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1 Introduction

In conventional scattering theory, which is now a standard quantum mechanics textbook

content, to seek an explicit result, one imposes a precondition that the distance between

target and observer is infinite. As a result, the conventional scattering theory loses all the

information of the distance and the result depends only on the angle of emergence. In

this paper, we will show that without such a precondition, one can still achieve a rigorous

scattering theory which, of course, contains the information of distance that is lost in

conventional scattering theory.

The dynamical information of a scattering problem with a spherical potential V (r)

are embedded in the radial wave equation,

1

r2
d

dr

(

r2
dRl

dr

)

+

[

k2 − l (l + 1)

r2
− V (r)

]

Rl = 0. (1.1)

The scattering boundary condition in conventional scattering theory is taken to be

ψ (r, θ) = eikr cos θ + f (θ)
eikr

r
, r → ∞. (1.2)

In conventional scattering theory, in order to achieve an explicit result, two kinds of

asymptotic approximations are employed [1].

1) Replace the solution of the free radial equation, i.e., eq. (1.1) with V (r) = 0, with

its asymptotics:

Rl (r) = Clh
(2)
l (kr) +Dlh

(1)
l (kr) (1.3)

r→∞∼ Al
sin (kr − lπ/2 + δl)

kr
, (1.4)
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where h
(1)
l (z) and h

(2)
l (z) are the first and second kind spherical Hankel functions,

e2iδl = Dl/Cl defines the scattering phase shift δl, and Al = 2
√
ClDl.

2) Replace the plane wave expansion in the boundary condition with its asymptotics:

eikr cos θ =
∞
∑

l=0

(2l + 1) iljl (kr)Pl (cos θ) (1.5)

r→∞∼
∞
∑

l=0

(2l + 1) il
sin (kr − lπ/2)

kr
Pl (cos θ) , (1.6)

where jl (z) is the spherical Bessel function.

Technologically speaking, the above two treatments in conventional theory are to re-

place the spherical Hankel function, h
(1)
l (kr) and h

(2)
l (kr), and the spherical Bessel func-

tion, jl (kr), with their asymptotics, and, thus, inevitably lead to the loss of information

of the distance r.

In this paper, we will show that the above two replacements is not necessary; without

these two replacements, we can still obtain a rigorous scattering theory which contains the

information of the distance between target and observer.

A systematic rigorous result of a scattering with the distance between target and

observer is given in section 2. The conclusion and outlook are given in section 3.

2 Rigorous result of scattering without large-distance asymptotics

In this section, a rigorous treatment without large-distance asymptotics for short-range

potentials is established. The scattering wave function, scattering amplitude, phase shift,

cross section, and a description of the outgoing wave are rigorously obtained.

2.1 Phase shift

In conventional scattering theory, as mentioned above, one replaces the solution of the

free radial equation, Rl (r), given by eq. (1.3) with its asymptotics, eq. (1.4), using the

asymptotics of the spherical Hankel functions h
(1)
l (kr) ∼ 1

ikre
i(kr−lπ/2) and h

(2)
l (kr) ∼

− 1
ikre

−i(kr−lπ/2). Obviously, such a replacement will lose information.

In the following, with Rl (r) given by eq. (1.3), rather than its asymptotics, eq. (1.4),

we solve the scattering rigorously.

The first step is to rewrite Rl (r) given by eq. (1.3) as

Rl (r) = Clh
(2)
l (kr) +Dlh

(1)
l (kr)

=Ml

(

− 1

ikr

)

Al

kr
sin

[

kr − lπ

2
+ δl +∆l

(

− 1

ikr

)]

, (2.1)

where e2iδl = Dl/Cl and Ml (x) = |yl (x)| and ∆l (x) = arg yl (x) are the modulus and

argument of the Bessel polynomial yl (x), respectively.

– 2 –
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In order to achieve eq. (2.1), we prove the relation

Clh
(2)
l (x) +Dlh

(1)
l (x) =Ml

(

− 1

ix

)

Al

x
sin

[

x− lπ

2
+ δl +∆l

(

− 1

ix

)]

. (2.2)

Proof. The first and second kind spherical Hankel functions, h
(1)
l (x) and h

(2)
l (x), can be

expanded as [2]

h
(1)
l (x) = eix

l
∑

k=0

ik−l−1 (l + k)!

2kk! (l − k)!xk+1
, (2.3)

h
(2)
l (x) = e−ix

l
∑

k=0

(−i)k−l−1 (l + k)!

2kk! (l − k)!xk+1
. (2.4)

By the Bessel polynomial [2],

yl (x) =
l

∑

k=0

(l + k)!

k! (l − k)!

