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Abstract: We construct predictions for top quark pair differential distributions at hadron

colliders that combine state-of-the-art NNLO QCD calculations with double resummation

at NNLL′ accuracy of threshold logarithms arising from soft gluon emissions and of small

mass logarithms. This is the first time a resummed calculation at full NNLO+NNLL′ ac-

curacy in QCD for a process with non-trivial color structure has been completed at the

differential level. Of main interest to us is the stability of the Mtt̄ and top-quark pT distribu-

tions in the boosted regime where fixed order calculations may become strongly dependent
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on the choice of dynamic scales. With the help of numeric and analytic arguments we

confirm that the choice for the factorization and renormalization scales advocated recently

by some of the authors is indeed optimal. We further derive a set of optimized kinematics-

dependent scales for the matching functions which appear in the resummed calculations.

Our NNLO+NNLL′ prediction for the top-pair invariant mass is significantly less sensitive

to the choice of factorization scale than the fixed order prediction, even at NNLO. No-

tably, the resummed and fixed order calculations are in nearly perfect agreement with each

other in the full Mtt̄ range when the optimal dynamic scale is used. For the top-quark pT
distribution the resummation performed here has less of an impact and instead we find

that upgrading the matching with fixed-order from NLO+NNLL′ to NNLO+NNLL′ to be

an important effect, a point to be kept in mind when using NLO-based Monte Carlo event

generators to calculate this distribution.
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1 Introduction

The top quark is the heaviest fundamental particle discovered so far. Because of its large

mass, the top quark is the Standard Model particle which couples most strongly to the

Higgs boson; as such, it plays a pivotal role in the study of the electroweak symmetry sector

of the Standard Model. For this reason, and thanks to the large number of top-quark pairs

produced at the Large Hadron Collider (LHC), accurate experimental measurements of

several top-quark related observables are either already available or will become available

in the next few years.

An exciting feature of top physics at the LHC is that the large collider energy en-

ables the study of boosted top-quark production. In this context “boosted” refers to the
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kinematic regime where the energies of the produced top quarks are much larger than the

top-quark mass. Boosted top quarks may appear in the study of many kinematic distribu-

tions: top quarks with very high pair invariant mass, top quarks with very large transverse

momentum, or very forward top quarks (large rapidity). The LHC has already probed top

quarks with transverse momenta around 1 TeV [1], and will extend the energy range up to

a few TeV. While these boosted energy top quarks are more rarely produced than the low

energy ones, and the high energy regions do not contribute significantly to the total cross

section, they are phenomenologically important due to their potential to probe directly

physics beyond the electroweak scale.

On the theory side, state-of-the-art perturbative calculations for on-shell top-quark

pair production, in the boosted regime or otherwise, have reached an accuracy beyond

next-to-leading order (NLO) in the strong coupling constant αs. The most complete Stan-

dard Model predictions for differential cross sections combine next-to-next-leading-order

(NNLO) QCD corrections with NLO electroweak (EW) ones [2]. In this paper we will focus

exclusively on QCD corrections, with the understanding that the results can eventually be

combined with EW corrections which have been studied extensively in the literature [3–22].

NNLO QCD calculations for differential cross sections in top-quark pair production

were obtained in [23, 24]. These calculations added to NNLO results for more inclusive

quantities such as the total cross section [25–28] and the forward-backward asymmetry at

the Tevatron [29]. In [23], distributions such as the tt̄ (top-pair) invariant mass and the

top-quark transverse momentum distribution were evaluated at the LHC with center-of-

mass energies of
√
s = 8 TeV and 13 TeV using renormalization and factorization scales µ

varied around the top mass mt, and the typical scale uncertainties were estimated to lie

below 10%. In [24], on the other hand, dynamical scale choices were investigated in order

to determine which choice of scale is most appropriate for fixed-order studies of multi-TeV

differential cross sections, based on the convergence of the fixed-order perturbative series.

A notable result of that study is that the high-energy tails of distributions can be quite

sensitive to the parametric choice of factorization scale, even at NNLO and especially in

the case of the top-pair invariant mass distribution.

