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Abstract: We study N = 2 seven-dimensional gauged supergravity coupled to three

vector multiplets with SO(4) gauge group. The resulting gauged supergravity con-

tains 10 scalars consisting of the dilaton and 9 vector multiplet scalars parametrized by

SO(3, 3)/SO(3)×SO(3) coset manifold. The maximally supersymmetric AdS7 vacuum with

unbroken SO(4) symmetry is identified with a (1, 0) SCFT in six dimensions. We find one

new supersymmetric AdS7 critical point preserving SO(3)diag ⊂ SO(3) × SO(3) ∼ SO(4)

and study a holographic RG flow interpolating between the SO(4) and the new SO(3)

supersymmetric critical points. The RG flow is driven by a vacuum expectation value of

a dimension-four operator and describes a deformation of the UV (1, 0) SCFT to another

supersymmetric fixed point in the IR. In addition, a number of non-supersymmetric criti-

cal points are identified, and some of them are stable with all scalar masses above the BF

bound. RG flows to non-conformal N = (1, 0) Super Yang-Mills with SO(2) × SO(2) and

SO(2) symmetries are also investigated. Some of these flows have physically acceptable IR

singularities since the scalar potential is bounded above. These provide physical RG flows

from (1, 0) SCFT to non-conformal field theories in six dimensions.
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1 Introduction

The AdS/CFT correspondence has attracted a lot of attention during the past twenty

years. The original proposal in [1] discussed many examples in various dimensions. These

examples included the duality between M-theory on AdS7 × S4 and (2, 0) superconformal

field theory (SCFT) in six dimensions. The AdS7 × S4 geometry can arise from the near

horizon limit of M5-brane. In term of N = 4 seven-dimensional gauged supergravity with

SO(5) gauge group, the AdS7 geometry corresponds to the maximally supersymmetric

vacuum of the gauged supergravity, see for example [2].

In this paper, we will explore AdS7/CFT6 correspondence with sixteen supercharges.

The dual SCFT to the AdS7 background in this case would be (1, 0) six-dimensional SCFT.

Six-dimensional gauge theories with N = (1, 0) supersymmetry are interesting in many

aspects. In [3], it has been shown that the theories admit non-trivial RG fixed points.

Examples of these field theories also arise in string theory [4], see also a review in [5]. After

the AdS/CFT correspondence, a supergravity dual of a (1, 0) field theory with E8 global

symmetry has been proposed in [6]. The dual gravity background has been identified with

the orbifolds of AdS7 × S4 geometry in M-theory. The operator spectrum of the (1, 0)

six-dimensional SCFT has been matched with the Kaluza-Klein spectrum in [7, 8].

Like in lower dimensions, it is more convenient to study AdSd+1/CFTd correspondence

in the framework of (d+1)-dimensional gauged supergravity. A consistent reduction ansatz

can eventually be used to uplift the lower dimensional results to string/M theory in ten or

eleven dimensions. A suitable framework in the holographic study of the above (1, 0) field
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theories is the half-maximal gauged supergravity in seven dimensions coupled to n vector

multiplets. The supergravity theory has N = 2 or sixteen supercharges in exact agreement

with the number of supercharges in six-dimensional (1, 0) superconformal symmetry. This

has been proposed long time ago in [9]. With the pure gauged supergravity and critical

points found in [10] and [11], holographic RG flows to a non-supersymmetric IR fixed point

and to a non-conformal (1, 0) gauge theory have been studied in [12] and [13].

Pure N = 2 gauged supergravity in seven dimensions admit only two AdS7 vacua with

one being maximally supersymmetric and the other one being stable non-supersymmetric.

To obtain more AdS7 critical points, matter coupled supergravity theory is needed. This

has been constructed in [14] but without the topological mass term for the 3-form field

which is a dual of the 2-form field in the supergravity multipet. Without this term, the

scalar potential of the matter coupled gauged supergravity does not admit any critical

point but a domain wall as can be verified by looking at the scalar potential explicitly

given in [14]. Although mistakenly claimed in [15] that the topological mass term is not

possible, the theory indeed admits this term as shown in [16] in which the full Lagrangian

and supersymmetry transformations of this massive gauged supergravity have been given.

This provides the starting point for the present work.

In this paper, we are interested in the gauged supergravity with SO(4) gauge group.

This requires three vector multiplets since six gauge fields are needed in order to implement

the SO(4) gauging. The theory can be obtained from a truncation of the maximal N = 4

gauged supergravity [17]. In addition to the dilaton, there are extra nine scalars from

the vector multipets parametrized by SO(3, 3)/SO(3) × SO(3) ∼ SL(4,R)/SO(4) coset

manifold. We will explore the scalar potential of this theory in the presence of topological

mass term and identify some of its critical points. The critical points will correspond to

new IR fixed point of the (1, 0) SCFT identified with the maximally supersymmetric critical

point with SO(4) symmetry. We will also study RG flows between these critical points as

well as RG flows to non-conformal field theories.

