also [42]). As before, we only

need the special case of a scalar multiplet, i.e., one whose lowest component is su(2)⊕su(2)

invariant. The multiplet components can be labelled as in eq. (2.9), except that we use a

different convention to label the su(2)⊕ su(2) indices

component V
(s)
0 V

(s),a
1/2 V

(s),±,i
1 V

(s),a
3/2 V

(s)
2

conformal spin s s+ 1
2 s+ 1 s+ 3

2 s+ 2

su(2)⊕ su(2) spin (0, 0) (12 ,
1
2) (1, 0)⊕ (0, 1) (12 ,

1
2) (0, 0)

(4.14)

The OPEs of the Aγ fields with the various component fields are given in appendix A.

We can then proceed as in the analysis of the non-linear algebra. We make the most

general ansatz for the OPEs between the various higher spin fields, and then impose Jacobi

identities, i.e., the associativity of the OPEs, to determine the structure constants recur-

sively. We have performed this analysis for the OPEs up to total spin 7
2 . We have again

found that, apart from k±, there are no free parameters — except for those one would

expect to be determined by imposing higher Jacobi identities.

5In our conventions ǫ123 = ǫ123 = 1 and ǫab4 = 0.
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4.3 From the linear to the non-linear description

According to [22], it is possible to decouple the free fermions Qa, and the u(1) field U from

the linear W∞ algebra by effectively performing a coset construction. On the level of the

linear superconformal Aγ algebra, this amounts to redefining the stress-energy tensor, the

supercharges and the affine currents as

T̃ = T +
1

k+ + k−

[
− (Qc∂Qc) + (UU)

]
, (4.15)

G̃a = Ga +
2

k+ + k−

[
(UQa)− 2α+,i

ab (A+,iQb) + 2α−,i
ab (A−,iQb)

+
2

3

1

k+ + k−
ǫabcd(Q

bQcQd)
]
, (4.16)

Ã±,i = A±,i − 1

k+ + k−
α±,i
ab (QaQb) . (4.17)

The modified fields then obey the non-linear Ãγ algebra and have regular OPEs with the

decoupling fields

U(z) {Ã±,i(w), G̃a(w), T̃ (w)} ∼ 0 , (4.18)

Qa(z) {Ã±,i(w), G̃b(w), T̃ (w)} ∼ 0 . (4.19)

The redefined currents still satisfy an affine su(2) ⊕ su(2) algebra, but the levels are now

shifted to

k̃± = k± − 1 . (4.20)

We can similarly decouple the free fermions and the u(1) field from the rest of the

linear W∞ algebra. For the lowest spin component there is nothing to be done,

Ṽ
(s)
0 = V

(s)
0 , (4.21)

and the remaining components can be obtained by repeatedly applying the supercurrents

G̃a; this leads to

Ṽ
(s),a
1/2 = V

(s),a
1/2 , (4.22)

Ṽ
(s),±,i
1 = V

(s),±,i
1 ± 4

k+ + k−
α±,i
ab (Qa V

(s),b
1/2 ) , (4.23)

Ṽ
(s),a
3/2 = V

(s),a
3/2 +

4

k+ + k−

[
2 s (∂Qa V

(s)
0 )− (Qa ∂V

(s)
0 )− (U V

(s),a
1/2 ) (4.24)

−2α+,i
ab (A+,i V

(s),b
1/2 ) + 2α−,i

ab (A−,i V
(s),b
1/2 )− α+,i

ab (Qb V
(s),+,i
1 )− α−,i

ab (Qb V
(s),−,i
1 )

]
,

Ṽ
(s)
2 = V

(s)
2 +

4

k+ + k−

[
− (2s+ 1) (∂Qa V

(s),a
1/2 ) + (Qa ∂V

(s),a
1/2 )

+2 s (∂U V
(s)
0 )− 2 (U ∂V

(s)
0 )

]
. (4.25)

By construction, these component fields then have regular OPEs with the free fermions

and the u(1) field, as one may also check directly,

U(z) Ṽ (s)(w) ∼ 0 , Qa(z) Ṽ (s)(w) ∼ 0 . (4.26)
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4.4 Comparison of the structure constants

As a cross-check of our results we should now be able to reproduce the OPEs of the non-

linear W∞ algebra from those of the linear analysis. Up to the level to which we have

determined the linear algebra6 we have performed this analysis, and we have found perfect

agreement, thus giving a highly non-trivial consistency check on our analysis. In order to

illustrate the nature of the comparison, let us give two specific examples.

The simplest case is the fusion of the first multiplet V (1) with itself. Up to the level

considered below, only the conformal block of the identity appears, and the first few cases

are explicitly

V
(1)
0 V

(1)
0 ∼ 1

z2
O0 +

1

z
O1 , (4.27)

V
(1)
0 V

(1),a
1/2 ∼ 1

z2
Oa

1/2 +
1

z
Oa

3/2 , (4.28)

V
(1),a
1/2 V

(1),b
1/2 ∼ 1

z3
Oab

0 +
1

z2
Oab

1 +
1

z
Oab

2 , (4.29)

V
(1)
0 V

(1),±,i
1 ∼ 1

z2
O±,i

1 +
1

z
O±,i

2 , (4.30)

where Os is an operator of dimension s built with the components of Aγ . The solution of

the Jacobi identities predicts that the operators on the right hand side are

O0 = n1 I , (4.31)

O1 = 0 ,

Oa
1/2 = 0 ,

Oa
3/2 = z1G

a + z2 (UQa) + z3 α
+,i
ab (A+,iQb) + z4 α

−,i
ab (A−,iQb) + z5 ǫabcd(Q

bQcQd) ,

Oab
0 = z6 δ

ab
I ,

Oab
1 = z7 α

−,i
ab A−,i + z8 α

+,i
ab A+,i + z9 (Q

aQb) + z10 ǫabcd(Q
cQd) ,

Oab
2 = z11 δ

ab(A−,iA−,i) + z12 α
−,i
ac α+,j

cb (A−,iA+,j) + z13 δ
ab(A+,iA+,i) + z14 α

−,i
ab ∂A−,i

+z15 α
−,i
ac (A−,iQcQb) + z16 α

−,i
ac ǫcbde(A

−,iQdQe) + z17 δ
abα−,i

cd (A−,iQcQd)

+z18 α
+,i
ac (A+,iQcQd) + z19 α

+,i
ac ǫcbde(A

+,iQdQe) + z20 δ
abα+,i

cd (A+,iQcQd)

+z21 α
+,i
ab ∂A+,i + z22 (Q

a∂Qb) + z23 (∂Q
aQb) + z24 δ

ab(Qc∂Qc)

