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1 Introduction

The birth of string theory is usually taken to be the publication of Veneziano’s paper [1]. As

is manifest in its title the motivation behind this paper was to find a four point scattering

amplitude for pions which had properties which seemed desirable at the time from exper-

iment: crossing-symmetry and Regge-behaviour. This makes it a pure exponent of the

analytic S-matrix philosophy, which attempts to obtain scattering amplitudes as classes of

constrained functions. Veneziano’s paper inspired a series of developments which led even-

tually to string theory in its worldsheet formulation as it is taught in modern textbooks,

see e.g. [2] for an account of this early period. The development of string theory itself has

led further and further away from its S-matrix based roots.

The analytic S-matrix programme has recently made a triumphant return in field

theory. Inspired by Witten’s [3] twistor string proposal many new techniques have been

developed to calculate scattering amplitudes without the use of Feynman graphs (see [4]

for a recent overview and gateway to the literature). This leads to the question if these

new analytic S-matrix developments can yield new insight into string theory. So far most

work in this direction has relied in one form or another on the worldsheet picture. In this

article it is shown that worldsheets can, at least in principle, be avoided altogether. We

hope that this could lead to a different and potentially very powerful perspective on the

foundations of string theory. One concrete motivation for the medium-to-longer term is

to circumvent the difficulties in generalising string theory to curved backgrounds in the

worldsheet approach. In this article however the more modest main goal is the study of

tree level string theory amplitudes in a flat background (“textbook strings”).

Of particular importance for the current article is the concept of on-shell recursion

relations [5, 6] which in field theory allow the computation of higher point amplitudes from

lower point amplitudes. Proving on-shell recursion relations for a specific field theory in-

volves a study of the behaviour of a scattering amplitude when the momenta of two of the

legs tend to infinity in a particular way. This is closely related, but generically distinct from

Regge behaviour [7, 8]. The relations can then be used to argue that an amplitude can be

reconstructed from residues at poles. These residues are in principle determined by pertur-

bative unitarity: they are products of lower point amplitudes with one leg shared between

the amplitudes, summed over all possible states in the theory at the mass level set by the

specific pole. See [9] for a dedicated review of on-shell recursion relations in field theory.

On-shell recursion relations in string theory were first discussed in [7]. A generic

proof that on-shell recursion relations hold in string theory appeared in [10, 11]. The

underlying analysis shows that the large momentum behaviour needed for on-shell recursion

follows from a suitable extension of the Regge behaviour of string amplitudes, inspired by a

computation in [12]. The recursion relations are however not immediately useful in string

theory. The main problem is that they involve sums over the complete tower of levels

appearing in the string spectrum as well as a sum over all possible polarisations at a fixed

level. So even if one starts with, say, a purely tachyonic amplitude in the open bosonic

string, to compute this one needs three point scattering amplitudes for the complete set

of string states. Whereas in field theory Poincaré invariance and locality fix the needed
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three point amplitudes typically up to a single (coupling) constant, this is no longer true in

string theory. Expressions have been derived from the worldsheet, see e.g. [13], but they are

unwieldy even before taking sums over products of them. Some headway on this problem

was made in [14] by summing over spurious states, but to our knowledge no complete

solution exists.

A hint that more may be possible was given in [10] where ‘internal’ recursion rela-

tions for Koba-Nielsen amplitudes were derived from their integral representation. These

relations express tachyon amplitudes in terms of certain sums over products of tachyon am-

plitudes. Generalisation of the worldsheet based methods used there to other amplitudes

seems prohibitively complicated using known techniques. In this article an additional in-

gredient is introduced which allows us to bypass the sums over all particles and their

polarisations at a fixed mass level. The clue to this ingredient comes from a seemingly

unrelated question:

Where do the roots of string theory amplitudes come from?

The general form of the (colour-ordered) Veneziano amplitude describing four tachyon

scattering in open string theory reads

A(s12, s23) ∝ Γ[α(s12)]Γ[α(s23)]

Γ[α(s12) + α(s23)]
, (1.1)

where α is a linear function of the usual Mandelstam invariants s12 and s23. Every string

textbook points out that the two Γ functions in the numerator have an infinite series of

poles at negative integer arguments. These poles acquire a meaning through perturbative

unitarity as they display a part of the infinite tower of states in the string spectrum. The

crucial question for this article is: do the roots of the amplitude in equation (1.1) from

the Γ function in the denominator have a physical meaning too? Moreover, can they be

predicted? This turns out to have been studied long ago [15] from an argument based on

the monodromy relations found in [16]. A modern derivation of these relations based on

CFT methods can be found in [11].

The existence of roots in amplitudes has shown up in a different context before in

Yang-Mills theories [17]. The roots there are for the total (not colour-ordered) amplitude.

In this case these have eventually been understood as a consequence of the Bern-Carrasco-

Johansson (BCJ) [18] relations. The BCJ relations arise in the field theory expansion of

the string monodromy relations and were in fact first proven this way [19, 20]. Here it will

be shown that the monodromy relations can be used to not only predict the location of the

roots of the residues at kinematic poles but even that with some additional work they fix

the residue of at least the Koba-Nielsen amplitudes completely.

This article is structured as follows: section 2 contains a brief review of relevant back-

ground material. The reviewed techniques are then used to derive the residues at poles of

mainly bosonic string amplitudes in section 3. By on-shell recursion this provides the com-

plete scattering amplitudes in the string theory. It is an interesting question how results

which are usually derived through the worldsheet picture find a place in a target space

approach. As a prime example of this we re-initiate the systematic study of perturbative
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unitarity in the target space in section 4. In particular a complete SO(D − 1) covariant

expression is derived for the two tachyon-anything three point amplitudes, including the

numerical constant. Using the same techniques a purely target space based derivation of

the no-ghost theorem conditions is presented. The results are then gathered into a target

space definition of string theory in section 5. Various ways in which the set of constraints

for string amplitudes could conceivably be improved further are discussed. As a further

example, it is argued from analysis of the five point case that this definition reproduces

the full open superstring S-matrix. The discussion section sketches several broad classes

of possible applications and directions for further research. Several appendices contain

details of calculations.

2 Review

The full string amplitude is given as a sum over all non-cyclic permutations of so-called

colour-ordered amplitudes times single trace factors,

An =
∑

σ∈Pn/Zn

Acolour-ordered(σ1, . . . , σn)Tr (T σ1 . . . T σn) . (2.1)

Throughout open string amplitudes will be assumed to be colour-ordered amplitudes. This

decomposition is natural in string theory: the traces of matrices T in the fundamental

representation of U(N) are simply the Chan-Patton factors. The string theory picture

played a large [21] but not exclusive [22] role in introducing the concept of colour-ordering

in field theory. See [23] for a derivation of colour-ordering from the more modern D-

brane picture of string theory. General properties of colour-ordered amplitudes are well-

known [21] and will not be reviewed here.

2.1 Overview of conventions

The metric will have signature (−++ . . .+) so that the mass of a tachyon with momentum

ki is

− α′k2
i = α′m2 = −1. (2.2)

Define for the product of two momenta

kij = 2α′ki · kj , (2.3)

and the Mandelstam invariants

sij = −α′(ki + kj)
2 = α′(m2

i +m2
j )− kij , (2.4)

s1...a = −α′(k1 + . . .+ ka)
2 =

a∑
i=1

α′m2
i −

a−1∑
i=1

a∑
j=i+1

kij . (2.5)

Mass levels such as A are always defined in terms of a Mandelstam invariant as s = A− 1

for the bosonic and s = A for the superstring. Hence the lowest mass particle is always

the one at level A = 0.
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2.2 On-shell recursion in string theory

The main idea of on-shell recursion as introduced in [6] is to introduce a single auxiliary

complex parameter into scattering amplitudes, while keeping the amplitudes physical. To

this end, one picks two legs and deforms their momenta as

ki → k̂i ≡ ki + q z, kj → k̂j ≡ kj − q z. (2.6)

This automatically satisfies momentum conservation. If one then also imposes

q2 = q · ki = q · kj = 0, (2.7)

the two singled-out legs remain on their original mass-shell. These equations can always be

solved in four or more dimensions. In four dimensions, two solutions exist (this is easily ver-

ified in the centre-of-mass frame [24]). The deformations in equation (2.6) are collectively

known as a BCFW-shift. Note that this shift makes momenta automatically complex.

The point of single complex variables in physics is invariably the possibility to use

Cauchy’s theorem. In the present context, one would like to compute the original ampli-

tude, A(0), which may be computed as

A(0) =

∮
z=0

A(z)

z
. (2.8)

Here and in the following, all residue-type integrals contain 1
2πi factors.

Diversion: the pole structure of A(z)

As a function of z, the amplitude A(z) can have physical poles.1 In fact, for generic

external momenta it will only have single poles. The residues at these poles have a physical

interpretation from perturbative unitarity. Say one takes a certain channel defined by a set

σ of adjacent particles which includes the shifted particle i but not the other one j. The pole

in z in this channel occurs when the associated internal propagator goes on-mass-shell, i.e.

−
(
k̂i +

∑
l∈σ\{i}

kl

)2

= m2, (2.9)

for some mass of a particle in the particular theory under study. Note that the location of

this pole is at a finite value of z. The residue of the amplitude at this pole is predicted by

perturbative unitarity2 to be

lim
−(k̂i+

∑
l∈σ\{i} kl)

2→m2

[((
k̂i +

∑
l∈σ\{i}

kl

)2

+m2

)
A(z)

]
=

∑
spectrum with mass m

ALAR. (2.10)

1In this article it will be implicitly assumed that amplitudes do not have un-physical poles. Moreover,

it is assumed that the poles originate in nothing more exotic than Feynman-type propagators going on

mass-shell.
2Here convention is followed by calling this perturbative unitarity. As pointed out in [25], these equations

are somewhat stronger when complex momenta are considered. It is this stronger sense which will be needed

below.
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Here the amplitudes AL and AR contain the set σ and the complement of this set respec-

tively, as well as one ‘interchanged’ particle in addition on both sides. The order of the legs

simply derives from the order on the parent amplitude. Note that both these amplitudes

have a strictly lower number of particles than the original amplitude A(0). The sum ranges

over the complete spectrum of the theory at a fixed mass level. This is a double sum: every

physical particle in a Poincaré invariant theory transforms as an irreducible representation

(irrep) of the appropriate little group. Hence one first needs to sum over all irreps at mass

m. Then within these irreps one needs to sum over all states: the (higher dimensional

analog of) spin or helicity states. Limits like the one above will usually be denoted as

residues in Mandelstams. Written in this fashion (2.10) reads

− Ressî,{l∈σ\{i}}→α′m2A(z) =
∑

spectrum with mass m

ALAR . (2.11)

where the right-hand side must be evaluated at the value of z for which (2.9) holds.

Back to on-shell recursion

By interpreting z as a coordinate on the Riemann sphere CP1 one can pull the contour to

infinity and obtain

A(0) =

∮
z=0

A(z)

z
= −

∑
zI finite

Resz=zI
A(z)

z
− Resz=∞

A(z)

z
. (2.12)

As just explained, the residues at finite values of z have an interpretation through per-

turbative unitarity in terms of products of lower point scattering amplitudes. If therefore

the residue at infinity is absent the just derived schematic equation constitutes an ex-

plicit on-shell recursion relation. The crucial question is therefore to obtain the residue at

infinity, i.e.

Resz=∞
A(z)

z
= ? . (2.13)

A sufficient condition for this residue to vanish is that A(z) → 0 for z → ∞. In principle

if one can compute the residue at infinity explicitly there is also an effective recursion

relation, but examples of this type tend to be quite involved. Hence vanishing residues will

be aimed at henceforth.

Up to now the discussion has been completely general. There is however a marked

difference in how efficient these recursion relations are in string or field theory. In field

theory the spectrum is finite, typically with just one or two (super-)particle types. In

string theory it is well-known that the theory contains an infinite tower of states, labelled

by the mass level. To get a feel for the matter content at fixed mass level in terms of irreps

of the little group, see [26]. The list of irreps grows rather quickly with the mass level,

but the number of tensor indices is always bounded by the level (as defined in section 2.1)

in the bosonic string and by the level + 1 in the superstring. Even if residues at infinity

are absent a naive application of the on-shell recursion relations requires knowledge of all

three point amplitudes.
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Apart from effectiveness of the recursion relations, they of course also have to be

proven. For this one needs to study the expansion of A(z) around z =∞. In field theory

a very direct analysis [24] in 4 or more dimensions yields

Aym(z) ∼ ξ̂1,µξ̂2,νAµν(z), (2.14)

for the BCFW shift of two colour-adjacent gluons labelled one and two in a Yang-Mills

amplitude (possibly minimally coupled to matter). Here the ξ vectors are the polarisation

vectors of the shifted gluons, whose large z behaviour is easily analysed. The tensor Aµν

is given as:

Aµν(z) = z

(
ηµνf0

(
1

z

)
+

1

z
Bµν

(
1

z

)
+O

(
1

z

)2
)
, (2.15)

where f(w) and Bµν(w) are polynomials in w with generically non-zero constant term

and the tensor Bµν is anti-symmetric in its indices. Combining the Aµν tensor with the

behaviour of the polarisation vectors then gives the result that for any choice of helicities of

the singled-out two gluons a shift exists such that the amplitude may be computed through

on-shell recursion. For this shift one obtains

A(z)

z
∼ 1

z2
for z →∞ . (2.16)

In string theory the result for the large z shift is very similar to the field theory result.

As shown in [10] and [11], in the superstring

Aopen,gg(z) ∼ ξ̂1,µξ̂2,νz
−2α′k1·k2Aµν(z), (2.17)

holds for the shift of two colour-adjacent gluons, with arbitrary field content on the other

legs. The difference to the field theory is in the Regge-like prefactor. In the bosonic string,

this result for the BCFW shift of two colour-adjacent gluons is structurally the same, but

the tensor Aµν is modified to Ãµν as

Ãµν(z) ≡ Aµν(z) + z α′kµkνf1

(
1

z

)
, (2.18)

with kµ = kµ1 +kµ2 and f1(w) a polynomial of w with non-zero constant term. This particular

term is forbidden in any supersymmetric field theory as it generates amplitudes with all

helicities equal which is perturbatively impossible in a supersymmetric field theory [27].

For shifts of two tachyons, the result reads

Aopen,TT (z) ∼ zs12+1

(
f1

(
1

z

))
, (2.19)

again with arbitrary field content on the other legs. It is easy to show that the general

structure of a BCFW shift for arbitrary choice of matter content on the two legs will always

be a Regge-type factor times a polynomial in 1/z. This can be computed directly from the

OPE, see [10] and [11] for details.

The shifts of colour-non-adjacent particles on an open string amplitude follow from the

use of monodromy relations, see [11]. The BCFW shift of two particles on a closed string

amplitude follows basically by either the same worldsheet based argument or from the use

of the KLT relations [28].
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2.3 Monodromy relations

Central to the discussion will be the monodromy relations first discussed in [16]. The

two basic monodromy relations for colour-ordered open string tree amplitudes in a flat

background read

A(β, 1, 2, . . . , N) = −
N−2∑
i=1

exp

[
± iπ

( i∑
j=1

kβ,j

)]
A(1, . . . , i, β, i+ 1, . . . , N), (2.20)

for an amplitude involving N bosonic particles. Basically the particle labelled β is moved

through the other colour-ordered particles, picking up a ‘sign’ for every interchange. In

string theory this follows from the braid relation for flat background vertex operators [11].

Note there are two relations: one for each choice of sign in the exponent. For complex

momenta these two relations are not complex conjugate.

From the basic relations others may be derived [29]. In modern language [19, 20] the

relations needed below can be written as

A(βT , 1, α,N) = (−1)s
∑

σ∈OP ({β},{α})

P{βT ,1,α,N},{1,σ,N}A(1, σ,N), (2.21)

where β = {β1, . . . , βs} is now an ordered set of particle labels and βT indicates the

inversion of the ordered set β. In the formula α = {α1, . . . , αN−s−2} is an ordered set

of particle labels and OP ({β}, {α}) are the ordered permutations of β and α i.e. the

permutations of the union β ∪ α that preserve the order of both subsets. The sum over

OP ({β}, {α}) is known as the shuffle product β � α.

The phase factor P can be neatly expressed in terms closely related to the so-called

momentum kernel [30]. In the notation of [29], it is given as a function of two permutations

σ, τ as

P{σ},{τ} = exp

[
iπ
∑
i,j

kijθ(σ
−1(i)− σ−1(j))θ(τ−1(j)− τ−1(i))

]
, (2.22)

where

θ(x) =

{
1 (x > 0)

0 (x ≤ 0)
. (2.23)

The θ’s are there to let any kij appear in the exponent if and only if i and j appear in a

different order in σ and τ . Some examples are

P{σ},{σ} = 1, P{1,2,3},{2,1,3} = exp [iπk12] , P{σ},{σT } = exp

[
iπ
∑
i<j

kij

]
. (2.24)

For fermionic particles an additional minus sign appears every time a pair of fermions is

interchanged, see [31] for more details.

