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Abstract: We extend the study of the two-dimensional euclidean φ4 theory initiated in

ref. [1] to the Z2 broken phase. In particular, we compute in perturbation theory up to

N4LO in the quartic coupling the vacuum energy, the vacuum expectation value of φ and

the mass gap of the theory. We determine the large order behavior of the perturbative series

by finding the leading order finite action complex instanton configuration in the Z2 broken

phase. Using an appropriate conformal mapping, we then Borel resum the perturbative

series. Interestingly enough, the truncated perturbative series for the vacuum energy and

the vacuum expectation value of the field is reliable up to the critical coupling where a

second order phase transition occurs, and breaks down around the transition for the mass

gap. We compute the vacuum energy using also an alternative perturbative series, dubbed

exact perturbation theory, that allows us to effectively reach N8LO in the quartic coupling.

In this way we can access the strong coupling region of the Z2 broken phase and test Chang

duality by comparing the vacuum energies computed in three different descriptions of the

same physical system. This result can also be considered as a confirmation of the Borel

summability of the theory. Our results are in very good agreement (and with comparable

or better precision) with those obtained by Hamiltonian truncation methods. We also

discuss some subtleties related to the physical interpretation of the mass gap and provide

evidence that the kink mass can be obtained by analytic continuation from the unbroken

to the broken phase.
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1 Introduction

The φ4 theory in two dimensions is a particularly simple, yet non integrable, theory. The

UV divergencies are minimal and in the IR, for a critical value of the coupling, it flows to the

two-dimensional (2d) Ising model, that is an exactly solvable conformal field theory [2, 3].

It also features a simple but non trivial duality symmetry, Chang duality [4]. For these

reasons the φ4 theory is an ideal laboratory to possibly test new methods, or improve on old

ones, for studying quantum field theories at strong coupling, such as lattice simulations [5–

8], hamiltonian truncations [9–18] or resummation of the perturbative series [1, 19–23]. In

the context of resummations, a connection has been found recently between the Lefschetz

thimble decomposition of path integrals and Borel summability of perturbative series [24,

25], that allowed us to show the Borel summability of a broad class of Euclidean 2d and 3d
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gB

egB

Figure 1. Phase structure of the φ4 theory according to Chang duality, as a function of the

couplings g and g̃. Points in the same vertical line connecting the black and red lines correspond

to different descriptions of the same theory.

scalar field theories [1]. These include the 2d φ4 theory with both m2 > 0, known already

to be Borel resummable for parametrically small couplings [26], and m2 < 0.

The aim of this paper is to extend to the Z2 broken phase the study of the 2d Euclidean

φ4 theory of ref. [1], where the unbroken phase was analyzed. In this way we will also

provide numerical evidence of the Borel summability of the theory and the first applications

of the methods introduced in refs. [24, 25] in QFT. The Euclidean Lagrangian density

(modulo counterterms) reads

L̃ =
1

2
(∂µφ)2 − 1

4
m̃2φ2 + λφ4 , (1.1)

with m̃2 > 0. We denote the parameters in the broken phase with a tilde to distinguish

them from the ones appearing in the Lagrangian density

L =
1

2
(∂µφ)2 +

1

2
m2φ2 + λφ4 , g ≡ λ

m2
, (1.2)

used in ref. [1] to analyse the unbroken phase (m2 > 0). The effective expansion parameter

in the Lagrangian (1.1) is the dimensionless coupling

g̃ ≡ λ

m̃2
. (1.3)

We start in section 2 by reviewing Chang duality and the phase structure of the theory, as

expected by the duality. This is summarized in figure 1. We see that starting from a given

value of the coupling, gB in the unbroken phase, the φ4 theory admits three equivalent

descriptions: one in terms of a theory with tree-level mass term m2 > 0 and coupling g =

λ/m2 (black line) and two in terms of a theory with tree-level mass term m2 = −m̃2/2 < 0

and coupling g̃ (red lines). We call weakly and strongly coupled branches the regions

0 ≤ g̃ ≤ g̃B and g̃ ≥ g̃B, respectively. The points gc, g̃
(w)
c and g̃

(s)
c in figure 1 denote

– 2 –
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the critical couplings in the three descriptions where the theory has a second order phase

transition and flows to the 2d Ising model. In the Z2 broken phase the only description

that can be explored by resumming the perturbative series and without encountering phase

transitions is the part of the weakly coupled branch with 0 ≤ g̃ ≤ g̃
(w)
c . This is the region

we will mostly focus on, although we will also explore other sectors of the phase diagram.

In ref. [1] we instead focused on the region 0 ≤ g ≤ gc in the black line of figure 1.

In section 3 we set the stage for the methods we will use in the paper to Borel resum the

perturbative series. In subsection 3.1 we look for finite action solutions to the complexified

Euclidean equations of motion (complex instanton configurations). As well-known [27], the

configurations with the smallest action determine the leading large-order behavior of the

perturbative expansion of a given observable and the leading singularity of its Borel trans-

form function. This is useful information, that we exploit to set up a suitable conformal

mapping for the numerical Borel resummation of the perturbative series. In subsection 3.2

we consider a modified perturbative series, where the trilinear coupling defined below in

eq. (1.4) gets replaced by λ3 →
√

2λm̃2/
√
λ0. It has been shown in refs. [24, 25], in the

context of quantum mechanical models, that modified perturbative expansion of this kind,

where one expands in g̃ with g̃0 ≡ λ0/m̃
2 held fixed, and sets back g̃0 = g̃ after the resum-

mation has been performed, leads to a significant improvement of the Borel resummation of

perturbative series at strong coupling. Expansions of this kind were dubbed in refs. [24, 25]

Exact Perturbation Theory (EPT).1 EPT will allow us to compute the vacuum energy in

the Z2 broken phase at strong coupling, namely in the region g̃ ≥ g̃0 in figure 1 (strongly

coupled branch). Note that for g̃ 6= g̃0 the Z2 symmetry is explicitly broken, so EPT is

equivalent to adding an explicit symmetry breaking term which is eventually set to zero.

In section 4 we compute the perturbative series expansion up to order g̃4 of the 0-point,

1-point and 2-point Schwinger functions. This is the maximal order that can be reached

by computing Feynman diagrams with up to eight interaction vertices (the maximum we

could reach), because of the presence of the trilinear interaction proportional to

λ3 =
√

2λm̃ . (1.4)

We use a renormalization scheme which is equivalent to normal ordering, but perform

our computations in an intermediate auxiliary scheme which allows us to efficiently treat

the corrections to the 1-point tadpole that are generated order by order in perturbation

theory. The main results of this section are the perturbative expressions for the vacuum

energy Λ̃, the 1-point function 〈φ〉 and the physical mass M̃2 in eqs. (4.7), (4.9) and (4.12),

respectively. In addition to that, we provide in eq. (4.8) the perturbative expression of Λ̃

up to g̃8 in EPT.

We report in section 5 the final results of our investigation. We start by discussing

the main differences in the numerical resummation procedures with respect to ref. [1]. In

particular, we point out that the shortness of the ordinary perturbative series, together with

1In fact, tricks of this sort can do more than that, turning a non-Borel resummable ordinary expansion

into a non-ordinary Borel-resummable one.
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g̃
(w)
c gChang

c gc

0.29(2) 2.64(11) 2.807(34)

Table 1. Values of the critical coupling in the φ4 theory. The value g̃
(w)
c is the one found in

this paper from eq. (1.5), gChang
c is g̃

(w)
c expressed in terms of the unbroken variables using Chang

relation (2.9) and gc is the value found in the unbroken phase in ref. [1].

the slow convergence of the series after the conformal mapping,2 leads to results which are

much less accurate than those found by Borel resumming in the unbroken case. On the

other hand, we find that in the entire regime 0 ≤ g̃ ≤ g̃
(w)
c , the O(g̃4) perturbative series

is reliable for Λ̃ and 〈φ〉 while the series for M̃2 breaks down slightly before g̃
(w)
c . For all

the three observables we find that the central values of the Borel resummed results are in

very good agreement with the perturbative result, see figures 5, 8 and 9. We determine

the critical coupling g̃
(w)
c by demanding

〈φ〉|
g̃=g̃

(w)
c

= 0 . (1.5)

We report in table 1 the value of g̃
(w)
c . For convenience, we also report its value gChang

c

in terms of the unbroken variables, using Chang duality, and compare it with the value

gc found in ref. [1]. Chang duality predicts gChang
c = gc, compatible with our results. As

discussed in ref. [1], the Borel resummed Schwinger functions are expected to coincide with

the exact ones in a given phase of the theory. At g̃ = g̃
(w)
c the two vacua of the broken

phase collide in the unique Z2 invariant vacuum and for g̃
(w)
c < g̃ < g̃

(s)
c the Z2 symmetry is

restored. Consequently our perturbative results for 〈φ〉 and M̃2 for g̃ > g̃
(w)
c do not have an

obvious direct physical interpretation.3 On the other hand, Λ̃ should be continuous along

the transition and its value past g̃
(w)
c should still be identified with the vacuum energy in

the symmetric phase and then after g̃
(s)
c with the vacuum energy in the strongly coupled

branch of the broken phase. This comment applies also for the vacuum energy Λ for g > gc
computed starting from the unbroken phase with m2 > 0. We then compute Λ̃ using the

O(g̃8) series associated to EPT, which allows us to explore the strongly coupled branch of

the theory with a better accuracy than the ordinary O(g̃4) series. We determine Λ̃ in the

broken phase for a certain range of g̃ in all three descriptions, see figure 7. We consider the

agreement of the results as a convincing numerical check of Chang duality,4 of the Borel

summability of the theory and of the usefulness of EPT in QFT.

The vacuum energy and the mass gap of the 2d φ4 theory in the broken phase have

also been computed using Hamiltonian truncation methods in refs. [10, 11]. We compare

our findings with those of the above works in section 6, finding very good agreement. In

2Actually the series remains asymptotic after the conformal mapping because of other singularities in

the Borel plane, but their effect is expected to be small in the region of interest.
3In fact we do not understand how to physically interpret M̃2 for g̃ > g̃kk̄, where g̃kk̄ < g̃

(w)
c , see

section 6.
4Chang duality has been numerically tested in ref. [10] by comparing the vacuum energy in the unbroken

and the weakly coupled branch of the broken phase, but no analysis of the strongly coupled branch was

performed.
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particular, we confirm that both the results for Λ̃ of ref. [10] and the ones for M̃2 in

ref. [11] are within the regime of validity of perturbation theory! The φ4 theory considered

in refs. [10, 11] is not however in a genuinely broken phase. This makes a comparison

with refs. [10, 11] non-trivial in a range of the coupling where the elementary particle is

supposed to decay in pair of kink and anti-kink, since single kink states decouple in a theory

where the Z2 symmetry is spontaneously broken. In subsection 6.1 we provide numerical

evidence that the kink sector of the theory can be accessed starting from the unbroken

phase considered in ref. [1]. More precisely, we show that the value of the mass gap |M |
computed in the unbroken phase for g ≥ gc is in agreement with the mass of the kink state

computed in ref. [11], see figure 11.