+z25 ǫabcd(Q
c∂Qd) + z26 δ

abT + z27 δ
ab(UU) ,

O+,i
1 = z28A

+,i + z29 α
+,i
ab (QaQb) ,

O+,i
2 = z30 ǫ

ijkα+,j
cd (A+,kQcQd) + z31 α

+,i
ab (∂QaQb) + z32 α

+,i
ab (QaGb) + z33 α

+,i
ab (UQaQb) ,

O−,i
1 = z34A

−,i + z35 α
−,i
ab (QaQb) ,

O−,i
2 = z36 ǫ

ijkα−,j
cd (A−,kQcQd) + z37 α

−,i
ab (∂QaQb) + z38 α

−,i
ab (QaGb) + z39 α

−,i
ab (UQaQb) ,

where the constants z1, . . . , z39 are listed in appendix C. Upon redefining the currents of Aγ

and the component fields as in (4.15)–(4.17) and (4.21)–(4.25), respectively, these OPEs

6Since the linear algebra contains more fields, it is harder to push the analysis to the same level as for

the non-linear case.
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take the same form as in the non-linear calculation, i.e., as in (3.12) and (3.14),

Ṽ
(1)
0 Ṽ

(1)
0 ∼ 1

z2
n1 I , (4.32)

Ṽ
(1)
0 Ṽ

(1),a
1/2 ∼ 1

z
z1 G̃

a , (4.33)

Ṽ
(1),a
1/2 Ṽ

(1),b
1/2 ∼ 1

z3
z6 δ

ab
I+

1

z2

(
z7 α

−,i
ab Ã−,i + z8 α

+,i
ab Ã+,i

)

+
1

z

[
z11 δ

ab(Ã−,i Ã−,i) + z12 α
−,i
ac α+,j

cb (Ã−,i Ã+,j) + z13 δ
ab(Ã+,i Ã+,i)

+z14 α
−,i
ab ∂Ã−,i + z21 α

+,i
ab ∂Ã+,i + z26 δ

ab T̃
]
, (4.34)

Ṽ
(1)
0 Ṽ

(1),+,i
1 ∼ 1

z2
z28 Ã

+,i , (4.35)

Ṽ
(1)
0 Ṽ

(1),+,i
1 ∼ 1

z2
z34 Ã

−,i . (4.36)

Indeed, comparing the relevant coefficients leads to

OPE field Ãγ Aγ

V
(1)
0 × V

(1)
1/2 G̃a w1

n1
= − k̃++k̃−+2

2 k̃+ k̃−

z1
n1

= − k++k−
2 (k+−1) (k−−1)

V
(1)
0 × V

(1)
1 Ã+,i w2

n1
= 4

k̃+

z28
n1

= − 4
k+−1

V
(1)
1/2 × V

(1)
1/2 Ã+,i w15

n1
= − 4

k̃+

z8
n1

= 4
k+−1

V
(1)
1/2 × V

(1)
1/2 (Ã+,i Ã+,i) w11

n1
= − 1

k̃+ k̃−

z11
n1

= − 1
(k+−1)(k−−1)

V
(1)
1/2 × V

(1)
1/2 T̃ w10

n1
= 2(k̃++k̃−+2)

k̃+ k̃−

z26
n1

= − k++k−
(k+−1)(k−−1)

(4.37)

Here k̃± are the levels of the non-linear realisation that are related to the levels k± of

the linear realisation as in (4.20). The ratios (that are normalisation independent) match

precisely once the various signs and factors of 2 (that are a consequence of the different

conventions we have employed for the two calculations) have been taken into account. For

example, the normalisation of the supercharges differs effectively by a factor of
√
2i, as

follows by comparing eq. (2.4) to eq. (4.3).7 This also leads to a similar rescaling of the

V
(s)
1/2 components of the multiplets. Furthermore, for example the coefficient z8 in (4.34)

multiplies a matrix, which differs be a normalisation factor from the corresponding matrix

in (3.14) that is multiplied by w15. Taking all of these factors carefully into account, the

two calculations match exactly.

Another example comes from the OPE of the first and second multiplet. Up to the

level we considered only the V (1) multiplet appears in the OPE, and for example, the

Jacobi identities of the linear W∞ algebra predict that we have

Ṽ
(1),a
1/2 Ṽ

(2)
0 ∼ 1

z
Φa
5/2 , (4.38)

7In addition, there is a change of basis since we have used a su(2)-bispinor notation in the non-linear

analysis, while for the linear analysis we have worked with so(4) vectors.
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where Φa
5/2 is an operator of conformal dimension 5/2, transforming in the (12 ,

1
2) represen-

tation of su(2)⊕ su(2). Its explicit form turns out to be

Φa
5/2 = w1 V

(1),a
3/2 + w2 ∂V

(1),a
1/2 + w3 (∂Q

aV
(1)
0 ) + w4 (Q

a∂V
(1)
0 )

+w5 (G
aV

(1)
0 ) + w6 (UV

(1),a
1/2 ) + w7 (UQaV

(1)
0 )

+w8 α
+,i
ab (A+,iV

(1),b
1/2 ) + w9 α

−,i
ab (A−,iV

(1),b
1/2 ) +

+w10 α
+,i
ab (A+,iQbV

(1)
0 ) + w11 α

−,i
ab (A−,iQbV

(1)
0 )

+w12 α
+,i
ab (QbV

(1),+,i
1 ) + w13 α

−,i
ab (QbV

(1),−,i
1 ) + w14ǫabcd(Q

bQcQdV
(1)
0 )

+w15 α
+,i
ab α+,i

cd (QcQdV
(1),b
1/2 ) + w16 α

−,i
ab α−,i

cd (QcQdV
(1),b
1/2 ) , (4.39)

where the values of the coefficients are given explicitly in appendix D. In terms of the

decoupled fields we can write Φa
5/2 as

Φa
5/2 = w′

1 Ṽ
(1),a
3/2 + w′

2 ∂Ṽ
(1),a
1/2 + w′

3 (G̃
a Ṽ

(1)
0 )

+w′
4 α

+,i
ab (Ã+,i Ṽ

(1),b
1/2 ) + w′

5 α
−,i
ab (Ã−,i Ṽ

(1),b
1/2 ) , (4.40)

where

w′
1 = w1, w′

2 = w2, w′
3 = w5, w′

4 = w8 +
8w1

k+ + k−
, w′

5 = w9 −
8w1

k+ + k−
. (4.41)

In fact, this expression is (for generic coefficients w′) the most general solution of the

decoupling conditions

U(z) Φa
5/2(w) ∼ 0 , Qa(z) Φa

5/2(w) ∼ 0 . (4.42)

We can finally bring it into the same form as the corresponding formula in (3.15) using the

[· · · ] bracket

Φa
5/2 = w′

1 Ṽ
(1),a
3/2 + w′

3

[
Ṽ

(1)
0 G̃a

]
+ w′

4 α
+,i
ab

[
Ã+,i Ṽ

(1),b
1/2

]
+ w′

5 α
−,i
ab

[
Ã−,i Ṽ

(1),b
1/2

]
. (4.43)