The relations are universal in that they do not depend on the particle content of the

open string amplitude. Moreover, also the ‘conjugate’ relations hold:

A(βT , 1, α,N) = (−1)s
∑

σ∈OP ({β},{α})

P∗{βT ,1,α,N},{1,σ,N}A(1, σ,N), (2.25)
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with only the sign of the exponent changed

P∗{σ},{τ} = exp

[
− iπ

∑
i,j

kijθ(σ
−1(i)− σ−1(j))θ(τ−1(j)− τ−1(i))

]
. (2.26)

These relations hold also for complex momenta: in the worldsheet derivation the exact

phase simply corresponds to a choice of branch cut, while the amplitudes should be inde-

pendent of this choice. Relations (2.21) and (2.25) can be subtracted to give∑
σ∈OP ({β},{α})

S{βT ,1,α,N},{1,σ,N}A(1, σ,N) = 0, (2.27)

where

S{σ},{τ} = ImP{σ},{τ} = sin

[
π
∑
i,j

kijθ(σ
−1(i)− σ−1(j))θ(τ−1(j)− τ−1(i))

]
. (2.28)

In this article, equation (2.27) will be used to study the residues of amplitudes A(123 . . . N)

in the variables s12, s123, . . . , s1...N−2. To this end it is useful to rewrite the expression in a

way which exposes the pole in the s1,β channel by splitting off the first element of α (this will

be labeled s+2) and separating the sum over its positions. Although not all particle labels

will be specified in the following formulae, set β = {2, . . . , s + 1}, α = {s + 3, . . . , N − 1}
for the remainder of this paper.

The relations in (2.27) are graded by the size of the set β. For instance, the relation

that makes the pole in s1β1 manifest is

A(1, β1, 3, α,N)

= − 1

S{β1,1,3,α,N},{1,β1,3,α,N}

∑
σ∈OP ({β1},{α})

S{β1,1,3,α,N},{1,3,σ,N}A(1, 3, σ,N)

=
(−1)

α′m2
β1

+α′m2
1

sin(πs1,β1)

∑
σ∈OP ({β1},{α})

S{β1,1,3,α,N},{1,3,σ,N}A(1, 3, σ,N).

(2.29)

where the definition of the Mandelstam variables in equation (2.5) was used. Note that

none of the amplitudes on the right-hand side has a pole in the s1β1 channel. Since the

sine functions in the numerator cannot cause poles, all poles must be captured by the sine

in the denominator. Similarly, the pole in s1β1β2 is manifest in

A(1, β1, β2, 4, α,N)

=
(−1)

α′(m2
β1

+m2
β2

+m2
1)

sin(πs1,β1,β2)

[ ∑
σ∈OP ({β1,β2},{α})

S{β2,β1,1,4,α,N},{1,4,σ,N}A(1, 4, σ,N)

+
∑

σ∈OP ({β2},{α})

S{β2,β1,1,4,α,N},{1,β1,4,σ,N}A(1, β1, 4, σ,N)

]
.

(2.30)

– 9 –
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The general form of this relation is

A(1, β1, . . . , βs, s+ 2, α1, . . . , αN−s−3, N) (2.31)

=
(−1)

α′
(
m2

1+
s∑
i=1

m2
βi

)
sin(πs1β1...βs)

[ ∑
σ∈OP ({β1,...,βs},{α})

S{βT ,1,s+2,α,N},{1,s+2,σ,N}A(1, s+ 2, σ,N)

+

s−1∑
l=1

∑
σ∈OP ({βl+1,...,βs},{α})

S{βT ,1,s+2,α,N},{1,β1,...,βl,s+2,σ,N}A(1, β1, . . . , βl, s+ 2, σ,N)

]
.

The sine in the denominator captures the complete pole in the (1, β)-channel. It should be

clear these relations may be nested to uniquely express a given open string amplitude in

terms of a particular set of basis amplitudes with the positions of three particles fixed, e.g.

A(1, 2, σ,N). This particular form of the monodromy relations has first appeared in [29],

as far as we are aware.

Roots of amplitudes

The monodromy relations can be used to find the roots of amplitudes as studied in [15].

Their argument to find the roots has to be slightly extended here to allow for complex

momenta.

In (2.21) each factor P{βT ,1,α,N},{1,σ,N} depends on the Mandelstam s1,β and additional

momentum invariants

{k}σ = {kijθ(σ−1(i)− σ−1(j))θ(τ−1(j)− τ−1(i)) | i, j ∈ {σ}},
where τ = {β ∪ α}, σ ∈ OP ({β}, {α}). (2.32)

If all elements of all {k}σ are taken to non-negative integer values

{k}σ ⊂ N0 ∀σ ∈ OP ({β}, {α}), (2.33)

while s1,β is kept arbitrary the equations (2.21) and (2.25) become

A(β, 1, α,N) = exp(−iπs1,β)F = exp(iπs1,β)F, (2.34)

for some function F . This can only be satisfied for generic s1,β if both A(β, 1, α,N) and F

vanish. The restriction to non-negative integers was to avoid hitting poles in the amplitudes

which appear in the monodromy relations.

A second remark is that using a more general form of the monodromy relations should

allow us to obtain additional sets of roots more straightforwardly. In [15] only monodromy

relations were used where β has only one element which means there is one set of roots per

amplitude that can trivially be read off as in (2.33). Further sets of roots are obtained by

combining monodromy relations and can contain conditions on multi-particle Mandelstams.

For instance, a table in [15] lists five sets of roots of the 6-point amplitude. Two of them

are given by (2.33) when β has one or two elements. The remaining sets of roots in the

table involve conditions on multi-particle Mandelstams and it still seems to be necessary
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to combine multiple monodromy relations to derive these. A general and simple way to

derive all sets of roots is a worthwhile direction to explore, but will not be needed here.

Below the form of the monodromy relations reviewed above will be used to study the roots.

The field theory limit3 of the monodromy relations results in the BCJ-relations [18],

which can alternatively be derived using a non-adjacent BCFW shift [32]. It would be

interesting to see if the string monodromy relations could also be derived from a non-

adjacent BCFW shift.

3 String amplitudes from monodromy relations

In this section it will be shown that the residues at kinematic poles can be derived from the

monodromy relations. These are then used in the on-shell recursion relations to construct

the complete amplitude.

Instrumental are the location of the roots of the residues of amplitudes. Below it is

shown that the form of the monodromy relations discovered more recently and reviewed

above allow for a more natural approach to studying roots than was possible in the origi-

nal [15] paper. In their new form the monodromy relations allow the systematic study of the

the roots of the residues of the amplitude, a possibility that was not obvious from the orig-

inal monodromy relations. As inputs this section uses the behaviour under BCFW-shifts

derived above.

3.1 Four point amplitudes

To provide some orientation the four point amplitudes will be discussed extensively. At

four points the monodromy relation (2.29) can be written as

A(1234) = (−1)α
′(m2

1+m2
4) sin(πs13)

sin(πs12)
A(1324). (3.1)

This relation is easily checked for the Veneziano amplitude in equation (1.1). A simple

consistency check is to consider the pole structure: the amplitude on the left-hand side

has poles in the s12 and s23 channel, but not in the s13 channel. Similarly, the amplitude

on the right-hand side has poles in s23 and s13 channel, but not in the s12 channel. This

discrepancy is solved by the roots of the sine functions.

In equation (3.1) it is obvious that all poles in the s12-channel of the left-hand side

amplitude are contained in the sine-function in the denominator on the right-hand side. As

a bonus, the equation also displays possible roots of the amplitudes. These are contained

in the sine-function in the numerator. A restriction here is that for sufficiently large integer

values of s13 the amplitude on the right-hand side develops a pole, leading to a finite, non-

vanishing result. In the bosonic string case for instance the amplitude A(1234) generically

has a series of roots at

s13 ∈ {−2,−3,−4, . . .}. (3.2)

3Loosely speaking, this is the “α′ → 0” limit. More correctly, this is the limit where α′sij → 0 for

any i, j.
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Comparing to the Veneziano amplitude in equation (1.1) it is seen that all roots of this

particular amplitude arise this way. Note that the starting location of the row of roots of

the amplitude on the left-hand side is determined by the location of the lowest mass pole

of the amplitude on the right-hand side. The argument just given applies to all possible

choices of external states within the string spectrum and to the superstring. The precise

starting location of the roots depends on the external masses and the spectrum, as some

states will for instance not couple to two tachyons (see section 4).

The previous reasoning can be extended to compute the residues at poles. For def-

initeness the focus will first be on the Veneziano amplitude with four external tachyons.

From equation (3.1) it follows that

Ress12→A−1A(1234) =
(−1)A−1

π
[sin(πs13)A(1324)]s12=A−1 , (3.3)

for some non-negative integer A. By perturbative unitarity, Poincaré invariance and locality

the left-hand side of this equation must be a polynomial in s13. It is not manifest the right-

hand side is. Note however that as a function of s13 it no longer has an infinite series of

roots since by momentum conservation

(A− 1) + s23 + s13 =
∑

m2
i = −4. (3.4)

Hence, if s13 is ∈ {−1, 0, 1, . . .} it will hit the pole in the amplitude A(1324) in the (1, 3)

channel while if s13 is ∈ {−2− A,−3− A, . . .} it will hit a pole in the (2, 3) channel. For

four tachyons, this implies the residue is a polynomial of at least degree A, with roots at

{−2,−3, . . . ,−1−A}. For A = 0, the polynomial is a constant. The maximal degree of the

polynomial in s13 appearing in the residue at this pole is set by the maximal spin of the

spectrum at mass level A which is known to be A itself. Actually, this can be demonstrated

by studying a (1, 2) channel BCFW shift of the residue. By equation (2.19) one obtains

for the residue under this shift in a cross-channel

Ress12→A−1A(1234) ∼ zA
(
f1

(
1

z

))
. (3.5)

Note that technically, one should study a non-adjacent BCFW shift for the amplitude on

the right-hand side of equation (3.3). How to do this was explained in [11], which in this

particular case simply reduces to reading of the large z shift from the left-hand side of

equation (3.3). It will be assumed the BCFW large z-limit in the (1, 2) channel and taking

the residue in this channel commute.4 Since the residue must be a function of s13 only, the

BCFW shift fixes the maximal spin of the spectrum at level A to be A.

By the main theorem of algebra, these observations fix the residue up to an overall

constant

Ress12→A−1A(1234) = c(s13 + 2) . . . (s13 +A+ 1). (3.6)

4This can be proven from the worldsheet point of view using the full result for the large z-shift in [11].
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This constant can be fixed by tuning s13 to the value −1 in equation (3.3). The right-hand

side in this case does not vanish but factorises by unitarity into two 3-tachyon amplitudes,

lims13→−1

[
(−1)A−1

π
sin(πs13)A(1324)

]
=(−1)A−1A3(T, T, T )A3(T, T, T ) = (−1)A−1g2

o ,

(3.7)

these 3 point amplitudes are just the open string coupling constant go. Combining this

expression for the right-hand side of equation (3.3) with equation (3.6) for the left-hand

side at s13 = −1 now fixes the constant c to be

c = g2
o

(−1)A−1

Γ[A+ 1]
. (3.8)

Note this computation has fixed the numerical coefficient of all the tachyon-tachyon-

massive-state couplings in terms of the three tachyon coupling. As a result the complete

residue is fixed by equation (3.3), a combination of unitarity, locality, Poincaré invari-

ance as well as Regge behaviour. The string coupling constants will mostly be suppressed

in the following.

The complete four point function through on-shell recursion

The stage is now set for the derivation of the Veneziano amplitude through on-shell re-

cursion by assembling the above building blocks. Since the s12 channel poles have been

worked out it is natural to study a shift on particles 2 and 3. This will keep s23 invariant.

Hence it is advantageous to express the residues in equation (3.6) in terms of s23 instead

of s13,

Ress12→A−1A(1234) = g2
o

(−1)A−1

Γ[A+ 1]
(−s23 −A− 1) . . . (−s23 − 2). (3.9)

The on-shell recursive expression in this case simply gives (suppressing go)

A(1, 2, 3, 4) = −
∞∑
A=0

1

s12 −A+ 1
(−1)A

Γ[−s23 − 1]

Γ[A+ 1]Γ[−s23 − 1−A]

= −
∞∑
A=0

1

s12 −A+ 1
(−1)A

(
k23

A

)
=

Γ[−s12 − 1]Γ[−s23 − 1]

Γ[−s12 − s23 − 2]
,

(3.10)

as the result of the in string theory very well-known summation formulae for the β function.

In the second line the binomial coefficient was used.

In the rest of this article the Veneziano amplitude calculation will widely be extended.

To motivate more general remarks further example computations will be presented first.

3.1.1 Example: three tachyons, one gluon

In general string scattering amplitudes will involve particles with polarisation vectors. To

show how this fits into the calculation first study the example of an amplitude with three

tachyons and a gluon. Residues of the amplitude A(1, 2, 3, 4g) with three tachyons labelled
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1, 2, 3 and a gluon 4g in the (1, 2) channel can depend on one momentum invariant, say s23,

and terms containing the polarisation ξ4 ·k1, ξ4 ·k2, ξ4 ·k3. Due to momentum conservation

and orthogonality of the polarisation vector w.r.t. it’s own momentum, one of these can be

expressed in terms of the other two, e.g.

ξ4 · k2 = −ξ4 · (k1 + k3) . (3.11)

Momentum conservation gives in this case

s12 + s23 + s13 =
∑

α′m2
i = −3. (3.12)

By the same monodromy relation as before (3.1), repeated here for convenience,

A(1, 2, 3, 4g) = (−1)α
′(m2

1+m2
4) sin(πs13)

sin(πs12)
A(1, 3, 2, 4g), (3.13)

the amplitude A(1, 3, 2, 4g) has no poles (and thus A(1, 2, 3, 4g) has roots) for

s13 ∈ Z ∧ s23 ≤ −2 ∧ s13 ≤ −2. (3.14)

This becomes at the residue s12 = A− 1, using (3.12)

s23 ∈ Z ∧ s23 ≤ −2 ∧ s23 ≥ −A. (3.15)

Hence there is, again, only a finite number of roots. This fixes a polynomial of degree

A − 1. Similar to the Veneziano example the residues have to be proportional to the

following polynomials which exhibit all the required roots

Γ[−s23 − 1]

Γ[A]Γ[−s23 −A]
=

(
k23

A− 1

)
A > 0. (3.16)

The poles at A = 0 and A = 1 deserve special attention. For A = 0 the exchanged

particle in the (1, 2) channel is a tachyon. Hence the polarisation of the gluon can only be

contracted to the momentum which belongs to the tachyon on the same 3-point amplitude

(up to momentum conservation). This gives

Ress12→−1A(1, 2, 3, 4g) = c0 ξ4 · k3, (3.17)

up to a numerical constant c0 by dimensional analysis. The constant can be fixed from the

T 2g and T 3 three point amplitude found in the Veneziano amplitude computation, so that

c0 ∝ g2
0. At A = 1 the residue at the pole is parametrised by

Ress12→0A(1, 2, 3, 4g) = c1 ξ4 · k1 + c′1(s23 + c′′1) ξ4 · k3, (3.18)

with numerical constants c1 and c′1. Here the fact that the maximal spin of the exchanged

particle is 1 at this level was used. This either gives a contraction of the polarisation vector

into a momentum ‘at the other side of the pole’, i.e. the ξ4 ·k1 term, or an additional power

of momentum.
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Tuning to s23 = −1, s13 = −2 gives by equation (3.13) the pole in the (2, 3) channel of

the right-hand side amplitude which leads to

c1ξ4 · k1 + c′1(−1 + c′′1)ξ4 · k3 = −c0 ξ4 · k1 (3.19)

so that immediately c′′1 = 1 follows. Tuning s13 = −1, s23 = −2 gives similarly

c1ξ4 · k1 + c′1(−2 + 1)ξ4 · k3 = c0 ξ4 · k2. (3.20)

Hence there are two equations in two unknowns which can be solved

c′1 = −c1 = c0, (3.21)

so that (3.18) becomes

Ress12→0A(1, 2, 3, 4g) = −c0 (ξ4 · k1 − (s23 + 1) ξ4 · k3) . (3.22)

Note that this computation has in effect fixed the numerical coefficient of the tachyon-

gluon-gluon coupling in terms of the tachyon-tachyon-tachyon coupling. Generalising to

higher values of A is straightforward since the ansatz in equation (3.18) captures all possible

polarisation structures. At a generic level then the roots appearing in (3.16) can be included

as multiplicative factors. To fix the coefficients at level A, one tunes to the two data-points

s23 = −1, s13 = −1−A as well as s13 = −1, s23 = −1−A. The result is

Ress12→A−1A(1, 2, 3, 4g) = cA (−1)A
(
− ξ4 · k1 +

1

A
(s23 + 1) ξ4 · k3

)(
k23

A− 1

)
, (3.23)

where cA is a constant that can be different for each A. This completes the calculation of

all residues in the (1, 2) channel.

The complete four point function through on-shell recursion

At this stage on-shell recursion can be used to obtain the complete four point amplitude

from its residues. As above, a shift in the (2,3) channel will be implemented. Following

the same steps this yields

A(1, 2, 3, 4g) = cAA

(
ξ4 · k1

∞∑
A=1

(−1)A−1

s12 −A+ 1

(
k23

A− 1

)
+ ξ4 · k3

∞∑
A=0

(−1)A

s12 −A+ 1

(
k23 + 1

A

))

= (g′o)
2

(
ξ4 · k1

Γ[−s12]Γ[−s23 − 1]

Γ[−s12 − s23 − 1]
+ ξ4 · k3

Γ[−s12 − 1]Γ[−s23]

Γ[−s12 − s23 − 1]

)
. (3.24)

As a cross-check it can be verified straightforwardly that this colour-ordered amplitude is

invariant under interchange of particles 1↔ 3 as it must be since

A(1234) = A(4321) = A(3214). (3.25)

Since the particles 1 and 3 are tachyons, this amounts simply to an exchange of their

momenta. In particular s12 ↔ s23. The string coupling constant squared (g′)2
o can be

traced to a tachyon factorisation channel where two amplitudes appear which was already

computed above: tachyon-tachyon-gluon and (tachyon)3.
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3.1.2 Example: four gluons in the superstring

Since the monodromy relations hold for all string amplitudes, they are relations between

superamplitudes which contain all amplitudes that are related by supersymmetry as com-

ponents. It is useful for computational purposes to use an on-shell superspace formalism.