We conclude in section 7. In appendix A the coefficients for the series expansion of

the 0, 1 and 2-point function are reported. The coefficients have been determined for

independent cubic and quartic couplings λ3 and λ and could be used also for theories with

explicit breaking of the Z2 symmetry φ → −φ. We would finally like to emphasize that

while several works along more than forty years have analyzed the 2d φ4 theory in the

unbroken case by means of various resummation procedures [1, 19–23, 28, 29], as far as we

know this is the first paper addressing the Z2 broken phase.

2 Chang duality

In the φ4 theory with m2 > 0, aside from the normalization of the free theory path integral,

there are only two superficially divergent one-particle irreducible (1PI) diagrams: the two

loop number eight graph occurring in the 0-point function and the one-loop tadpole of the

2-point function. Correspondingly, the counterterms δΛ and δm2 contain up to O(λ) terms

to all orders in perturbation theory, with no need of a wave function and coupling constant

counterterms. Such simple renormalization property are at the base of one of the simplest

strong-weak dualities in QFT: Chang duality [4]. The original derivation worked with

normal ordering prescriptions (recently nicely reviewed in ref. [10]), but the same analysis

can be repeated in other regularizations. We choose here dimensional regularization (DR).

This formulation allows for a straightforward generalization of the duality in the 3d λφ4

theory [30], where normal ordering is no longer enough to cancel all divergencies. The

theory in d dimensions defined by the (Euclidean) Lagrangian

L =
1

2
(∂φ)2 +

1

2
m2φ2 + λµεφ4 +

1

2
δm2φ2 + µ−εδΛ , (2.1)

where ε = 2− d and µ is the usual RG sliding scale, has a dual description in terms of the

theory L̃ with negative squared-mass term

L̃ =
1

2
(∂φ)2 − 1

4
m̃2φ2 + λµεφ4 +

1

2
δm̃2φ2 + µ−εδΛ̃ + ∆Λ̃ , (2.2)

which is derived below using dimensional regularization and a modified Minimal Subtrac-

tion (MS) renormalization scheme. The counterterms for L are fixed by requiring that for

µ = m the 2-point tadpole diagram at one loop is exactly canceled and that the vacuum
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energy vanishes up to O(λ2).5 We get

δm2 = −3λ

π

(
2

ε
− γ̄
)
,

δΛ =
3λ

4π2ε2
− 1

4πε

(
3λ

π
γ̄ +m2(µ)

)
− m2

8π
+
m2γ̄

8π
+

3λγ̄2

16π2
, (2.3)

where we defined γ̄ ≡ γE − log(4π), with γE ≈ 0.577 . . . the Euler-Mascheroni constant.

Note that in the above expression the 1/ε term of δΛ depends on the squared mass defined

at the scale µ at which we are evaluating the theory (whose explicit expression is obtained

below). This is needed for the counterterm to cancel the divergent part at any scale. The

finite contribution to δΛ depends instead on the arbitrary renormalization point chosen,

i.e. m2, and hence the squared mass terms that appear in the O(ε0) term are defined

as m2(m) ≡ m2. To all orders in perturbation theory the β functions for the mass, the

coupling and the vacuum energy read

βm2 = − 6

π
λ , βλ = 0 , βΛ = − 1

4π

(
3λ

π
γ̄ +m2(µ)

)
, (2.4)

and hence

m2(µ) = m2 +
3λ

π
log

m2

µ2
,

Λ(µ) = Λ(m) +
3λ

16π2
log2 m

2

µ2
+

(
3λ

π
γ̄ +m2

)
1

8π
log

m2

µ2
. (2.5)

Renormalizing with a normal ordering mass µ is equivalent to use m2(µ) in the La-

grangian (2.1). The counterterms for L̃ are chosen in the same modified MS renormal-

ization scheme as before, i.e. by requiring that for µ = m̃ the 2-point tadpole diagram at

one loop and the divergent 0-point terms are exactly canceled. We obtain6

δm̃2 = −3λ

π

(
2

ε
− γ̄
)
,

δΛ̃ =
3λ

4π2ε2
− 1

4πε

(
3λ

π
γ̄ − 1

2
m̃2(µ)

)
− m̃2

8π
− m̃2γ̄

16π
+

3λγ̄2

16π2
. (2.6)

Using eq. (2.5) and setting µ = m̃, we find that the theory (2.1) is equivalent to (2.2)

provided the following identities hold

m2 +
3λ

π
log

m2

m̃2
= −1

2
m̃2 ,

∆Λ̃ =
m̃2 −m2

8π
+
m2

8π
log

m2

m̃2
+

3λ

16π2
log2 m

2

m̃2
. (2.7)

5The counterterm δΛ at the scale µ = m exactly cancels the free theory contribution proportional to∫
ddp log(p2 +m2) as well as the O(λ) contributions from the two-loop “8”-shaped diagram and the one-loop

correction proportional to δm2.
6The counterterm δΛ̃ has a different form w.r.t. δΛ because it gets shifted by the quantity m̃2δm̃2/(16λ)

when the Lagrangian (2.2) is expanded around the classical minimum.
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We have then established a relation between two theories in different phases: the theory in

the broken phase with squared mass term −m̃2/4 (giving rise to a state of mass squared

m̃2 when expanded around the tree-level VEV) in the modified MS scheme with µ = m̃ is

identical to the theory in the unbroken phase in the same analogous modified MS scheme

with µ = m. This is Chang duality [4]. The solutions to the Chang equation (2.7) have

been already reviewed in ref. [10], but for completeness we will again briefly summarize

them here. Defining the dimensionless coupling constants

g̃ =
λ

m̃2
, g =

λ

m2
, (2.8)

we can rewrite eq. (2.7) as

f(g) = f̃(g̃) , (2.9)

where

f(g) = log g − π

3g
, f̃(g̃) = log g̃ +

π

6g̃
. (2.10)

At fixed g, we look for solutions in g̃ of eq. (2.9). Since f̃(g̃) > 0 ∀g̃, no solutions can

evidently exist for sufficiently small g, where f(g) < 0. The minimum of f̃(g̃) occurs at

g̃B = π/6 and a solution exists for

g ≥ gB =
π

3W (2/e)
≈ 2.26 , (2.11)

where W is the Lambert function (also known as product logarithm or omega function).

For g ≥ gB there are two solution branches g̃w,s(g). We label the two branches as strong

(s) and weak (w) branches according to their behavior:

g̃w(g) ≈ π

6 log g
, g̃s(g) ≈ g , g →∞ . (2.12)

The existence of the weak branch allows to prove the existence of a phase transition in

the φ4 theory in the classically unbroken phase with m2 > 0 at sufficiently strong coupling

g. Indeed, for parametrically small g the theory is well described by its classical potential

and is in the unbroken phase, while at parametrically large couplings the duality implies

it is in the broken phase, since it can be described by a weakly coupled theory with

m2 = −m̃2/2 < 0. By continuity there should exist a critical coupling gc where the phase

transition occurs. The value of the critical coupling in the normal ordering scheme has been

computed by different methods [1, 5–8, 11, 14, 15, 23] to be gc ≈ 2.76. Correspondingly,

we can predict the value of the two critical couplings:

g̃(w)
c (gc) ≈ 0.27 , g̃(s)

c (gc) ≈ 1.24 . (2.13)

The phase structure of the theory, as predicted from Chang duality, is then the following.

Starting from a perturbative description in the unbroken phase, m2 > 0, the theory develops

a (second-order) phase transition at g = gc and above gc remains in the Z2 broken phase.

Starting from a perturbative description in the broken phase, m2 = −m̃2/2 < 0, we first

encounter a phase transition at g̃ = g̃
(w)
c , the Z2 symmetry is restored for g̃

(w)
c < g̃ < g̃

(s)
c ,
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and at g̃ = g̃
(s)
c we have another phase transition. For g̃ > g̃

(s)
c the theory remains in the

broken phase. Chang duality predicts that the three regimes gc ≤ g ≤ ∞, 0 ≤ g̃ ≤ g̃
(w)
c ,

and g̃
(s)
c ≤ g̃ ≤ ∞ are different descriptions of the same physical theory in the broken

phase. Similarly, the three regimes gB ≤ g ≤ gc, g
(w)
c ≤ g̃ ≤ g̃B, and g̃B ≤ g̃ ≤ g̃

(s)
c are

different descriptions of the same physical theory in the unbroken phase. In particular the

three critical points represent the very same transition in different descriptions. The region

0 ≤ g ≤ gB admits a single description in terms of the unbroken theory with m2 > 0. See

figure 1 for a summary. In this paper, we will mostly focus on the weak branch regime

0 ≤ g̃ ≤ g̃
(w)
c . However, by using different techniques, we will be able to compute the

vacuum energy in the broken phase in all the three descriptions.

3 Borel summability in the broken phase

As discussed in ref. [1] the φ4 theory is Borel resummable to the exact result also in the

broken phase, when the perturbative expansion is performed around either one of the

two degenerate vacua at infinite volume. Indeed, thanks to Derrick’s theorem [31], the

non-trivial real saddles connecting the two vacua have infinite action at infinite volume

and do not obstruct the Borel transformation procedure. Besides, the vacuum selection,

performed by introducing a fictitious Z2 breaking parameter removed only after taking the

infinite volume limit, decouples any contribution from the Borel resummable perturbative

expansion around the ‘other’ vacuum. The perturbative expansion around one of the

two Z2-breaking vacua is therefore Borel resummable to the exact result of the symmetry

broken theory, similarly to the unbroken case (and with the same caveats associated to

phase transitions and manipulations of the N -point functions).