The paper is organized as follow. We briefly review the matter coupled gauged su-

pergravity in seven dimensions and give relevant formulae which will be used throughout

the paper in section 2. Some critical points of seven-dimensional gauged supergravity

with SO(4) gauge group are explored in section 3. A number of supersymmetric and non-

supersymmetric critical points and the corresponding scalar masses will also be given in

this section. In section 4, we study supersymmetric deformations of the UV N = (1, 0)

SCFT to a new superconformal fixed point in the IR and to non-conformal SYM in six

dimensions. Both types of the solutions can be analytically obtained. The paper is closed

with some conclusions and comments on the results in section 5.

2 N = 2, SO(4) gauged supergravity in seven dimensions

We begin with a description of N = 2 gauged supergravity coupled to n vector multiplets.

All notations are the same as those of [16]. The gravity multiplet in seven-dimensional

N = 2 supersymmetry contains the following field content

gravity multiplet : (emµ , ψ
A
µ , A

i
µ, χ

A, Bµν , σ). (2.1)
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A vector multiplet has the field content (Aµ, λ
A, φi). Indices A,B label the doublet of

the USp(2)R ∼ SU(2)R R-symmetry. Curved and flat space-time indices are denoted by

µ, ν, . . . and m,n, . . ., respectively. Bµν and σ are a two-form and the dilaton fields. For

supergravity theory coupled to n vector multiplets, there are n copies of (Aµ, λ
A, φi)r

labeled by an index r = 1, . . . , n, and indices i, j = 1, 2, 3 label triplets of SU(2)R. The 3n

scalars φir are parametrized by SO(3, n)/SO(3)×SO(n) coset manifold. The corresponding

coset representative will be denoted by

L = (L i
I , L

r
I ), I = 1, . . . , n+ 3 . (2.2)

The inverse of L is given by L−1 = (LI
i, L

I
r) where LI

i = ηIJLJi and LI
r = ηIJLJr.

Indices i, j and r, s are raised and lowered by δij and δrs, respectively while the full SO(3, n)

indices I, J are raised and lowered by ηIJ = diag(−−−++ . . .+). There are some relations

involving components of L and are given by

ηIJ = −L i
I L

i
J + L r

I L
r
J , Li = LIi,

Li
IL

I
j = −δij , Li

IL
Ij = −δij . (2.3)

Gaugings are implemented by promoting a global symmetry G̃ ⊂ SO(3, n) to a gauge

symmetry. Consistency of the gauging imposes a condition on the G̃ structure con-

stants f K
IJ

f L
IK ηLJ + f L

JK ηLI = 0 (2.4)

meaning that ηIJ is invariant under the adjoint action of G̃. General semisimple gauge

groups take the form of G̃ ∼ G0 ×H ⊂ SO(3, n) with G0 being one of the six possibilities:

SO(3), SO(3, 1), SL(3,R), SO(2, 1), SO(2, 2) and SO(2, 2)×SO(2, 1) and H being compact

with dimH ≤ (n+ 3− dimG0).

In this paper, we are interested in the SO(4) gauged supergravity corresponding to

G0 = SO(3) and H = SO(3). To obtain AdS7 vacua, we need to consider the gauged

supergravity with a topological mass term for a 3-form potential. The 3-form field is a

dual of the 2-form Bµν . With all modifications to the Lagrangian and supersymmetry

transformations as given in [16], the bosonic Lagrangian involving only scalars and the

metric can be written as

e−1L =
1

2
R− 5

8
∂µσ∂

µσ − 1

2
PµirPµir − V (2.5)

where the scalar potential is given by

V =
1

4
e−σ

(

CirCir −
1

9
C2

)

+ 16h2e4σ − 4
√
2

3
he

3σ

2 C . (2.6)

The constant h characterizes the topological mass term. The quantities appearing in the

above equations are defined by

P ir
µ = LIr

(

δKI ∂µ + f K
IJ AJ

µ

)

Li
K , Crsif

K
IJ LI

rL
J
sLKi,

Cir =
1√
2
f K
IJ LI

jL
J
kLKrǫ

ijk, C = − 1√
2
f K
IJ LI

iL
J
jLKkǫ

ijk . (2.7)
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We also need fermionic supersymmetry transformations with all fields but scalars vanishing.