Here the formalism of [33] will be used for massless fields which necessarily involves com-

plex chiral spinors. The minimal on-shell superspace in 10 dimensions constructed through

this method therefore has (2, 0) supersymmetry. For open strings one has to restrict all

momenta to a D = 8 subspace to be able to employ unrestricted massless on-shell super-

fields. Note that this is only a (kinematic) restriction above 9 points. It will mostly be

important below that the massless superfields used here are scalar.

The superamplitudes are given by a kinematic function Ã times a momentum con-

serving delta function δ8(K) which depends on the kinematic variables K and a fermionic

super-momentum conserving delta function δ8(Q) which assures that the Ward identities

of on-shell supersymmetry are satisfied

AD=8 = δ8(K)δ8(Q)Ã(Q,K). (3.26)

For four points, the function Ã(Q,K) has no fermionic weight,

Ã(Q,K) = Ã(K), four points. (3.27)

As a function of the momenta Ã(K) has roots and poles. The sums over parts of the states

at the residues of the poles can be performed using a fermionic integral. As here the interest

is in the result of this integral, it actually mostly does not have to be considered. See [34]

for an explanation of the massive spinor helicity formalism in higher dimensions. The

only thing important for the discussion here is that this makes the computation manifestly

on-shell supersymmetric. In field theory, the four point function reads:

AD=8,YM = δ8(K)δ8(Q)
gym

k12k23
, field theory. (3.28)

As the delta functions are completely symmetric the functions Ã(K) satisfy the same

monodromy relations as before. Hence the roots can be derived analogously, with the poles

starting at 0 instead of −1.5

Ã(1, 2, 3, 4) =
sin(πk13)

sin(πk12)
Ã(1, 3, 2, 4), (3.29)

leads to Ã(1, 2, 3, 4) = 0 at k12 = −A for

k23 ∈ Z,
0 < k13 ∧ 0 < k23 ⇔ 0 < k23 < A. (3.30)

5This is actually not an essential assumption. There is a more complicated version of this derivation

which takes an arbitrary starting point for the series of poles, basically introducing an ‘intercept’. Then,

as will be clear from the discussion in section 4.2.2, unitarity restricts the starting point to be 0.
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This gives us the following A− 1 roots for A ≥ 1

Resk12→−AÃ ∝
(
k23 − 1

A− 1

)
. (3.31)

The maximum power of k23 can be determined from a BCFW supershift in the (1, 2)

channel. Compared to the residue of the tree level Yang-Mills amplitude at the s12-channel

pole,
(
gym
k23

)
, this power is A.

This can also be argued on the basis of the known spectrum. The spectrum for the

open superstring in 10 dimensions was worked out in [26]. Structurally, the highest spin

field in the spectrum at mass level A transforms as the symmetric traceless A + 1-tensor

of the massive little group SO(9). In the massive superfield formalism this translates into

a A− 1-tensor massive on-shell superfield. The fermionic integral in this case contributes

an overall constant [34]. This shows that the obtained polynomials at the residues contain

the complete dependence on kinematic invariants and that the overall numerical constants

are all that is left to be determined.

These overall constants can, as before, be fixed by unitarity in the cross-channel. That

is, first take the residue of (3.29),

Ress12→AÃ(1234) =
(−1)A−1

π

[
sin(πs13)Ã(1324)

]
s12=A

. (3.32)

Then one inserts the ansatz for the left-hand side,

c

(
k23 − 1

A− 1

)
=

(−1)A−1

π

[
sin(πs13)Ã(1324)

]
s12=A

. (3.33)

and tunes s13 = −k13 → 0 to obtain

c =
(−1)A

A
, (3.34)

where instead of writing the unitarity expression for the s13 pole on the right-hand side

the known expression of equation (3.28) was used. Note this last step fixes the residues of

the four point superstring amplitude in terms of the field theory limit.

Assembling the full amplitude through on-shell recursion now follows by repeating

basically the same computation as in the Veneziano amplitude case and simply yields

AD=8 = δ8(K)δ8(Q)
Γ[−s12]Γ[−s23]

Γ[−s12 − s23 + 1]
. (3.35)

3.1.3 Example: four closed string tachyons

Closed string amplitudes are defined by the KLT relations. For four points these can be

written as

M(1234) = sin(πk23)A(1234)A(1324), (3.36)

with all coupling constants stripped off. In this subsection the direct application of a similar

reasoning as above to determine the residues at poles is briefly explored for closed strings.
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The closed string amplitude has poles in all channels and is completely symmetric.

Consider without loss of generality the residue at the s12 channel pole,

Ress12→A−1M(1234) = sin(πk23) (A(1324))s12→A−1 (Ress12→A−1A(1234)) . (3.37)

Now by the following analog of equation (3.3),

[A(1324)]s12=A−1 = (−1)A−1 π

sin(πk13)
Ress12→A−1A(1234) (3.38)

the residues of the closed string amplitudes simply reduce to a double copy of the residues

of the open string amplitude by momentum conservation at the residue,

Ress12→A−1M(1234) = −π (Ress12→A−1A(1234))2 . (3.39)

By the holomorphic factorisation property of the closed string worldsheet vertex operators

this is expected.

The residues of the open string amplitudes were determined above. This fixes the

residue at the pole of the closed string amplitudes. The overall numerical factor is now the

product of the two open string coupling constants squared. This can now be defined as the

closed string coupling constant. It should be clear a similar reasoning will go through for

tree level closed string amplitudes with arbitrary field content.

Of course, one can also use monodromy relations to write the KLT relation here as

M(1234) =
sin(πk12) sin(πk23)

sin(πk13)
A(1234)A(1234). (3.40)

Now all poles in the s13 channel are explicitly factored into the sin denominator. This

generalises to multiple points: there is always an expression of the closed string amplitudes

in terms of a (N−3)! basis of open string amplitudes with three particles fixed in consecutive

positions. If these particles are labelled 1, 2, 3, then all the poles of the closed string

amplitude which involve momentum k2 and multiple momenta not equal to k1 or k3 will

be explicit in the denominator. This simply follows since the open string amplitudes in the

chosen basis do not have poles in these channels.

Further and more direct exploration of the closed string sector is left to future work,

save for one comment. By Bose symmetry, the complete closed string tachyon amplitude

must be completely symmetric. Note that in equation (3.40) there are roots of the closed

string amplitude manifest in the s12 and s23 channel while those in the s13 channel are

contained in the open string amplitude squared, moderated by corresponding poles from

the sine function in the denominator. In the first way of writing in equation (3.36) only

one series of roots is manifest.

Extensions

The main technical complication in extending the argument given above to four point

amplitudes with other external states is the appearance of more and more polarisation

tensors. These may be treated by parametrising the residues in terms of all possible tensor
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structures built out of metrics and external momenta on the three point amplitudes which

appear at the residue. Since these tensor structures are independent, their coefficient

polynomials can be fixed as in the example above from the roots at least to some extent.

If the monodromy relations are strong enough,6 this leaves fixing the overall constants at

each mass level. We strongly suspect that one needs all three point amplitudes up to the

level of the highest level external particle involved in the scattering to fix all coefficients:

this ensures all possible tensor structures appear on the residue.

In the superstring case the same complications start to appear in the massive sector as

long as one considers superfields. Massless vector fields are components of scalar on-shell

superfields, which are treated analogously to tachyons in the bosonic string, at least in the

8 dimensional formalism.

From the structure of the argument it should be clear that in the four point case

one always ends up with sums over β function type functions times possibly complicated

coefficients. This is of course well known from the worldsheet formalism.

3.2 Five and higher point amplitudes

3.2.1 Five tachyon amplitude

At five points the monodromy relations can be solved to give

A(12345) =
1

sin(πs12)
[sin(π(−s12 + k23))A(13245) + sin(π(−s12 + k23 + k24))A(13425)] ,

(3.41)

so the residues of the amplitude in the s12 channel are

Ress12→A−1A(12345) =
1

π
[sin(πk23)A(13245)+ sin(π(k23 + k24))A(13425)]s12=A−1 . (3.42)

This has roots for

k23, k24 ∈ Z, (3.43)

but only if the two amplitudes on the right-hand side do not have a pole at these values,

which leads to the conditions

k23 ≥ 0 ,

k24 ≥ 0 ,

k25 ≥ 0 ⇔ k23 + k24 ≤ A− 1 .

(3.44)

The condition for k25 is required because k25 becomes an integer due to momentum con-

servation when k12, k23, k24 are integers.

The conditions are solved by the polynomials(
k23

A− a

)(
k24

a

)
, 0 ≤ a ≤ A. (3.45)

Each of this terms contains A powers of k2, the maximally allowed number. So multiplying

them by further polynomials containing k23 or k24 is not allowed.

6This will be shown below for Koba-Nielsen amplitudes.
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The polynomials just written down are a basis of the space of polynomials of total

order ≤ A which vanish under the conditions (3.43) and (3.44). Since the main theorem of

algebra does not hold for functions of more than one variable proving this requires some

work. For this, note that(
k23

B − a

)(
k24

a

)
, 0 ≤ a ≤ B, B ≤ A, (3.46)

is a basis for all polynomials of maximal total degree A labelled by indices B and a. This

follows as they are linear combinations of the natural basis monomials (k23)i(k24)j for

i + j ≤ A. The most generic polynomial of maximal total degree A is therefore a linear

combination of this basis. Now consider the set of roots in equation (3.44). By first setting

k23 and k24 to zero it is easy to see there can be no constant term. Then, considering the

two points (k23, k24) = (0, 1) and (1, 0) one can rule out all linear polynomials. Continuing

along these lines one sees that none of the polynomials in (3.46) with B < A has the

required roots s.t. equation (3.45) is the basis of all polynomials which satisfy the conditions

of equation (3.44).

For the channel s123 = B − 1 the monodromy relation (2.30) can be used,

A(12345)=
1

sin(πs123)
[sin(π(−s123+k34))A(12435) + sin(π(−s123+k34+k24))A(14235)] ,

(3.47)

which implies the following conditions for a vanishing residue Ress123→B−1A(12345)

k24, k34 ∈ Z ,

k24 ≥ 0 ,

k34 ≥ 0 ,

k14 ≥ 0 ⇔ k24 + k34 ≤ B − 1 .

(3.48)

The polynomials solving them are(
k24

a

)(
k34

B − a

)
, 0 ≤ a ≤ B. (3.49)

If both internal particles are send on-shell, that is the channel

2
3

1 5

4

, (3.50)

is considered, the residues have to vanish when either conditions (3.43), (3.44) or (3.48)

are satisfied. At the same time, k2 is only allowed to appear to the Ath power and k4 to

the Bth power. These conditions follow from considering BCFW shifts of the residue in

the (1, 2) channel as well as the (4, 5) channel. Just as in the four-point case one finds

Ress12→A−1A(12345) ∼ zA
(
f1

(
1

z

))
, (3.51)

Ress45→B−1A(12345) ∼ zB
(
f1

(
1

z

))
. (3.52)
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The only polynomials fulfilling all roots as well as the power counting constraints just

derived are (
k23

A− a

)(
k24

a

)(
k34

B − a

)
, 0 ≤ a ≤ min(A,B). (3.53)

Fixing the coefficients

The coefficient for each of these polynomials can be fixed by using the monodromy re-

lations again or, alternatively, by assuming cyclicity of the amplitude which is shown in

appendix C. As a warm-up for the the N -point case discussed below, the exact linear com-

bination of polynomials (3.53) that is the double residue of A(12345) will be determined.

Just as in the four point case, the overall factors will follow by considering the right-hand

side of equation (3.41) at an integer-valued kinematic point where it does not vanish. It is

convenient to take this point to be

k23 + k24 = A, (3.54)

with k23 and k24 non-negative integers. The polynomials (3.53) are special at this point.

To see this, assume w.l.o.g. that A ≤ B and consider the expression(
A− k24

A− a

)(
k24

a

)(
k34

B − a

)
, 0 ≤ a ≤ A. (3.55)

Now, the second binomial coefficient vanishes at these integer values when k24 < a, while

the first vanishes when A− k24 < A− a. Hence at this particular kinematic point the only

one of these polynomials that is non-zero is the one with a = k24. By choosing different

integers for k24 the coefficients of all the polynomials can now be calculated. This can

be done by calculating the right-hand side of equation (3.41) at this particular kinematic

point. The term containing A(13245) vanishes while the amplitude A(13425) develops a

tachyonic pole in the (25) channel which cancels against the root from the sine function

that multiplies it

lim
k23+k24→A

lim
k24→a

[
1

π
sin(π(k23 + k24))A(1, 3, 4, 2, 5)

]
s12=A−1

=

− (−1)A [A(1, 3, 4, P )A(−P, 2, 5) ]
s12 = A− 1

k23 + k24 = A

k24 = a


. (3.56)

Note the amplitudes in this equation all involve tachyons only and the open string coupling

constant has been suppressed. The four point amplitude is easy to evaluate on a further

special kinematic point. Now use monodromy relation (2.29) again to expose the residue

in s13 = s123 − a

Ress123→B−1A(1, 3, 4, P ) =
1

π
[sin(πk34)A(1, 4, 3, P )]s123=B−1 . (3.57)
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Setting k34 = B − a ∈ Z will hit a root of the sine and a tachyon pole in the amplitude

A(1, 4, 3, P ) because at this value of k34 the equation s3P = s235 = −1 holds. This lead to

lim
k34→B−a

[
1

π
sin(πk34)A(1, 4, 3, P )

]
s12 = A− 1

s123 = B − 1

k23 + k24 = A

k24 = a


= −(−1)B−a [A(1, 4, Q)A(−Q, 3, P ) ]

s12 = A− 1

s123 = B − 1

k23 + k24 = A

k24 = a

k34 + k24 = B



. (3.58)

Plugging everything back into (3.41) the final result reads

Ress12→A−1Ress123→B−1A(12345) =
∞∑
a=0

(
k23

A− a

)(
k24

a

)(
k34

B − a

)
(−1)A+B−a. (3.59)

The complete five point function through on-shell recursion

In this example it will now be shown explicitly how the double residues can be combined

with BCFW on-shell recursion to obtain the full amplitude. First perform a BCFW shift

on particles 1 and 5 by a vector q15 scaled by a complex parameter z15

k̂1 = k1 + z15q15, k̂5 = k5 − z15q15, (3.60)

where

k1 · q15 = k5 · q15 = q2
15 = 0. (3.61)

Using BCFW on-shell recursion,

A(12345) = −
∞∑
A=0

∑
α

∑
polarisations

A(1̂, 2, M̂A,α)A(M̂A,α, 3, 4, 5̂)

s12 −A+ 1

−
∞∑
B=0

∑
β

∑
polarisations

A(1̂, 2, 3, M̂B,β)A(M̂B,β , 4, 5̂)

s123 −B + 1
,

(3.62)

is obtained. For details about the sums over irreps α, β and polarisations of the intermediate

particles see section 4. Now implement another shift for each of the four point amplitudes,

namely for the first term

k̃3 = k3 + z34q34, k̃4 = k4 − z34q34, (3.63)

and for the second term

k̄2 = k2 + z23q23, k̄3 = k3 − z23q23. (3.64)

– 22 –



J
H
E
P
0
6
(
2
0
1
4
)
0
5
4

Using this

A(12345) =

∞∑
A,B=0

∑
α,β

∑
polarisations

A(1̂, 2, M̂A,α)A(M̂A,α, 3̃, M̃B,β)A(M̃B,β , 4̃, 5̂)

(s12 −A+ 1)(s1̂23 −B + 1)

+
∞∑

A,B=0

∑
α,β

∑
polarisations

A(1̂, 2̄, M̄A,α)A(M̄A,α, 3̄, M̂B,β)A(M̂B,β , 4, 5̂)

(s1̂2 −A+ 1)(s123 −B + 1)
,

(3.65)

is obtained. In each term the BCFW shifts are tuned in such a way that in the first line

s1̂2 = A− 1, s1̂23̃ = B − 1, (3.66)

and in the second line

s1̂2̄ = A− 1, s1̂2̄3̄ = B − 1. (3.67)

The first and second line in (3.65) are very similar up to a difference in the BCFW shifts

and the rather subtle difference in denominators. Practically this means that taking first

a s12 → A′ − 1 and then a s123 → B′ − 1 limit of the full result selects the first term,

while doing this in the opposite order selects the second. This follows as the second

expression for instance generically does not have a pole at s12 = a for any integer a unless

s123 = B − 1 holds.

The residues appearing in both terms were derived from the monodromy relations

above in equation (3.59). These can be plugged in

A(12345) =

∞∑
A,B=0

∞∑
a=0

(
k23̃

A− a

)(
k24̃

a

)(
k34

B − a

)
(−1)A+B−a

(s12 −A+ 1)(s1̂23 −B + 1)

+

∞∑
A,B=0

∞∑
a=0

(
k23

A− a

)(
k2̄4

a

)(
k3̄4

B − a

)
(−1)A+B−a

(s1̂2 −A+ 1)(s123 −B + 1)
.