As regards the structure constants, it only makes sense to compare ratios since the nor-

malisation of V
(2)
0 is arbitrary. For example, the coefficient of

[
Ṽ

(1)
0 G̃a

]
relative to Ṽ

(1),a
3/2

equals (see appendix D)

w′
3

w′
1

= − 16(2γ − 1)(c(c+ 6) + 18(γ − 1)γ)

36(c+ 2)γ2 − 36(c+ 2)γ + c(24− (c− 4)c)

=
4 (k− − k+) (2k+k− + 2k− + 2k+ − 1)

3k2+k
2
− − 2k+k2− − 2k2− − 2k2+k− − k+k− + k− − 2k2+ + k+

. (4.44)

This must be compared with the analogous quantity in the non-linear computation which is

w50

w48
=

4(k̃− − k̃+)(2k̃+k̃− + 4k̃− + 4k̃+ + 5)

3k̃2+k̃
2
− + 4k̃+k̃2− − k̃2− + 4k̃2+k̃− + 3k̃+k̃− − 4k̃− − k̃2+ − 4k̃+ − 4

, (4.45)
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and one checks that they agree precisely, using again the relation between the levels (4.20).

Similarly, the coefficient of of
[
Ã+,i Ṽ

(1),b
1/2

]
relative to Ṽ

(1),a
3/2 reads

w′
4

w′
1

= −64γ(c(γ − 2)− 6(γ − 1)γ)((c− 6)c− 18(γ − 1)(2γ − 1))

c (−36(c+ 2)γ2 + 36(c+ 2)γ + c((c− 4)c− 24))

=
16 (k− + 2k+ − 1)

(
2k+k

2
− − 2k2− − 2k+k− + k− − k+

)

(k− + k+)
(
3k2+k

2
− − 2k+k2− − 2k2− − 2k2+k− − k+k− + k− − 2k2+ + k+

) , (4.46)

and this matches precisely, using eq. (4.20), the analogous ratio in the non-linear compu-

tation (again there is a relative factor of −2 because of the different conventions that were

used, see the comment below (4.37))

− 2
w52

w48
=

16(k̃− + 2k̃+ + 2)(2k̃+k̃
2
− + 2k̃+k̃− − k̃− − k̃+ − 2)

(k̃− + k̃+ + 2)(3k̃2+k̃
2
− + 4k̃+k̃2− − k̃2− + 4k̃2+k̃− + 3k̃+k̃−− 4k̃− − k̃2+− 4k̃+− 4)

.

(4.47)

The analysis for the coefficient of
[
Ã−,i Ṽ

(1),b
1/2

]
is the same since it can be obtained

from (4.46) upon exchanging k± → k∓.

These comparisons give rise to pretty non-trivial consistency checks of our analysis,

and it is very satisfying that they work out precisely. In summary, the results of this

and the previous section therefore give strong indications that the N = 4 superconformal

W∞ algebra consisting of the large N = 4 superconformal algebra as well as one N = 4

supermultiplet for each integer spin, are uniquely characterised in terms of the levels of

the two su(2) algebras. This statement applies both to the linear as well as the non-linear

version of the algebra.

5 Conclusions

In this paper we have studied the structure of the most general large N = 4 superconformal

W∞ algebra that contains, in addition to the superconformal algebra, one N = 4 multiplet

for each integer spin s = 1, 2, . . .. We have found strong evidence in favour of the claim

that this family of algebras is uniquely characterised in terms of the levels of the two su(2)

algebras (that are a part of the large N = 4 superconformal algebra). Among other things,

this shows that the Wolf space cosets account essentially for all such W∞ algebras. While

this is natural from the perspective of these cosets, it is a little surprising that the complete

structure of the algebra is essentially fixed by the large N = 4 algebra itself — this is to

be compared with, say, the bosonic situation where the free parameter corresponding to λ

encodes how the different (conformal) multiplets couple to one another.

Another consequence of this analysis is that the quantisation of the higher spin theory

is essentially unique. Indeed, both levels k± can be identified with parameters of the

(classical) higher spin theory,

λ =
k−

k+ + k− + 2
, and c =

6k+k−
k+ + k− + 2

, (5.1)

where λ is the parameter that appears in the underlying higher spin algebra shs2[λ], while c

is the central charge that is determined in terms of the size of the AdS space. Note that our
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result is compatible with the explicit analysis of [17] where the asymptotic symmetry alge-

bra of the higher spin theory was matched with the ’t Hooft limit of the Wolf space cosets

— both are the ’t Hooft limit of a unique quantum W∞ algebra, and hence must agree.

In the limit where one of the levels of the two su(2) algebras goes to infinity, the

large N = 4 superconformal algebra can be truncated to the small N = 4 superconformal

algebra. Thus our analysis predicts that there is at least one family of W∞ algebras with

small N = 4 superconformal algebra that are labelled by the level of the surviving su(2)

algebra (or equivalently by the central charge). It would be interesting to see whether this

accounts for all small N = 4 algebras with this multiplet spectrum, or whether there are

additional constructions that cannot be obtained as a limit of a largeN = 4 superconformal

W algebra. In particular, one may expect that the W algebra that is relevant for string

theory on AdS3 × S3 ×K3 should not appear in this fashion.
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A The structure of the supermultiplet

In this appendix we specify our conventions for the OPEs of the superconformal generators

with the various component fields of the N = 4 supermultiplet.

A.1 The non-linear case

For the case of the non-linear Ãγ algebra, the OPEs of the stress-energy tensor and the

affine currents were given already in eqs. (2.10) and (2.11). Our ansatz for the OPEs of

the supercharges with the component fields of the N = 4 supermultiplet is

Gαβ(z)V
(s)
0 (w) ∼

V
(s)αβ
1/2 (w)

z − w
,

Gαβ(z)V
(s)γδ
1/2 (w) ∼

g1/2,1ǫαγǫβδV
(s)
0 (w)

(z − w)2
+

1

z − w

[
g1/2,2ǫαγǫβδ∂V

(s)
0 (w) +

+ ǫβδℓi,αγV
(s)+i
1 (w) + ǫαγℓi,βδV

(s)−i
1 (w)

]
,

Gαβ(z)V
(s)+i
1 (w) ∼

g+1,1ρ
i
γαV

(s)γβ
1/2 (w)

(z − w)2
+

1

z − w

{
ρiγα

[
g+1,2∂V

(s)γβ
1/2 (w) +

+ g+1,3ℓj,δβ(A
−jV

(s)γδ
1/2 )(w) + V

(s)γβ
3/2 (w)

]
+ g+1,4(A

+iV
(s)αβ
1/2 )(w)

}
,

Gαβ(z)V
(s)−i
1 (w) ∼

g−1,1ρ
i
γβV

(s)αγ
1/2 (w)

(z − w)2
+

1

z − w

{
ρiγβ

[
g−1,2∂V

(s)αγ
1/2 (w) +

+ g−1,3ℓj,δα(A
+jV

(s)δγ
1/2 )(w) + g1,5V

(s)αγ
3/2 (w)