These are given by

δψµ = 2Dµǫ−
√
2

30
e−

σ

2Cγµǫ−
4

5
he2σγµǫ, (2.8)

δχ = −1

2
γµ∂µσǫ+

√
2

30
e−

σ

2Cǫ− 16

5
e2σhǫ, (2.9)

δλr = −iγµP ir
µ σ

iǫ− i√
2
e−

σ

2Cirσiǫ (2.10)

where SU(2)R indices on spinors are suppressed. σi are the usual Pauli matrices.

In the remaining of this section, we focus on n = 3 case with G̃ = SO(4) ∼ SO(3) ×
SO(3). The first SO(3) factor is identified with the SU(2)R R-symmetry. To give an explicit

parametrization of SO(3, 3)/SO(3)× SO(3) coset, we define thirty-six 6× 6 matrices

(eab)cd = δacδbd, a, b . . . = 1, . . . 6 . (2.11)

Non-compact generators of SO(3, 3) are identified as

Yir = ei,r+3 + er+3,i, r = 1, . . . , 3 . (2.12)

Accordingly, SO(3)× SO(3) generators can be written as

SO(3)R : Jij = eij − eji,

SO(3) : Jrs = ers − esr . (2.13)

In this case, the structure constants for the gauge group are given by

fIJK = (g1ǫijk, g2ǫrst) (2.14)

where g1 and g2 are coupling constants of SO(3)R and SO(3), respectively.

3 Critical points of N=2, SO(4) seven-dimensional gauged supergravity

In this section, we will compute the scalar potential of the SO(4) gauged supergravity and

study some of its critical points. Although complicated, it is possible to compute the scalar

potential for all of the ten scalars. However, the long expression would make any analysis

more difficult. Consequently, we will proceed by studying the scalar potential on a subset

of the ten scalars as originally proposed in [18]. In this approach, the scalar potential is

computed on a scalar submanifold which is invariant under some subgroup H0 of the full

gauge symmetry SO(4). This submanifold consists of all scalars which are singlet under the

unbroken subgroup H0. All critical points found on this submanifold are essentially critical

points of the potential on the full scalar manifold. This can be seen by expanding the full

potential to first order in scalar fluctuations which in turn contain both H0 singlets and H0

non-singlets. By a simple group theory argument, the non-singlet fluctuations cannot lead

to H0 singlets at first order. Their coefficients, variations of the potential with respect to

non-singlet scalars, must accordingly vanish. This proves to be more convenient and more

efficient. However, the truncation is consistent only when all relevant H0 singlet scalars

are included on the chosen submanifold. With only some of these singlets, the consistency

is not guaranteed.
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3.1 Critical points on SO(3)diag scalars

We begin with the most simplest case namely the potential on SO(3)diag ⊂ SO(3)× SO(3)

corresponding to the non-compact generator Ys = Y11+Y22+Y33. The coset representative

is then parametrized by

L = eφYs . (3.1)

The scalar potential is given by

V =
1

32
e−σ

[

(g21 + g22) (cosh(6φ)− 9 cosh(2φ))− 8g1g2 sinh
3(2φ)

+8
[

g22 − g21 + 64h2e5σ + 32e
5σ

2 h
(

g1 cosh
2 φ− g2 sinh

3 φ
)

]]

. (3.2)

Notice that there is no critical point when h = 0 as mentioned before. In this case, the

SO(4) supergravity admits a half-supersymmetric domain wall as a vacuum solution. For

φ = 0, the above potential is the potential of pure N = 2 gauged supergravity with SO(3)

gauge group studied in [10] and [11]. There are two critical points in the pure gauged

supergravity. One of them preserves all of the supersymmetry while the other completely

breaks supersymmetry. In our conventions, they are given by

σ =
2

5
ln
[

− g1
16h

]

and σ =
2

5
ln
[

− g1
8h

]

. (3.3)

It can be readily verified by using supersymmetry transformations of ψµ, χ and λr that the

first one is supersymmetric. We can bring the supersymmetric point to σ = 0 by choosing

g1 = −16h and find that the two critical points are now given by

σ = 0, V0 = −240h2

and σ =
2

5
ln 2, V0 = −160(2

3

5 )h2 (3.4)

where V0 denotes the value of the cosmological constant.

Although non-supersymmetric, the second critical point has been shown to be stable

in [11]. In the presence of matter scalars, this is however not the case. This can be seen

from the scalar masses given below.

SO(3)× SO(3) m2L2

(1,1) 12

(3,3) −12

The AdS7 radius L in our conventions is given by L =
√

−15
V0

= 1
4h . The (1,1) scalar

correspond to σ, and (3,3) is the nine scalars in SO(3, 3)/SO(3)× SO(3). The BF bound

in seven dimensions is m2L2 ≥ −9. Therefore, the non-supersymmetric critical point of

pure gauged supergravity is unstable in the matter coupled theory. This is very similar to

the six-dimensional N = (1, 1) gauged supergravity pointed out in [19].
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Scalar masses at the supersymmetric point are given in the table below.