(3.68)

Note that the secondary BCFW shifts can be chosen7 such that q34 · k2 = q23 · k4 = 0.

In this case the dependence on these shifts trivially drops out of the numerator. This is

significant as a form of internal recursion relations for open string tachyon amplitudes were

already proposed more than 40 years ago by Hopkinson and Plahte [35]. Here the full

amplitude is just the maximal residue summed over the mass levels. These results seem to

suggest much simpler formulae are possible. We leave this for future work.

3.2.2 Koba-Nielsen amplitude

Equation (2.31) can be used to derive the residue of the N tachyon amplitude in s1...l. This

amplitude will be referred to as the Koba-Nielsen amplitude. First note that none of the

amplitudes on the right-hand side has a pole in s1...l, where 2 ≤ l ≤ N − 2. Furthermore,

all sines vanish at a pole at s1...l = Al − 1 under the condition

kij ∈ Z ∀ i ∈ {2, . . . , l}, j ∈ {l + 1, . . . , N − 1}. (3.69)

7Choosing BCFW shift vectors like this should always be done with care, the obtained poles must always

be at finite values of the shift parameters. For these particular shifts this is the case.
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as in the previous examples, these momenta must be in the range where the amplitudes on

the right-hand side do not have poles

kij ≥ 0 ∀ i ∈ {2, . . . , l}, j ∈ {l + 1, . . . , N − 1}. (3.70)

There is one further pole in one of the amplitudes that has to be taken into account, namely

the one in s2...l,N , because this Mandelstam variable becomes integer at the considered

configuration

s2...l,N =
∑

1<i≤l
l<j<N

kij − s1...l + α′(m2
1 +m2

N ). (3.71)

Avoiding the pole leads to the condition

s2...l,N ≤ −2 ⇔
∑

1<i≤l
l<j<N

kij ≤ Al − 1. (3.72)

The combined conditions are naturally solved by the polynomials∏
1<i≤l
l<j<N

(
kij
aij

)
, where aij ∈ N0 ∧

∑
1<i≤l
l<j<N

aij = Al. (3.73)

To obtain the multiple residue where all the internal particles in the multiperipheral channel

are on-shell s1...l = Al − 1 ∀l ∈ {2, . . . , N − 2} take the polynomials that solve the above

conditions for all those l∏
i,j

1<i<j<N

(
kij
aij

)
, where aij ∈ N0 ∧

∑
1<i≤l
l<j<N

aij = Al ∀l. (3.74)

The multiperipheral channel is visualised by the diagram

2
3

1

N − 1

N

N − 2

. (3.75)

Although it is possible to consider other channels, for our purposes the multiperipheral

channel is enough: this channel has enough information to determine the full amplitude

through on-shell recursion.

Completeness of the basis

The bases of polynomials (3.73) and (3.74) are complete. This follows as the spin is limited

by the mass level and the spin determines how many indices can be contracted across an

internal line that is put on-shell (this will be discussed in much more detail in section 4).

For amplitudes in the multiperipheral channel as discussed above the limit on spin by

level implies that the residue at s1...l = Al − 1 is proportional to a polynomial of degree Al
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in Lorentz invariants which involve a contraction across the pole under consideration. For

tachyon amplitudes this statement can be written as

Ress1...l→Al−1AN ∝ Pol[kij |1 ≤ i ≤ l, l < j ≤ N ] of degree Al. (3.76)

For other external particles the same statement holds true, but now the Lorentz invariants

can also be constructed from polarisations as for example in (3.23). The polynomials

in (3.73) saturate condition (3.76) for one choice of residue l while the polynomials in (3.74)

saturate the condition for each l individually. Hence they constitute bases of polynomials

fulfilling the requirements for roots and degree.

The same result can also be derived by utilising a modified BCFW-type shift. Note

that two-particle shifts were enough to fix the polynomials up to five external particles.

This is because any pole in the multiperipheral channel for a 5 particle amplitude splits

the external particles into at least one set with two particles. Above 5 points however one

also has a multiperipheral pole which splits the external lines into two sets, both of which

contain more than two particles. Consider such a pole with particles 1 through l in the

left-hand side set. Consider the shift

k1 → k1 − (l − 1)qz, k2 → k2 + qz, . . . , kl → kl + qz, (3.77)

for a non-trivial vector q for which q2 = q · k1 = . . . = q · kl = 0, but for which also

q · kl+1 6= 0. This shift always exists for up to 27 particle kinematics in the bosonic string,

above it requires an analytic continuation in the dimension.8 The large z behaviour of a

string scattering amplitude can be argued for using a saddle-point-type argument just as

in [10] and [11] which leads to

lim
z→∞

Ress1...l→Al−1AN ∼ zAl
(
f1

(
1

z

))
, (3.78)

under this shift which is equivalent to the statement above.

Fixing the coefficients

The residues can contain only polynomials from the basis (3.74) which are labeled by the

mass levels {Al} and further parameters {aij}. All that is left to do is to fix the coefficient

h{Al},{aij} for each basis element. For this, start with the ansatz(
N−2∏
l=2

Ress1...l→Al−1

)
AN =

∞∑
a23,...,aN−2,N−1=0

h{Al},{aij}
∏
i,j

1<i<j<N

(
kij
aij

)N−2∏
l=2

δAl,
∑

1<u≤l
l<v<N

auv .

(3.79)

To fix the coefficients consider certain kinematic limits where the ansatz reduces to a single

coefficient h{Al},{aij}. These limits are reached when the Mandelstams s2...l,N that were

8This argument will only be used to estimate the maximal degree of a polynomial, so this continuation

will not have drastic consequences at string tree level. Moreover, in the analysis of section 4 it will be

manifest that the target space dimension only affects unitarity in sub-leading coefficients.
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considered in (3.72) are set to −1 which implies
∑

1<i≤l
l<j<N

kij = Al. With this constraint the

ansatz becomes

(
N−2∏
l=2

Ress1...l→Al−1

)
AN =

∞∑
a24,...,aN−3,N−1=0

h{Al},{aij}
∏
i,j

1<i<j−1<N−1

(
kij
aij

)N−2∏
l=2


Al−

∑
1<u≤l
l<v<N
v−u≥2

kuv

Al−
∑

1<u≤l
l<v<N
v−u≥2

auv

.
(3.80)

The next step is to set all the remaining kij to non-negative integer values. For every term

in the sum the first product of binomial coefficients vanishes if aij > kij for any values

of i, j. A binomial coefficients in the second product vanishes if
∑
auv <

∑
kuv for some

summation range as given in (3.80). Every relevant pair u, v appears in the sum of such

a condition at least once. Together these two observations imply that the only term that

does not vanish is the one for aij = kij ∀i, j. The coefficient h{Al},{aij} is extracted from

the relation by tuning the {kij} to the desired {aij}(
N−2∏
l=2

Ress1...l→Al−1

)
AN

∣∣∣∣∣ {s2...l,N = −1}1<l<N−1

{kij}1<i<j−1<N−1 ⊂ N0

= h{Al},{kij}. (3.81)

To determine the number on the left-hand side (which must be a number because all

momentum invariants are fixed) the monodromy relations can be employed again. Only

the first relation, equation (2.29), is needed. At the s12 residue only the s2N pole is hit in

the last amplitude and all other terms vanish due to the sines, so

Ress12→A2−1AN (1, 2, . . . , N) =
1

π
sin

(
π

N−1∑
i=3

k2i

)
AN (1, 3, 4, . . . , N − 1, 2, N), (3.82)

follows. The remaining amplitude on the right-hand side factorises in the tachyon channel

since s2N = −1. This leaves a N − 1 tachyon amplitude where one external leg has the

momentum k2 +kN . The argument of the sine function equals πA2 and determines the sign

Ress12→A2−1AN (1, 2, . . . , N) = −(−1)A2AN−1(1, 3, 4, . . . , N − 1, (2 +N)). (3.83)

The same monodromy relation can be used again to move leg 3 to the right. This time

the sine in the denominator has the argument πs13 but this can also be related to the s123

channel since k12 and k23 are integer

Ress123→A3−1AN−1(1, 3 . . . N−1, (2 +N))=
1

π
sin

(
π
N−1∑
i=4

k3i

)
AN−1(1, 4 . . . N−1, 3, (2 +N)).

(3.84)

Using
N−1∑
i=4

k3i = A3 −
N−1∑
i=4

k2i and the factorisation in the s23N tachyon channel

Ress123→A3−1AN−1(1, 3 . . . N−1, (2+N))=−(−1)
A3−

N−1∑
i=4

k2i
AN−2(1, 4 . . . N−1, (3+2+N))

(3.85)
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is obtained. This procedure can be repeated until one arrives at the 3-tachyon amplitude

which is 1. In general each step contributes a factor

− (−1)

Al−
∑

1<i<l
l<j<N

kij

(3.86)

so that

h{Al},{aij} = (−1)N−3(−1)

N−2∑
l=2

Al− ∑
1<i<l
l<j<N

aij


(3.87)

follows. This agrees with the known result from the worldsheet computation, equa-

tion (A.6). Note that this result is again basically a simple sign, an indication that the

polynomial basis chosen is very natural.

4 Unitarity in the target space

For a theory to be physical the S-matrix must be unitary. The non-trivial part of the

S-matrix is captured by the T matrix: S = 1 + iT . The demand for the S-matrix to be

unitary leads to the in principle exact equation

− i
(
T − T †

)
= T †T. (4.1)

At tree level (for real momenta) the only source of imaginary parts for the left-hand side

is the ‘+iε’ in every propagator. For an imaginary part to arise, the momentum flowing

through a propagator must go on-shell. For the right-hand side, insert 1 as a sum over all

states of the theory between T and T †. At tree level, only single particle on-shell states

can contribute. This is the source of equation (2.10) that relates residues of amplitudes to

an expression involving lower point amplitudes summed over the spectrum of the theory.

For three point amplitudes the same reasoning leads to the constraint that the coupling

constant of the three point amplitude must be real.

This can also be seen as follows: if the 3-point amplitudes are defined as the cou-

pling times a real function of polarisations and momenta, the corresponding terms in the

interacting Hamiltonian contain only real fields, derivatives i∂µ and the coupling. The am-

plitude of two tachyons and one tensor particle (4.20) for example comes (up to a possible

real symmetry factor) from the term

cA,α

(
α′

2

)|α|/2
ΦA,α
µ1...µ|α|

φ i|α|∂µ1 . . . ∂µ|α|φ, (4.2)

in the Hamiltonian where ΦA,α is an irreducible tensor field, φ is the tachyon field and

cA,α is the coupling constant that appears in the 3-point amplitude. In this setup real

couplings imply a hermitian Hamiltonian and thus a unitary S-matrix. To study unitarity

in string theory, one therefore has to inspect all three point amplitudes. These can be

obtained, at least in principle, by factorising higher point amplitudes on poles. The sums

over the spectrum which appear in the residue have so far mostly been avoided by using

monodromy relations.
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In this section it will be explained how to honestly do the sum over the spectrum.

Apart from unitarity, the computation is interesting in its own right. While the spectrum

of most field theories contains only scalars, spinors and vector particles here arbitrary

irreducible tensor representations of SO(D−1) appear. Since it is known from the previous

section what the result of summing over the spectrum must be, say for the residue of a

tachyon amplitude, comparing the two resulting expressions also allows us to calculate lower

point amplitudes with arbitrary external states. More specifically, 3-point amplitudes with

massive legs will be studied.

The 3-point amplitudes consist in principle of simple building blocks, see e.g [34].

However even for two tachyons and one arbitrary massive tensor state the general formula

for their constant coefficients is quite messy, as is shown in appendix D. The relation

between 3-point amplitudes with tachyons and one or two tensor particles and the well-

known N -tachyon amplitudes is explored in various other ways in section 4.2.

A general string theory 3-point amplitude of states i = 1, 2, 3 with polarisation tensors

ξi and momenta ki can be written as

A3 = ξ1
µ1µ2...ξ

2
ν1ν2...ξ

3
ρ1ρ2...f

µ1µ2...,ν1ν2...,ρ1ρ2...(k1, k2, k3), (4.3)

where f is a correlation function that is usually calculated from the worldsheet string theory

with DDF operators [13]. It is shown in examples below how this general form is related

to the known binomials that arise in the residues of higher-point amplitudes and how this

relation allows us to compute the combinatorial coefficients that arise in the function f

in (4.3). For the examples studied it is found that the obtained 3-point couplings are real

if the no-ghost theorem conditions hold.

4.1 Summing over the string spectrum

It will be explored in this section how the sum over all polarisation states can be performed

when the polarisations are tensors. Although the polarisations themselves can be arbitrary,

the sum over all polarisations is governed by completeness relations and all polarisations

are ultimately replaced by projectors. Apart from the completeness relations checking

unitarity requires that one takes into account that elementary particle states are irreducible

representations (irreps) of the little group. In the case of massive particles, these are irreps

of SO(D − 1). For later convenience define

d ≡ D − 1 . (4.4)

The amount of index contractions that have to be done make it favourable to use the

birdtrack notation of [36] to visualise the calculations.

Completeness relation for massive tensor states

The polarisation ξ of a vector particle is a vector and for a massive particle of momentum

k, it must satisfy kµξµ = 0. An orthonormal basis of polarisation vectors ξIµ, I = 1, . . . , d

is chosen, where ξIµ is in the fundamental representation of SO(d) with respect to the I

index. Summing over the basis of polarisations yields a completeness relation, which can
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be considered a projection in the spacetime indices, projecting out the direction of the

particle momentum
d∑
I=1

ξIµξ
I
ν = ηµν −

kµkν
k2
≡ P⊥kµ,ν . (4.5)

Let us now generalise this to states where the polarisation is in an arbitrary tensor

representation of the little group. The polarisation tensor is orthogonal to the momen-

tum of the state in all indices, i.e. satisfies kµ1ξµ1µ2... = kµ2ξµ1µ2... = . . . = 0. A basis

for these polarisation tensors can be constructed by taking tensor products of the vector

polarisation ξIµ

ξµ1µ2... = ξI1µ1ξ
I2
µ2 . . . (4.6)

Note that the right-hand side is in general in a representation of SO(d), but not in an irrep.

Using the completeness relation (4.5) the sum over polarisations consists of a projector for

each index

d∑
I1,I2,...=1

ξI1µ1ξ
I2
µ2 . . . ξ

I1
ν1ξ

I2
ν2 . . . =

(
ηµ1ν1 −

kµ1kν1
k2

)(
ηµ2ν2 −

kµ2kν2
k2

)
. . . ≡ P⊥kµ1,ν1P

⊥k
µ2,ν2 . . . .

(4.7)

Here it seems arbitrary that µ1 is contracted with ν1 etc., but this will be taken care of in

the next step by introducing the projector to (anti-)symmetrised irreps.

Completeness relation for massless vector states

Since the polarisations of massless states are representations of SO(D− 2), their complete-

ness relation is different. The only massless particles in the spectrum of bosonic string

theory are vector particles. Let k again be the momentum of the particle and q be another

lightlike momentum that is orthogonal to the polarisation

kµξµ = qµξµ = k2 = q2 = 0. (4.8)

The vector q is a choice of light cone gauge, so that q · k 6= 0 must hold. Then there is an

orthonormal basis of polarisations ξiµ, i = 1, . . . , D− 2 satisfying the completeness relation

D−2∑
i=1

ξiµξ
i
ν = ηµν −

kµqν + qµkν
k · q

. (4.9)

4.1.1 Projecting to irreducible representations

Elementary particles correspond to irreps of the little group. So far, the sum (4.7) includes

arbitrary tensors which are null with respect to the momentum k. Irreps of SO(d) can

be obtained from arbitrary tensors by (anti-)symmetrising in the indices and then further

decomposing into traceless representations and the remaining traces. For example, it is

a well known fact that d × d matrices are decomposed into SO(d) irreps by separating

the symmetric and antisymmetric parts and then splitting the trace from the symmetric
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representation. There are projectors that project onto these three irreps, and they sum up

to unity

δI1J1δI2J2 =

{
1

2
(δI1J1δI2J2 + δI1J2δI2J1)− 1

d
δI1I2δJ1J2

}
+

1

d
δI1I2δJ1J2 +

1

2
(δI1J1δI2J2 − δI1J2δI2J1) .

(4.10)

In birdtrack notation, the same equation reads

=

{
− 1

d

}
+

1

d
+ , (4.11)

where the following symbols for (anti-)symmetrisation were introduced

n

=
1

n!

{
n

+
n

+
n

+ . . .

}
,

n

=
1

n!

{
n

−
n

+
n

− . . .

}
.

(4.12)

The projection onto the representation α is denoted by Pα. These projectors to SO(d) irreps

are introduced into the sum over polarisations in (4.7) to extract just the contribution of

a given irrep when performing on-shell recursion. Given that the Pα are just a bunch of

Kronecker deltas, each contracting either two indices belonging to different or to the same

polarisation tensor, let us perform the sum (4.7) with an arbitrary projection inserted

ξI1µ1ξ
I2
µ2 . . . (δI1J1δI2J2 . . .+ δI1I2δJ1J2 . . .+ . . .) ξJ1ν1 ξ

J2
ν2 . . .

= P⊥kµ1,ν1P
⊥k
µ2,ν2 . . .+ P⊥kµ1,µ2P

⊥k
ν1,ν2 . . .+ . . .