]
+ g−1,4(A

−iV
(s)αβ
1/2 )(w)

}
,
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Gαβ(z)V
(s)γδ
3/2 (w) ∼

g3/2,1ǫαγǫβδV
(s)
0 (w)

(z − w)3
+

1

(z − w)2

[
ǫβδℓi,αγg

+
3/2,2V

(s)+i
1 (w) +

+ ǫαγℓi,βδg
−
3/2,2V

(s)−i
1 (w)

]
+

1

z − w

{
ǫβδℓi,αγ

[
g+3/2,3(∂A

+iV
(s)
0 )(w) +

+ g+3/2,4(A
+i∂V

(s)
0 )(w) + g+3/2,5∂V

(s)+i
1 (w)

]
+

+ ǫαγℓi,βδ
[
g−3/2,3(∂A

−iV
(s)
0 )(w) + g−3/2,4(A

−i∂V
(s)
0 )(w) +

+ g−3/2,5∂V
(s)−i
1 (w)

]
+ f i

jl

[
g+3/2,6ǫβδℓi,αγ(A

+jV
(s)+l
1 )(w) +

+ g−3/2,6ǫαγℓi,βδ(A
−jV

(s)−l
1 )(w)

]
+ ǫαβǫγδV

(s)
2 (w) +

+
(
g+3/2,7ǫβδǫνσℓi,αγr

i
µρ + g−3/2,7ǫαγǫµρℓi,βδr

i
νσ

)
(GµνV

(s)ρσ
1/2 )(w)

}
,

Gαβ(z)V
(s)
2 (w) ∼

g2,1V
(s)αβ
1/2 (w)

(z − w)3
+

1

(z − w)2

[
g2,2V

(s)αβ
3/2 (w) + g+2,3ρi,γα(A

+iV
(s)γβ
1/2 )(w) +

+ g−2,3ρi,γβ(A
−iV

(s)αγ
1/2 )(w)

]
+

1

z − w

[
g2,4∂V

(s)αβ
3/2 (w) +

+ ρi,γαg
+
2,5(∂A

+iV
(s)γβ
1/2 )(w) + g−2,5(∂A

−iV
(s)αγ
1/2 )(w)

]
.

Here (AB) denotes the minimal normal ordering of 2 operators A and B, i.e. the regular

term in the OPE between A and B, and the matrices ri are defined via

riαβ = ρiαγǫγβ , (A.1)

i.e., ri it is the matrix ρi with one of the (α, β) indices raised. With this ansatz, the Jacobi

identities with the N = 4 superconformal algebra fix the undetermined structure constants

uniquely, and we find in addition to eqs. (2.12) and (2.13) the values

g1/2,1 = −4s , g1/2,2 = −2 , g±1,1 = −4[−1 + k± + s(2 + k+ + k−)]

2 + k+ + k−
,

g±1,2 = −4[1 + k± + s(2 + k+ + k−)]

(1 + 2s)(2 + k+ + k−)
, g±1,3 = −2g±1,4 =

8

2 + k+ + k−
, g1,5 = −1 ,

g3/2,1 = − 32s(1 + s)(k+ − k−)

(1 + 2s)(2 + k+ + k−)
, g±3/2,2 = ∓8(1 + s)(1 + k∓ + s(2 + k+ + k−)]

(1 + 2s)(2 + k+ + k−)
,

g±3/2,3 =
±16s

2 + k+ + k−
, g±3/2,4 =

∓16

2 + k+ + k−
, g±3/2,5 = ∓4[1 + k∓ + s(2 + k+ + k−)]

(1 + 2s)(2 + k+ + k−)
,

g±3/2,6 = −g±3/2,7 =
∓4

2 + k+ + k−
, g2,1 =

32s(1 + s)(k+ − k−)

(1 + 2s)(2 + k+ + k−)
, g2,2 = −2(3 + 2s) ,

g±2,3 = ± 32(1 + s)

2 + k+ + k−
, g2,4 = −2 , g±2,5 = ± 16(1 + s)

2 + k+ + k−
. (A.2)

A.2 The linear case

In this subsection we explain our conventions for the OPEs of the fields of the linear Aγ

algebra with the component fields of the supermultiplet. For the component fields we use
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the conventions explained in eq. (4.14).

Aγ × V
(s)
0 : U V

(s)
0 ∼ 0 , Qa V

(s)
0 ∼ 0 , A±,i V

(s)
0 ∼ 0 , Ga V

(s)
0 ∼ 1

z
V

(s),a
1/2 ,

Aγ × V
(s),a
1/2 : U V

(s),a
1/2 ∼ 0 , Qa V

(s),b
1/2 ∼ 0 , A±,i V

(s),a
1/2 ∼ 1

z
α±,i
ab V

(s),b
1/2 ,

Ga V
(s),b
1/2 ∼ 2s δab

z2
V

(s)
0 +

1

z

(
α+,i
ab V

(s),+,i
1 + α−,i

ab V
(s),−,i
1 + δab ∂V

(s)
0

)
,

Aγ × V
(s),±,i
1 : U V

(s),±,i
1 ∼ 0 , Qa V

(s),±,i
1 ∼ ±2

z
α±,i
ab V

(s),a
1/2 ,

A±,i V
(s),±,j
1 ∼ 2s

z2
δij V

(s)
0 +

1

z
ǫijk V

(s),±,k
1 , A±,i V

(s),∓,j
1 ∼ 0 ,

Ga V
(s),±,i
1 ∼ 4(s+ γ∓)

(
1

z2
+

1

z(2s+ 1)
∂

)
α±,i
ab V

(s),b
1/2 ∓ 1

z
α±,i
ab V

(s),b
3/2 ,

Aγ × V
(s),a
3/2 : U V

(s),a
3/2 ∼ − 1

z2
V

(s),a
1/2 ,

Qa V
(s),b
3/2 ∼ 4sδab

z2
V

(s)
0 +

2

z

(
α+,i
ab V

(s),+,i
1 + α−,i

ab V
(s),−,i
1 − δab ∂V

(s)
0

)
,

A±,i V
(s),a
3/2 ∼ ±8s(s+ 1) + γ∓

z2(2s+ 1)
α±,i
ab V

(s),b
1/2 +

1

z
α±,i
ab V

(s),b
3/2 ,

Ga V
(s),b
3/2 ∼ −16s(s+1)(2γ−1)

z3(2s+ 1)
δabV

(s)
0 − 8(s+1)

(2s+1)

(
1

z2
+

1

2(s+1)z
∂

)
×

×
[
(s+ γ+)α

+,i
ab V

(s),+,i
1 − (s+ γ−)α

−,i
ab V

(s),−,i
1

]
.