SO(3)× SO(3) m2L2

(1,1) −8

(3,3) −8

In the dual (1, 0) SCFT, these scalars correspond to dimension-4 operators via the relation

m2L2 = ∆(∆− 6).

There is one non-trivial supersymmetric point at

σ = −1

5
ln

[

g22 − 256h2

g22

]

, φ =
1

2
ln

[

g2 − 16h

g2 + 16h

]

,

V0 = − 240g
8

5

2 h
2

(g22 − 256h2)
4

5

. (3.5)

At this point, scalar masses are computed as follow.

SO(3)diag m2L2 ∆

1 −8 4

1 40 10

3 0 6

5 16 8

In the table, we have decomposed all of the ten scalars in representations of the SO(3)diag
residual symmetry. This can be done by the following decomposition. Under SO(3)R ×
SO(3), the nine scalars transform as (3,3). They then transform as 3 × 3 = 1 + 3 + 5

under SO(3)diag. Notice that the 3 scalars are massless corresponding to Goldstone bosons

of the symmetry breaking SO(3)× SO(3) → SO(3)diag.

There is one non-supersymmetric critical point given by

σ =
1

5
ln

[

4g22
g22 − 256h2

]

, φ =
1

2
ln

[

g2 − 16h

g2 + 16h

]

,

V0 = − 160(2
3

5 )g
8

5

2 h
2

(g22 − 256h2)
4

5

. (3.6)

This critical point is stable as can be seen from the mass spectrum below.

SO(3)diag m2L2 ∆

1 12 3 +
√
21

1 36 3 + 3
√
5

3 0 6

5 0 6
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For g2 = g1, we also find another non-supersymmetric critical point given by

σ =
1

10

[√
2 ln 8 + 4 ln(1− 2−

√
2)
]

, φ = −1

2
ln 2, V0 = −246.675h2 . (3.7)

This critical point is however unstable. Scalar masses at this point are given below.

SO(3)diag m2L2

1 −4.278

1 16.059

3 0

5 −14.282

We can see that the mass of 5 scalars violates the BF bound.

3.2 Critical points on scalar manifold with smaller residual symmetry

To find other critical points, we can consider smaller residual symmetries. Breaking

SO(3)diag to SO(2)diag, we find that there are two singlets from SO(3, 3)/SO(3) × SO(3)

with the coset representative

L = eφ1(Y11+Y22)eφ2Y33 . (3.8)

This gives the scalar potential, with g1 = −16h,

V =
1

8
e−σ

[

2(g22 + 64h2(e5σ − 4))− 2(g22 + 256h2) cosh(2φ1)

−64he
5σ

2

(

16h cosh2 φ1 coshφ2 + g2 sinh
2 φ1 sinhφ2

)

+sinh2(2φ1)
[

(g22 + 256h2) cosh(2φ2) + 32g2h sinh(2φ2)
]]

. (3.9)

This potential does not admit any supersymmetric critical points unless φ1 = φ2 which is

the previously found SO(3)diag point. When φ1 = 0, the above scalar submanifold preserves

SO(2)× SO(2) symmetry, but there is no critical point except for φ2 = 0. We are not able

to obtain any new critical points from the above potential.

We now move to scalar fields invariant under SO(2)R ⊂ SO(3)R. There are three

singlets corresponding to Y11, Y12 and Y13. Denoting the associated scalars by φi, i = 1, 2, 3,

we find a simple potential

V = −1

2
g21e

−σ + 16h2e4σ + g1he
3

2
σ−φ1−φ2−φ3(1 + e2φ1)(1 + e2φ2)(1 + e2φ3) (3.10)

which does not admit any non-trivial critical points.

4 Supersymmetric RG flows

We now consider domain wall solutions interpolating between critical points identified in

the previous section. These solutions will generally have an interpretation in terms of
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RG flows in the dual field theories in six dimensions. We are mainly interested in su-

persymmetric RG flows which can be obtained from solving BPS equations coming from

supersymmetry variations of fermionic fields ψµ, χ and λr. A stable non-supersymmetric

AdS7 critical point also admits a well-defined dual CFT, but in most cases, finding the cor-

responding flow solutions requires a numerical analysis. Accordingly, we will not consider

non-supersymmetric flows in this paper.

4.1 An RG flow to a supersymmetric SO(3) fixed point

There is one supersymmetric AdS7 critical point with SO(3) symmetry. In this subsection,

we will find the domain wall solution interpolating between this point and the trivial critical

point at σ = φ = 0.