= P⊥kµ1,ρ1P
⊥k
µ2,ρ2 . . . (η

ρ1σ1ηρ2σ2 . . .+ ηρ1ρ2ησ1σ2 . . .+ . . .) P⊥kσ1,ν1P
⊥k
σ2,ν2 . . . .

(4.13)

In the last step is was used that the P⊥k are idempotent. This shows that this operation

can be written diagrammatically as

PαP⊥
k

P⊥
k , (4.14)

where Pα is the projection onto the SO(d) representation α with each δIJ replaced by an

ηµν and every line is a contraction of spacetime indices. This is now the recipe to perform

the sum over polarisations in string theory: sum over all irreps and replace the polarisation

tensors of both amplitudes by the combination of projectors (4.14). Which irreps appear

at which mass level can be elegantly computed using a generating function that was found

in [26]. To use this effectively, a few more facts about the irreps of SO(n) will be needed.

4.1.2 The covariant string spectrum

The index symmetries that can appear in an irreducible k-tensor representation of SO(n)

are labelled by k-box Young tableaux with not more than bn2 c rows. Horizontally aligned
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boxes correspond to symmetrised indices and vertically aligned boxes correspond to an-

tisymmetrisation. The limitation to bn2 c rows stems from the fact that there is no anti-

symmetric tensor with more than n indices if the indices run from 1 to n, and that any

m-box column with m > bn2 c can be transformed into a (n−m)-box column by contraction

with the fully antisymmetric Levi-Civita tensor. A Young diagram can be described by its

Dynkin label α = [α1, α2, . . . , αbn
2
c]n, which lists the numbers αi of columns with i boxes.

An (anti-) symmetrised tensor can be decomposed into SO(n) irreps by separating a trace-

less irrep and further irreps containing traces. The traceless irreps will be labelled by the

Dynkin label or Young diagram. The number of indices on a tensor in representation α

will be denoted by |α|. All bosonic string states are traceless irreps, for which

|α| =
∑
i

iαi, (4.15)

holds. All this, including the construction of the projectors Pα using birdtrack notation,

is described in detail in [36].

To get back to the previous example the following Young diagrams will be needed

P =

{
− 1

d

}
, P = . (4.16)

These correspond to the traceless projectors in (4.11).

After having introduced the concept of labelling SO(n) irreps by Dynkin labels, the

bosonic string spectrum up to mass level A = 5, as given in [26] reads

ZBosonic =
1

q
+ [1, 0, . . . , 0]24 + [2, 0, . . . , 0]25q

+ ([3, 0, . . . , 0]25 + [0, 1, 0, . . . , 0]25)q2

+ ([4, 0, . . . , 0]25 + [2, 0, . . . , 0]25 + [1, 1, 0, . . . , 0]25 + 1)q3

+ ([5, 0, . . . , 0]25 + [3, 0, . . . , 0]25 + [2, 1, 0, . . . , 0]25

+ [1, 1, 0, . . . , 0]25 + [1, 0, . . . , 0]25 + [0, 1, 0, . . . , 0]25)q4 +O(q5).

(4.17)

The exponent of q indicates the mass α′m2 = A− 1 of a state.

4.2 From Koba-Nielsen to arbitrary 3-point amplitudes and back

In this section 3-point amplitudes will be glued together to compare the result with the

known residues of higher point tachyon amplitudes. Fortunately, the three point amplitudes

with one or two massive legs can be predicted easily up to a few constants by physical

considerations, without the need to do any string theory computation. One can then

check that the ansatz matches the known result and unambiguously compute the missing

coefficients. Various consistency checks will be performed: the same coefficients must

appear when the same 3-point amplitude is part of a different (higher point) tachyon

amplitude and the coefficients must be real, which is required for unitarity.
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4.2.1 One tensor, two tachyons

Following [34], consider the amplitude of two tachyons with momenta k1, k2 and a massive

particle with momentum k1 + k2. It is clear that k1 − k2 is the only possible term that

can be contracted to the polarisation of the massive particle, or equivalently, survives the

projection by P⊥k1+k2
(which can in this case also be (4.9))

P⊥
k1+k2

k1 = P⊥
k1+k2

−k2 = P⊥
k1+k2

k1 − k2 = k1 − k2 .

(4.18)

The amplitudes have to be this term contracted into the polarisation, times a coefficient

cA,α, which depends on the mass level A and irrep α of the massive particle. A circle is

drawn to denote the amplitude including this coefficient, but without the polarisation tensor
.
.
.

A,α

µ1

µ|α|

k1 − k2 = cA,α

|α|∏
a=1

√
α′

2
(k1 − k2)µa . (4.19)

Note that here and in the following four lines in a birdtrack diagram are meant to represent

an arbitrary number (in this case |α|) of lines. The corresponding amplitude is obtained

by contracting with a polarisation tensor ξα from the respective irrep

A(T1, T2,M
A,α) = .

.
.

A,α

µ1

µ|α|

k1 − k2 ξαµ1...µ|α| . (4.20)

Since all indices are contracted to the same expression (k1 − k2), only fully symmetric

representations couple to two tachyons

k1 − k2 = k1 − k2 . (4.21)

Note this is only a subset of the full spectrum of string theory, cf. equation (4.17). The

residues of the 4-point tachyon amplitude can be calculated from the 3-point amplitudes

with one massive leg. They are

− Ress12→A−1A4 =
∑
α

k1 − k2

A,α

Pα k3 − k4 . (4.22)

The projectors P⊥k1+k2
were left out, because they are annihilated by the 3-point ampli-

tudes (4.18), and only fully symmetric representations appear in the sum because of (4.21).
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Whenever such contractions are performed, momentum conservation and the on-shell con-

ditions have to be used to write the result in terms of the remaining (N−2)(N−3)
2 indepen-

dent kinematic variables kij with 1 < i < j < N . This procedure is briefly described in

appendix B.

As recalled above, one way to prove unitarity of the Veneziano amplitude is to show

that all the cA,α are real and more generally, real coefficients in all 3-point amplitudes imply

unitarity of the complete S-matrix. It is not obvious from (4.22) that the cA,α are real since

the coefficients always appear in this formula as squares c2
A,α. By matching the right-hand

side of (4.22) to the known residue of the 4-point tachyon amplitude, the coefficients cA,α
can be calculated. While straightforward for low levels, this computation gets harder for

the general case. This computation can be found in appendix D with the result

c2
A,|α| =


A−|α|

2∑
l=0

VA−|α|
2
−l,A

(
A+ 3

4

)2l (|α|+ 1)(2l)

l!
(
d
2 + |α|

)(l) A− |α| even,

0 A− |α| odd,

(4.23)

where Vk,A even and Vk,A odd are essentially the central factorial numbers t(A, k) and t2(A, k),

(sequences A008955 and A008956 in the Online Encyclopedia of Integer Sequences, [37]),

Vk,A even =
(−1)k

A!4k
t2

(
A

2
, k

)
, 0 ≤ k ≤

⌊A
2

⌋
, (4.24)

Vk,A odd =
(−1)k

A!
t

(
A− 1

2
, k

)
, 0 ≤ k ≤

⌊A
2

⌋
. (4.25)

The zero in equation (4.23) follows from the monodromy relation (2.20) for three point

amplitudes, which makes them symmetric or anti-symmetric under interchange of the two

tachyon legs depending on whether A is even or odd. As (4.19) shows this is only the case

for |α| even/odd. In order to prove tree-level unitarity of the Veneziano amplitude, the

question is

c2
A,|α|

?
≥ 0, ∀A, |α|. to be shown (4.26)

Despite having formula (4.23), this is not straightforward since the V contains an alternat-

ing sign and the central factorial numbers complicate the issue. Explicit checks for d = 25

and all states up to A = 400 show that the squared couplings are positive.

4.2.2 The no-ghost theorem conditions

Before continuing to two massive legs, it will be shown that the techniques which led

to (4.22) can be used to (re)derive the no-ghost theorem conditions. For this, consider the

Veneziano amplitude for arbitrary ‘intercept’ α0,

A4 =
Γ(−s12 − α0)Γ(−s23 − α0)

Γ(−s12 − s23 − 2α0)
, (4.27)
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and arbitrary dimension D. Above α0 was always assumed to be 1. The intercept α0

appears in the residues

lim
s12→A−α0

A4 =
1

A!

−1

s12 −A+ α0

A∏
i=1

(s23 + α0 + i), A ∈ N0. (4.28)

In the case A = 0 a scalar particle with minimal mass α′m2 = −α0 is exchanged. It will

be assumed this is the same as the external particle. Therefore the external tachyons also

have this mass.

The left-hand side of equation (4.22) becomes with A = 1

− Ress12→1−α0A4 = s23 + α0 + 1. (4.29)

For the right-hand side of equation (4.22) a vector and a scalar particle have to be consid-

ered in this case

lim
s12→1−α0

k1 − k2 k3 − k4 + c2
1,•

= lim
s12→1−α0

c2
1,

α′

2
(k1 − k2) · (k3 − k4) + c2

1,•

= c2
1,

(
s23 +

3

2
α0 +

1

2

)
+ c2

1,•.

(4.30)

Matching up (4.29) and (4.30), it is seen that the overall coefficient is c2
1, = 1 and that

the intercept is fixed at

α0 = 1− 2c2
1,•. (4.31)

Unitarity requires all couplings c to be real which implies one of the conditions of the

no-ghost theorem

α0 ≤ 1. (4.32)

For the monodromy relations as written in equation (2.21) to hold α0 = 1 is required. For

more generic α0 the monodromy relations could be modified, see [16].

For the next mass level start by reading off the residue of the Veneziano ampli-

tude (4.27)

− Ress12→1A4 =
1

2

(
s2

23 + 5s23 + 6
)
. (4.33)

Note that this result was also obtained above using monodromy relations. The right-hand
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side of (4.22) yields

lim
s12→1

{
k1 − k2

(
− 1

D − 1

)
k3 − k4 + k1 − k2 k3 − k4 + c2

2,•

}

= lim
s12→1

{
c2

2,

(
α′

2

)2(
{(k1 − k2) · (k3 − k4)}2 − 1

D − 1
(k1 − k2)2(k3 − k4)2

)

+ c2
1,

α′

2
(k1 − k2) · (k3 − k4) + c2

1,•

}

= c2
2,

(
s2

23 + 5s23 +
25

4
− 25

4

1

D − 1

)
+ c2

2,

(
s23 +

5

2

)
+ c2

2,•.

(4.34)

This time (4.33) and (4.34) agree for

c2
2, =

1

2
, c2

2, = 0, c22,• =
1

2

(
6− 25

4
+

25

4

1

D − 1

)
=

26−D
8(D − 1)

. (4.35)

Only for D = 26 the symmetric traceless 2-tensor is the only particle appearing, as stated

in (4.17). For D < 26 unitarity requires a scalar particle at this mass level,9 while for

D > 26 the required coupling c2,• becomes imaginary, which conflicts with unitarity of the

S-matrix. So by unitarity there is an upper bound for D that agrees with the result known

from the no-go theorem

D ≤ 26. (4.36)

This sub-subsection contains a direct derivation of the dimension and intercept bounds of

the no-ghost theorem from the Veneziano amplitude using nothing but locality, unitarity

and Poincaré invariance. Closest to this in the literature as far as we are aware comes a

derivation in [39] which does still use some worldsheet input about the spectrum.

4.2.3 Two tensors, one tachyon

Now consider the amplitude A(MA,α, T,MB,β) of one tachyon and two massive particles

on mass levels A,B with polarisations ξα, ξβ in the irreducible representations α, β. Here

kA · ξα = 0 holds as well as kB · ξα = (−kA − kT ) · ξα = −kT · ξα due to momentum

conservation. An analogous result holds for the other polarisation. So it is enough to

consider each polarisation to only be contracted with the tachyon momentum kT or with

the other polarisation. The index q labels the number of contractions of the two polarisation

tensors with each other in a given term. For the couplings introduce an unknown coefficient

cA,B,α,β,q. Since the calculation of the coefficients was already cumbersome in the case of

3-point amplitudes with one massive leg, a general computation of the coefficients cA,B,α,β,q

9Known as a Brower state [38] in non-critical string theory.
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will not be attempted here. Define

.
.
.

.
.
.

.
.
.

µ1 ν1q

ν|β|

−kTkT

µ|α|
B, βA, α

= cA,B,α,β,q

q∏
a=1

ηµaνa
|α|∏

b=q+1

kµb
|β|∏

c=q+1

−kνc . (4.37)

The amplitude is then

A(MA,α, T,MB,β) =

min(|α|,|β|)∑
q=0

ξαµ1...µ|α|
.
.
.

.
.
.

.
.
.

µ1 ν1q

ν|β|

−kTkT

µ|α|
B, βA, α

ξβν1...ν|β| .

(4.38)

This amplitude appears first in the residue of the 5-point tachyon amplitude

Ress12→A−1Ress45→B−1A5

=
∑
α,β

min(|α|,|β|)∑
q=0

.
.
.

P⊥
k4+k5

Pβ k4 − k5P⊥
k1+k2

Pαk1 − k2

q

k3 −k3

A,α B, β

.
(4.39)

Since both other 3-point amplitudes that appear have only one massive leg, again only

symmetric representations appear. This suggests that in terms of unitarity the 5-point

amplitude does not add anything to the story of the 4-point amplitude. And indeed,

assuming cA,α ∈ R, everything in (4.39) is real and the right-hand side linear in the

cA,B,α,β,q. This implies cA,B,α,β,q ∈ R and thus unitarity of the 5-point amplitude follows

trivially from unitarity of the 4-point amplitude.

A nice consistency check is the case A = B = 2. It is known from (4.17) that at

this mass level only one irrep appears if D = 26, the symmetric traceless matrices. This
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example can neatly be written explicitly in birdtracks, which ensures the notation is clear.

Ress12→1Ress45→1A5

= k1 − k2

(
− 1

d

)

·

(
+

1

2 k1 + k2 k1 + k2

+
1

2

k1 + k2 k1 + k2
+

1

4

k1 + k2 k1 + k2

k1 + k2 k1 + k2

)

·


k3 −k3

+

k3 −k3

+



·

(
+

1

2 k4 + k5 k4 + k5

+
1

2

k4 + k5 k4 + k5
+

1

4 k4 + k5

k4 + k5

k4 + k5

k4 + k5

)

·
(

− 1

d

)
k4 − k5 .

(4.40)

The brackets of the projector (4.7) were expanded. This has to be compared to the

known result

2∑
a=0

(−1)a
(
k24

a

)(
k23

2− a

)(
k34

2− a

)
=

1

2
k2

24 − k24k23k34 +
1

4
k2

23k
2
34 + . . . , (4.41)

where only the highest order terms were written on the right-hand side. Since c2,

can be computed from the residue of the 4-point amplitude (4.22), the factorised

expression (4.40) is determined up to the three coefficients c2,2, , ,0, c2,2, , ,1

and c2,2, , ,2 that appear in the central bracket. The term with q = 0 is the only

one in (4.40) containing k2
23k

2
34 and similarly k24k23k34 appears only in the q = 1

and k2
24 only in the q = 2 term. This fixes the coefficients unambiguously. With

c2,2, , ,2 = c2,2, , ,1 = c2,2, , ,0 = 1
2 , (4.40) equals the known result (4.41).

We checked10 for the mass levels up to A = B = C = 3 that the coefficients cA,B,α,β,q
that can be obtained from the 5 point amplitude by matching the polynomials in kinematic

invariants kij order by order to the known result (3.59) give the correct contribution to the

10For computational reasons this check was performed for the higher mass levels without subtracting

traces. This amounts to taking reducible representations and is thus not a suitable approach for checking

unitarity. However, the result of this particular consistency check carries over to irreducible representations.
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factorised six point amplitude, which is related to 3-point amplitudes by

− Ress12→A−1Ress123→B−1Ress56→C−1A6

=
∑
α,β,γ

min(|α|,|β|)∑
q=0

min(|β|,|γ|)∑
r=0 ......

Pβ
P⊥
k1+k2+k3

P⊥
k1+k2+k3

−k4k4

Pγ

k3 −k3

q r

Pα
C, γ

B, β

A, α

k1 − k2 k5 − k6

P⊥
k5+k6

P⊥
k1+k2

.
(4.42)

In the six-point amplitude antisymmetric representations appear in the central factorisa-

tion channel starting at B = 3. Since these states do not appear in 5-point amplitudes,

these residues of the six point amplitude cannot be fully reconstructed from data obtained

from the five point amplitude. Furthermore, the six point amplitude does not provide all

the data to construct higher point amplitudes, because it does not involve enough momenta

to contain all highly antisymmetric representations itself. However, since the representa-

tions of SO(2n+ 1) are limited to Young diagrams with not more than n rows, there is

no representation antisymmetric in more than n indices and there must exist a tachyon

amplitude involving all irreps of SO(25) that appear in the spectrum.

The techniques introduced in this section make summing over physical tensor states

in principle straightforward for amplitudes with traceless symmetric irreps: a general al-

gorithm for computing couplings of two massive particles and one tachyon or even three

massive particles could be in principle implemented in computer algebra. However, brute

force calculations quickly become unfeasible due to the complexity of the contraction and

(anti)symmetrisation of multiple rank A tensors.

For further explicit calculations an ingredient that needs some further thought are

the SO(n) irrep projectors Pα. In this paper only the projector to traceless symmetric

irreps (D.12) was used. All projectors for 3-index tensors are given in [36].