Aγ × V
(s)
2 : U V

(s)
2 ∼ 8 s

z3
V

(s)
0 − 4

z2
∂V

(s)
0 ,

Qa V
(s)
2 ∼ −2(2s+ 1)

z2
V

(s),a
1/2 +

2

z
∂V

(s),a
1/2 ,

A±,i V
(s)
2 ∼ ±2(s+ 1)

z2
V

(s),±,i
1 ,

Ga V
(s)
2 ∼ 16(2γ − 1) s(s+ 1)

z3(2s+ 1)
V

(s),a
1/2 +

2s+ 3

z2
V

(s),a
3/2 +

1

z
∂V

(s),a
3/2 ,

T V
(s)
2 ∼ −24(2γ − 1)s(s+ 1)

z4(2s+ 1)
V

(s)
0 +

s+ 2

z2
V

(s)
2 +

1

z
∂V

(s)
2 .

Here γ+ = γ and γ− = γ̄ = 1−γ. Only the component field V
(s)
2 is quasi-primary (but not

primary).

B The spin 4 OPEs and the structure constants

B.1 The OPEs

The general ansatz for the OPEs of total spin 4 is

V
(1)
0 × V

(3)
0 ∼ w80T + w81V

(2)
0 + w82[V

(1)
0 V

(1)
0 ] + w83[A

+iA+
i] + w84[A

−iA−
i] +

+ w85V
(3)
0 + w86[V

(1)
0 V

(2)
0 ] + w87V

(1)
2 + w88[V

(1)
0 [V

(1)
0 V

(1)
0 ]] +
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+ w89[TV
(1)
0 ] + ǫαγǫβδw90[G

αβV
(1)γδ
1/2 ] + w91[A

+
iV

(1)+i
1 ] +

+ w92[A
−
iV

(1)−i
1 ] + w93[[A

+
iA

+i]V
(1)
0 ] + w94[[A

−
iA

−i]V
(1)
0 ] ,

V
(1)
0 × V

(1)
2 ∼ w95T + · · ·+ w108[[A

+
iA

+i]V
(1)
0 ] + w109[[A

−
iA

−i]V
(1)
0 ] ,

V
(1)
0 × V

(2)+i
1 ∼ w110A

+i + w111V
(1)+i
1 + w112[A

+iV
(1)
0 ] + w113V

(2)+i
1 +

+ w114[V
(1)
0 V

(1)+i
1 ] + w115[A

+iV
(2)
0 ] + w116[A

+iV
(1)
0 ]−1 +

+ w117[A
+i[V

(1)
0 V

(1)
0 ]] + w118[TA

+i] + ǫβδr
i
αγ

(
w119[V

(1)αβ
1/2 V

(1)γδ
1/2 ] +

+ w120[G
αβV

(1)γδ
1/2 ] + w121[G

αβGγδ]
)
+ f i

jl

(
w122[A

+jV
(1)+l
1 ] +

+ w123[A
+jA+l]−1

)
+ w124[[A

+
jA

+j ]A+i] + w125[[A
−
jA

−j ]A+i] ,

V
(1)+i
1 × V

(2)
0 ∼ w126A

+i + · · ·+ w140[[A
+
jA

+j ]A+i] + w141[[A
−
jA

−j ]A+i] ,

V
(1)
0 × V

(2)−i
1 ∼ w142A

−i + w143V
(1)−i
1 + w144[A

−iV
(1)
0 ] + w145V

(2)−i
1 +

+ w146[V
(1)
0 V

(1)−i
1 ] + w147[A

−iV
(2)
0 ] + w148[A

−iV
(1)
0 ]−1 +

+ w149[A
−i[V

(1)
0 V

(1)
0 ]] + w150[TA

−i] + ǫαγr
i
βδ

(
w151[V

(1)αβ
1/2 V

(1)γδ
1/2 ] +

+ w152[G
αβV

(1)γδ
1/2 ] + w153[G

αβGγδ]
)
+ f i

jl

(
w154[A

−jV
(1)−l
1 ] +

+ w155[A
−jA−l]−1

)
+ w156[[A

−
jA

−j ]A−i] + w157[[A
+
jA

+j ]A−i] ,

V
(1)−i
1 × V

(2)
0 ∼ w158A

−i + · · ·+ w172[[A
−
jA

−j ]A−i] + w173[[A
+
jA

+j ]A−i] ,

V
(1)+i
1 × V

(1)+j
1 ∼ ηij

(
w174I + w175T + w176V

(2)
0 + w177[V

(1)
0 V

(1)
0 ] + w178[A

+lA+
l] +

+ w179[A
−lA−

l]
)
+ w180[A

+iA+j ] + f ij
l

{
w181A

+l + w182V
(2)+l
1 +

+ w183[V
(1)
0 V

(1)+l
1 ] + w184[A

+lV
(2)
0 ] + w185[A

+lV
(1)
0 ]−1 +

+ w186[A
+l[V

(1)
0 V

(1)
0 ]] + w187[TA

+l] + ǫβδr
l
αγ

(
w188[V

(1)αβ
1/2 V

(1)γδ
1/2 ] +

+ w189[G
αβV

(1)γδ
1/2 ] + w190[G

αβGγδ]
)
+ f l

pq

(
w191[A

+pV
(1)+q
1 ] +

+ w192[A
+pA+q]−1

)
+ w193[[A

+
pA

+p]A+l] + w194[[A
−
pA

−p]A−l]
}
,

V
(1)−i
1 × V

(1)−j
1 ∼ ηij

(
w195I + w196T + w197V

(2)
0 + w198[V

(1)
0 V

(1)
0 ] + w199[A

+lA+
l] +

+ w200[A
−lA−

l]
)
+ w201[A

−iA−j ] + f ij
l

{
w202A

−l + w203V
(2)−l
1 +

+ w204[V
(1)
0 V

(1)−l
1 ] + w205[A

−lV
(2)
0 ] + w206[A

−lV
(1)
0 ]−1 +

+ w207[A
−l[V

(1)
0 V

(1)
0 ]] + w208[TA

−l] + ǫαγr
l
βδ

(
w209[V

(1)αβ
1/2 V

(1)γδ
1/2 ] +

+ w210[G
αβV

(1)γδ
1/2 ] + w211[G

αβGγδ]
)
+ f l

pq

(
w212[A

−pV
(1)−q
1 ] +

+ w213[A
−pA−q]−1

)
+ w214[[A

−
pA

−p]A−l] + w215[[A
+
pA

+p]A−l]
}
,

V
(1)+i
1 × V

(1)−j
1 ∼ w216[A

+iA−j ] + riαγr
j
βδw217[G

αβV
(1)γδ
1/2 ] + w218[A

+iV (1)−j ] +

+ w219[A
−jV (1)+i] + w220[A

+i[A−jV
(1)
0 ]] + w221[A

+iA−j ]−1 ,

V
(1)αβ
1/2 × V

(1)γδ
3/2 ∼ ǫαγǫβδ

{
w222V

(1)
0 + w223T + w224V

(2)
0 + w225[V

(1)
0 V

(1)
0 ] +

+ w226[A
+iA+

i] + w227[A
−iA−

i] + w228V
(3)
0 + w229[V

(1)
0 V

(2)
0 ] +
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+ w230V
(1)
2 + w231[V