Borel summability implies that a generic observable7 F (g̃) function of the coupling g̃

(with a divergent series expansion
∑∞

n=0 Fng̃
n) can be recovered by performing the integral

F (g̃) =
1

g̃

∫ ∞

0
dt e−t/g̃B(t) , (3.1)

where the Borel function B(t) is the analytic continuation of the function defined by the

convergent series
∑

n Fnt
n/n!. While Borel summability corresponds to B(t) being regular

over the positive real axis, singularities (in general an infinite number of them) are present

in the complex t plane. Their position corresponds to the value of the action on all possible

(complex) solutions of the classical equations of motion. The saddles with the minimum

absolute value for the action determine the radius of convergence of the perturbative series

of B(t), thus the leading growth of the perturbative coefficients: if we call t±1 the position of

such saddles (real action complex saddles come in pair, t−i = t+i
∗) the leading asymptotic

growth of the coefficients is of the form Fn ∝ anΓ(n + b + 1) + h.c. (with a ≡ 1/t+1
and b a constant). Because of its finite radius of convergence, the Borel function can be

well approximated by a truncated perturbative expansion only in the interval 0 < t <

|t±1 |, this determines an intrinsic error in the reconstruction of F (g̃) from eq. (3.1), which

7By a generic observable we mean a generic Euclidean N -point function and, to some extent, simple

quantities derived from N -point functions such as vacuum energy and mass gap.
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at small coupling is O(e−|t
±
1 |/g̃), reproducing the accuracy limit of the original divergent

asymptotic series for F (g̃). In order to really improve over the truncated series, B(t)

must be analytically continued beyond its radius of convergence |t±1 |. Two commonly

used techniques to achieve this are the method of Padè approximants and the conformal

mapping. To be effective, the first method in general requires the knowledge of a large

number of coefficients, unfortunately this is not our case so the improvement obtained

with this method is limited. The second technique exploits the knowledge of the position

of the singularities in the complex t plane to perform a clever change of variable t(u)

after which the integration in eq. (3.1) is mapped over the interval u ∈ [0, 1) and all the

singularities of B on the unit circle |u| = 1 of the complex u-plane:

F (g̃) =
1

g̃

∫ 1

0
du
∣∣t′(u)

∣∣ e−t(u)/g̃ B[t(u)] . (3.2)

The new series expansion of B̃(u) ≡ B[t(u)] in powers of u is therefore convergent over the

entire range of integration — the original divergent truncated series has been transformed

into a convergent one! Of course the method requires the knowledge of all singularities of

B, i.e. all the finite action complex saddle points of the classical action. Except in very

special cases such information is not available. However, even the mapping of the sole

leading singularity t±1 to the unit circle in the u-plane represents a big improvement: it

effectively enlarges the radius of convergence of the original Borel function to the next-

to-leading singularities t±2 improving the accuracy of the series to O(e−|t
±
2 |/g̃). We discuss

this technique more in detail in the next subsection, while in section 3.2 we will describe a

different approach based on EPT introduced in refs. [24, 25].

3.1 Weak coupling: conformal mapping of complex saddles

In order to implement the conformal mapping method we must find the saddle points of the

classical action (at least the leading ones) and the required mapping t = t(u). Saddles with

finite action configurations must have the field flowing to the minimum of the potential

at infinity in all Euclidean directions. We concentrate on SO(2) symmetric configurations

which are expected to be the dominant ones. In polar coordinates the problem reduces to

a system of 2nd order non-linear differential equations for the real and the imaginary part

of the field as a function of the radial coordinate r. We look for solutions with Neumann

boundary conditions at r = 0 and the trivial vacuum φ = v at r =∞.

For the unbroken phase the problem could be simplified by focusing on purely imag-

inary solutions, since in such case the system collapses to a single differential equation

corresponding to a simple shooting problem (see ref. [32]). The value of the position of the

singularity in this case is real and negative (tu.1 = −1.4626 . . .).

In the broken phase, non-trivial saddle points necessarily require both the real and

the imaginary parts of the field to vary. With some work the complex trajectories for the

field and the corresponding values of the action can be obtained by numerical integration,

following the complex solutions from the unbroken case for increasing values of the φ3

deformation that convert the unbroken potential to the double-well one. After rescaling
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Figure 2. Trajectories in the complex ϕ plane of the solutions of eq. (3.3) associated to the three

leading saddles (blue) and their complex conjugates (orange). In increasing order of |ti| they are

represented by continuous, dotted and dashed curves. All trajectories start for ρ = 0 in three

different points of the complex plane with zero velocities ∇ϕ(0) = 0 and flow as ρ→∞ to the same

value ϕ(∞) = 1.

the field as φ = (8g̃)−1/2ϕ and the coordinate as r =
√

2ρ/m̃ , the spherically symmetric

solutions to the equation of motion satisfy the following differential equation

∂2ϕ

∂ρ2
+

1

ρ

∂ϕ

∂ρ
+ ϕ− ϕ3 = 0 . (3.3)

The trajectories for the first three leading saddle points (among the SO(2) invariant ones)

are shown in figure 2. They always come in complex conjugate pairs ϕ±i and are quite non-

trivial. Interestingly enough, the complex trajectory of the leading saddle exactly matches

a circular arc in the complex ϕ-plane. The corresponding values for the action computed

numerically lead to the following values for the position of the leading singularities in the

complex t plane:

t±1 ' 1.10779544± 1.17944690 i , t±2 ' 8.64± 2.12 i , t±3 ' 22.8± 3.1 i , (3.4)

where the numerical error should be smaller than the last digit reported, where

t±i ≡
1

g̃

(
S(φ =

√
8g̃ ϕ±i )− S(φ = v)

)
. (3.5)

As mentioned before the value of the leading singularities determines the leading growth

of the perturbative coefficients. In particular |t±1 | = 1.6181 . . . is the radius of convergence

of the Borel transform and roughly measures for what value of the coupling the theory

turns completely non-perturbative. The fact that the second saddle is far at |t±2 | = 8.89 . . .
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Figure 3. The change of variable (3.6) maps the cut t-plane (left panel) into the disk of unit radius

|u| = 1 (right panel). The branch points t±1 are mapped into the points u±1 ; the real positive axis

t ∈ [0,+∞) is mapped in the segment u ∈ [0, 1); the rays connecting the branch points t±1 to the

point at complex infinity are mapped to the arcs at the boundary of the disk as shown by the colors.

In drawing this figure we picked α1 = 1/4.

means that, for our purposes, it can be neglected in the conformal mapping. On the other

hand π/arg(t+1 ) ' 3.8 measures the half-period of oscillation of the sign of the coefficients,

in particular the vicinity of the saddle to the real axis decreases the oscillation of the

perturbative coefficients affecting its convergence.8 We do not know the position (if present)

of SO(2) non-invariant complex saddles, however they are expected to be subleading with

respect to the leading SO(2) invariant one.

Having identified the position of the leading singularities we now turn to the iden-

tification of the suitable change of variable t = t(u) for the resummation. This should

correspond to the (conformal) map which sends the positive semi axis t ∈ [0,∞) to the

segment u ∈ [0, 1), all singularities t±i to the unit circle |u| = 1 and be regular around

the origin t = u = 0. Schwarz-Christoffel transformations, which can map (degenerate)

polygons to the unit disc, exactly achieve this. For the simple case of the mapping of a sin-

gle couple of complex singularities located at the complex conjugate points t = |t±1 |e±iπα1

(with α1 ∈ (0, 1]) the mapping takes the simple form9

t = 4|t±1 |u
[

α1

(1− u)2

]α1
[

1− α1

(1 + u)2

]1−α1

. (3.6)

Notice that for a real negative singularity (α1 = 1) the usual conformal mapping, used

also in the unbroken phase (see e.g. ref. [1]), is recovered. For generic complex instantons

eq. (3.6) maps the singularities and the associated rays on the unit circle |u| = 1 as in

figure 3.

The factor e−t(u)/g̃ in eq. (3.2) exponentially suppresses the integrand as u → 1. In

the absence of any other singularity besides those mapped on the unit circle, B̃(u) has unit

8This is also true for resummation methods like Padè(-Borel) which rely on the oscillation of the coeffi-

cients to correctly reconstruct the position of the singularities.
9See ref. [33] for an application of the conformal mapping (3.6) in Borel resummation methods.
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Figure 4. Position of the three leading singularities of B(t) in the t plane (left) and in the u-plane

(right) after the conformal mapping of eq. (3.6). The singularities u±2 and u±3 do not lie at the unit

circle |u| = 1, though they are very close to it.

radius of convergence, and its truncated power series in u can be used to approximate B̃(u)

with arbitrary precision on any point of the integration interval. Hence we can legitimately

exchange the integration sign in eq. (3.2) with the summation sign of the power series

defining B̃(u). In this case the conformal mapping has turned the original asymptotic

series in g̃ into a new convergent series for every finite value of g̃. This is not true in

the presence of other singularities (as in our case) since the latter reduce the radius of

convergence of B̃(u) to |u±2 | < 1 (where u±2 is defined from t(u±2 ) = t±2 ) and the above

exchange of integration and summation signs is no longer legitimate. The conformally

mapped perturbative expansion can therefore approximate the integrand of eq. (3.2) only

up to |u±2 |, which at small coupling corresponds to an irreducible error of O(e−|t2|/g̃). In this

case the original series is mapped into another asymptotic one but with a smaller degree

of divergence. Similarly to the hyperasymptotics techniques of refs. [34, 35] the knowledge

of nearby complex instantons can be used to improve the degree of convergence of the

original series. In our specific case the known subleading singularities t±i>1 are far enough

(see figure 4) and given the number of coefficients available and the range of couplings

probed, the map (3.6) is not yet limited by the presence of these subleading instantons.

While in principle any singularity can be moved away by an appropriate choice of t(u),

the efficiency of the mapping critically depends on the original position of the singularities,

in particular on the angular distance from the positive real axis. For singularities on the

negative real axis (α = 1), the region of points at t > |t±1 | (which carry the non-trivial

information required to improve beyond the original truncated expansion) is mapped into

the region u > 3 − 2
√

2 ' 0.17, well inside the radius of convergence of B̃(u). As the

singularities move closer to the positive real axis in the t-plane, such region is pushed more

and more towards the unit circle in the u-plane, in particular for α1 → 0, the region with

t > |t±1 | is squeezed into u & 1 − √α1. When the pair of complex singularities pinch
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the positive real axis the region t > |t1| becomes inaccessible and the series non-Borel

summable. As a result the closer the singularities are to the real axis the less performant

the conformal mapping is, and the larger is the number of coefficients requested to reach

a certain accuracy. As we will discuss in section 5 this is the main limiting factor of this

method in our computation.

Note that the conformal mapping (3.6) would have mapped the original asymptotic

series into a convergent one if the other saddles were aligned among them (including the

origin) along the cut t-plane depicted in figure 4. This is the situation expected in the

unbroken Z2-symmetric phase, where the known singularities are aligned over the real

negative t axis and are mapped at the boundary of the unit u-disc. As we have seen, this

is not the case in the spontaneously broken phase, where the saddles are not aligned.

3.2 Strong coupling: exact perturbation theory

In the context of quantum mechanics it has recently been shown that it is possible to define

modified perturbative expansions that are Borel resummable in theories where ordinary

perturbation theory is not [24, 25]. For this reason such modified perturbative series

were denoted Exact Perturbation Theory (EPT) in refs. [24, 25]. EPT can also be useful

when the ordinary expansion is Borel resummable to start with, by improving the Borel

resummation of perturbative series. Namely, it can improve the accuracy of results obtained

by the approximate knowledge of the Borel function with a finite number of perturbative

terms, especially at strong coupling. We now show that EPT can similarly be applied in

QFT. We will focus in what follows to the 2d φ4 theory, though most considerations apply

also in more general settings.