The numerical coupling constants of one massive particle and two tachyons (4.23)

demonstrate that even these couplings of a relatively simple process are not that simple.

The couplings involving two or three massive particles are expected to be considerably

more involved. Deriving them in an explicit SO(D−1) covariant form would need sufficient

motivation, and would likely require superior technology.
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5 Target space definition of the string S-matrix at tree level in a flat

background

The results obtained above can be gathered into a working definition of the S-matrix of

string theory at tree level in a flat background. As will be elaborated upon in the discussion

section, an explicit and self-contained proof that the set of conditions given below leads

to a fully consistent S-matrix is still lacking. However, from the results obtained so far

such as the Koba-Nielsen amplitude obtained above it is plausible that the produced S-

matrix will be identical to the worldsheet-derived one. This will be checked further by

studying the output of the definition in the open superstring case. The definition can be

summarised as follows:

The tree level S-matrix for open strings in a flat background is determined by:

• unitarity

• locality

• D dimensional (super-)Poincaré invariance

• standard tree level colour-ordering (equation (2.1))

• universal monodromy relations (equation (2.20))

• under (generalised) BCFW shifts of colour-adjacent particles, the amplitude behaves

as it does in the corresponding string theory

• a strict ordering between the location of poles and of roots. In particular there is a

unique smallest mass (super)particle.

The last three requirements are those that are special to string theory. Colour-ordering

forces scattering amplitudes to have poles only in adjacent channels. Locality enters by

the requirement that three point amplitudes are polynomial functions of the external mo-

menta. This translates by unitarity to ‘polynomity’ of residues of higher point amplitudes

in forbidden channel momentum invariants. This was a crucial ingredient in extending

the Veneziano amplitude to higher multiplicity [2, 40]. Note that for four particles the

requirement of BCFW shift behaviour is almost literally the same as Regge behaviour. For

two tachyons for instance, equation (2.19) holds.

The ordering requirement for roots and poles amounts to the following: there is a

number x such for any momentum invariant si...j the roots of the amplitudes as a function

of this variable are located at si...j < x and the poles at si...j ≥ x. This number is the mass

of the smallest mass (super)particle, which will be taken to be unique.

Closed strings can simply be defined by the KLT relations. The KLT relations are

closely related to the monodromy relations. This is already clear from a close reading of

the KLT paper: the monodromy relations are used implicitly. A more modern and precise

connection is through the ‘momentum kernel’ of [30]. A particularly neat geometrical obser-

vation about the relation between monodromy and KLT for the four point amplitude which

can also be used to find the roots is made in [41]. A higher point generalisation is unknown.
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A further comment concerns Poincaré invariance, which for superstring theory should

naturally be enlarged to super-Poincaré invariance. As noted above, unitarity forces in

both cases the D ≤ Dcrit constraint. The value of the critical dimension is dependent on

the theory (26 and 10 for vanilla bosonic or superstrings respectively).

A final comment is that the possibility of using the monodromy relations as an exten-

sion of duality for foundational purposes was already conjectured for five point amplitudes

in [15]. What is added in this article is a calculational path to make their argument precise

for, in principle, any external matter content and any number of particles.

On minimality

The definition given above is certainly sufficient for the bosonic string: the output S-

matrix is the same as in the worldsheet approach. As already indicated above, it is highly

desirable to obtain known properties of the string theory S-matrix such as unitarity (reality

of couplings) without invoking conformal symmetry. On the other side, there is a pressing

question if the above definition is minimal. That is, is there perhaps a smaller set of

criteria possible?

There are physics reasons to suspect such a smaller set is indeed possible. The main

motivation for this is the ‘folk-theorem’ that there are no interacting quantum field theories

with a finite number of particles with spins bigger than two. From an on-shell perspective,

this ‘theorem’ has been discussed in a series of papers [42, 43] and [44] (see also [45]).

Suggestively, the path to a consistent theory suggested in the last two references involves

roots of amplitudes. It is suspected that combining the above analysis with this line

of reasoning might lead to the elimination of the requirement of imposing monodromy

relations. Similarly, in the close string sector there might be an argument which does away

with the assumption of the KLT relations, perhaps in favour of some form of what would

be called holomorphic factorisation on the worldsheet. The requirement that there is a

unique lowest mass (super)particle might also be unnecessary.

The above set of conditions is a working definition. As is usual in high energy physics

there are a number of hidden assumptions. One of these is for instance that only standard,

causal, Feynman type propagators are allowed (this feeds into the “residues at poles from

unitarity” argument). It would be interesting to reach a definition up to more rigorous

mathematical standards. It will be interesting to see where this differs from the much

more axiomatic approach of [46]: as shown above, any physical theory which contains the

Veneziano amplitude has a critical dimension by unitarity.

On extendability

The above definition is tailored to flat backgrounds. Analogs of at least some of the as-

sumptions can be worked out however in quite generic backgrounds. Unitarity for instance

should have an analog in any background. Furthermore, monodromy relations for open

strings can in principle be derived in any background, see [11]. Crucial here is that it is

known that vertex operators in the open string generically obey a braid relation,

: V1 :: V2 := R12 : V2 :: V1 : . (5.1)
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As pointed out first in [47], the R factors obey generically the Yang-Baxter equation. This

simply follows from consistency of the three point scattering amplitude in string theory.

Hence analogs of the monodromy relations should exist for open strings in any background

by following the same steps as in [11]. Actually, for closed strings one can also repeat

the step in deriving a KLT-like relation between open and closed string amplitudes in any

background. This follows as the KLT paper is basically only concerned with relating the

measure of the integration over the moduli space of the N -punctured sphere to that of

two N -punctured discs. The braid relation in equation (5.1) can then be inserted for the

proper (but very formal) form of the curved background KLT relations.

It would be extremely interesting if these short observations could be turned into a

tool to study scattering amplitudes in non-trivial string backgrounds. This is however far

beyond the scope of the present paper.

5.1 Massless amplitudes in the open superstring: five points

As a further illustrative example it will be explored below how the conditions posed above

can be solved in the superstring case. As the four point case was discussed above, let us

focus on five and more particles. Although the approach used previously will also work,

for variety here the explicit formula

Ress12→ARess123→B [A(12345)] = (−1)A+Bπ−2 sin(πk34)

[sin(πk24)A(14235) + sin(π(k23 + k24))A(14325)] , (5.2)

will be used. This is obtained by solving the monodromy relations for A(14235) and

A(14325). The amplitudes on the right-hand side have poles as a function of the following

variables:
A(14235) :

k14 = B − k24 − k34,

k24,

k23,

k35 = B −A− k34,

k15 = k23 + k24 + k34,

A(14325) :

k14 = B − k24 − k34,

k34,

k23,

k25 = A− k23 − k24,

k15 = k23 + k24 + k34.

(5.3)

5.1.1 Isolating the roots and fixing an ansatz

Analysing the right-hand side of equation (5.2) gives roots for instance for

k24 > 0, k23 > 0, k24 + k23 < A, {k24 ∈ N, k23 ∈ N}, (5.4)

by avoiding the poles of the amplitudes on the right-hand side. These conditions are less

strong compared to the bosonic string case. However, there is much more information

left unused in the above equation. First, on any massless pole the superstring amplitudes

factorise into massless amplitudes with less legs. Since it was already shown the four point

amplitude is proportional to the field theory amplitude AF , the massless residues of the

five point string amplitude are proportional to the massless residues of the field theory

amplitude. Hence it is natural to write as an ansatz for the residue,

Ress12→A,s123→B [A(12345)] = Ress12→A,s123→B
[
F1AF (12345) + F2AF (13245)

]
. (5.5)
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Although this ansatz is natural, it helps to know by the results in [48] that it will be

enough. Let us furthermore introduce the notation

G1 = Ress12→A,s123→BF1, G2 = Ress12→A,s123→BF2. (5.6)

The right-hand side of equation (5.2) now gives the functions Gi an important property:

they have roots for

k24 ≥ 0, k23 ≥ 0, k24 + k23 < A, {k24 ∈ N, k23 ∈ N}, (5.7)

and

k24 ≥ 0, k34 ≥ 0, k24 + k34 < B, {k24 ∈ N, k34 ∈ N}. (5.8)

Note the appearance of the equality signs. This property can be argued as follows: first con-

sider k24 → 0, while A > k23+k24 ∈ N. The right-hand side of equation (5.2) gives a contri-

bution proportional to the massless residue of the A(14235) amplitude in the (4, 2) channel.

This is proportional to the residue of the corresponding field theory amplitude, AF (14235)

in the (4, 2) channel, which can be expressed in terms of AF (12345) and AF (13245) by

the field theory BCJ relations. This picks up the residue of the AF (13245) amplitude,

while AF (12345) does not diverge in the limit so that it does not contribute. This is to be

compared to (5.5). G2 → 0 is required to extract the residue of AF (13245) and G1 → 0

follows because AF (12345) does not vanish by itself in this limit.

For k34 → 0 a similar reasoning gives that with k24 a positive integer for which k34 +

k24 < B one has to demand G1 → 0 and G2 → 0. This isolates the k34 residue in the

second amplitude on the right-hand side of equation (5.2). The remaining zero for k23 = 0

follows from the solution of the monodromy relations in terms of A(13425) and A(14325),

Ress123→BRess12→A [A(12345)] =(−1)A+Bπ−2 sin(πk23) (5.9)

[sin(πk24)A(13425) + sin(π(k34 + k24))A(14325)] ,

where the relevant variables are

A(13425) :

k13 = A−B − k23,

k34,

k24,

k25 = A− k23 − k24,

k15 = k23 + k24 + k34,

A(14325) :

k14 = B − k24 − k34,

k34,

k23,

k25 = A− k23 − k24,

k15 = k23 + k24 + k34.

(5.10)

Just as before, there is a maximal spin at each mass level. In the above notation, this

is A+1 and B+1 in the respective channels. Therefore, one would expect that for instance

an AF (12345) amplitude would be multiplied by a polynomial of maximal degree A + B,

with a similar spin-induced fine-structure of powers of k34, k24 and k23 as elucidated above

for the bosonic string. To be more precise, under a (1, 2) channel BCFW shift the residue

scales as

lim
z→∞

Ress12→AA(12345) ∼ zAAF (12345)(z)

(
f1

(
1

z

))
, (5.11)
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while for a (4, 5) channel shift

lim
z→∞

Ress45→BA(12345) ∼ zBAF (12345)(z)

(
f1

(
1

z

))
, (5.12)

holds. Note the analogy to (3.51) in the bosonic string case. Just as in that bosonic string

case it is natural to use the following basis of polynomials,

fa(k23, k24, k34) =

(
k23

A− a

)(
k24

a

)(
k34

B − a

)
, 0 ≤ a ≤ min(A,B), (5.13)

which scales as zA under a (1, 2) BCFW shift and as zB under a (4, 5) BCFW shift.

The analysis of the maximal spin gives for the ansatz of equation (5.5) the existence

of vectors of numbers Ga1, Ga2 and G̃a2 such that

G1 = Ga1fa(k23, k24, k34), G2 =
(
−k23G

a
2 + G̃a2

)
fa(k23, k24, k34). (5.14)

Here the possibility of a first order polynomial in k23 in the G2 polynomial follows as the

(1, 2) shift of the field theory amplitude A(13245) is suppressed by one power of z as it

is a non-adjacent BCFW shift, while the (4, 5) shift of this amplitude is colour-adjacent.

Having fixed the complete functional form of the amplitude, it remains to compute the

above three vectors of numbers.

5.1.2 Solving consistency constraints to obtain full result

Some constraints follow by the requirement that the combination on the right-hand side

of equation (5.5) have no poles, while the field theory amplitudes have residual kinematic

poles at the residue. This immediately forces

GB1 = 0, G0
2 = 0, G̃0

2 = 0, (5.15)

by absence of poles in the (3, 4) and (2, 4) channels respectively. To see this, take for

instance k34 = 0 in (5.5). The pole in AF (12345) is not cancelled by a factor of k34 in

fB(k23, k24, k34) hence GB1 = 0. For these channels only one of the field theory amplitudes

in the basis has a potential pole. In the (2, 3) channel both field theory amplitudes develop

a pole, leading to the constraint

GA1 −GA2 = 0. (5.16)

Here it was used that in this channel both field theory amplitudes in (5.5) factorise into

the same lower point amplitudes AF (23P )AF (P451). If A < B, then avoiding the pole in

the k13 channel forces

G̃c2 = k23G
c
2 = (A−B)Gc2 for A < B. (5.17)

The (1, 5) channel yields further information as the vanishing of the residue of the pole

in the (1, 5) channel implies

G1 +
k34

k24
G2 = 0 for k15 = k23 + k34 + k24 = 0. (5.18)
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Here the BCJ relation k34AF (P234) + (k34 + k23)AF (P324) = 0 has been used to pull out

an overall AF (P234)AF (P51). Evaluating this constraint on the kinematic point k23 =

A− k24, k24 = c and k34 = −A with c an integer 0 < c < A gives

cGc1 −A ((c−A)Gc2 + G̃c2) = 0, (5.19)

while evaluating it on the compatible kinematic point k34 = B−k24, k24 = c and k23 = −B
with c an integer 0 < c < B gives

cGc1 + (B − c) (BGc2 + G̃c2) = 0. (5.20)

These equations can be solved for G̃c2 and Gc1 to give

Gc1 =
1

c
A (c−B)Gc2, G̃c2 = (A−B)Gc2. (5.21)

The cases c = 0 and c = A or c = B are special as they would hit poles of the residue

in the (1, 5) channel. The correct approach is to first take the kinematic limits, obtaining

for instance
∂G1

∂k34
+

1

k24
G2 = 0 for k34 = 0, k23 + k24 = 0, (5.22)

as well as
1

k34
G1 +

∂G2

∂k24
= 0 for k24 = 0, k23 + k34 = 0, (5.23)

by the requirement that the residues at these poles have to vanish. Here the derivatives

single out the terms linear in the corresponding variable since that variable is taken to be

zero in both cases. Again a BCJ relation was used to pull out an overall factor containing

three 3-point amplitudes. From the first

min(A,B−1)∑
a=0

Ga1(−1)B−a−1

B − a

(
k23

A− a

)(
−k23

a

)
− 1

k23

(
−k23G

B
2 + G̃B2

)( k23

A−B

)(
−k23

B

)
= 0,

(5.24)

while from the second

− G0
1

k23

(
k23

A

)(
−k23

B

)
+

min(A,B)∑
a=1

(
−k23G

a
2 + G̃a2

) (−1)a−1

a

(
k23

A− a

)(
−k23

B − a

)
= 0, (5.25)

is obtained. Both equations can be solved uniquely for Ga1 resp. Ga2 since the polynomials

these coefficients multiply differ by two powers of k23. Starting from the maximal power

term of degree A+B one can solve for Ga2 and G̃a2. To read off the solution we use

min(A,B−1)∑
a=0

(
k23

A− a

)(
−k23

a

)
=
B(A−B − k23)

Ak23

(
k23

A−B

)(
−k23

B

)
,

min(A,B)∑
a=1

(
k23

A− a

)(
−k23

B − a

)
=

AB

k23(A−B − k23)

(
k23

A

)(
−k23

B

)
,

(5.26)
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and obtain the solutions

G̃a2 = (A−B)Ga2, Ga1 = (−1)B−a−1 (B − a)A

B
GB2 , (5.27)

and

G̃a2 = (A−B)Ga2, Ga2 = (−1)a−1 a

AB
G0

1, (5.28)

for the two equations. Note that together with (5.21) already more than enough constraints

were found to fix the residue up to a constant and all redundant constraints that were

obtained in different ways are compatible. The result for G1 and G2 is

G1 =
∞∑
a=0

(B − a)

B
(−1)aG0

1fa(k23, k24, k34),

G2 =

∞∑
a=0

(A−B − k23)a

AB
(−1)a−1G0

1fa(k23, k24, k34).

(5.29)

Hence the ansatz for the A,B residue is fixed up to an overall constant by consistency

requirements. Note that with this solution a factor of k13 factors out of the G2 function.

From this result it is also manifest that there is no pole in the (1, 3) channel within the

ansatz remaining. The remaining constant G0
1 is the string coupling constant times a

numerical factor which can only depend on A and B. This is easily determined from

equation (5.2).

The result just obtained corresponds indeed to the residue of the known open super-

string theory five point amplitude. The simplest form in the literature can be found in [48],

for which

F1 = k12k34

1∫
0

1∫
0

dxdyxk45yk12−1(1− x)k34−1(1− y)k23(1− xy)k24

=

∞∑
a=0

(−1)A+B−aAk34

(k12 +A)(k45 +B)

(
k23

A− a

)(
k24

a

)(
k34 − 1

B − a− 1

)

=
∞∑
a=0

(−1)A+B−aA(B − a)

(k12 +A)(k45 +B)

(
k23

A− a

)(
k24

a

)(
k34

B − a

)
,

(5.30)

and

F2 = k13k24

1∫
0

1∫
0

dxdyxk45yk12(1− x)k34(1− y)k23(1− xy)k24−1

=
∞∑
a=0

(−1)A+B−a−1(k12 + k23 − k45)k24

(k12 +A)(k45 +B)

(
k23

A− a− 1

)(
k24 − 1

a

)(
k34

B − a− 1

)

=

∞∑
a=0

(−1)A+B−a(k12 + k23 − k45)a

(k12 +A)(k45 +B)

(
k23

A− a

)(
k24

a

)(
k34

B − a

)
,

(5.31)

hold. The residues studied above are easily read off from these equations. As these are

correctly obtained, the full result follows by BCFW on-shell recursion.
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Note that the derivation above almost exclusively uses physical input such as locality,

unitarity and Regge-behaviour. It should be stressed there is a non-trivial step in the

above at the point where an ansatz for the five point string theory amplitude is written in

terms of field theory amplitudes. Note that by the consistency conditions that the residue

is local it is easy to see that an ansatz with a single field theory amplitude would not work.