Using the standard domain wall metric

ds2 = e2A(r)dx21,5 + dr2 (4.1)

where dx21,5 is the flat metric in six-dimensional space-time and the projection condition

γrǫ = ǫ, we can derive the following BPS equations

φ′ =
1

8
e−

σ

2
−3φ(e4φ − 1)

(

g1 + g2 + e2φg1 − e2φg2

)

, (4.2)

σ′ =
1

20

[

e−
σ

2
−3φ

(

g2(e
2φ − 1)3 − g1(1 + e2φ)3

)

− 128he2σ
]

, (4.3)

A′ =
1

40
e−

σ

2
−3φ

[

g2(e
2φ − 1)3 − g1(1 + e2φ)3

]

+
4

5
he2σ (4.4)

where ′ denotes d
dr
. The above equations do not involve δψr equation which will give the

Killing spinor condition on ǫ as usual. The above equations clearly admit two critical

points. To find the solution, we combine equations (4.2) and (4.3) to

dσ

dφ
=

2
[

g2(e
2φ − 1)3 − g1(1 + e2φ)3 − 128he

σ

2
+3φ

]

5(e4φ − 1) (g1 + g2 + (g1 − g2)e2φ)
(4.5)

whose solution is given by

σ =
2

5
ln

[

eφ
(

g1 + g2 + (g1 − g2)e
2φ
)

32h (12C1(e2φ − 1)− 1)

]

. (4.6)

In order for the solution to interpolate between the two critical points, we need to fix the

integration constant to be C1 =
(g1−g2)2

48g1g2
. We then find the solution for σ

σ =
2

5
ln

[

− g1g2e
φ

8h (g1 + g2 + (g2 − g1)e2φ)

]

. (4.7)

Introducing a new radial coordinate r̃ via dr̃
dr

= e−
σ

2 , we can solve equation (4.2) and

find the solution for φ

g1g2r̃ = 2g1 tan
−1 eφ + 2

√

g22 − g21 tanh
−1

[

eφ
√

g2 − g1
g2 + g1

]

+ g2 ln

[

1− eφ

1 + eφ

]

(4.8)
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where we have neglected an additive integration constant to r̃. Taking the combina-

tion (4.4)+1
8× (4.3) and changing the variable from r to φ, we find

dA

dφ
+

1

8

dσ

dφ
=

g2(e
2φ − 1)3 − g1(1 + e2φ)3

4(e4φ − 1) (g1 + g2 + (g1 − g2)e2φ)
. (4.9)

The solution is easily found to be

A =
1

8

[

2φ− σ − 2 ln
(

2− 2e4φ
)

+ 2 ln
(

g1 + g2 + (g1 − g2)e
2φ
)]

. (4.10)

Near the UV point σ ∼ 0 and φ ∼ 0 with g1 = −16h, we find

σ ∼ φ ∼ e−16hr = e−
4r

L , L =
1

4h
(4.11)

since r̃ ∼ r near σ ∼ 0. The flow is then driven by vacuum expectation values (vev) of

relevant operators of dimension ∆ = 4. In the IR, we find that the solution behaves as

σ ∼ e−
4r

L , φ ∼ e
4r

L , L =
(g22 − 256h2)

2

5

4hg
4

5

2

. (4.12)

From this, we see that the operator dual to φ acquires an anomalous dimension and has

dimension 10 in the IR. This is consistent with the value of m2L2 given previously.

4.2 RG flows to non-conformal field theories

A supersymmetric flow to non-conformal field theory in pure gauged supergravity has been

studied in [13]. We will study similar solutions in the matter coupled gauged supergravity.

These solutions would be a generalization of the solution given in [13].

4.2.1 Flows to SO(2) × SO(2), 6D Super Yang-Mills

We first consider SO(2)R singlets scalars. With γrǫ = ǫ, the BPS equations for these three

singlets, denoted by φi, i = 1, 2, 3, σ and A are given by

φ′1 =
1

2
e−

σ

2
−φ1g1(e

2φ1 − 1), (4.13)

φ′2 =
1

2
e−

σ

2
−φ2g1(e

2φ2 − 1), (4.14)

φ′3 =
1

2
e−

σ

2
−φ3g1(e

2φ3 − 1), (4.15)

σ′ = − 1

20
g1e

−σ

2
−φ1−φ2−φ3(1 + e2φ1)(1 + e2φ2)(1 + e2φ3)− 32

5
he2σ, (4.16)

A′ = − 1

40
g1e

−σ

2
−φ1−φ2−φ3(1 + e2φ1)(1 + e2φ2)(1 + e2φ3) +

4

5
he2σ . (4.17)

The above equations clearly admit only one critical point at φi = 0.
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For φ1 = φ2 = 0, the solution will preserve SO(2)R × SO(2) symmetry. This is easily

seen to be a consistent truncation. The solution to the above equations is given by

φ3 = ± ln

[

1 + eg1r̃+C1

1− eg1r̃+C1

]

,

σ =
2

5
φ3 −

2

5
ln

[

−16h

g1

[

4C2

(

e2φ3 − 1
)

− 1
]

]

,

A =
1

8

[

2φ3 − σ − 2 ln(e2φ3 − 1)
]

(4.18)

where as in the previous case r̃ is related to r via dr̃
dr

= e−
σ

2 .