Consider a n-point Schwinger function

G(n)(x1, . . . , xn) = N
∫
Dφφ(x1) . . . φ(xn) e−

∫
d2x L̃ , (3.7)

where N is an irrelevant constant factor, φ is the quantum fluctuation around the classical

minimum φcl = +m̃/
√

8λ and L̃ is the Lagrangian (2.2) expanded around φcl:

L̃ =
1

2
(∂φ)2 +

1

2
m̃2φ2 + λ3φ

3 + λφ4 , (3.8)

where

λ3 =
√

2λm̃ . (3.9)

For simplicity we have omitted to write in eq. (3.8) the counterterms δm̃2 and δΛ̃ in

eqs. (2.6). The first is higher order in λ, while the last is field-independent, so they

can be neglected when establishing the classical finite action field configurations. It is

straightforward to see that the expansion in λ is equivalent to a loopwise expansion in

~ and that all the terms appearing in the Lagrangian (3.8) are of the same order in ~.

Consider now the following n-point Schwinger function:

Ĝ(n)(x1, . . . , xn, λ0) = N̂
∫
Dφφ(x1) . . . φ(xn) e−

∫
d2x L̂ , (3.10)
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where

L̂ =
1

2
(∂φ)2 +

1

2
m̃2φ2 + λ̂3φ

3 + λφ4 , (3.11)

and

λ̂3 = m̃λ

√
2

λ0
. (3.12)

For simplicity, as before we omit to write the counterterms necessary to make the theory UV

finite. The Lagrangian (3.11) is identical to that in eq. (3.8) except for the cubic coupling.

At fixed λ0, we have effectively turned the classical cubic term into a quantum one. Hence

the classical finite action configurations of eq. (3.11) coincide with those of a theory in

the Z2 unbroken phase with mass term m̃2 and quartic coupling λ, although of course

the perturbative expansions in the two theories are different because of the cubic term.

At strong coupling the Borel resummability of the modified perturbative series of Ĝ(n) is

expected to be similar to the one of the unbroken φ4 theory and hence better than that of

the original expansion in λ of G(n). We can then Borel resum the modified perturbative

series of Ĝ(n) and, after that, recover the original Schwinger function by setting λ0 = λ:

Ĝ(n)(x1, . . . , xn, λ0 = λ) = G(n)(x1, . . . , xn) . (3.13)

Note that whenever λ0 6= λ the Lagrangian L̂ breaks explicitly the Z2 symmetry. We have

then explicitly broken the symmetry, resummed, and switched off the breaking term after

the resummation. This is precisely what we are supposed to do any time a vacuum should

be non-perturbatively selected in presence of spontaneous symmetry breaking. While the

Green functions G(n) should have singularities at the phase transition points, the Green

functions Ĝ(n) are smooth for λ0 6= λ and should become singular only in the limit λ0 → λ.

However, at weak coupling EPT is not as good as ordinary perturbation theory and

requires more terms to correctly reproduce the weak coupling expansion of G(n). In par-

ticular, we have verified that with the number of perturbative terms at our disposal, EPT

can be reliably used only for the vacuum energy.

4 Perturbative coefficients up to g83 order

In the 2d φ4 theory the vacuum energy and the mass are the only terms that require the

introduction of counterterms δΛ and δm2. In the broken phase, when we perform the

vacuum selection by shifting the field φ→ φcl + φ, a divergent one-loop 1-point tadpole is

also generated (but the corresponding counterterm is fixed in terms of δm2) as well as a

cubic interaction term. Because of the cubic term in the Lagrangian, at a given order in

the perturbative expansion the number of topologically distinct diagrams for the broken

symmetry phase is much higher than for the symmetric phase. Moreover, diagrams with

different number of cubic and quartic vertices contribute at each order in the effective

coupling g̃ = λ/m̃2, making cancellations possible and lowering the numerical accuracy.

The task of computing the perturbation series in this theory is then much more challenging.

It should also be noted that, in contrast to the unbroken phase, this renormalization scheme

is not optimal for computations because of the presence of a radiatively generated 1-point
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tadpole that should be taken into account order by order in perturbation theory. The

computation of the n-point functions will in fact involve diagrams decorated with 1-point

tadpole terms — i.e. sub-diagrams with zero net momentum flow. A better renormalization

scheme can be found by considering the auxiliary Lagrangian L obtained by expanding

eq. (2.2) around an arbitrary constant configuration φ → (φcl + φ0) + ϕ and choosing the

scale µ such that the divergent 2-pt tadpole is exactly canceled. Choosing φcl = +m̃/
√

8λ

and normalizing the vacuum energy so that ∆Λ̃ = 0 in eq. (2.2), we get

L =
1

2
(∂ϕ)2 + λ1ϕ+

1

2
m2ϕ2 + λ3ϕ

3 + λϕ4 + ∆Λ + c.t. , (4.1)

where we defined

λ1 = 3λ3 Z + (m̃2 + 12λZ)φ0 + 3λ3 φ
2
0 + 4λφ3

0 ,

m2 = m̃2 + 12λZ + 6λ3 φ0 + 12λφ2
0 ,

λ3 = λ3 + 4λφ0 ,

∆Λ =
m2 − m̃2

8π
+
m̃2

2
Z + 3λZ2 + 3λ3 Zφ0 +

1

2
(m̃2 + 12λZ)φ2

0 + λ3 φ
3
0 + λφ4

0 ,

(4.2)

with Z = (4π)−1 log
(
m̃2/m2

)
and λ3 =

√
2λm̃. The term 3λ3Z for λ1 and the term 3λ3Zφ0

for ∆Λ come from the running of the linear term due to the one-loop tadpole divergence.

The counterterms for the mass and the vacuum energy have the same form as in eq. (2.3)

with m replaced by m and the counterterm for the linear term is given by δm2λ3/(4λ). In

this theory all the divergent diagrams are exactly canceled and leave no finite part. If we

additionally choose λ1 such that the 1PI one-point function Γ̃1 vanishes,10 the Lagrangian

in eq. (4.1) is the most convenient for computations since we can now forget about both

1-point and 2-point tadpole terms.

Practically the auxiliary theory L can be used to determine the perturbative series in

the 2d φ4 theory L̃ (in the renormalization scheme defined after eq. (2.5)) for arbitrary

cubic coupling λ3. We first fix the perturbative series for λ1 in terms of λ3 and λ by

requiring Γ̃1 = 0. Up to three loops the non-vanishing diagrams are

0 = Γ̃1 =λ1 + λ
3
3 − λ3λ+

[
+

]
λ3λ

2 +

[
+ +

]
λ

5
3

−
[

+ + + +

]
λ

3
3λ+ . . . ,

(4.3)

where we have omitted the multiplicities. Therefore we get

λ1 = c30
λ

3
3

m4 + c11
λ3λ

m2 + c12
λ3λ

2

m4 + c50
λ

5
3

m8 + c31
λ

3
3λ

m6 + . . . , (4.4)

10Following the notation of ref. [1], the tilde in Γ1, and in Γ2 in the following, refers to the Fourier

transform of the 1PI correlation function.
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where cij are the dimensionless coefficients obtained by computing all the Feynman dia-

grams with i cubic and j quartic vertices. We then use the set of eqs. (4.2) to determine

φ0 and m2 as functions of m̃, λ and λ3. The first few orders are given by

φ0(m̃, λ, λ3) = c11
λ3λ

m̃4
+ c30

λ3
3

m̃6
+

(
c31 +

9

2π
c11

)
λ3

3λ

m̃8
+

(
c50 +

9

2π
c30

)
λ5

3

m̃10
+ . . . ,

m2(m̃, λ, λ3) = m̃2 + 6 c11
λ2

3λ

m̃4
+ 6 c30

λ4
3

m̃6
+ . . . .

(4.5)

The expansion for λ3 is trivially obtained by the third eq. in (4.2). At this point we can

obtain the perturbative series of our original theory L̃ by re-expanding the parameters m

and λ3 in the series for the auxiliary theory L. Moreover, since 〈ϕ〉 = 0, we have that the

VEV is simply given by 〈φ〉 = φcl +φ0 . From eq. (4.5) we see that 〈φ〉 is picking additional

contributions with respect to the 1PI diagrams. At order λ3
3λ and λ5

3 they are

λ3
3λ = λ2

3 · λ3λ =
9

2π
λ2

3 · c11λ3λ ,

λ5
3 = λ2

3 · λ3
3 =

9

2π
λ2

3 · c30λ
3
3 .

Similarly, using the second eq. in (4.5), for the two point function in momentum space

Γ̃2 = p2+m2+. . . we see that the expansion of m2 provides to lowest order the contribution

of the following two graphs for the theory L̃

Γ̃2 = p2 + m̃2 + 6 c11
λ2

3λ

m̃4
+ 6 c30

λ4
3

m̃6
+ . . .

= p2 + m̃2 + λ2
3λ+ λ4

3 + . . . ,

which have to be added to the 1PI graphs at the same order (see eq. (4.11) below). Pro-

ceeding at higher order one must be careful in expanding also all the higher order terms of

the expansion.

In order to verify that the above procedure was correctly implemented, we checked that

the series obtained for the VEV and for the 2-pt function matched a direct computation

in the theory L̃ up to five loops.

In the following we focus on the 0-, 1- and 2-point functions. Multi-loops computations

have been addressed as in ref. [1] using the Montecarlo VEGAS algorithm [36]. We refer

the reader to ref. [1] for further details. We have computed Feynman diagrams up to

the insertion of eight vertices, independently of the nature of the vertex, cubic or quartic.

Since λ3 ∼ m̃
√
λ, this implies that our ordinary perturbative series can reach O(g̃4). Using

instead EPT as described in section 3.2, where parametrically λEPT
3 ∼ λ, we effectively can

reach O(g̃8).
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Γ0 λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

λ
0

3 0 0 1 1 3 6 19 50 204

λ
2

3 1 1 4 12 54 232 1266

λ
4

3 2 5 34 186 1318

λ
6

3 5 26 297

λ
8

3 16

Table 2. Number of topologically distinct 1PI 0-pt diagrams without self-contractions with maxi-

mum eight total vertices for the auxiliary theory.