Although the ansatz is very natural, in principle it could be in the above approach that

it would ultimately turn out to be insufficient. While it is known [48] that this does not

occur, it would be interesting to have a target space understanding of this.

5.2 Massless amplitudes in the open superstring: higher points & other mat-

ters

For more than five points as well as for fermionic matter the above analysis can be repeated.

For higher points the results are at least easy to sketch: one expects to be able to write

the residue in terms of a (N − 3)! element basis of field theory amplitudes, multiplied by a

polynomial in the remaining kinematic variables. At a chosen pole in the multiperipheral

channel the maximum powers of these variables are set by the scaling of the string theory

amplitude under the relevant BCFW-like shift of equation (3.78). For more than 11 parti-

cles this will require a formal analytic continuation to higher dimensional amplitudes. The

monodromy relations can then be used to obtain roots of the chosen residue. This, taken

together with the cases where the residues do not vanish but instead involve lower point

string amplitudes with massless matter only is fully expected to completely fix the residue.

Using on-shell recursion, this then fixes the amplitude.

For guidance, one technical tool needed for this program will be worked out here, which

is the result of the shift of l colour-adjacent momenta of equation (3.78), reproduced here

for convenience,

k1 → k1 − (l − 1)qz, k2 → k2 + qz, . . . , kl → kl + qz, (5.32)

where q is orthogonal to all momenta ki for i ∈ {1, . . . , l} and itself.

Field theory scaling

Standard Feynman-’t Hooft type power-counting gives a scaling of ∼ zl−1 for any ampli-

tude: this follows from graphs with three point couplings only, the l shifted gluons on the

outside and at least one external (off-shell) leg. It will be argued here that the color-ordered

field theory amplitudes where particles 1 through l appear adjacent in color-order actually

scale like z. Note that the particles do not have to appear as an ordered set: there should

be no unshifted particles splitting the set in two in colour-ordering. Those amplitudes

which have such a split set are suspected to scale suppressed by one power of z.

To demonstrate this one can study Yang-Mills theory in a special gauge: using the

light cone vector q as a gauge choice as first suggested in [24] for the l = 2 case. For this

gauge there are several classes of Feynman diagrams which are singular: those that have

a linear sum of only momenta from the set {k1, . . . , kl} in one of their propagators. For a
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propagator of this type, q is not a valid light cone gauge choice as

q ·

(∑
i∈σ

ki

)
= 0. (5.33)

Here σ is a subset of {1, . . . , l}. Technically, this condition blows up a term in the light

cone gauge propagator in the graph with only shifted particles on one side. This can be

regulated as in [49] by choosing an auxiliary light cone gauge vector q + xk1 and letting x

tend to zero. Note that the (regulated) singular propagators are not orthogonal to q. The

result is that the singular graphs potentially could contribute positive powers of z scaling.

However, any power of z will appear with a qµ contracted into the remainder of the graph.

This remainder must be a three point vertex with a non-shifted momenta: the q must

contract with these momenta.

The singular graphs are classified by the number of connections to the remainder of

the graph. There is at least one, but potentially more. First consider the class with

one connection. Since the shift leaves all mandelstam invariants from the singular part

invariant, any q dependence must contract with outside lines. For the shifted legs, q ·ξ ∼ 1
z ,

so this would lead to subleading contributions. Hence for one connection between singular

and other parts, the maximal scaling is ∼ z, obtained when q contracts into the one singular

propagator connecting to the remainder of the graph.

A graph with more connections to the remainder can be made from the class with one

by adding un-shifted external lines in any position. This leads to a decrease by one power

of 1
z from a non-singular additional hard propagator in the graph.11 There can also be an

additional positive power of z since there can now be two singular propagators ending on

a non-singular three vertex: this situation only occurs for four and more shifted particles.

This implies the amplitude scales as ∼ z under the shift (5.32). We suspect that shifts of

field theory amplitudes where the particles 1, . . . , l do not appear adjacent in color-order

are suppressed by an additional power of 1
z , but so far have only checked this for three

shifted particles.

String theory scaling

For the shift (5.32) one finds for the string theory amplitude in the multiperipheral channel

to scale to leading order in z as

Ress1...l→AlAN ∼ z
Al+1

(
f1

(
1

z

))
, (5.34)

where Al is the level at the s1...l pole. This can be argued for by an extension of the analysis

in [10, 11]. Basically, this is a saddle point approximation for the integral of the position

of l−1 vertex operators, with y1 fixed at zero and yl+1 at −∞. Schematically, this integral

looks like ∫ yl−1

−∞
dyl . . .

∫ 0

y3

dy2〈: V (yl) : . . . : V (y2) :: V (y1 = 0) : . . .〉. (5.35)

11A potential z0 contribution from the hard propagator is easily seen to cancel out as it would contract

two q’s into the same three vertex.
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Calculating the OPE of the vertex operators as done in [10, 11] and taking a saddle approx-

imation yields yiz ∼ 1 for positions yi in the large z limit. From the saddle-point gaussian

integral one power of 1
z follows for each integrated variable within the saddle point approxi-

mation. From the OPE one power of z follows for each polarisation vector, as well as a zAL

Regge-type factor. Note that this argument is basically the usual string theory observation

that the maximal spin at level Al is Al + 1 in the superstring. To see this, consider the

residue of the pole of the superstring amplitude. The left and right amplitudes are functions

of the mandelstams, but these are invariant under the shift above. Possible contractions of

polarisation vectors with momenta would yield subleading-in-z terms. Hence the maximal

possible scaling is set by the momenta appearing in the polarisation sum which contract

into the unshifted amplitude. This scaling is simply a count of possible momenta and hence

the spin, giving Al + 1 by the known spectrum of the string.

Synthesis

These scaling results translate into constraints on the coefficients in a chosen basis of field

theory amplitudes. In the multiperipheral channel it is natural to write an ansatz

A(1, 2, 3, 4, . . . , N)bs1,...,l=Al=
∑

σ∈P (2,3,...,N−2)

GσAF (1, σ,N − 1, N), (5.36)

since this is rich enough to capture all points where the multiperipheral residue can be

explicitly calculated by tuning to a pole in the cross-channel. The chosen basis contains

many colour ordered amplitudes which have particles ordered similarly to the canonical

order, which will lead to tighter bounds on the G polynomials. These bounds arise by

considering the generalised BCFW scalings of equation (5.32). The constraints on the

coefficient function follow from the known shifts of the string theory, e.g. equation (5.34),

and the shifts of the field theory amplitudes that appear in the ansatz. Note that the only

quantity which is really needed in this computation is the ratio of the string-to-field theory

scaling under the generalised shift.

In a next step, one derives further constraints on the functions G by using the mon-

odromy relations. Similar patterns of roots will be obtained as in the bosonic string case,

again at first with kij > 0 conditions instead of ≥. Note this in effect fixes the functions

G up to a finite degree polynomial. This leads to a more refined form for the ansatz.

It is strongly suspected that the G polynomials have roots with kij ≥ 0-type conditions.

The locality conditions (no remaining poles in the residue) are expected to fix most, if

not all of the remaining freedom of the ansatz. Note that there are even more conditions

available from known factorisations of the residue into products of massless particles in

cross-channels to fix coefficients. Hence it is fully expected that the string theory answer

in the form written in [48] is reproduced. We leave a full proof of this to future work.

Other matter

The inclusion of fermionic matter is up to five points trivial as the fermionic matter am-

plitudes are related to the bosonic ones by the on-shell supersymmetric Ward identities. It

would be interesting to explore amplitudes above five points using an on-shell superspace
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formalism. Note that in the calculation above supersymmetry did not play a prominent

role. It is not absent though: it is hidden in the form of the three point amplitude with

three massless gluons.

6 Discussion and conclusion

The motivation behind this article is to restart the exploration of string theory from a target

space point of view. This is driven by recent developments in field theory which harken

back to string theory’s very roots in the analytic S-matrix program. The encouraging

results obtained above on the basis of this motivation fall roughly into two categories:

calculational techniques and foundational questions.

Within the first category it has been shown in examples that the monodromy relations

can be used to calculate residues at singularities directly. This eliminates in effect a sum

over the tower of states known to be present in string theory. Put differently, all the

couplings of these higher states are exquisitely fine-tuned to yield this simple result.

The residues at singularities may then be combined with on-shell recursion to compute

full amplitudes, leaving relatively simple infinite sums over the levels. In effect, the mon-

odromy relations pick out a unique deformation of Yang-Mills theory amplitudes. Note the

infinite sums have a function as in the field theory limit they are intimately connected to

the appearance of multiple zeta values. Recently interesting patterns in this limit for mass-

less superstring amplitudes were pointed out in [50], see also [51–54]. It would certainly be

interesting to see how those patterns are related to the patterns of roots exposed in this

article. More generally, the field theory limit of the BCFW-type expressions for amplitudes

is an interesting area to be explored. Extending the on-shell calculational strategy to even

just one loop level is another direction of interesting research as here much less is known

(see [55] for recent work in this direction from a worldsheet perspective). In principle the

tree level S-matrix tightly constrains string loop corrections through unitarity, but turning

this observation into a statement of practical utility is not necessarily easy.

In the foundational category a new, purely target space based definition of the tree level

S-matrix of string theory has been proposed. Since the essential inputs of this definition

are known to be satisfied in string theory, there can be little doubt that its output is

consistent, but it would be very interesting to completely evade resorting to the worldsheet

picture. As an example of this unitarity has been checked above up to a degree. A full

target-space based proof of unitarity would be welcome. As discussed above, the target

space approach to string theory may generalise to backgrounds other than flat ones. It

would already be very welcome to have one fully-worked example of this for a non-trivial

curved background. Of course, there might be much to be gained by using the worldsheet

to derive the analogs of the monodromy relations and large BCFW shifts as inputs for a

given target space calculation.

It would be interesting to see if the set of conditions proposed above as a definition

of the S-matrix is minimal or not. It should be noted that at least morally speaking

our proposal for a definition of the S-matrix is similar to that of [56]. In that article

a particular kind of generalised monodromy conditions were derived which in contrast to

– 49 –



J
H
E
P
0
6
(
2
0
1
4
)
0
5
4

equation (2.20) do depend on particle content. To calculate a given amplitude one still needs

to perform a worldsheet computation in that approach. Deriving the relations proposed

in [56] from (2.20) might be interesting as it is a possible route to check overall consistency

of the approach. Moreover, it would be interesting to find out what the minimal set of

conditions in target space is for which the answer is “all known string theories”.

A definition of closed string theory through the KLT relations leaves much to be

desired. Better would be to find a more intrinsic definition which would yield KLT as

an output. This would be in the realm of a string theory extension of colour-kinematics

duality. More down to earth, an understanding of the location of the roots of the closed

string amplitudes could perhaps be obtained in a different way. In general the story of the

roots of amplitudes certainly deserves further study.

It should be pointed out that one of our initial motivations to study unitarity was to

obtain explicitly SO(D− 1) covariant three point amplitudes for arbitrary matter content.

The forms in the literature commonly involve only manifest SO(D − 2) covariance, with

some exception for maximal spin [57]. However, from the results in section 4 for the two

tachyons case it is clear that even these in their current formulation are not simple. We

suspect that in a sense to be made precise they are not written in the right variables.

Finding these right variables probably would lead one to a form of an ‘on-shell string field’

as an analog to the more well-known on-shell superfields, but this remains a direction to

be explored.

It is rather remarkable that the on-shell intuition which originally led to Veneziano’s

amplitude can be made into a computational engine for any number of points, bypassing the

later-found worldsheet picture. This suggests the worldsheet point of view and especially

conformal symmetry may not be as central to string theory as always thought. Exploring

this different viewpoint on the theory should prove fruitful beyond the results obtained here.
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A Multi-residues of tachyon amplitudes from the worldsheet

This appendix contains an explicit derivation of the multiple residue of the Koba-Nielsen

amplitude. With the conventional gauge fixing

z1 = 0, zN−1 = 1, zN →∞ , (A.1)

the Koba-Nielsen formula reads

AN =
N−2∏
u=2

zu+1∫
0

dzu

N−2∏
v=2

zk1vv

N−2∏
l=2

(1− zl)kl,N−1
∏
i,j

1<i<j<N−1

(zj − zi)kij . (A.2)
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Using binomial expansion12

(zj − zi)kij =
∞∑

aij=0

(
kij
aij

)
(−1)aijz

aij
i z

kij−aij
j , (A.3)

the amplitude becomes

AN =

∞∑
a23,...,aN−2,N−1=0

∏
i,j

1<i<j<N

(−1)aij
(
kij
aij

)N−2∏
u=2

zu+1∫
0

dzuz
aij
i

N−2∏
v=2

zk1vv

∏
s,t

1<s<t<N−1

zkst−astt . (A.4)

Doing the integrals one by one, one finds that the (l+1)th integral gives the factor

1

α′(k1 + . . .+ kl)2 +
∑

1<u≤l
l<v<N

auv − 1
. (A.5)

Now compute the N -point tachyon amplitudes with all internal particles on-shell −α′(k1 +

. . .+ kl)
2 = Al − 1. In our other notation these mass levels correspond to A2 = A,A3 = B

and so on. Doing the integral using binomial expansion, one can see a way to write the

result in general(
N−2∏
l=2

Ress1...l→Al−1

)
AN =(−1)N−3

∞∑
a23,...,aN−2,N−1=0

∏
i,j

1<i<j<N

(−1)aij
(
kij
aij

)N−2∏
l=2

δAl,
∑

1<u≤l
l<v<N

auv .

(A.6)

For example the double residue of the 5-tachyon amplitude is

Ress12→A2−1Ress123→A3−1A5

=

∞∑
a23,a24,a34=0

(−1)a23+a24+a34

(
k23

a23

)(
k24

a24

)(
k34

a34

)
δA2,a23+a24δA3,a24+a34

=

min(A2,A3)∑
a24=0

(−1)A2+A3−a24
(

k23

A2 − a24

)(
k24

a24

)(
k34

A3 − a24

)
.

(A.7)

Analogously for N = 6

Ress12→A2−1Ress123→A3−1Ress1234→A4−1A6

= −
∞∑

a23,...,a45=0

(−1)a23+a24+a25+a34+a35+a45

(
k23

a23

)(
k24

a24

)(
k25

a25

)(
k34

a34

)(
k35

a35

)(
k45

a45

)
· δA2,a23+a24+a25δA3,a24+a25+a34+a35δA4,a25+a35+a45 (A.8)

= −
min(A2,A3)∑
a24=0

min(A2,A3,A4)∑
a25=0

min(A3,A4)∑
a35=0

(−1)A2+A3+A4−a24−2a25−a35

·
(

k23

A2 − a24 − a25

)(
k24

a24

)(
k25

a25

)(
k34

A3 − a24 − a25 − a35

)(
k35

a35

)(
k45

A4 − a25 − a35

)
.

12Alternatively, one could use Mellin-Barnes representations here, see e.g. [58] for a systematic approach.
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B On-shell space of kinematic variables

In section 4 the Koba-Nielsen amplitudes were factored into 3-point amplitudes by putting

all the Mandelstams s12... on the mass shell. It is shown in this appendix how in this

configuration any kij can be expressed in terms of the remaining (N−2)(N−3)
2 independent

variables kij with 1 < i < j < N . After obtaining a result which can contain any kij
the following rules can be used to remove spurious kinematic variables. First momentum

conservation is used to remove the variables kiN

kiN =
N−1∑
j=1

−kij . (B.1)

The N − 3 conditions to put k1 + k2 up to k1 + k2 + . . . + kN−2 on-shell can be used to

eliminate k12, . . . , k1,N−2

−α′(k1 + k2)2 = A2 − 1,

−α′(k1 + k2 + k3)2 = A3 − 1,

... (B.2)

−α′(k1 + k2 + . . .+ kN−2)2 = AN−2 − 1.

Finally, there is always one additional condition that eliminates k1,N−1. This condition is

found by removing the 1 using momentum conservation and then kN−1,N using the last on-

shell condition again (using momentum conservation to get −α′(kN−1 + kN )2 = AN−2− 1)

k1,N−1 =
N∑
j=2

−kj,N−1 =
N−1∑
j=2

−kj,N−1 +AN−2 + 1. (B.3)

Now only those invariants are left that appear in the residues of the N -tachyon ampli-

tude (3.79).

C Cyclicity as alternative input for fixing the residue coefficients

For the 4 and 5 point tachyon amplitudes in the bosonic string the coefficients for the basis

elements can also be fixed just by the assumption that the amplitudes are cyclic. It is

likely that a generalisation to N points is possible.