The fact that the application of fixed-order perturbation theory in the boosted regime

is rather delicate is not entirely surprising. Indeed, in the case of boosted top quarks one

encounters two potential difficulties. The first is that in the boosted regime the result of a

fixed-order calculation contains mass logarithms of the form ln(Et/mt) arising from quasi-

collinear gluon emissions. The second is that, due to the shape of the parton distribution

functions (PDFs), the effective partonic center-of-mass energies in most events with boosted

top quarks are not much larger than the invariant masses of the top quark pairs. This can

lead to enhanced corrections from so-called soft logarithms or threshold logarithms, and

indeed, in general the two types of logarithms multiply each other at a given order in

perturbation theory, due to emissions which are simultaneously soft and collinear. At the

LHC, these logarithmic corrections may become important numerically, to the point that

higher order corrections are not generically much smaller than lower order ones, and while it

may be possible to deal with this to some extent through a judicious scale-setting procedure

in a fixed-order calculation, it is desirable to address the issue head-on by resumming these

– 2 –
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two types of logarithms to all orders in perturbation theory and adding them onto the fixed

order result through a matching procedure.

A framework for the simultaneous resummation of threshold and small-mass logarithms

in differential cross sections in top-quark pair production at the LHC was set up in [30],

and applied to the phenomenological study of tt̄ invariant mass and top-quark transverse

momentum distributions in [31]. The results are valid in the soft gluon emission limit, but

contain an extra layer of resummation for small-mass logarithms, so that overlapping soft

and small-mass logarithmic corrections are properly taken into account. The factorization

formalism underlying the resummation was derived using soft-collinear effective theory

(SCET), and the resummation was carried out in Mellin space. While the focus of that

phenomenological study was the boosted regime, a matching procedure with standard

soft-gluon resummation results (i.e. without the simultaneous resummation of small-mass

logarithms) at next-to-next-to-leading logarithmic (NNLL) accuracy [32] and to NLO fixed-

order calculations was performed in order to expand the validity of the results to the full

phase space.

In this paper we combine state-of-the-art results from analytic resummation and fixed-

order perturbation theory in QCD in order to produce for the first time phenomenologi-

cal predictions which match NNLO results with resummation of soft and small-mass log-

arithms at the level of differential tt̄ invariant mass and top-quark transverse momen-

tum distributions.

The paper is organized as follows. In section 2 we immediately address the technical

aspect which is new in this work, namely the matching of the resummed calculation in the

soft and boosted limit to the NNLO calculations. In section 3 we explain the resummation

procedures used in two distinct kinematic limits. In particular, in section 3.1 we review the

kinematics for top-pair production and the form of the differential cross section in Mellin

space. In section 3.2 we discuss the soft limit, where threshold logarithms are large but

mass logarithms are of generic size, while in section 3.3 we consider the boosted-soft limit,

where both soft and mass logarithms are considered large. With all the analytic tools ready,

in section 4 we study kinematic features of the top quark pair in the boosted region, and

use these insights to determine appropriate choices for the scales appearing in the matching

functions in the resummed formulas. In section 5 we present numerical results for the top-

pair invariant mass and top-quark pT distributions, paying close attention to a comparison

between pure NNLO results and those supplemented by resummation, and then present

conclusions in section 6. We perform more comparisons among results at different orders in

fixed-order and resummed perturbation theory in appendix A, and relegate some lengthy

formulas for resummation exponents to appendix C.

2 Matching fixed order and resummed calculations

We study the top-quark pair production process

N1(P1) +N2(P2)→ t(p3) + t̄(p4) +X(pX) , (2.1)

– 3 –
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where N1 and N2 are the colliding hadrons (proton-proton for the LHC and future colliders,

proton-antiproton for the Tevatron), and X is an inclusive hadronic final-state. In this

work, the top quarks are treated as on-shell particles. QCD factorization allows us to write

an arbitrary differential cross section in the schematic form

dσ =
∑
i,j

dσ̂ij ⊗ φi/N1
⊗ φj/N2

. (2.2)

The symbol ⊗ stands for a convolution over longitudinal momentum fractions of the initial-

state partons i, j ∈ {q, q̄, g} in the (anti-)proton, the dσ̂ij are the differential partonic cross

sections for the process i + j → tt̄ + X̂, the X̂ is a partonic final state, and φi/N denotes

the parton distribution function (PDF) of parton i in hadron N . While the PDFs are

non-perturbative objects to be extracted from experiment, the differential partonic cross

sections can be calculated in perturbative QCD.