Near the UV point, the asymptotic behavior of φ3 and σ is given by

φ3 ∼ σ ∼ e−16hr, A ∼ 4hr ∼ r

L
. (4.19)

In the IR, we will consider φ3 > 0 and φ3 < 0, separately. For φ3 > 0, there is a

singularity when φ3 → ∞ as 16hr̃ ∼ C1. With C2 6= 0, we find

φ3 ∼ − ln(16hr̃ − C1), σ ∼ 2

5
ln(16hr̃ − C1),

A ∼ −1

8
(2φ3 + σ) =

1

5
ln(16hr̃ − C1) . (4.20)

As 16hr̃ ∼ C1, we find the relation between r and r̃ to be 16hr−C = 5
6(16hr̃−C1)

6

5 with

C being another integration constant. As expected from the general DW/QFT correspon-

dence [20–22], the metric in the IR takes the form of a domain wall

ds2 = (16hr − C)
1

3dx21,5 + dr2 (4.21)

where the multiplicative constant has been absorbed in the rescaling of the xµ coordinates.

Flows to non-conformal field theories usually encounter singularities in the IR. As can

be seen from the above metric, there is a singularity at 16hr ∼ C. The criterion for

determining whether a given singularity is physical or not has been given in [23]. The

condition rules out naked time-like singularities which are clearly unphysical. According to

the criterion of [23], the IR singularity in the solution is acceptable if the scalar potential

is bounded above. One way to understand this criterion has been given in [24] for four-

dimensional gauge theories. We will follow this argument and briefly discuss the meaning of

the criterion in [23] in the context of six-dimensional field theories. Near the IR singularity,

scalars φi, assumed to be canonical ones, and the metric warped factor A behave as

φi ∼ Bi ln(r − r0), A ∼ κ ln(r − r0) (4.22)

where we have chosen the integration constant so that the singularity occurs at r0. In the

IR, the bulk action for these scalars mainly contains the kinetic terms since the potential

is irrelevant. This is because the potential diverges logarithmically, but the kinetic terms

go like (r − r0)
−2. According to the AdS/CFT correspondence, the one point function or

the vacuum expectation value of operators Oi dual to φi is given by 〈Oi〉 = δS
δφi

. Using

S =
1

2

∫

d6xdre6A∂rφi∂
rφi, (4.23)
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we find

〈Oi〉 =
δS

δφi
∼ e6A∂rφi ∼ Bi(r − r0)

6κ−1 . (4.24)

We can see that 〈Oi〉 diverges for κ < 1
6 . We then expect that solutions with κ < 1

6 will

be excluded. In four dimensions, it has been shown that this is related to the fact that the

scalar potential becomes unbounded above. In the present case, we will see in the solutions

given below that this is the case namely all solutions with κ < 1
6 have V → ∞.

It can be checked by using the scalar potential given in (3.10) that as 16hr̃ ∼ C1, the

solution in (4.20) gives V → −∞. The solution is then physical and describes a supersym-

metric RG flow from (1, 0) SCFT to six-dimensional SYM with SO(2)× SO(2) symmetry.

For C2 = 0, the solution becomes

φ3 ∼ − ln(16hr̃ − C1), σ ∼ −2

5
ln(16hr̃ − C1),

ds2 = (16hr − C)
3

4dx21,5 + dr2 . (4.25)

This is also physical since it leads to V → −∞.

For φ3 < 0 and 16hr̃ ∼ C1, the above solutions give, for any values of C2,

φ3 ∼ ln(16hr̃ − C1), σ ∼ 2

5
ln(16hr̃ − C1),

ds2 = (16hr − C)
1

3dx21,5 + dr2 (4.26)

which give rise to V → −∞. This solution is then physically acceptable.

The solution with all φi 6= 0 turns out to be very difficult to find although the above

BPS equations suggest that φ1 = φ2 = φ3. Most probably, a numerical analysis might be

needed. Therefore, we will not further investigate this case.