(x

2

)k
, (2.5)

we can rewrite h
(1)
l (x) and h

(2)
l (x) as

h
(1)
l (x) = ei(x−lπ/2) 1

ix
yl

(

− 1

ix

)

,

h
(2)
l (x) = −e−i(x−lπ/2) 1

ix
yl

(

1

ix

)

. (2.6)

Using eq. (2.6), we have

Clh
(2)
l (x) +Dlh

(1)
l (x) = Cl

[

−e
−i(x−lπ/2)

ix
yl

(

1

ix

)

+ e2iδl
ei(x−lπ/2)

ix
yl

(

− 1

ix

)

]

. (2.7)

Writing the Bessel polynomial as yl =Mle
i∆l , we prove the relation (2.2).

The wave function, then, by ψ (r, θ) =
∑

∞

l=0Rl (r)Pl (cos θ), can be obtained immedi-

ately from eq. (2.1),

ψ (r, θ) =
∞
∑

l=0

Ml

(

− 1

ikr

)

Al

kr
sin

[

kr − lπ

2
+ δl +∆l

(

− 1

ikr

)]

Pl (cos θ) . (2.8)

When the distance r is finite, the coefficient becomes MlAl and the phase becomes

δl + ∆l, where Ml and ∆l both depend on r. While, in conventional scattering theory,

r → ∞, the coefficient is Al and the phase is δl, and they are both independent of r.

It should be emphasized that δl here is the same as that in conventional scattering

theory. This is because δl is determined only by the coefficient Cl and Dl and yl
(

− 1
ikr

) r→∞
=

1. Thus when r → ∞, Cl, Dl, and, accordingly, δl remains unchanged.

The modification factors, ∆l and Ml, are independent of potentials. When r → ∞,

Ml (r → ∞) = 1 and ∆l (r → ∞) = 0.

– 3 –
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2.2 Asymptotic boundary condition

The outgoing wave is no longer a spherical wave when the observer stands at a finite

distance from the target, other than that in large-distance asymptotics. The outgoing

wave now becomes a surface of revolution around the incident direction, determined by

the potential and the observation distance. Because the outgoing waves are different at

different distances, there is no uniform expression of the asymptotic boundary condition

like eq. (1.2). Here, we express the boundary condition as

ψ (r, θ) = eikr cos θ + f (r, θ)
eikr

r
, (2.9)

where f (r, θ) depends not only on θ but also on r.

When the distance r is finite, however, the differential scattering cross section is no

longer the square modulus of f (r, θ). Only when r → ∞, f (∞, θ) = f (θ) and the differ-

ential cross section reduces to |f (θ)|2.
To calculate f (r, θ), as that in conventional scattering theory, we expand the incoming

plane wave eikr cos θ by the eigenfunction of the angular momentum. Now, we prove that

the expansion of eikr cos θ, eq. (1.5), can be exactly rewritten as

eikr cos θ =
∞
∑

l=0

(2l + 1) iljl (kr)Pl (cos θ)

=
∞
∑

l=0

(2l + 1) ilMl

(

− 1

ikr

)

1

kr
sin

[

kr − lπ

2
+ ∆l

(

− 1

ikr

)]

Pl (cos θ) . (2.10)

Proof. A plane wave can be expanded as [3]

eikr cos θ =
∞
∑

l=0

(2l + 1) iljl (kr)Pl (cos θ) . (2.11)

By the relations h
(1)
l (x) = jl (x) + inl (x) and h

(2)
l (x) = jl (x) − inl (x), the spherical

Bessel function jl (x) can be rewritten as jl (x) =
1
2

[

h
(1)
l (x) + h

(2)
l (x)

]

, where nl (x) is the

spherical Neumann function [2]. By eq. (2.6), we have

jl (kr) =Ml

(

− 1

ikr

)

1

kr
sin

[

kr − lπ

2
+ ∆l

(

− 1

ikr

)]

. (2.12)

Substituting this result into eq. (2.11) proves eq. (2.10).

The plane wave expansion (2.10) is exact, rather than the asymptotic one, eq. (1.6),

used in conventional scattering theory. In conventional scattering theory, the spheri-

cal Bessel function jl (kr) given by eq. (2.12) is replaced by its asymptotics: jl (kr) ∼
1
kr sin (kr − lπ/2), i.e., Ml and ∆l are asymptotically taken to be Ml

(

− 1
ikr

)

∼ 1 and

∆l

(

− 1
ikr

)

∼ 0; as a result, the information embedded in Ml and ∆l is lost.