4 points

With the residues derived before, the 4-point amplitude is

∞∑
A=0

(
k23

A

)
hA

k12 +A+ 1
, (C.1)

and the coefficients hA are to be determined. Due to momentum conservation k34 = k12

holds and so cyclic invariance yields

∞∑
A=0

(
k23

A

)
hA

k12 +A+ 1
=

∞∑
B=0

(
k12

B

)
hB

k23 +B + 1
. (C.2)
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to calculate the constants hA consider the line k12 = k23 − A′ (with A′ ∈ N) in the space

of kinematic variables and multiply both sides with (k23 + 1)

(k23 + 1)
∞∑
A=0

(
k23

A

)
hA

k23 −A′ +A+ 1
= (k23 + 1)

∞∑
B=0

(
k23 −A′

B

)
hB

k23 +B + 1
. (C.3)

Now set k23 = −1 and obtain

(−1)A
′
hA′ = h0. (C.4)

5 points

The 5-point amplitude is in terms of the basis derived above (3.53)

∞∑
A,B=0

min(A,B)∑
a=0

(
k23

A− a

)(
k34

B − a

)(
k24

a

)
hA,B,a

(k12 +A+ 1)(k45 +B + 1)
. (C.5)

It is useful to change to a set of variables that is mapped to itself under a cyclic relabelling

of the external particles. For this, exchange k24 for k51 using k24 = k51 − k23 − k34 − 1

∞∑
A,B=0

min(A,B)∑
a=0

(
k23

A− a

)(
k34

B − a

)(
k51 − k23 − k34 − 1

a

)
hA,B,a

(k12+A+1)(k45+B+1)
. (C.6)

Consider the cyclic permutation by two positions

∑
A,B,a

hA,B,a

(
k23
A−a

)(
k34
B−a

)(
k51−k23−k34−1

a

)
(k12 +A+ 1)(k45 +B + 1)

=
∑
C,D,b

hC,D,b

(
k45
C−b
)(

k51
D−b

)(
k23−k45−k51−1

b

)
(k34 + C + 1)(k12 +D + 1)

. (C.7)

This time restrict to k45 = k34 −B′ and multiply by (k12 +A′ + 1)(k34 + C ′ + 1)

(k12 +A′+1)(k34 + C ′+1)
∑
A,B

min(A,B)∑
a=0

hA,B,a

(
k23
A−a

)(
k34
B−a

)(
k51−k23−k34−1

a

)
(k12 +A+ 1)(k34 −B′ +B + 1)

= (k12 +A′+1)(k34 + C ′+1)
∑
C,D

min(C,D)∑
b=0

hC,D,b

(
k34−B′
C−b

)(
k51
D−b

)(
k23−k34+B′−k51−1

b

)
(k34 + C + 1)(k12 +D + 1)

.

(C.8)

Set k12 = −A′ − 1 and k34 = −C ′ − 1

min(A′,B′+C′)∑
a=0

hA′,B′+C′,a

(
k23

A′ − a

)(
−C ′ − 1

B′ + C ′ − a

)(
k51 − k23 + C ′

a

)

=

min(C′,A′)∑
b=0

hC′,A′,b

(
−B′ − C ′ − 1

C ′ − b

)(
k51

A′ − b

)(
k23 +B′ + C ′ − k51

b

)
.

(C.9)

Now set C ′ = 0

min(A′,B′)∑
a=0

hA′,B′,a

(
k23

A′ − a

)(
−1

B′ − a

)(
k51 − k23

a

)
= h0,A′,0

(
k51

A′

)
. (C.10)
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One can choose k23 = k51 6∈ Z (where the integers are avoided to make sure not to hit a

zero) to gain

hA′,B′,0

(
−1

B′

)
= h0,A′,0. (C.11)

Applying this formula twice to h0,0,0 gives us all coefficients with a = 0

hA′,B′,0 = (−1)A
′+B′h0,0,0. (C.12)

To calculate the other coefficients, go back to (C.10) and set k23 = −1 and k51 = a′ − 1

with a′ ∈ N, 1 ≤ a′ ≤ min(A′, B′)

0 =
a′∑
a=0

hA′,B′,a

(
−1

A′ − a

)(
−1

B′ − a

)(
a′

a

)
= (−1)A

′+B′
a′∑
a=0

hA′,B′,a

(
a′

a

)
. (C.13)

These are enough equations to fix all hA′,B′,a′ and given that the alternating sum of binomial

coefficients vanishes, the solution is

hA′,B′,a′ = (−1)a
′
hA′,B′,0. (C.14)

Together with (C.12) the result is

hA′,B′,a′ = (−1)A
′+B′+a′h0,0,0. (C.15)

D Couplings of two tachyons and one massive particle

In this appendix (4.22) is used to compute the general 3-point coupling of two tachyons

and one arbitrary on-shell particle. The right-hand side of (4.22) consists of contractions

of the terms (k1 − k2)µ and (k3 − k4)µ, i.e.

α′

2
(k1 − k2)µξIµξ

I
ν(k3 − k4)ν

∣∣∣∣
s12=A−1

= s23 +
A+ 3

2
, (D.1)

and

α′

2
(k1 − k2)µξIµξ

I
ν(k1 − k2)ν

∣∣∣∣
s12=A−1

=
α′

2
(k3 − k4)µξIµξ

I
ν(k3 − k4)ν

∣∣∣∣
s12=A−1

=
A+3

2
. (D.2)

Start by writing the residues of the Veneziano amplitude as a function of the polyno-

mial (D.1). Then all couplings cA,α that appear as part of the 3-point amplitudes on the

right-hand side of (4.22) are computed by matching up the coefficients of these polynomials

on both sides.

The residues of the Veneziano amplitude at mass level A ∈ N0 are

− Ress12→A−1A4(s12, s23) =
1

A!

A∏
i=1

(s23 + 1 + i). (D.3)
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These residues can be expressed as linear combinations of the terms (D.1). For even A,

−Ress12→A−1A4(s12, s23) =
1

A!

A
2∏
i=1

{(
s23 +

A+ 3

2

)2

−
(
i− 1

2

)2
}

=

A
2∑

k=0

Vk,A even

(
s23 +

A+ 3

2

)A−2k

,

(D.4)

holds, with

V0,A even =
1

A!
, Vk,A even =

(−1)k

A!

A
2∑

j1=1

(
j1 −

1

2

)2
A
2∑

j2=j1+1

(
j2 −

1

2

)2

. . .

A
2∑

jk=jk−1+1

(
jk −

1

2

)2

.

(D.5)

Similarly, for odd A

−Ress12→A−1A4(s12, s23) =
1

A!

(
s23 +

A+ 3

2

) A−1
2∏
i=1

{(
s23 +

A+ 3

2

)2

− i2
}

=

A−1
2∑

k=0

Vk,A odd

(
s23 +

A+ 3

2

)A−2k

, (D.6)

with

V0,A odd =
1

A!
, Vk,A odd =

(−1)k

A!

A−1
2∑

j1=1

j2
1

A−1
2∑

j2=j1+1

j2
2 . . .

A−1
2∑

jk=jk−1+1

j2
k . (D.7)

Vk,A even and Vk,A odd are essentially the central factorial numbers t(A, k) and t2(A, k)

Vk,A even =
(−1)k

A!4k
t2

(
A

2
, k

)
, 0 ≤ k ≤

⌊A
2

⌋
, (D.8)

Vk,A odd =
(−1)k

A!
t

(
A− 1

2
, k

)
, 0 ≤ k ≤

⌊A
2

⌋
, (D.9)

where

t(n, 0) = 1,

t(n, n) = (n!)2, (D.10)

t(n, k) = n2t(n− 1, k − 1) + t(n− 1, k),

t2(n, 0) = 1,

t2(n, n) = ((2n− 1)!!)2, (D.11)

t2(n, k) = (2n− 1)2t2(n− 1, k − 1) + t2(n− 1, k).

The interesting part on the right-hand side of (4.22) are the projectors Pα to the

SO(D − 1) or SO(D − 2) irrep α. Since the 3-point amplitudes with two tachyons are

already fully symmetric (4.21), only the projector which projects out the trace part of
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the product of two symmetric |α|-tensors is needed. This is derived below in section D.1

and reads

P
′
I1...I|α|,J1...J|α|

=

b |α|
2
c∑

k=0

W|α|,k

k∏
a=1

δI2a−1,I2aδJ2a−1,J2a

|α|∏
b=2k+1

δIb,Jb , (D.12)

where b |α|2 c is the greatest integer less or equal |α|2 and

W|α|,0 = 1, W|α|,k = (−1)k
|α|!

(|α| − 2k)!2kk!

k∏
a=1

1

d+ 2|α| − 2a− 2
, (D.13)

with d = D−1. Since only symmetric tracefree irreps appear it is unambiguous to label the

couplings cA,α by cA,|α| in this section. Inserting the projector into (4.22) and using (D.1)

and (D.2) yields

A∑
|α|=0

c2
A,|α|

b |α|
2
c∑

k=0

W|α|,k

(
A+ 3

2

)2k (
s23 +

A+ 3

2

)|α|−2k

(D.14)

= c2
A,A

(
s23 +

A+ 3

2

)A
+

[
c2
A,AWA,1

(
A+ 3

2

)2

+ c2
A,A−2

](
s23 +

A+ 3

2

)A−2

+

[
c2
A,AWA,2

(
A+ 3

2

)4

+ c2
A,A−2WA,1

(
A+ 3

2

)2

+ c2
A,A−4

](
s23 +

A+ 3

2

)A−4

+ . . . .

Here it was already used that only even or odd powers of the polynomial in s23 appear

exclusively in (D.4), (D.6). This implies that all c2
A,|α| with (A− |α|) odd are zero which is

expected as explained in section 4.2.1. Now a recursive formula for c2
A,|α| can be read off

by matching up (D.4), (D.6) and (D.14)

c2
A,A = V0,A, c2

A,A−2k = Vk,A −
k∑
l=1

c2
A,A−2k+2lWA,l

(
A+ 3

2

)2l

. (D.15)

Observing that each term which multiplies the number Vk,A in (D.15) contains the same

power of
(
A+3

2

)
, the recursion relation can be cast into the form

c2
A,A−2k =

k∑
l=0

Vk−l,A

(
A+ 3

2

)2l

MA,k
l , (D.16)

with

MA,k
0 = 1, MA,k

l = −
l∑

j=1

WA−2k+2l,jM
A,k
l−j . (D.17)

This can be expressed in a closed form. Start simplifying with the observation that (with

|α| = A− 2k and λ = (λ1, . . . , λm) denotes a partition of l) each term in MA,k
l consists of

a product
m∏
i=1

W|α|+2(l−
∑
k<i λk),λi . (D.18)
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A common factor can be pulled out of all of these products

m∏
i=1

W|α|+2(l−
∑
k<i λk),λi =

m∏
i=1

(−1)λi(|α|+ 2(l −
∑

k<i λk))2λi

22λi
W̃|α|+2(l−

∑
k<i λk),λi

=
(−1)l(|α|+ 1)(2l)

22l

m∏
i=1

W̃|α|+2(l−
∑
k<i λk),λi ,

where W̃|α|,j =
1

j!(d2 + |α| − 2)j
,

(D.19)

and the raising and falling factorials (x)(l) = (x + l − 1)l = x(x + 1)(x + 2) . . . (x + l − 1)

were used. MA,k
l is proportional to this overall factor

MA,k
l =

(−1)l(|α|+ 1)(2l)

22l
M̃A,k
l , M̃A,k

0 = 1, M̃A,k
l = −

l∑
j=1

W̃|α|+2l,jM̃
A,k
l−j . (D.20)

Next by induction it can be proven that

M̃A,k
l =

(−1)l

l!(d2 + |α|)(l)
. (D.21)

The statement is true for l = 0. Plugging in M̃A,k
l−j into the recursive definition for the

induction step yields

M̃A,k
l = −

l∑
j=1

1

j!(d2 + |α|+ 2l − 2)j

(−1)l−j

(l − j)!(d2 + |α|)(l−j)

=
1

(d2 + |α|)(2l−1)

l∑
j=1

(−1)l−j+1(d2 + |α|+ l − j)(l−1)

j!(l − j)!
.

(D.22)

To show that this equals (D.21) use the identity

l∑
j=0

(−1)l−j+1(d2 + |α|+ l − j)(l−1)

j!(l − j)!
= 0, (D.23)

which can be proved using computer algebra. This yields the expression

MA,k
l =

(|α|+ 1)(2l)

22ll!(d2 + |α|)(l)
, (D.24)

which inserted into (D.16) yields the final result

c2
A,|α| =


A−|α|

2∑
l=0

VA−|α|
2
−l,A

(
A+ 3

4

)2l (|α|+ 1)(2l)

l!(d2 + |α|)(l)
A− |α| even,

0 A− |α| odd.

(D.25)

This is the result quoted in the main text.
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D.1 Projector from symmetric to traceless symmetric tensors

In this section the projector from symmetric tensors to traceless symmetric tensors and its

simplified form that can be used when contracting with symmetric tensors from both sides

are derived. Be Tm = T I1...Im a symmetric m-tensor over Rd and Tmk its contraction with

k Kronecker deltas

Tmk = T I1...ImδI1I2 . . . δI2k−1I2k . (D.26)

Furthermore, let δlTmk be the symmetrised product of Tmk and l Kronecker deltas. For

example

δ1T 4
1 =

(
δI1I2T I3I4J1J2 + δI1I3T I2I4J1J2 + δI1I4T I2I3J1J2

+δI2I3T I1I4J1J2 + δI2I4T I1I3J1J2 + δI3I4T I1I2J1J2
)
δJ1J2 .

(D.27)

The number of terms contained in δlTmk is

#k,l =
(m− 2k + 2l)!

(m− 2k)!2ll!
. (D.28)

Our ansatz for constructing the projector is to subtract all terms that have the correct

number of indices and are manifestly symmetric

PTm = Tm − 1

Q1

{
δ1Tm1 −

1

Q2

{
δ2Tm2 −

1

Q3

{
δ3Tm3 − . . .

}}}
. (D.29)

The coefficients Qi are determined by solving

0 = δJKPT JKI3...Im . (D.30)

In order to solve this equation first analyse how often terms with a given distribution of

these indices over the Kronecker deltas and the tensor Tmk appear in δlTmk . To this end

the following notation is introduced,

(δlTmk )JK(2,0,0) =
∑

δJKδ... . . . T ...,

(δlTmk )JK(1,1,0) =
∑

δJ...δK... . . . T ...,

(δlTmk )JK(1,0,1) =
∑

δJ... . . . TK...,

(δlTmk )JK(0,1,1) =
∑

δK... . . . T J...,

(δlTmk )JK(0,0,2) =
∑

δ... . . . T JK...,

(D.31)

where

δlTmk = (δlTmk )JK(2,0,0) + (δlTmk )JK(1,1,0) + (δlTmk )JK(1,0,1) + (δlTmk )JK(0,1,1) + (δlTmk )JK(0,0,2). (D.32)
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Analogously to the overall number of terms (D.28) the number of terms in the sums

in (D.31) are

#k,l
(2,0,0) =

(m− 2k + 2l − 2)!

(m− 2k)!2l−1(l − 1)!
= #k,l−1 (D.33)

#k,l
(1,1,0) =

(m− 2k + 2l − 2)!

(m− 2k)!2l−2(l − 2)!
= #k,l−12(l − 1) (D.34)

#k,l
(1,0,1) = #k,l

(0,1,1) =
(m− 2k + 2l − 2)!

(m− 2k − 1)!2l−1(l − 1)!
= #k,l−1(m− 2k) (D.35)

#k,l
(0,0,2) =

(m− 2k + 2l − 2)!

(m− 2k − 2)!2ll!
= #k+1,l (D.36)

As a consistency check, one can show

#k,l = #k,l
(2,0,0) + #k,l

(1,1,0) + #k,l
(1,0,1) + #k,l

(0,1,1) + #k,l
(0,0,2). (D.37)

When contracted with δJK , the first four lines of (D.31) each turn into the #k,l−1

terms δl−1Tmk times an integer factor which can be read of from the right-hand side

of (D.33)–(D.35).

δJK
(

(δlTmk )JK(2,0,0) + (δlTmk )JK(1,1,0) + (δlTmk )JK(1,0,1) + (δlTmk )JK(0,1,1)

)
= (d+ 2(l − 1) + 2(m− 2k))δl−1Tmk

≡ Rk,lδl−1Tmk

(D.38)

The last line of (D.31) contracted with δJK becomes

δJK(δlTmk )JK(0,0,2) = δlTmk+1. (D.39)

Now insert (D.32) and (D.38)–(D.39) into (D.30)

0 = δJKPTm =Tm1 −
1

Q1

{
R1,1T

m
1 + δ1Tm2 −

1

Q2

{
R2,2δ

1Tm2 + δ2Tm3 (D.40)

− 1

Q3

{
R3,3δ

2Tm3 + δ3Tm4 − . . .
}}}

, (D.41)

and conclude

Qi = Ri,i = d+ 2(m− i− 1). (D.42)

This proves

PTm =

bm
2
c∑

k=0

(−1)k

 k∏
j=1

1

d+ 2m− 2j − 2

 δkTmk . (D.43)

If P is contracted to symmetric tensors on both sides every term in δkTmk yields the same

contribution. Define the simplified projector P
′

where δkTmk is replaced by one of its terms

times the number of terms which is given by (D.28)

P
′
I1...Im,J1...Jm =

bm
2
c∑

k=0

Wm,k

k∏
a=1

δI2a−1,I2aδJ2a−1,J2a

m∏
b=2k+1

δIb,Jb , (D.44)
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where

Wm,0 = 1, Wm,k = (−1)k
m!

(m− 2k)!2kk!

k∏
a=1

1

d+ 2m− 2a− 2
. (D.45)

This simplified projector satisfies for two symmetric tensors TmL , T
m
R

TmL PTmR = TmL P
′
TmR . (D.46)
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