(1)
0 [V

(1)
0 V

(1)
0 ]] + w232[TV

(1)
0 ] +

+ ǫρµǫσνw233[G
ρσV

(1)µν
1/2 ] + w234[A

+
iV

(1)+i] + w235[A
−
iV

(1)−i] +

+ w236[[A
+
iA

+i]V
(1)
0 ] + w237[[A

−
iA

−i]V
(1)
0 ]

}
+ ǫβδℓi,αγ

{
w238A

+i +

+ w239V
(1)+i
1 + w240[A

+iV
(1)
0 ] + w241V

(2)+i
1 + w242[V

(1)
0 V

(1)+i
1 ] +

+ w243[A
+iV

(2)
0 ] + w244[A

+iV
(1)
0 ]−1 + w245[A

+i[V
(1)
0 V

(1)
0 ]] +

+ w246[TA
+i] + ǫσνr

i
ρµ

(
w247[V

(1)ρσ
1/2 V

(1)µν
1/2 ] + w248[G

ρσV
(1)µν
1/2 ] +

+ w249[G
ρσGµν ]

)
+ f i

jl

(
w250[A

+jV
(1)+l
1 ] + w251[A

+jA+l]−1

)
+

+ w252[[A
+
jA

+j ]A+i] + w253[[A
−
jA

−j ]A+i]
}
+ ǫαγℓi,βδ

{
w254A

−i +

+ w255V
(1)−i
1 + w256[A

−iV
(1)
0 ] + w257V

(2)−i
1 + w258[V

(1)
0 V

(1)−i
1 ] +

+ w259[A
−iV

(2)
0 ] + w260[A

−iV
(1)
0 ]−1 + w261[A

−i[V
(1)
0 V

(1)
0 ]] +

+ w262[TA
−i] + ǫρµr

i
σν

(
w263[V

(1)ρσ
1/2 V

(1)µν
1/2 ] + w264[G

ρσV
(1)µν
1/2 ] +

+ w265[G
ρσGµν ]

)
+ f i

jl

(
w266[A

−jV
(1)−l
1 ] + w267[A

−jA−l]−1

)
+

+ w268[[A
−
jA

−j ]A−i] + w269[[A
+
jA

+j ]A−i]
}
+

+ ℓi,αγℓi,βδ
{
w270[A

+iA−j ] + +riρµr
j
σνw271[G

ρσV
(1)µν
1/2 ] +

+ w272[A
+iV

(1)−j
1 ] + w273[A

−jV
(1)+i
1 ] + w274[A

+i[A−jV
(1)
0 ]] +

+ w275[A
+iA−j ]−1

}
,

V
(1)αβ
1/2 × V

(2)γδ
1/2 ∼ ǫαγǫβδ

{
w276V

(1)
0 + w277T + · · ·+ w291[[A

−
iA

−i]V
(1)
0 ]

}
+ · · ·+

+ ℓi,αγℓi,βδ
{
w324[A

+iA−j ] + · · ·+ w329[A
+iA−j ]−1

}
,

V
(2)
0 × V

(2)
0 ∼ n2I + w330T + w331V

(2)
0 + w332[V

(1)
0 V

(1)
0 ] + w333[A

+
iA

+i] +

+ w334[A
−
iA

−i] . (B.1)

As in the main part of the paper, we have labelled the structure constants in the OPE

V
(1)
0 × V

(1)
2 in the same order as in the OPE V

(1)
0 × V

(3)
0 given above it, which is of the

same form; the structure constants in the OPE V
(1)+i
1 × V

(2)
0 in the same order as in the

OPE V
(1)
0 × V

(2)+i
1 given above it, etc.

B.2 The structure constants

In this section we list the structure constants in the OPEs (B.1). We have fixed the redef-

inition freedom of V
(2)
0 and V

(3)
0 with the conditions (3.18), (3.25), and we have assumed

the parity symmetry (3.26) so that eq. (3.27) holds. Under these assumptions the structure

constants take the following form:

w95 = − 64(k−−k+)(−2−k−−k++k−k+)(2+k−+k++k−k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w96 = 8 ,

w97 =
16(k−−k+)(5+4k−+4k++2k−k+)

−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+

,

w98 = − 32(−1+k−)(1+k−)k+(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

– 29 –



J
H
E
P
0
6
(
2
0
1
4
)
1
1
7

w99 =
32k−(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w111 = − 16(−1+k−)(1+k−)k+(1+k+)(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w112 =
64(−1+k−)(1+k−)(1+k+)(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w120 =
8(−1+k−)(1+k+)(2+2k−+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w127 = − 16(−1+k−)(1+k−)k+(1+k+)(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w128 =
64(−1+k−)(1+k−)(1+k+)(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w132 =
64(−1+k−)(1+k−)(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w138 =
8(−1+k−)(1+k−)k+(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w143 =
16k−(1+k−)(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w144 = − 64(1+k−)(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w152 = − 8(1+k−)(−1+k+)(2+2k−+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w159 =
16k−(1+k−)(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w160 = − 64(1+k−)(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w164 = − 64(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w170 = − 8k−(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w174 = −32k−k+(1+k−+2k+)
(2+k−+k+)2

,

w175 = − 64k−(2+k−)(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w176 = 8 ,

w177 =
16(k−−k+)(5+4k−+4k++2k−k+)

−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+

,

w178 = − 32k−k+(2+k−+2k+)(−1+2k−+2k2
−
−2k+−k−k+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w179 =
32k−(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w180 =
32k−

(2+k−+k+)2
,

w181 = −32k−(1+k−+2k+)
(2+k−+k+)2

,

w182 = 1 ,

w183 =
4(k−−k+)(5+4k−+4k++2k−k+)

−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+

,

w187 = − 32(2+k−+2k+)(−2−k−−k++2k−k++2k2
−
k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w188 =
2(2+k+)(2+k−+2k+)(1−2k−−2k2

−
+2k++k−k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,
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w190 =
2(2+k−+2k+)(−2−4k−−k++2k−k++2k2

−
k++3k−k2+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w192 =
8k−(−4−4k−−k2

−
−8k+−k−k++8k2

−
k++4k3

−
k+−3k2++4k−k2++5k2

−
k2+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w193 =
16(2+k−+2k+)(−2−k−−k++2k−k++2k2

−
k+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w194 =
16(2+k−+2k+)(−2−3k−−k++2k−k++2k2

−
k++2k−k2+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w195 = −32k−k+(1+2k−+k+)
(2+k−+k+)2