The boundary condition, eq. (2.9), then, by eq. (2.10), can be expressed as

ψ (r, θ) =
∞
∑

l=0

(2l + 1) ilMl

(

− 1

ikr

)

1

kr
sin

[

kr − lπ

2
+ ∆l

(

− 1

ikr

)]

Pl (cos θ)

+f (r, θ)
eikr

r
. (2.13)
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2.3 Scattering wave function

The scattering wave function can be calculated by imposing the boundary condition (2.13)

on the asymptotic wave function (2.8).

Observing the outgoing part of the wave function (2.13), f (r, θ) eikr/r, we can see that

the leading contribution of f (r, θ) must only be a zero power of r, or else the outgoing

wave is not a spherical wave when r → ∞. Thus, we can expand f (r, θ) by the Bessel

polynomial, which is complete and orthogonal [4], as

f (r, θ) =
∞
∑

l=0

gl (θ) yl

(

− 1

ikr

)

. (2.14)

The reason why only yl
(

− 1
ikr

)

appears in the expansion (2.14) is that only the flux corre-

sponding to yl
(

− 1
ikr

)

eikr/r is an outgoing spherical wave; or, in other words, the require-

ment that the scattering wave must be an outgoing wave rules out the terms including

y∗l
(

− 1
ikr

)

= yl
(

1
ikr

)

.

Equating eqs. (2.8) and (2.13), using the expansion (2.14), sin θ =
(

eiθ − e−iθ
)

/ (2i),

and the orthogonality, and noting that Mle
i∆l = yl, we arrive at

1

2ik

[

(2l + 1)−Ale
i(−lπ/2+δl)

]

Pl (cos θ) + gl (θ) = 0,

(2l + 1) eilπ −Ale
−i(−lπ/2+δl) = 0. (2.15)

Solving these two equations gives

Al = (2l + 1) eilπei(−lπ/2+δl), (2.16)

gl (θ) = − 1

2ik
(2l + 1)

(

1− ei2δl
)

Pl (cos θ) . (2.17)

Then, we arrive at

f (r, θ) =
1

2ik

∞
∑

l=0

(2l + 1)
(

e2iδl − 1
)

Pl (cos θ) yl

(

− 1

ikr

)

. (2.18)

When taking the limit r → ∞, the modification factor — the Bessel polynomial

yl
(

− 1
ikr

)

— tends to 1, and f (r, θ) recovers the scattering amplitude in conventional

scattering theory: f∞ (θ) = f (∞, θ) = 1
2ik

∑

∞

l=0 (2l + 1)
(

e2iδl − 1
)

Pl (cos θ).

The leading is a p-wave modification, because the s-wave modification is y0 (x) = 1.

2.4 Outgoing wave-front surface

In conventional scattering theory, the observer is at r → ∞ and the outgoing wave is a

spherical wave. When the observer is at a finite distance r, the outgoing wave-front surface,

however, is a surface of revolution around the incident direction, since for a spherical

potential the outgoing wave must be cylindrically symmetric.

The outgoing wave-front surface is determined by the outgoing flux jsc which serves

as its surface normal vector. The outgoing flux is jsc = j − jin, where j = ~

m Im (ψ∗∇ψ)

– 5 –
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and jin= ~

m Im
(

ψin∗∇ψin
)

. Here we write the wave function (2.9) as ψ = ψin + ψsc with

ψin = eikr cos θ and ψsc = f (r, θ) eikr/r.

The outgoing wave-front surface is a surface of revolution. Its generatrix, r = r (θ),

with jsc as the normal vector, is determined by

1

r (θ)

dr (θ)

dθ
= −j

sc
θ

jscr
= − tan γsc, (2.19)

where γsc is the intersection angle between jsc and the radial vector.

The equation of the generatrix, eq. (2.19), is a differential equation. The integration

constant can be chosen as r (0) = R, where R is the intersection between the outgoing

wave-front surface on which the observer stands and the target along the z-axis. Then the

solution of eq. (2.19) can be formally written as r = r (θ,R).

Moreover, the Gaussian curvature of the outgoing wave-front surface reads

K (θ) =
1

r2
cos2 γsc

(

1 +
dγsc

dθ

)

(1− tan γsc cot θ) . (2.20)

When r → ∞, γsc → 0, and then K = 1/r2 reduces to a curvature of a sphere.