4.1 Vacuum energy

We have computed all the vacuum energy 1PI graphs with up to eight vertices in the

auxiliary theory. The number of topologically distinct graphs (in the chosen scheme) as a

function of the number of cubic and quartic diagrams is reported in table 2. For illustration,

the non-vanishing diagrams with up to three loops are

Γ0 = − λ
2
3 −

(
+

)
λ

4
3 + λ

2
3λ− λ2 + . . . . (4.6)

Expanding the parameters as explained above we get the following expression for the series

of the vacuum energy

Λ̃

m̃2
= −

(
ψ(1)(1/3)

4π2
− 1

6

)
g̃ − 0.042182971(51) g̃2 − 0.0138715(74) g̃3

− 0.01158(19) g̃4 +O(g̃5) , (4.7)

where ψ(n)(z) = ∂
(n+1)
z log Γ(z) is the polygamma function and the numbers in parenthesis

indicate the error in the last two digits due to the numerical integration. The coefficients

of the vacuum energy Λ̃ for generic values of the couplings λ3 and λ are reported in

the appendix (table 6). In order to access the strong coupling regime of Λ̃ we will use

EPT as described in section 3.2, therefore we report here the series obtained by setting

g3 =
√

2g̃/
√
g̃0:

Λ̃

m̃2

EPT
= −

(
1

g̃0

(
ψ(1)(1/3)

4π2
− 1

6

)
+

21ζ(3)

16π3

)
g̃2 +

(
0.15991874

g̃0
+

27ζ(3)

8π4

)
g̃3

−
(

0.151218477(51)

g̃2
0

+
0.75112786(68)

g̃0
+ 0.116125964(91)

)
g̃4

+

(
1.8291267(28)

g̃2
0

+
3.5560813(61)

g̃0
+ 0.3949534(18)

)
g̃5

−
(

1.1335189(68)

g̃3
0

+
16.41488(14)

g̃2
0

+
18.827865(47)

g̃0
+ 1.629794(22)

)
g̃6

+

(
24.4176(12)

g̃3
0

+
138.643(10)

g̃2
0

+
110.471(11)

g̃0
+ 7.85404(21)

)
g̃7

−
(

11.454254(57)

g̃4
0

+
358.08(15)

g̃3
0

+
1178.86(18)

g̃2
0

+
712.76(72)

g̃0
+ 43.192(21)

)
g̃8 .

(4.8)
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Γ1 λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7

λ
1

3 0 1 2 6 23 95 464 2530

λ
3

3 1 5 26 149 963 6653

λ
5

3 3 29 302 2953

λ
7

3 12 223

Table 3. Number of topologically distinct 1PI 1-pt diagrams without self-contractions with maxi-

mum eight total vertices for the auxiliary theory.

4.2 1-point tadpole

The series coefficients for the VEV have been obtained from Γ̃1 as explained above. We

have computed all 1PI 1-pt graphs with up to eight vertices in the auxiliary theory. The

number of topologically distinct graphs (in the chosen scheme) as a function of the number

of cubic and quartic diagrams is reported in table 3. The non-vanishing diagrams with up

to three loops have been already reported in eq. (4.3).

Following the method described at the beginning of section 4 we get the series for the

vacuum expectation value of φ as

〈φ〉
φcl

= 1− 0.712462426(83) g̃2 − 2.152451(65) g̃3 − 6.5422(59) g̃4 +O(g̃5) , (4.9)

where φcl is the tree-level value. The coefficients of 〈φ〉 for generic values of the couplings

λ3 and λ are reported in the appendix (table 7).

4.3 Physical mass

We define the physical mass as the smallest zero of the 1PI two-point function in momentum

space for complex values of the Euclidean momentum:

Γ̃2(p2 = −M̃2) ≡ 0 . (4.10)

By a perturbative expansion of M̃2 in powers of g̃, the zero of Γ̃2(p2 = −M̃2) is determined

in terms of Γ̃2(p2 = −m̃2) and its derivatives with respect to p2 (see ref. [1] for further

details), which are in turn determined from Γ̃2(p2 = −m2) and derivatives in the auxiliary

theory. The number of topologically distinct 1PI graphs (in the chosen scheme) as a

function of the number of cubic and quartic diagrams is reported in table 4. For illustration,

the non-vanishing diagrams with up to two loops are

Γ̃2 = p2 +m2 − λ
2
3 −

[
+

]
λ

4
3 − λ2

+
[

+ +
]
λ

2
3λ+ . . . .

(4.11)

In table 8 in the appendix we report the coefficients for Γ̃2(p2 = −m̃2) and its derivatives

for generic values of the couplings λ3 and λ. For λ3 =
√

2λm̃ we get the following expression

for the physical mass

M̃2

m̃2
= 1− 2

√
3 g̃ − 4.1529(18)g̃2 − 14.886(30)g̃3 − 50.62(99)g̃4 +O(g̃5) . (4.12)

– 18 –



J
H
E
P
0
5
(
2
0
1
9
)
0
4
7

Γ2 λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

λ
0

3 0 0 1 2 6 19 75 317 1622

λ
2

3 1 3 14 61 342 2018 13499

λ
4

3 2 17 163 1400 12768

λ
6

3 9 136 2177

λ
8

3 46

Table 4. Number of topologically distinct 1PI 2-pt diagrams without self-contractions with maxi-

mum eight total vertices for the auxiliary theory.

4.4 Large order behavior

The large order behavior of the perturbative expansion of n-point Schwinger functions

Gn in the 2d φ4 theory in the broken phase has not been determined before. On general

grounds, we expect that the coupling expansion Gn =
∑

kG
(k)
n g̃k behaves, for k � 1, as

G(k)
n = cn(a+ a∗)kΓ(k + bn + 1)

(
1 +O(k−1)

)
, (4.13)

where cn and bn are n-dependent constants, while a is an n-independent constant given by

the inverse of t−1 in eq. (3.4):

a ≈ 0.423096 + 0.450462 i , a ≡ 1

t−1
. (4.14)

The half-period of oscillation of the large order coefficients is given by π/arg(a) ' 3.8.

The evaluation of the coefficients bn and cn require a detailed analysis of small fluctuations

around the instanton configuration which we have not attempted to perform. However,

the knowledge of a is enough to allow us to use a conformal mapping, as discussed in

section 3.1.

The shortness of our perturbative series does not allow for a reliable comparison with

the asymptotic large order behavior. We just observe that the period of oscillation given

by eq. (4.13) is consistent with the same-sign behavior of the first terms in eqs. (4.7), (4.9)

and (4.12).

5 Results

We report in this section the numerical results obtained from the truncated perturbative

series and from its Borel resummation. We have considered conformal mapping and Padé-

Borel approximants methods to obtain a numerical estimate of the Borel function. Most

of the details of our numerical implementation, as well as a short introduction to these

resummation methods, has been given in ref. [1], so here we will only focus on some

characteristic features of the broken phase.

The generalized conformal mapping method explained in section 3.1 allows us to write

any observable F (g̃) using eqs. (3.2) and (3.6), with |t±1 | and α1 the modulus and phase of

– 19 –



J
H
E
P
0
5
(
2
0
1
9
)
0
4
7

the inverse of the leading (complex) instanton action in eq. (3.4). In terms of the Le Roy

- Borel function

Bb(t) =

∞∑

n=0

Fn
Γ(n+ b+ 1)

tn ≡
∞∑

n=0

B(b)
n tn , (5.1)

we have

FB(g̃) =
1

g̃

∫ ∞

0
dt
( t
g̃

)b
e−t/g̃

∞∑

n=0

B(b)
n tn =

1

g̃b+1

∫ 1

0
du

dt

du
e−t(u)/g̃ tb(u)

(1− u)2s

∞∑

n=0

B̃(b,s)
n un

∼ 1

g̃b+1

N∑

n=0

B̃(b,s)
n

∫ 1

0
du

dt

du
e−t(u)/g̃ t

b(u)un

(1− u)2s
. (5.2)

In order to not clutter the notation, we omit to write the (b, s) dependence of FB(g̃). As in

ref. [1], we introduced two summation variables denoted by b and s to further improve the

behavior of the u-series and to have more control on the accuracy of the results. Due to the

presence of additional singularities within the unit u-disc, after the conformal mapping (3.6)

the series is still asymptotic. The conformal mapping in this case is supposed to extend the

region in coupling space where the asymptotic series behaves effectively as a convergent

one, giving a more reliable estimate of the observable with respect to optimal truncation of

the perturbative series. It is useful to estimate the rate of “convergence” of the series after

conformal mapping to have a rough expectation on the accuracy of the results obtained

with finite truncations. In order to simplify our discussion, we might consider the ideal

situation where no additional singularities are present. In this case the series in the last

line of eq. (5.2) is truly convergent for any value of the coupling constant and its rate of

convergence is governed by the large n behavior of the u integral. For n� 1 a saddle point

approximation gives

∫ 1

0
du

dt

du
e−t(u)/g̃ t

b(u)un

(1− u)2s
≈ C exp


−c n

2α1
2α1+1

(|a|g̃)
1

2α1+1


 , (5.3)

where α1 is the angle between the real positive axis and the leading singularity in the

Borel t-plane appearing in eq. (3.6), C is a b-, s- and α1-dependent coefficient which is

polynomial in n, and c is a smooth function of α1 of order one for all values of |α1| ≤ 1.

We see that the exponential convergence in n of the u integral sensitively depends on α1.

It is maximal for α1 = 1, it monotonically decreases for smaller values of α1 and eventually

vanishes for α1 = 0, when the series is no longer Borel resummable. In the Z2 unbroken

and broken theories we have α1 = 1, α1 ' 0.260 respectively. At fixed number of orders

we then expect a slower convergence of the conformal mapping method in the broken case

with respect to the unbroken one.

Of course the overall convergence of the series in n in eq. (5.2) is also determined by the

large order behavior of the coefficients B̃
(b,s)
n , which is governed by the other singularities

in the Borel plane. In the unbroken theory the known singularities are all aligned with the

leading one along the negative real axis, the best case scenario, while we have explicitly

seen in section 3.1 that this is not the case for the broken case. We then expect that next
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to leading singularities would most likely further increase the gap in accuracy between

resummations in the unbroken and broken phases, though we believe that for g̃ ≤ g̃(w)
c this

is a sub-dominant effect.

Due to the shortness of the series we obtained in section 4, the error minimization

procedure of ref. [1] that is used to select the central values for the parameters b and

s is sometimes unstable (especially for the 2-point function). We also note that in the

broken phase the error minimization procedure tends to select lower values of b than in the

unbroken phase. In order to avoid the dangerous b = −1 point at which the Γ-function in

the Borel-Le Roy transform diverges, in this paper we fix ∆b = 1, where ∆b is the semirange

used to scan the parameter b for the error estimation as in ref. [1]. The resulting error

estimate typically yields large errorbars but this is expected since we are only resumming

few perturbative terms. Tests on simple toy models showed that the error estimate usually

correctly represents the difference between the resummed and true values.