,

w196 = − 64(−1+k−)(1+k−)k+(2+k+)(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w197 = −8 ,

w198 = − 16(k−−k+)(5+4k−+4k++2k−k+)
−4−4k−−k2

−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+

,

w199 =
32(−1+k−)(1+k−)k+(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w200 =
32k−k+(2+2k−+k+)(1+2k−−2k++k−k+−2k2+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w201 =
32k+

(2+k−+k+)2
,

w202 = −32k+(1+2k−+k+)
(2+k−+k+)2

,

w203 = −1 ,

w204 = − 4(k−−k+)(5+4k−+4k++2k−k+)
−4−4k−−k2

−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+

,

w208 = − 32(2+2k−+k+)(−2−k−−k++2k−k++2k−k2+)
(2+k−+k+)(−4−4k−−k2

−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w209 =
2(2+k−)(2+2k−+k+)(1+2k−−2k++k−k+−2k2+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w211 =
2(2+2k−+k+)(−2−k−−4k++2k−k++3k2

−
k++2k−k2+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w213 =
8k+(−4−8k−−3k2

−
−4k+−k−k++4k2

−
k+−k2++8k−k2++5k2

−
k2++4k−k3+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w214 =
16(2+2k−+k+)(−2−k−−k++2k−k++2k−k2+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w215 =
16(2+2k−+k+)(−2−k−−3k++2k−k++2k2

−
k++2k−k2+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w216 = − 32
2+k−+k+

,

w221 = − 32
2+k−+k+

,

w223 = − 64(k−−k+)(8+8k−+2k2
−
+8k++9k−k++4k2

−
k++2k2++4k−k2+)

3(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w224 = −8 ,

w225 = − 16(k−−k+)(5+4k−+4k++2k−k+)
−4−4k−−k2

−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+

,

w226 =
32[3k−k+(2+k−+2k+)(−1+2k−+2k2

−
−2k+−k−k+)+(k−+2k+)K]

3(2+k−+k+)2K
,
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w227 =
32[3k−k+(2+2k−+k+)(1+2k−−2k++k−k+−2k2+)−(2k−+k+)K]

3(2+k−+k+)2K
,

w238 = −128k−(3+k−+2k+)
3(2+k−+k+)2

,

w241 = 1 ,

w242 =
4(k−−k+)(5+4k−+4k++2k−k+)

−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+

,

w246 = − 32(2+k−+2k+)(−2−k−−k++2k−k++2k2
−
k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w247 = −2(8+18k−+15k2
−
+4k3

−
−2k+−6k−k++2k3

−
k+−11k2+−16k−k2+−6k2

−
k2+−4k3+−2k−k3+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w249 =
2(−8−14k−−5k2

−
−10k+−2k−k++10k2

−
k++2k3

−
k+−3k2++14k−k2++10k2

−
k2++6k−k3+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w251 =
16k−(2+k−+2k+)(−2−k−−k++2k−k++2k2

−
k+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w252 =
16(2+k−+2k+)(−2−k−−k++2k−k++2k2

−
k+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w253 =
16(−12−16k−−5k2

−
−14k++3k−k++14k2

−
k++2k3

−
k+−4k2++16k−k2++12k2

−
k2++4k−k3+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w254 =
128k+(3+2k−+k+)

3(2+k−+k+)2
,

w257 = 1 ,

w258 =
4(k−−k+)(5+4k−+4k++2k−k+)

−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+

,

w262 =
32(2+2k−+k+)(−2−k−−k++2k−k++2k−k2+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w263 = −2(−8+2k−+11k2
−
+4k3

−
−18k++6k−k++16k2

−
k++2k3

−
k+−15k2++6k2

−
k2+−4k3+−2k−k3+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w265 = −2(−8−10k−−3k2
−
−14k+−2k−k++14k2

−
k++6k3

−
k+−5k2++10k−k2++10k2

−
k2++2k−k3+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w267 = − 16k+(2+2k−+k+)(−2−k−−k++2k−k++2k−k2+)
(2+k−+k+)2(−4−4k−−k2

−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w268 = − 16(2+2k−+k+)(−2−k−−k++2k−k++2k−k2+)
(2+k−+k+)2(−4−4k−−k2

−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w269 = −16(−12−14k−−4k2
−
−16k++3k−k++16k2

−
k++4k3

−
k+−5k2++14k−k2++12k2

−
k2++2k−k3+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w270 = − 128(k−−k+)
3(2+k−+k+)2

,

w275 = − 64
2+k−+k+

,

w284 = −1 ,

w286 =
16(k−−k+)(5+4k−+4k++2k−k+)

−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+

,

w287 =
2(k−−k+)(8+8k−+2k2

−
+8k++9k−k++4k2

−
k++2k2++4k−k2+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w288 =
4(2+k−+2k+)(−2−k−−k++2k−k++2k2

−
k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w289 = − 4(2+2k−+k+)(−2−k−−k++2k−k++2k−k2+)
(2+k−+k+)(−4−4k−−k2

−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,
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w290 = − 8(k−−k+)(5+4k−+4k++2k−k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w291 = − 8(k−−k+)(5+4k−+4k++2k−k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w293 =
16(−1+k−)(1+k−)k+(1+k+)(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w294 = − 64(−1+k−)(1+k−)(1+k+)(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w298 = − 32(−1+k−)(1+k−)(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w302 = − 4(−1+k−)(1+k+)(2+2k−+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w304 = − 4(−1+k−)(1+k−)k+(2+2k−+k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w309 = − 16k−(1+k−)(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w310 =
64(1+k−)(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w314 =
32(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w318 =
4(1+k−)(−1+k+)(2+2k−+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w320 =
4k−(−1+k+)(1+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w325 =
8(k−−k+)(2+2k−+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w326 =
8(2+k−+2k+)(−2−k−−k++2k−k++2k2

−
k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w327 = − 8(2+2k−+k+)(−2−k−−k++2k−k++2k−k2+)
(2+k−+k+)(−4−4k−−k2

−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w328 =
32(k−−k+)(5+4k−+4k++2k−k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

n2 =
64(−1+k−)k−(1+k−)(−1+k+)k+(1+k+)(2+2k−+k+)(2+k−+2k+)

(2+k−+k+)3(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w330 =
128(−1+k−)k−(1+k−)(2+k−)(−1+k+)k+(1+k+)(2+k+)(2+2k−+k+)(2+k−+2k+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)2

,

w331 = − 16(k−−k+)(4+4k−+k2
−
+4k++7k−k++4k2

−
k++k2++4k−k2++k2

−
k2+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)

,

w332 =
32(−1+k−)(1+k−)(2+k−)(−1+k+)(1+k+)(2+k+)(2+2k−+k+)(2+k−+2k+)

(2+k−+k+)(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)2

,

w333 = −64(−1+k−)k−(1+k−)(2+k−)(−1+k+)k+(1+k+)(2+2k−+k+)(2+k−+2k+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)2