2.5 Differential scattering cross section

The differential scattering section is dσ = jsc · dS/jin. The scattering flux jsc, other than

that in conventional scattering theory, is not along the radial direction. Thus,

dσ =
jsc · dS
jin

=
jsc

jin
r2dΩ

cos γsc
=

(

1 + tan2 γsc
) jscr
jin
r2dΩ, (2.21)

where jsc =
√

jsc2r + jsc2θ and tan γsc = jscθ /j
sc
r . A straightforward calculation gives

dσ

dΩ
=

[

|f (r, θ)|2 + η (r, θ)
]

(

1 + tan2 γsc
)

, (2.22)

where

η (r, θ) =
1

k
Im

{

f∗
∂f

∂r
+ eikr(1−cos θ)

{

[ikr(1 + cos θ)− 1] f + r
∂f

∂r

}}

. (2.23)

2.6 Total scattering cross section

For simplicity, we only consider the leading contribution of the total scattering cross section,

σt (R) = 2π
∫ π
0 |f (R, θ)|2 sin θdθ, in which the outgoing wave-front surface is approximately

a sphere of radius R.

The total cross section then reads

σt (R) =
4π

k2

∞
∑

l=0

(2l + 1) sin2 δl

∣

∣

∣

∣

yl

(

− 1

ikR

)
∣

∣

∣

∣

2

. (2.24)

In comparison with conventional scattering theory, a modification factor
∣

∣yl
(

− 1
ikR

)
∣

∣

2
appears.

– 6 –
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2.7 Condition on potentials

In this section, we discuss the condition on the potential V (r) that preserves the validity

of the solution of the radial wave equation without the large-distance asymptotics.

The radial wave equation, eq. (1.1), can be rewritten as d2ul(r)
dr2

+
[

k2 − l(l+1)
r2

− V (r)
]

ul (r) = 0 by introducing Rl (r) = ul (r) /r. At the distance

that the influence of V (r) can be ignored, as pointed above, the solution of the radial

wave equation with V (r) = 0 is ul (r) = yl
(

∓ 1
ikr

)

e±ikr. In the region that the potential

cannot be ignored, we express ul (r) as

ul (r) = eh(r)yl

(

∓ 1

ikr

)

e±ikr (2.25)

= [1 + h (r) + · · · ]
[

1∓ l (l + 1)

2ik

1

r
+ · · ·

]

e±ikr. (2.26)

When taking the large-distance asymptotics, yl
(

∓ 1
ikr

)
∣

∣

r→∞
= 1 and ul (r) returns to

the large-distance asymptotics: ul (r) = eh(r)e±ikr = [1 + h (r) + · · · ] e±ikr. This requires

h (r)|r→∞
→ 0. Without the large-distance asymptotics, however, since ul (r) must tend

to yl
(

∓ 1
ikr

)

e±ikr as r increases, h (r) has to decrease more rapidly than yl
(

∓ 1
ikr

)

; or,

h (r) tends to zero before the vanishing of yl
(

∓ 1
ikr

)

. It can be directly seen by observing

eq. (2.26) that this requirement imposes a condition on h (r): without the large-distance

asymptotics, h (r) must decrease more rapidly than 1
r , i.e.,

h (r) =
α

r1+ǫ
, (2.27)

where ǫ > 0. While, as a comparison, in the case of large-distance asymptotics, since

yl
(

∓ 1
ikr

)

= 1, we only needs

hasym (r) =
α

rǫ
, (2.28)

Next, we discuss the condition on h (r) will impose what a restriction on the poten-

tial V (r).

The equation determining h (r) can be constructed by substituting eq. (2.25) into the

radial wave equation:

h′′ (r) +
[

h′ (r)
]2 ± 2ikh′ (r) + 2h′ (r)

d
dryl

(

∓ 1
ikr

)

yl
(

∓ 1
ikr

)

±2ik
d
dryl

(

∓ 1
ikr

)

yl
(

∓ 1
ikr

) +
d2

dr2
yl
(

∓ 1
ikr

)

yl
(

∓ 1
ikr

) =
l (l + 1)

r2
+ V (r) . (2.29)

For a large r, we have

d
dryl

(

∓ 1
ikr

)

yl
(

∓ 1
ikr

) = ± l (l + 1)

2ik

1

r2
+ · · · , (2.30)

d2

dr2
yl
(

∓ 1
ikr

)

yl
(

∓ 1
ikr

) = ∓ l (l + 1)

ik

1

r3
+ · · · . (2.31)

– 7 –
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Then by eqs. (2.29), (2.30), (2.31), and condition (2.27), we obtain a condition on

the potential:

V (r) ∼ 1

r2+ǫ
. (2.32)

As a comparison, in the case of large-distance asymptotics, by condition (2.28) and

eq. (2.29) with yl → 1, we obtain the condition for the potential in the conventional

scattering theory [5]:

V (r) ∼ 1

r1+ǫ
. (2.33)

When k = 0, however, there is something different. The condition on the potential for

k = 0 becomes stronger than that for k 6= 0.