In contrast to the unbroken phase, Padé-Borel approximants are not very useful be-

cause the same-sign form of the first available series coefficients is typically responsible for

spurious unphysical poles that hinder a proper use of this method. Moreover, the shortness

of the series does not allow us to systematically select the “best” Padé-Borel approximant

as explained in ref. [1]. Nevertheless, we report for completeness the results obtained using

Padé-Borel approximants, when available. The shortness of the series does not allow us to

estimate the contribution to the error coming from the convergence.

We have also computed the vacuum energy using EPT as explained in section 3.2. In

this case the leading singularity of the Borel function B(t, g̃0), at fixed g̃0, is the same as

in the unbroken phase, with α1 = 1, |a| ' 0.683708. We now have

F̂B(g̃, g̃0) =
1

g̃

∫ ∞

0
dt
( t
g̃

)b
e−t/g̃

∞∑

n=0

B(b,g̃0)
n tn

=
1

g̃b+1

∫ 1

0
du

dt

du
e−t(u)/g̃ tb(u)

(1− u)2s

∞∑

n=0

B̃(b,s)
n (g̃0)un

∼ 1

g̃b+1

N∑

n=0

B̃(b,s)
n (g̃0)

∫ 1

0
du

dt

du
e−t(u)/g̃ t

b(u)un

(1− u)2s
. (5.4)

The value of an observable FB(g̃) is recovered by eventually setting g̃0 = g̃ in eq. (5.4):

F̂B(g̃, g̃) = FB(g̃). (5.5)

The different analytic structure of the Borel function and a longer perturbative series

allows us to use Padé-Borel approximants in EPT. Unless stated differently, we set in what

follows m̃2 = 1.

5.1 Vacuum energy: weak coupling

The perturbative expression for Λ̃ up to order g̃4 is reported in eq. (4.7). We show in the

left panel of figure 5 Λ̃(g̃) as a function of g̃. Surprisingly enough, the vacuum energy series

is within the perturbative regime up to the critical coupling g̃c and well beyond, as evident
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Figure 5. The vacuum energy Λ̃ as a function of the coupling constant g̃ using the coefficients up

to the g̃4 order. Left panel: the results obtained using the conformal mapping (5.2) (light blue)

with parameters s = 1/5, b = 0 and the optimally truncated series (red dotted line) which coincides

with the perturbative series up to g̃4 for the couplings shown in the plot. Right panel: comparison

between the central values of the conformal mapping (blue dashed line) and Padé-Borel (solid green)

resummation techniques. The regions beyond the phase transition g̃ > g̃
(w)
c are shaded in gray.

from the fact that optimal truncation and untruncated perturbation theory coincides for all

the couplings shown in the figure and in this whole regime they well approximate the central

value of the Borel resummed result (blue dashed line). For g̃ & 0.2, the error associated to

the resummation rapidly increases, despite the central values remain quite close.

In the right panel of figure 5 we compare Λ̃(g̃) computed using conformal mapping and

Padé-Borel resummation techniques. The results with the conformal mapping (5.2) are

obtained using resummation parameters s = 1/5 and b = 0. The approximant used in the

Padè-Borel method is [1/2] with parameter b = 1. The results are all well compatible with

each other, confirming that the vacuum energy is perturbatively accessible in the whole

range of the weakly coupled branch.

5.2 Vacuum energy: strong coupling and chang duality checks

The perturbative expression for Λ̃ up to order g̃8 in EPT is reported in eq. (4.8). As dis-

cussed in detail in ref. [24], EPT works at its best at strong coupling. More quantitatively,

at fixed number of loops N , we expect that EPT improves over ordinary perturbation

theory when g2 > 1/N .11 It is then the ideal tool to compute the vacuum energy at strong

coupling (strong branch in the broken phase). We report in figure 6 Λ̃ as a function of g̃

and compare the results obtained using conformal mapping and Padé-Borel approximants.

The light blue line corresponds to the conformal mapping at N = 8. In order to avoid dan-

gerous poles, in the Padé-Borel method (light red) we have removed the vanishing O(g̃0)

and O(g̃) coefficients from the series and effectively resummed Λ̃(g̃)/g̃2. The approximant

shown is [3/2] with b = −1/2. The results are in good agreement with each other.

We can numerically check Chang duality in its full glory by comparing the vacuum

energies in the unbroken, and weak/strong branches of the broken phases for values of

11This estimate has been established for ordinary integrals and numerically checked in quartic oscillators

in quantum mechanics. We assume here that it qualitatively also holds in the 2d case.
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Figure 6. The vacuum energy Λ̃ at strong coupling obtained by resummation of the EPT series (4.8)

with the conformal mapping (light blue) and Padé-Borel (light red) methods. The region beyond

the phase transition g̃ > g̃
(w)
c is shaded in gray and the vertical dashed line signals the critical

coupling in the strong branch g̃ = g̃
(s)
c .

the couplings associated to the same physical theory (points in the same vertical line in

figure 1). Indeed, it has been argued in ref. [1] that the Borel resummation of perturbation

theory around the unbroken vacuum, when applied beyond the phase transition point

and without a proper selection of the vacuum, reconstructs the correlation functions F

in a vacuum where cluster decomposition is violated.12 However, since the vacua |±〉 are

degenerate, the vacuum energy Λ computed for g ≥ gc starting from the unbroken phase,

coincides with the vacuum energies as computed from the broken phase in the weak and

the strong branches. We summarize our findings in figure 7. We report the vacuum energy

as a function of the coupling constants in the various phases, g in the unbroken phase

(blue), g̃(w) in the weakly branch of the broken phase (green) and g̃(s) in the strong branch

of the broken phase (red). In comparing the vacuum energy in different phases one has to

pay attention to the different units of mass and vacuum energy normalizations in the three

descriptions, which are related as in eq. (2.7). In figure 7 we have set to unity the squared

mass term m2 (so that m̃2 6= 1 in both weak and strong branches) and normalized the

vacuum energy Λ to be zero for g = 0 in the unbroken phase. The three vacuum energies

are consistent with each other, as expected from Chang duality. We consider this result

a numerical check of the Borel summability of the φ4 theory in the broken phase and an

example of the use of EPT in QFT.

5.3 Tadpole

The perturbative expression for 〈φ〉, normalized to its classical value, up to order g̃4 is

reported in eq. (4.9). We have resummed the expression 〈φ〉/φcl to the eighth power,

because it shows better convergence properties than 〈φ〉/φcl. This is not surprising. We

12Note that the presence of a branch point [2] for Λ at g = gc might spoil the analytic continuation of

the Borel resummation beyond the phase transition. Our results show no sign of such a failure, although

the weakness of the non-analyticity might require a higher level of precision to become manifest.
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Figure 7. The vacuum energy Λ for the theory described by the Lagrangian (2.1) as a function

of the coupling constants g (blue), g̃(w) (green) and g̃(s) (red). The blue band is computed by

resumming the series in the unbroken phase (conformal mapping as in ref. [1]). The green band

is obtained via Chang duality from the weak branch of the broken phase (conformal mapping in

eq. (3.6))). The red band is obtained via Chang duality from the strong branch using the EPT

series in eq. (4.8) (conformal mapping as in ref. [1]).

know that in the 2d Ising model M̃ ∝ |g̃c − g̃| (critical exponent ν = 1) and 〈φ〉 ∝ M̃1/8

(critical exponent β = 1/8), so that T ≡ (〈φ〉/φcl)
8 ∝ |g̃c − g̃| approaches the critical

coupling in an analytic way.13

We show in figure 8 T as a function of g̃ in the weak coupling regime. The series for

T is within the perturbative regime up to the critical coupling g̃c and soon after breaks

down. The value of g̃
(w)
c perturbatively found using the 4-loop series is surprisingly closer

to the value expected from Chang duality g̃
(w)
c ≈ 0.27. It would be nice to compute the

series up to 5-loops to establish if this is a mere coincidence or not. The blue dashed line

represents the central value of T obtained using the conformal mapping with resummation

parameters s = 1/4 and b = 3/2. The results are consistent with perturbation theory,

but the resummation allows us to better estimate the error. Using the results of our

resummation we get

g̃(w)
c = 0.29± 0.02 , (from tadpole) (5.6)

in good agreement with the value (2.13) derived using Chang duality from gc computed

from the unbroken phase. The values of T for g̃ & g̃
(w)
c do not have an immediate physical

meaning. At g̃
(w)
c the vacua |±〉 collide and result in the single Z2 invariant vacuum where

T = 0 identically.

13Of course, we are relying here on the knowledge of the critical exponents of the Ising model as input.
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Figure 8. The quantity T = (〈φ〉/φcl)
8 as a function of the coupling constant g̃ in the weakly

coupled branch using the coefficients up to the g̃4 order. We compare the Borel resummation result

using conformal mapping (blue dashed line) with optimal truncation (red dotted line). Note how

the perturbative series gives a reliable result all the way up to g̃
(w)
c .

5.4 Mass

The perturbative expression for M̃ up to order g̃4 is reported in eq. (4.12). We show in

figure 9 M̃ as a function of g̃ in the weak coupling regime. The series for M̃ is within the

perturbative regime up to g̃ & 0.2 but, in contrast to Λ̃ and T , it breaks down slightly

before reaching g̃
(w)
c . The blue dotted line represents the central value of M̃ obtained using

conformal mapping with resummation parameters s = 1/2 and b = 2. The interpretation

of M̃ beyond a certain value of the coupling g̃kk̄ < g̃
(w)
c is tricky and is postponed to next

section where a comparison with hamiltonian truncation methods is made. Independently

of its physical interpretation, note however that M̃ vanishes for a value of the coupling of

roughly 0.23, close to the value of g̃
(w)
c obtained from T in eq. (5.6) and from the one in

eq. (2.13) expected from Chang duality.