The aim of this paper is to provide state-of-the-art QCD calculations for two specific

differential cross sections: namely the invariant mass of the top-quark pair, and the pT of

the top-quark. The baseline for the calculation is NNLO in fixed-order perturbation theory,

to which we add the two types of resummation mentioned in the introduction and to be

described in detail in section 3. The first is performed in the soft limit of the differential

partonic cross sections, where the top-quark pair carries almost all of the energy of the

partonic collision. It can be obtained to NNLLm order using the results of [32], where we

have labeled the logarithmic accuracy of the resummation with a subscript m to indicate

that the result is obtained for arbitrary values of mt. As the energy of the top-quark pair

becomes very large, this standard soft-gluon resummation itself develops logarithms which

become large in the limit mt → 0. We call this the “boosted-soft limit”, and perform

a joint resummation of overlapping soft and small-mass logarithms using the formalism

developed in [30]. In this case it is possible to increase the accuracy of the resummation

to NNLL′b order, where now the subscript b indicates that the results are valid in the

boosted-soft limit, and thus neglect corrections which vanish in the limit mt → 0. The

perturbative ingredients for these two types of resummation (anomalous dimensions and

matching functions) and the order at which they need to be calculated to achieve a given

resummation accuracy is summarized in table 1 in section 3.4.

We have just described three different calculational formalisms, each of which is tai-

lored to a different kinematic situation. The NNLO calculation is optimal in regions of

phase space where the top quarks are not highly boosted, and hard-gluon emissions are

important. The NNLLm result is applicable when soft-gluon radiation dominates, but

small-mass logarithms are unimportant. When soft-gluon radiation dominates, and the

top-quarks are highly boosted, one would like to make use of the NNLL′b results. To make

optimal use of our results we would like to have a unified description over the whole phase

space. For this purpose it is necessary to combine the different formulas in such a way that

no contribution is counted more than once.

To understand such a matching procedure, we first consider matching NNLLm resum-

mation with fixed-order results. In that case, the matching formula with (N)NLO reads

dσ(N)NLO+NNLLm = dσNNLLm +

(
dσ(N)NLO − dσNNLLm

∣∣∣ (N)NLO
expansion

)
, (2.3)
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where dσNNLLm denotes the differential cross section evaluated to NNLLm accuracy. The

first term in the above equation contains the all-orders resummation result in the soft limit,

and the difference of terms in parenthesis contains subleading terms in that limit, which

are taken into account by the fixed-order calculation. Explicit expressions for the fixed-

order (N)NLO expansion of the resummation formulas needed in the matching are given

in section 3.6.

We next match the resummation formulas in the soft and boosted-soft limit with each

other and with (N)NLO. To do so, we need to remove the overlap between the NNLL′b and

NNLLm results to all orders in αs. This is done by exploiting the fact that the boosted-soft

resummation formula is the small-mass limit of the soft-gluon resummation formula at any

fixed order in αs, so we must subtract out the leading term in the limit mt → 0 in order

not to double count. The combined result, denoted NNLL′b+m, is thus given by

dσNNLL′b+m = dσNNLL′b +
(
dσNNLLm − dσNNLLm

∣∣
mt→0

)
, (2.4)

where the terms in the parenthesis account for contributions which are suppressed by mt/M

in the boosted-soft limit and thus not included in the NNLL′b result. Matching with fixed

order then proceeds in analogy to eq. (2.3) resulting in

dσ(N)NLO+NNLL′ = dσNNLL′b+m +

(
dσ(N)NLO − dσNNLL′b+m

∣∣∣ (N)NLO
expansion

)
. (2.5)

Again, the terms in the parenthesis account for subleading terms in the soft limit, which

are taken into account through a fixed-order calculation, but are not accessible to either of

the resummation formulas. Calculating the subtraction term requires one to expand each

term in eq. (2.4) to (N)NLO. The procedure for obtaining the different components of the

above equation is described in more detail in section 3.6.