,

w334 = −64(−1+k−)k−(1+k−)(−1+k+)k+(1+k+)(2+k+)(2+2k−+k+)(2+k−+2k+)

(2+k−+k+)2(−4−4k−−k2
−
−4k++3k−k++4k2

−
k+−k2

+
+4k−k2

+
+3k2

−
k2
+)2

.
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C Structure constants for the OPE V
(1) × V

(1)

In this appendix we list the values of the 39 coefficients appearing in (4.31).

z1 = − (k− + k+)n1

2 (k− − 1) (k+ − 1)
, z2 = − n1

(k− − 1) (k+ − 1)
,

z3 =
2n1

(k− − 1) (k+ − 1)
, z4 = − 2n1

(k− − 1) (k+ − 1)
,

z5 = − 2n1

3 (k− − 1) (k+ − 1) (k− + k+)
, z6 = −2n1 ,

z7 =
4n1

k− − 1
, z8 =

4n1

k+ − 1
,

z9 = − 2 (k− + k+ − 2)n1

(k− − 1) (k+ − 1) (k− + k+)
, z10 =

(k+ − k−)n1

(k− − 1) (k+ − 1) (k− + k+)
,

z11 = − n1

(k− − 1) (k+ − 1)
, z12 = − 8n1

(k− − 1) (k+ − 1)
,

z13 = − n1

(k− − 1) (k+ − 1)
, z14 =

2n1

k− − 1
,

z15 =
4n1

(k− − 1) (k+ − 1) (k− + k+)
, z16 =

2n1

(k− − 1) (k+ − 1) (k− + k+)
,

z17 =
2n1

(k− − 1) (k+ − 1) (k− + k+)
, z18 =

4n1

(k− − 1) (k+ − 1) (k− + k+)
,

z19 = − 2n1

(k− − 1) (k+ − 1) (k− + k+)
, z20 =

2n1

(k− − 1) (k+ − 1) (k− + k+)
,

z21 =
2n1

k+ − 1
, z22 = − n1

(k− − 1) (k+ − 1)
,

z23 = − (k− + k+ − 4)n1

(k− − 1) (k+ − 1) (k− + k+)
, z24 =

(k− + k+ + 4)n1

(k− − 1) (k+ − 1) (k− + k+)
,

z25 =
(k+ − k−)n1

(k− − 1) (k+ − 1) (k− + k+)
, z26 = − (k− + k+)n1

(k− − 1) (k+ − 1)
,

z27 = − n1

(k− − 1) (k+ − 1)
, z28 = − 4n1

k+ − 1
,

z29 =
4n1

(k+ − 1) (k− + k+)
, z30 = − 4n1

(k− − 1) (k+ − 1) (k− + k+)
,

z31 = − 8n1

(k− − 1) (k+ − 1) (k− + k+)
, z32 =

2n1

(k− − 1) (k+ − 1)
,

z33 =
4n1

(k− − 1) (k+ − 1) (k− + k+)
, z34 = − 4n1

k− − 1
,

z35 =
4n1

(k− − 1) (k− + k+)
, z36 = − 4n1

(k− − 1) (k+ − 1) (k− + k+)
,

z37 = − 8n1

(k− − 1) (k+ − 1) (k− + k+)
, z38 = − 2n1

(k− − 1) (k+ − 1)
,

z39 = − 4n1

(k− − 1) (k+ − 1) (k− + k+)
.
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D Structure constants for the OPE V
(1) × V

(2)

In this appendix we list the values of the 16 coefficients in eq. (4.39). We have omitted a

common factor n1/n2, where n1 is defined in (4.31), and n2 is the coefficient of V
(2)
1/2 in the

OPE V
(1)
0 × V

(1)
3/2 .

w1 = − k−+k+
2(k−−1)(k+−1) ,

w2 = − 2(k−−k+)(2k+k2
−
−10k2

−
+2k2+k−−26k+k−+17k−−10k2++17k+−6)

3(k−−1)(k+−1)(3k2+k2
−
−2k+k2

−
−2k2

−
−2k2

+
k−−k+k−+k−−2k2

+
+k+)

,

w3 = − 4
(k−−1)(k+−1) ,

w4 =
2

(k−−1)(k+−1) ,

w5 = − 2(k−−k+)(k−+k+)(2k+k−+2k−+2k+−1)

(k−−1)(k+−1)(3k2+k2
−
−2k+k2

−
−2k2

−
−2k2

+
k−−k+k−+k−−2k2

+
+k+)

,

w6 =
2

(k−−1)(k+−1) ,

w7 = − 4(k−−k+)(2k+k−+2k−+2k+−1)

(k−−1)(k+−1)(3k2+k2
−
−2k+k2

−
−2k2

−
−2k2

+
k−−k+k−+k−−2k2

+
+k+)

,

w8 = −4(4k+k3
−
−4k3

−
+5k2+k2

−
−14k+k2

−
+8k2

−
−6k2+k−+7k+k−−3k−−2k2++k+)

(k−−1)(k+−1)(3k2+k2
−
−2k+k2

−
−2k2

−
−2k2

+
k−−k+k−+k−−2k2

+
+k+)

,

w9 =
4(4k−k3+−4k3++5k2

−
k2+−14k−k2++8k2+−6k2

−
k++7k−k+−3k+−2k2

−
+k−)

(k−−1)(k+−1)(3k2+k2
−
−2k+k2

−
−2k2

−
−2k2

+
k−−k+k−+k−−2k2

+
+k+)

,

w10 =
8(k−−k+)(2k+k−+2k−+2k+−1)

(k−−1)(k+−1)(3k2+k2
−
−2k+k2

−
−2k2

−
−2k2

+
k−−k+k−+k−−2k2

+
+k+)

,

w11 = − 8(k−−k+)(2k+k−+2k−+2k+−1)

(k−−1)(k+−1)(3k2+k2
−
−2k+k2

−
−2k2

−
−2k2

+
k−−k+k−+k−−2k2

+
+k+)

,

w12 =
2

(k−−1)(k+−1) ,

w13 =
2

(k−−1)(k+−1) ,

w14 = − 8(k−−k+)(2k+k−+2k−+2k+−1)

3(k−−1)(k+−1)(k−+k+)(3k2+k2
−
−2k+k2

−
−2k2

−
−2k2

+
k−−k+k−+k−−2k2

+
+k+)

,

w15 =
8(k−+2k+−1)(2k+k2

−
−2k2

−
−2k+k−+k−−k+)

(k−−1)(k+−1)(k−+k+)(3k2+k2
−
−2k+k2

−
−2k2

−
−2k2

+
k−−k+k−+k−−2k2

+
+k+)

,

w16 = − 8(2k−+k+−1)(2k−k2+−2k2+−2k−k++k+−k−)
(k−−1)(k+−1)(k−+k+)(3k2+k2

−
−2k+k2

−
−2k2

−
−2k2

+
k−−k+k−+k−−2k2

+
+k+)

.
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