6 Comparison with refs. [10, 11] and mass interpretation

Before comparing our results with those of refs. [10, 11], it is useful to briefly recall basic

facts about the Hilbert space structure of the φ4 theory in the broken phase. The Hamilto-

nian truncation methods of refs. [10, 11] are based on the study of the spectrum of the φ4

theory defined on a spatial circle S1 of circumference L. On R×S1 the Hilbert space of the

theory is divided in two subsectors, according to the periodicity conditions of φ, periodic

or antiperiodic, around S1. The lowest energy state in the Hilbert space corresponds to

the ground state of the periodic sector, while the ground state in the antiperiodic sector is

identified with the kink state in the infinite length limit L→∞. No spontaneous symme-

try breaking can occur at finite L, since the vacuum is a unique state linear combination

of |+〉 and |−〉, where |±〉 denote the two vacua where at tree-level 〈φ〉 = ±v. The peri-

odic Hilbert space sector is characterized by a quasi degenerate spectrum of states, whose

energy splitting decreases exponentially with L and is governed by the energy of the an-
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Figure 9. The physical mass M̃ as a function of the coupling constant g̃ in the weakly coupled

branch using the coefficients up to the g̃4 order. We compare the Borel resummation result using

conformal mapping (blue dashed line) with optimal truncation (red dotted line). The vertical dotted

line at g̃ = g̃kk̄ ≈ 0.125 is the coupling (taken from ref. [11]) where the mass of the elementary

particle is twice the mass of the kink and might become unstable.

tiperiodic vacuum, i.e. the kink mass. In particular, for L large enough, the lowest energy

state beyond the vacuum is the combination of |+〉 and |−〉 orthogonal to the vacuum,

which becomes degenerate with it for L→∞. In this limit all states in the periodic sector

become exactly degenerate and the Hilbert space is expected to also contain states that

can be seen as composed of an even number of kink and anti-kink states.14 Analogously,

states in the antiperiodic sector can be interpreted as composed of an odd number of kink

and anti-kink states. A superselection rule forbids transitions that do not preserve a Z2

topological charge, the kink number operator. Semi-classical arguments [37] suggest that

the elementary φ-particle excitation decays into a pair of kink anti-kink states at some

value of the coupling g̃kk̄ < g̃
(w)
c . The presence of such decay has been checked numerically

in ref. [11] (see also ref. [38]), where the absence of single particle states in the periodic

sector for g̃kk̄ ≈ 0.125 is interpreted as its decay in a pair of kink and anti-kink states.

The φ4 theory discussed in refs. [10, 11], in the L→∞ limit, becomes a non-compact

theory with two degenerate vacua connected by topological kink excitations. No vac-

uum selection has been performed, and therefore 〈φ〉 = 0 and no spontaneous symmetry

breaking can occur. In contrast, our results are based on ordinary perturbation theory in

non-compact space, expanding around |+〉 or |−〉, where spontaneous symmetry breaking

occurs. This point should be taken into account when comparing our results with those of

refs. [10, 11]. We do not expect subtleties related to the choice of vacuum for the vacuum

energy Λ̃, since this is a continuous and smooth function at least up to g̃
(w)
c . Similarly, M̃

is a smooth function as long as the particle is stable and should coincide with the mass of

the lightest single particle state for g̃ < g̃kk̄.

14Indeed a kink and an anti-kink, when far apart, are approximate finite energy solutions to the classical

equations of motion, so it is natural to expect state configurations of this kind.
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Figure 10. Left panel: comparison with ref. [10] of the vacuum energy as a function of g̃. The

blue dashed line are our results obtained by Borel resummation with conformal mapping, black and

green points are the results of ref. [10] at finite volume L = 12 and L = 20, respectively. Right

panel: comparison with refs. [10, 11] of the physical mass as a function of g̃. The blue dashed line

are our results obtained by Borel resummation with conformal mapping, the black points are the

results of ref. [11] extrapolated at infinite volume, the red points are the results of ref. [10] at finite

volume L = 20. The vertical dotted line at g̃ = g̃kk̄ ≈ 0.125 is the coupling (taken from ref. [11])

where the mass of the elementary particle is twice the mass of the kink and might become unstable.

We compare in figure 10 the values of Λ̃ and M̃ computed respectively in refs. [10]

and [10, 11] with our results.15 Note that the results of ref. [10] have not been extrapolated

at infinite volume: for Λ̃ we plot their points for two different volumes L = 12 and L = 20,

while the points for M̃ are at L = 20. In table 5 we make the comparison explicit for some

values of the coupling g̃. The values we report for Λ̃ as computed by ref. [10] are obtained

as the means of the values at two renormalization scales µ = 0.9 m̃ and µ = 1.1 m̃ and

the reported error is the semidifference. The values of M̃ taken from ref. [11] have been

normalized accordingly to our definitions. As it can be seen, we get more accurate results

than those of refs. [10, 11] and they are all in good agreement among themselves.16

For g̃kk̄ > g̃, there might be subtleties in the interpretation of M̃ related to spontaneous

symmetry breaking. Indeed, the proper way to select a vacuum when the Z2 symmetry

is spontaneously broken is achieved by adding a small explicit breaking term such as εφ

and take the limit ε → 0 only after L → ∞. The situation considered in refs. [10, 11]

corresponds to the opposite order of limits, ε→ 0 first and L→∞ after, since no breaking

term was present to begin with. As usual in perturbative QFT, we performed a selection of

the vacuum “by hand”, by choosing to expand around any of the two vacua, neglecting the

effect of the other. There is no need to add an explicit breaking term, so our configuration

is equivalent to having taken L → ∞ first, since we have infinite volume to start with,

and ε → 0 after. Since the two limits do not commute, the results for the particle decay

found in ref. [11] do not obviously apply in our context. When L → ∞, at finite ε, the

non-trivial topological Hilbert space sector containing an odd number of kink and anti-

kink states decouple. While topologically trivial states of kink anti-kink do not decouple,

15We thank the authors of refs. [10, 11] for providing us these data.
16The error bars in the data of ref. [10] for M̃ might not fully take into account truncation effects,

explaining the slight disagreement between our results and those of ref. [10] around g̃ = 0.09.
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g̃ 0.03 0.05 0.10 0.15

ref. [10] L = 12 −0.002710(4) −0.004558(6) −0.009340(5) −0.01819(1)

Λ̃ ref. [10] L = 20 −0.002706(7) −0.00455(1) −0.00929(2) −0.01732(6)

This work −0.00271009(5) −0.0045602(5) −0.00935(1) −0.0175(2)

M̃
ref. [11] 0.9444(4) 0.9023(5) 0.76(4)

This work 0.944401(5) 0.90233(5) 0.769(2)

Table 5. The values of Λ̃ and M̃ for some values of g̃ and comparison with refs. [10] and [11]

respectively. The results of ref. [10] are at finite volume L and the reported error is obtained as the

semidifference between the results at two renormalization points, see the text for additional details.

the fundamental particle can no longer kinematically decay into freely moving kink and

anti-kink states, since single kink and anti-kink states are no longer in the spectrum. In

other words, the φ-particle for any finite ε would behave as a spatially extended but stable

bound state. As ε becomes smaller and smaller, this state becomes less and less bound

and for ε = 0 and g̃ ≥ g̃kk̄ it unbounds to a pair of essentially free kink-anti-kink states.

In this case our results for M̃ do not have a clear interpretation, since they have been

obtained assuming the existence of a pole of the two-point function. But in the topological

trivial sector no single particle state would remain, and the operator φ would only create

multi-particle states. In other words, the pole of the two-point function would dissolve in

a branch-cut singularity for g̃ ≥ g̃kk̄. In this case M̃ would be related to the threshold

energy for the multi particle production, or perhaps it would simply be an unphysical

analytic continuation with no obvious significance. As we will see in the next subsection,

the second hypothesis is favored by our analysis.

6.1 Kink states from the unbroken phase?

As we mentioned in the last subsection, we cannot have a direct access to single kink and

anti-kink states starting from a vacuum where spontaneous symmetry breaking occurs.

Interestingly enough, however, we might possibly access the kink sector of the theory

starting from the unbroken theory with m2 > 0! Indeed, it has been conjectured in ref. [1]

that the Borel resummation of correlation functions starting from the unbroken phase

reconstructs for g > gc the correlation functions in a vacuum linear combination of |+〉 and

|−〉 connected by kink configurations, where 〈φ〉 = 0 and cluster decomposition is violated,

that is the configuration in refs. [10, 11]. A consequence of this conjecture is that the

vacuum energy Λ for g > gc should be identified with the vacuum energy Λ̃ as computed

in the weakly and strongly coupled branches. More interestingly, |M(g)| as computed in

ref. [1] for g & gc should be identified with the mass gap in the non-clustered vacuum,

which is given by the kink mass. The kink is indeed the lightest single particle excitation

close to the phase transition (in fact, the only one when g is sufficiently close to gc). The

kink mass as a function of g̃ has been numerically studied in ref. [11]. It turns out that the

semi-classical kink mass formula, including one-loop corrections,

Mkink

m̃
=

1

12g̃
− 3

2π
+

1

4
√

3
, (6.1)
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Figure 11. Comparison between the kink mass and the mass |M | in the unbroken phase for g > gc
as a function of g̃ in the weakly coupled branch. In brown we have |M | as obtained from the

Borel resummation of the perturbative series in the unbroken phase up to order g8 using conformal

mapping. The black dashed line is the kink mass as given by the semiclassical equation (6.1). The

green and red points are the results obtained by ref. [11] from the splitting and antiperiodic sector

respectively. See the main text for further details.

is in very good agreement with the numerical results for all values of g̃ in the weakly coupled

branch.17 In figure 11 we compare the results of ref. [11] with eq. (6.1) and our results for

|M | as computed in ref. [1] and analytically continued beyond the phase transition. The red

and green points are the results of ref. [11]. The former are directly obtained by computing

the vacuum energy in the anti-periodic sector, while the latter are obtained by computing

the energy splitting between the first two states in the topological trivial sector.18 Note

that the region of |M(g)| beyond the transition for g > gc correspond to g̃ < g̃
(w)
c and

that we are using units where m̃2 = 1, while in ref. [1] we had m2 = 1. The results are in

very good agreement with each other, providing evidence to our conjecture. The relation

between perturbative and non-perturbative states in different phases of a theory is typical

in theories enjoying duality symmetries, but we are unaware of relations of this sort that

involve correlation functions in a vacuum that does not satisfy cluster decomposition.

We conclude by comparing M̃ and 2Mkink as a function of g̃, see figure 12. This is useful

because if M̃ still describes the mass gap in the theory it should follow the curve 2Mkink.

Though not conclusive, figure 12 does not support this hypothesis and seems to suggest

instead that for g̃ ≥ g̃kk̄ M̃ is an analytic continuation with no obvious interpretation.

7 Conclusions

In this paper we have studied the 2d φ4 theory in the broken phase, recently shown to

be Borel resummable [1]. We have computed the leading finite action complex instanton

17In light of our results this is perhaps not that surprising, since we have shown the validity of perturbation

theory in the weakly coupled branch.
18The latter method requires also the use of eq. (6.1).
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Figure 12. Comparison between 2Mkink and M̃ as a function of g̃ in the weakly coupled branch.

The former has been obtained multiplying by a factor 2 the data in figure 11, while the latter using

conformal mapping in the broken phase, as in figure 9. The vertical dotted line at g̃ = g̃kk̄ ≈ 0.125

is the coupling (taken from ref. [11]) where the mass of the elementary particle is twice the mass of

the kink and becomes unstable. The color coding is the same as in figures 9 and 11.

solutions, important to determine the large order behavior of the perturbative series and

to Borel resum it using a generalized conformal mapping method. We have computed the

perturbative series expansion for the first Schwinger functions up to order g̃4 and Borel

resummed the truncated series using our generalized conformal mapping technique. The

results of the resummation are not as accurate as in the unbroken phase, but allow us to

establish that the weakly coupled branch of the broken phase is almost entirely within the

perturbative regime. This somewhat unexpected result is fully confirmed by comparing

our perturbative (resummed or not) results with hamiltonian truncation methods.