4.2.2 Flows to SO(2), 6D Super Yang-Mills

As a final example, we consider RG flows to non-conformal theories from SO(2)diag singlet

scalars corresponding to Y11 + Y22 and Y33. The relevant BPS equations are given by

φ′1 =
1

8
e−

σ

2
−2φ1−φ2(e4φ1 − 1)

[

g1 + g2 + (g1 − g2)e
2φ2

]

, (4.27)

φ′2 =
1

8
e−

σ

2
−2φ1−φ2

[

g1(1 + e2φ1)2(e2φ2 − 1)− g2(1 + e2φ2)(e2φ1 − 1)2
]

, (4.28)

σ′ =
1

20
e−

σ

2
−2φ1−φ2

[

g2(e
2φ2 − 1)(e2φ1 − 1)2 − g1(1 + e2φ1)2(1 + e2φ2)

−128he
5σ

2
+2φ1+φ2

]

, (4.29)

A′ =
1

40
e−

σ

2
−2φ1−φ2

[

g2(e
2φ2 − 1)(e2φ1 − 1)2 − g1(1 + e2φ1)2(1 + e2φ2)

+32he
5σ

2
+2φ1+φ2

]

. (4.30)

These equations reduce to the SO(3)diag case when φ2 = φ1. If we set φ2 = 0, consistency

requires that φ1 = 0. For φ1 = 0, the solution has SO(2)R × SO(2) symmetry. This gives

rise to the same solution studied above.
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Since there are no interesting truncations, we now consider a solution to the above

equations with φ1, φ2 6= 0. Finding the solution for a general value of g2 turns out to be

difficult. However, for g2 = g1 = −16h, we can find an analytic solution. The first step in

finding this solution is to combine (4.27) and (4.28) into a single equation

dφ2
dφ1

=
1 + e4φ1 − 2e2φ1+φ2

1− e4φ1

(4.31)

which is solved by

φ2 = φ1 −
1

2
ln

[

8C2 − 1 + e4φ1

8C2

]

. (4.32)

Changing to a new radial coordinate r̃ via dr̃
dr

= e−
σ

2
−φ2 , we obtain the solution to equa-

tion (4.27)

φ1 = ±1

2
ln

[

1 + eC1−16hr̃

1− eC1−16hr̃

]

. (4.33)

To find the solution for σ, we change to another new coordinate R via dR
dr

= −e−σ

2
−φ2−2φ1 .

Equations (4.27), (4.28) and (4.29) can be combined to

5

2

dσ

dR
+ 2

dφ1
dR

+
dφ2
dR

= −16h
(

1− e
5

2
σ+2φ1+φ2

)

(4.34)

which gives

σ = −2

5

[

2φ1 + φ2 + ln
(

1− C3e
16hR

)]

. (4.35)

Combing (4.29) and (4.30), we find an equation for A as a function of R

dA

dR
− 1

2

dσ

dR
= −4e

5

2
σ+2φ1+φ2 (4.36)

whose solution, after using σ solution, is given by

A =
σ

2
+

1

4
ln
[

C3 − e−16hR
]

. (4.37)

As in the previous case, we separately consider the two possibilities for φ1 > 0 and φ1 < 0.

For φ1 > 0, we can find the relation between R and r̃ by using the relation dR
dr̃

=

−e−2φ1(r̃). This results in

8hR = 8hr̃ − ln
[

2(eC1 + e16hr̃)
]

. (4.38)

In term of r̃, the σ and A solutions become

σ = −2

5

[

2φ1 + φ2 + ln

[

1− C3e
16hr̃

4(eC1 + e16hr̃)2

]]

, (4.39)

A =
σ

2
+

1

4
ln
[

C3 − 4e−16hr̃(eC1 + e16hr̃)2
]

. (4.40)

Near the IR singularity at 16hr̃ ∼ C1, we have φ2 ∼ −φ1 for all values of C2. In

the IR, the solution behaves differently for C3 = 16eC1 and C3 6= 16eC1 . This is because
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the logarithmic term in (4.39) and (4.40) diverges, in this limit, when C3 = 16eC1 . For

C3 6= 16eC1 , we find

φ1 ∼ −φ2 ∼ −1

2
ln(16hr̃ − C1), σ ∼ −2

5
φ1 ∼

1

5
ln(16hr̃ − C1),

A ∼ σ

2
∼ 1

10
ln(16hr̃ − C1), ds2 = (16hr − C)

1

8dx21,5 + dr2 . (4.41)

This gives rise to V → ∞ which is physically unacceptable.

However, if C3 = 16eC1 , the solution becomes

σ ∼ −3

5
ln(16hr̃ − C1), A ∼ 1

5
ln(1hr̃ − C1),

ds2 = (16hr − C)
1

3dx21,5 + dr2 . (4.42)

This gives V → −∞, so this singularity is acceptable. We see that flows with φ1 > 0 are

physical provided that C3 = 16eC1 .