Differential distributions obtained from the explicit evaluation of eq. (2.5) are a main

result of this work, and can be found in section 5. Before going into numerical studies,

we give details of the resummation procedure, including recipes for obtaining the different

pieces used in the matching procedure, in the next section. These details can safely be

skipped by a reader interested in purely phenomenological results. In section 4 we conduct

a thorough analysis of the choice of scales for the matching functions which appear in the

resummed results.

3 Mellin-space resummation in the (boosted) soft limit

3.1 Kinematics and differential cross sections

In this section we review the kinematics involved in describing the limits in which resum-

mation is carried out. At Born level, and to leading order in the soft limit considered

below, two partonic channels contribute to the partonic cross section: the quark-antiquark

annihilation channel

q(p1) + q̄(p2)→ t(p3) + t̄(p4) , (3.1)

– 5 –
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and the gluon fusion channel

g(p1) + g(p2)→ t(p3) + t̄(p4) . (3.2)

The momenta of the incoming partons are related to the hadron momenta according to

pi = xiPi (i = 1, 2). The relevant Mandelstam invariants are defined as

s = (P1 + P2)2 , ŝ = (p1 + p2)2 , M2
tt̄ = (p3 + p4)2 ,

t1 = (p1 − p3)2 −m2
t , u1 = (p2 − p3)2 −m2

t . (3.3)

In fixed order perturbation theory, starting from NLO accuracy, a new 2 → 3 production

channel, initiated by a quark and a gluon, opens up. At NNLO one needs to account for

the contribution of 2 → 4 processes (at tree level), as well as the contribution of 2 → 3

processes (up to one loop) and the 2 → 2 production channels in eqs. (3.1) and (3.2) (up

to two-loops). All of these channels are of course included in the NNLO results which we

employ in this work.

The soft emission region, which is of interest for the resummed calculation, is defined

by the limit M2
tt̄ → ŝ (sometimes also referred to as the partonic threshold region). In

this limit, the final state particles in addition to the top pair are soft. In order to describe

the top-pair invariant mass distribution near the partonic threshold, it is convenient to

introduce the following variables:

z =
M2
tt̄

ŝ
, τ =

M2
tt̄

s
, βt =

√
1− 4m2

t

M2
tt̄

, β =

√
1− 4m2

t

ŝ
. (3.4)

The quantity βt is the 3-velocity of the (anti-)top quark in the tt̄ rest frame, while β is

often invoked to describe the partonic threshold for the total cross section [33–36]. In the

soft limit z → 1, one has β → βt. Moreover, in that limit the scattering angle θ is related

to the Mandelstam variables according to

t1 = −M
2
tt̄

2
(1− βt cos θ) , u1 = −M

2
tt̄

2
(1 + βt cos θ) , (3.5)

from which one can easily verify the usual relation M2
tt̄ + t1 + u1 = 0.

We will perform resummation on the double differential cross section in the top-pair

invariant mass and the scattering angle θ. Applying the generic QCD factorization formula

eq. (2.2) allows one to write this differential cross section as

d2σ(τ)

dMtt̄ d cos θ
=

8πβt
3sMtt̄

∑
ij

∫ 1

τ

dz

z
Lij(τ/z, µf )Cij(z,Mtt̄,mt, cos θ, µf ) , (3.6)

where Mtt̄ and cos θ are in the ranges

2mt ≤Mtt̄ ≤ s , | cos θ| ≤ 1 . (3.7)

– 6 –
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The hard-scattering kernels Cij are proportional to the partonic cross sections and can

be calculated in perturbation theory at the factorization scale µf , while Lij are non-

perturbative parton luminosity functions, defined as

Lij(y, µf ) =

∫ 1

y

dx

x
φi/N1

(x, µf )φj/N2
(y/x, µf ) . (3.8)