We have also used EPT to compute the vacuum energy at strong coupling, and com-

pared the results to the ones obtained in the weakly coupled branch and in the strongly

coupled unbroken phase, proving in this way Chang duality and the Borel summability of

the theory. We have finally provided a numerical evidence that the mass gap analytically

continued from the unbroken to the broken Z2 phase can be identified with a kink state.

This result is in agreement with the expectation that the analytically continued Schwinger

two-point function in the broken phase corresponds to the mass gap in a inhomogeneous

vacuum where cluster decomposition does not hold. It would be nice to have a deeper un-

derstanding of this phenomenon and to establish if and to what extent it applies for other

Schwinger functions and for other Borel resummable theories undergoing phase transitions.
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Λ̃ λ 0
3 λ 2

3 λ 4
3 λ 6

3 λ 8
3

λ0 0 −1
2

(
ψ(1)(1/3)

4π2 − 1
6

)
−0.037804619(13) −0.14168986(85) −0.7158909(36)

λ1 0 0.079959370431 0.45728168(71) 3.052200(15)

λ2 −21ζ(3)/16π3 −0.37556393(34) −4.103721(35) −44.760(19)

λ3 27ζ(3)/8π4 1.7780406(30) 34.6608(25)

λ4 −0.116125964(91) −9.413933(23) −294.714(45)

λ5 0.3949534(18) 55.2353(57)

λ6 −1.629794(22) −356.38(36)

λ7 7.85404(21)

λ8 −43.1920(21)

Table 6. Perturbative coefficients for the vacuum energy Λ̃ with independent cubic and quartic

coupling λ3 and λ up to eight total vertices. We set m̃ = 1 to avoid clutter.19

〈φ〉 λ 1
3 λ 3

3 λ 5
3 λ 7

3

λ0 0 −0.267173395(10) −1.0631775(38) −5.773220(83)

λ1 ψ(1)(1/3)
π2 − 2

3 2.3297864(28) 18.72732(33) 165.1097(19)

λ2 −0.94497557(60) −17.077459(80) −235.4280(47)

λ3 3.795830(20) 123.0864(36) 2657.933(30)

λ4 −17.07032(12) −916.534(22)

λ5 87.5081(29) 7168.4(6.8)

λ6 −501.799(48)

λ7 3193.26(51)

Table 7. Perturbative coefficients for the VEV with independent cubic and quartic coupling λ3

and λ up to eight total vertices. We set m̃ = 1 to avoid clutter.
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A Series coefficients of the 0, 1 and 2 point functions

In this appendix we report the coefficients for the series expansion of the 0, 1 and 2-

point function with independent cubic and quartic couplings λ3 and λ. When performing

ordinary perturbation theory with λ3 =
√

2λm̃, the λn terms with n > 4 should not

be included in the series, since they would require to add terms up to λ2n
3 that we have

not computed.

In table 6 we list the coefficients for the vacuum energy up to eight total vertices. In

table 7 we list the coefficients of the VEV of φ up to eight total vertices. In table 8 we

19We thank S. Rychkov and L. Vitale for spotting a missing factor 1/2 in the first λ2
3 coefficient in a

previous version of the paper.
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b(0) λ 0
3 λ 2

3 λ 4
3 λ 6

3 λ 8
3

λ0 0 −
√

3 −6.67024(46) −40.88772(33) −326.666(51)

λ1 0 10.70608065292 102.4789(74) 1123.600(45)

λ2 −3/2 −61.50066(78) −1183.464(99) −20273(20)

λ3 63ζ(3)
2π3 + 9

π 381.343(23) 12449.2(1.4)

λ4 −14.777287(22) −2546.85(11) −127782(36)

λ5 66.81651(43) 18240.5(2.5)

λ6 −353.2405(28) −139410(49)

λ7 2111.715(36)

λ8 −13994.24(54)

b(1) λ 0
3 λ 2

3 λ 4
3 λ 6

3

λ0 1 3
π − 1√

3
2.679229(11) 24.8553(15)

λ1 0 −2.4433766(42) −45.69101(80)

λ2 0.08094532639 17.705277(72) 570.195(40)

λ3 −0.341795194(75) −126.0723(24)

λ4 1.8559406(86) 924.083(89)

λ5 −10.83118(19)

λ6 68.3310(29)

b(2) λ 0
3 λ 2

3 λ 4
3

λ0 0 3
π − 2√

3
−2.285492(21)

λ1 0 1.54401986(31)

λ2 −0.0128046736 −12.10262(11)

λ3 0.079771437(20)

λ4 −0.5258941(27)

b(3) λ 0
3 λ 2

3

λ0 0 9
π − 14

3
√

3

λ1 0

λ2 0.00350654051

Table 8. The coefficients b
(n)
k,l relevant for the determination of the pole mass M̃2.

list the coefficients b
(n)
k,l of the nth-derivative of the 2-point function Γ̃

(n)
2 at momentum

p2 = −M̃2 defined as

Γ̃
(n)
2 (−m̃2) = m̃2−2n

∑

k=0,l=0

b
(n)
k,l

(
λ

m̃2

)k ( λ3

m̃2

)l
, b

(n)
0,0 = δn,1 . (A.1)

Using the procedure explained in ref. [1] and the coefficients b
(n)
k,l one can determine the

perturbative series for the physical mass M̃2.
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[26] J.P. Eckmann, J. Magnen and R. Sénéor, Decay properties and borel summability for the

Schwinger functions in P (Φ)2 theories, Commun. Math. Phys. 39 (1975) 251.

[27] L.N. Lipatov, Divergence of the perturbation theory series and the quasiclassical theory, Sov.

Phys. JETP 45 (1977) 216 [Zh. Eksp. Teor. Fiz. 72 (1977) 411] [INSPIRE].

[28] J.C. Le Guillou and J. Zinn-Justin, Accurate critical exponents from the ε-expansion, J.

Phys. Lett. 46 (1985) L137, reprinted in Large-order behaviour of perturbation theory, J.C.

Le Guillou et al. eds., North Holland, The Nethelands (2013), [INSPIRE]

[29] M.V. Kompaniets and E. Panzer, Minimally subtracted six loop renormalization of

O(n)-symmetric φ4 theory and critical exponents, Phys. Rev. D 96 (2017) 036016

[arXiv:1705.06483] [INSPIRE].

[30] S.F. Magruder, The existence of phase transition in the (φ4) in three-dimensions quantum

field theory, Phys. Rev. D 14 (1976) 1602 [INSPIRE].

[31] G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J.

Math. Phys. 5 (1964) 1252 [INSPIRE].

[32] E. Brezin and G. Parisi, Critical exponents and large order behavior of perturbation theory, J.

Stat. Phys. 19 (1978) 269,

[33] R. Rossi, T. Ohgoe, K. Van Houcke and F. Werner, Resummation of diagrammatic series

with zero convergence radius for strongly correlated fermions, Phys. Rev. Lett. 121 (2018)

130405 [arXiv:1802.07717] [INSPIRE].

[34] M.V. Berry and C.J. Howls, Hyperasymptotics, Proc. Math. Phys. Sc. 430 (1990) 653.

[35] M.V. Berry and C.J. Howls, Hyperasymptotics for integrals with saddles, Proc. Math. Phys.

Sc. 434 (1991) 657.

– 34 –

https://arxiv.org/abs/1811.01685
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.01685
https://arxiv.org/abs/1812.08177
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.08177
https://doi.org/10.1103/PhysRevLett.36.1351
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,36,1351%22
https://doi.org/10.1103/PhysRevB.17.1365
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,B17,1365%22
https://doi.org/10.1103/PhysRevB.21.3976
https://doi.org/10.1103/PhysRevB.21.3976
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,B21,3976%22
https://doi.org/10.1134/1.1324056
https://arxiv.org/abs/hep-th/0003140
https://inspirehep.net/search?p=find+EPRINT+hep-th/0003140
https://doi.org/10.1016/j.physletb.2015.11.015
https://arxiv.org/abs/1508.00989
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.00989
https://doi.org/10.1007/JHEP05(2017)056
https://doi.org/10.1007/JHEP05(2017)056
https://arxiv.org/abs/1702.04148
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.04148
https://doi.org/10.1103/PhysRevD.96.021701
https://doi.org/10.1103/PhysRevD.96.021701
https://arxiv.org/abs/1612.04376
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.04376
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,45,216%22
https://inspirehep.net/search?p=find+%22J.Phys.Lett.,46,L137%22
https://doi.org/10.1103/PhysRevD.96.036016
https://arxiv.org/abs/1705.06483
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.06483
https://doi.org/10.1103/PhysRevD.14.1602
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D14,1602%22
https://doi.org/10.1063/1.1704233
https://doi.org/10.1063/1.1704233
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,5,1252%22
https://doi.org/10.1007/BF01011726
https://doi.org/10.1007/BF01011726
https://doi.org/10.1103/PhysRevLett.121.130405
https://doi.org/10.1103/PhysRevLett.121.130405
https://arxiv.org/abs/1802.07717
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.07717


J
H
E
P
0
5
(
2
0
1
9
)
0
4
7

[36] G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys.

27 (1978) 192 [INSPIRE].

[37] G. Mussardo, Neutral bound states in kink-like theories, Nucl. Phys. B 779 (2007) 101

[hep-th/0607025] [INSPIRE].

[38] A. Coser et al., Truncated conformal space approach for 2D Landau-Ginzburg theories, J.

Stat. Mech. 1412 (2014) P12010 [arXiv:1409.1494] [INSPIRE].

– 35 –

https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/0021-9991(78)90004-9
https://inspirehep.net/search?p=find+J+%22J.Comput.Phys.,27,192%22
https://doi.org/10.1016/j.nuclphysb.2007.03.053
https://arxiv.org/abs/hep-th/0607025
https://inspirehep.net/search?p=find+EPRINT+hep-th/0607025
https://doi.org/10.1088/1742-5468/2014/12/P12010
https://doi.org/10.1088/1742-5468/2014/12/P12010
https://arxiv.org/abs/1409.1494
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1494

	Introduction
	Chang duality
	Borel summability in the broken phase
	Weak coupling: conformal mapping of complex saddles
	Strong coupling: exact perturbation theory

	Perturbative coefficients up to g(3)**8 order
	Vacuum energy
	1-point tadpole
	Physical mass
	Large order behavior

	Results
	Vacuum energy: weak coupling
	Vacuum energy: strong coupling and chang duality checks
	Tadpole
	Mass

	Comparison with refs. [10,11] and mass interpretation
	Kink states from the unbroken phase?

	Conclusions
	Series coefficients of the 0, 1 and 2 point functions