For k = 0, the expansions (2.30) and (2.31) become

d
dryl

(

∓ 1
ikr

)

yl
(

∓ 1
ikr

) = − l

r
+ · · · , (2.34)

d2

dr2
yl
(

∓ 1
ikr

)

yl
(

∓ 1
ikr

) =
l (l + 1)

r2
+ · · · . (2.35)

Substituting expansions (2.34) and (2.35) into (2.29) and taking k = 0 give

h′′ (r) +
[

h′ (r)
]2

+ 2h′ (r)

(

− l

r

)

= V (r) . (2.36)

By condition (2.27) and eq. (2.36), we obtain a condition on the potential for k = 0:

V (r) ∼ 1

r3+ǫ
. (2.37)

As a comparison, similarly, in the case of large-distance asymptotics with k = 0, by

condition (2.28) and eq. (2.29) with yl → 1 and k = 0, we have

h′′asym (r) +
[

h′asym (r)
]2

=
l (l + 1)

r2
+ V (r) , (2.38)

and then we obtain the condition for the potential in the conventional scattering theory:

V (r) ∼ 1

r2+ǫ
. (2.39)

It is worth to note that for l 6= 0, we need only V (r) ∼ 1/r2, but for l = 0, we need the

somewhat stronger condition (2.39).

From the above discussion we learn that the condition on the potential in the scattering

theory without large-distance asymptotics is stronger than that in the scattering theory

with large-distance asymptotics. Without large-distance asymptotics, the influence of the

potential must be small enough at a finite distance r0; when r > r0, the influence due to

the potential can be safely neglected. In the region of r > r0, the solution is determined

by the free radial wave equation.

– 8 –
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Now we estimate the magnitude of r0. From eq. (2.26), we have

ul (r) =

[

1 + h (r)± l (l + 1)

2ik

1

r
+ · · ·

]

e±ikr. (2.40)

As analyzed above, h (r), which reflects the influence of the potential, must decrease more

rapidly than
∣

∣

∣

l(l+1)
2ik

1
r

∣

∣

∣
. When r < r0 the influence of the potential cannot be neglected and

when r > r0 the influence of the potential can be neglected, so r0 can be estimated by

|h (r0)| =
∣

∣

∣

∣

l (l + 1)

2ik

1

r0

∣

∣

∣

∣

. (2.41)

Substituting the condition on h (r), eq. (2.27), and the condition on V (r), eq. (2.32),

into eq. (2.29) gives α ∼ β/ [2k (1 + ǫ)]. Then substituting eq. (2.27) and α into

eq. (2.41) gives

r0 ∼
[

β

(1 + ǫ)

1

l (l + 1)

]1/ǫ

. (2.42)

Note that the case of l = 0 does not contribute to the correction from the solution without

large-distance asymptotics.

In principle, different potentials correspond to different r0. The range r0 given here is

indeed an upper limit of the range of the influence of the potential without large-distance

asymptotics, since the potential considered here is given by condition (2.27).

3 Conclusions and outlook

We show that one can obtain a rigorous scattering theory without the precondition r → ∞.

A rigorous scattering theory contains the information of the distance between target and ob-

server is presented. The conventional scattering theory can be recovered by setting r → ∞.

In comparison with conventional scattering theory, there is an additional factor —

the l-th Bessel polynomial — appears in the l-th partial-wave contribution. The leading

modification is p-wave.

Quantum scattering theory plays an important role in many physical area and is in-

tensively studied. Nevertheless, all studies are based on conventional scattering theory.

Based on our result, we can further consider many scattering-related problems. For ex-

ample, at low temperatures, the thermal wavelength has the same order of magnitude as

the interparticle spacing, so the scattering in a BEC transition [6, 7] and in a transport

of spin-polarized fermions [8, 9] may need to take the effect of the distance into account.

The scattering spectrum method is important in quantum field theory [10–13]; a scattering

spectrum method without asymptotics can also be discussed. Moreover, the relation be-

tween scattering spectrum method and heat kernel method, which is given by ref. [14] based

on refs. [15, 16], can also be improved by the exact result of the scattering theory without

infinite-distance asymptotics. Moreover, a related inverse scattering problems can also be

systematically studied, and the result can be applied to, e.g., the interference pattern of

Bose-Einstein condensates [17] and the Aharonov-Bohm effect [18].

– 9 –
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