For φ1 < 0, the solution φ1 = −1
2 ln

[

1+eC1−16hr̃

1+eC1−16hr̃

]

gives

8hR = 8hr̃ − ln
[

2(eC1 − e16hr̃)
]

. (4.43)

Accordingly, the solutions for σ and A become

σ = −2

5

[

2φ1 + φ2 + ln

[

1− C3e
16hr̃

4(eC1 − e16hr̃)2

]]

, (4.44)

A =
σ

2
+

1

4
ln
[

C3 − 4e−16hr̃(eC1 − e16hr̃)2
]

. (4.45)

In this case, the logarithmic term in (4.45) diverges as 16hr̃ ∼ C1 when C3 = 0, but

the logarithmic term in (4.44) vanishes. When C3 6= 0, the situation is reversed. Unlike

the φ1 > 0 case, the value of C2 is important since there are two possibilities φ1 = ∓φ2
depending C2 =

1
8 or C2 6= 1

8 .

We begin with the first case with C2 =
1
8 and C3 = 0. The IR behavior of the solution

is given by

φ1 ∼ −φ2 ∼
1

2
ln(16hr̃ − C1), σ ∼ 1

5
ln(16hr̃ − C1),

A ∼ 3

5
ln(16hr̃ − C1), 16hr − C =

5

3
(16hr̃ − C1)

3

5 . (4.46)

The metric becomes

ds2 = (16hr − C)2dx21,5 + dr2 . (4.47)

When C3 6= 0, the solution in the IR becomes

φ1 ∼ −φ2 ∼
1

2
ln(16hr̃ − C1), σ ∼ 3

5
ln(16hr̃ − C1),

A ∼ 3

10
ln(16hr̃ − C1), ds2 = (16hr − C)

3

4dx21,5 + dr2 . (4.48)
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Both of them lead to V → −∞. Therefore, the solution with φ1 < 0 and C2 =
1
8 is physical

for all values of C3.

For C2 6= 1
8 , we find, with C3 = 0, the IR behavior of the solution

φ1 ∼ φ2 ∼
1

2
ln(16hr̃ − C1), σ ∼ −6

5
ln(16hr̃ − C1),

ds2 = (16hr − C)−
2

9dx21,5 + dr2, (4.49)

and, for C3 6= 0,

φ1 ∼ φ2 ∼
1

2
ln(16hr̃ − C1), σ ∼ 1

5
ln(16hr̃ − C1),

ds2 = (16hr − C)
1

8dx21,5 + dr2 . (4.50)

Both of them lead to V → ∞. We then conclude that flows with φ1 < 0 and C2 6= 1
8 are

not physical for any C3.

It could be very interesting to have interpretations of these results in terms of six-

dimensional gauge theories.

5 Conclusions

We have studied some critical points of N = 2, SO(4) gauged supergravity in seven dimen-

sions. We have found one new supersymmetric AdS7 critical point with SO(3) symmetry.

Recently, many new AdS7 ×M3 solutions have been identified in massive type IIA the-

ory [25]. It would be interesting to see weather the new supersymmetric AdS7 obtained

here could be related to the classification in [25]. We have also found a number of non-

supersymmetric AdS7 critical points and checked their stability by computing all of the

scalar masses. We have found that although the non-supersymmetric critical point origi-

nally found in pure gauged supergravity has been shown to be stable, it is unstable in the

presence of vector multiplet scalars. On the other hand, new stable non-supersymmetric

points are discovered here and should correspond to new non-trivial IR fixed points of the

(1, 0) SCFT.

An analytic RG flow solution interpolating between the SO(3) supersymmetric critical

point and the trivial point with SO(4) symmetry has also been given. To the best of

the author’s knowledge, this is the first example of holographic RG flows between two

supersymmetric fixed points of the (1, 0) field theory in six dimensions. We have further

studied supersymmetric flows to non-conformal field theories and identified the physical

flows. These would provide more general flow solutions than those considered in [12]

and [13] and could be useful in a holographic study of the dynamics of six-dimensional

gauge theories similar to the analysis of [26]. Finding a field theory interpretation of the

gravity solutions obtained in this paper is also interesting.

We end the paper with a short comment on a more general situation with n vector

multiplets. The (1, 0) field theory with E8 symmetry considered in [6] would need n =

248+ 3 vector multiplets. The resulting gauge group in this case is SO(4)×E8. The total
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3× (248+3) scalars, living on SO(3, 248+3)/SO(3)×SO(248+3) coset manifold, and the

dilaton transform as (3,3,1), (3,1,248) and (1,1,1) under SO(3)R×SO(3)×E8. We have

considered only (3,3,1) and (1,1,1) scalars which are E8 singlets. It is also interesting

to consider scalars in (3,1,248) representation. Our solutions given in this paper are of

course solutions of the theory with SO(4)×E8 gauge group by the group theory argument

of [18].
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