In this work, we study the resummation in two limits where soft and collinear gluon

emissions dynamically generate scales much lower than the scattering energy:

soft limit: ŝ, |t1|,m2
t � ŝ(1− z)2 , (3.9)

boosted-soft limit: ŝ, |t1| � m2
t � ŝ(1− z)2 � m2

t (1− z)2 . (3.10)

In each of these limits the perturbative expansions of the hard-scattering kernels contain

large logarithms of scale ratios, which can be resummed to all orders in αs. For the

discussion of resummation that follows, it is convenient to study the cross section in Laplace

or Mellin space. The Mellin transform and its inverse are defined by

f̃(N) =M[f ](N) =

∫ 1

0
dxxN−1f(x) , f(x) =M−1[f̃ ](x) =

1

2πi

∫ c+i∞

c−i∞
dN x−N f̃(N),

(3.11)

where in the inverse transform the real part of the contour c is chosen such that it lies

to the right of all singularities in the function f̃(N). Convolutions such as the differential

cross section in eq. (3.6) become simple products in Mellin space. Indeed, by performing

the Mellin transform of eq. (3.6) with respect to τ , we find the differential cross section in

Mellin space, which reads

d2σ̃(N)

dMtt̄ d cos θ
=

8πβt
3sMtt̄

∑
ij

L̃ij(N,µf ) c̃ij(N,Mtt̄,mt, cos θ, µf ) . (3.12)

The soft limit z → 1 corresponds to N →∞, as can be seen by taking the Mellin transform

of the plus distributions appearing in the partonic cross section, which are generated by

soft gluon emissions:

M[P0](N) = − ln N̄ +O
(

1

N

)
,

M[P1](N) =
1

2

(
ln2 N̄ +

π2

6

)
+O

(
1

N

)
,

M[P2](N) = −1

3

(
ln3 N̄ +

π2

2
ln N̄ + 2ζ(3)

)
+O

(
1

N

)
,

M[P3](N) =
1

4

(
ln4 N̄ + π2 ln2 N̄ + 8ζ(3) ln N̄ +

3π4

20

)
+O

(
1

N

)
, (3.13)

where

Pn(z) =

[
lnn(1− z)

1− z

]
+

, (3.14)
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and we have introduced the variable N̄ = NeγE in order to simplify the expressions, with

γE denoting the Euler constant. We note that the partonic cross section contains terms

of the form αnsPk(z) where 0 ≤ k ≤ 2n − 1 at NnLO in its perturbative expansion. In

Mellin space this becomes αnsL
k where L = ln N̄ and 0 ≤ k ≤ 2n, which will be important

when we consider the tower of logarithms which can be resummed in section 3.4. In Mellin

moment space, the soft and boosted-soft limits in eqs. (3.9) and (3.10) become

Mellin-space soft limit: ŝ, |t1|,m2
t �

ŝ

N2
, (3.15)

Mellin-space boosted-soft limit: ŝ, |t1| � m2
t �

ŝ

N2
� m2

t

N2
. (3.16)

Besides the invariant mass distribution, the distribution in the transverse momentum

pT of the top quark is also interesting. In [37], a different formulation, dubbed “1PI”, was

employed to deal with such “single-particle-inclusive” observables in the boosted regime.

In contrast, the formulation used in this paper was called “pair-invariant-mass” (PIM)

kinematics. Near the partonic threshold, the PIM and 1PI formulations differ only by

power-suppressed contributions. We can exploit this fact to express the differential cross

section with respect to pT in terms of the double differential cross section in eq. (3.6),

thereby avoiding the introduction of the 1PI formulation. In the threshold limit, the

transverse momentum pT and the rapidity ŷ of the top-quark in the partonic center-of-

mass frame are given by

pT =
Mtt̄βt

2
sin θ , ŷ =

1

2
ln

1 + βt cos θ

1− βt cos θ
, (3.17)

and we can write the differential cross section with respect to pT and ŷ in Mellin space as

d2σ̃(N)

dpT dŷ
= 2 sin θ

d2σ̃(N)

dMtt̄ d cos θ
=

16πβt sin θ

3sMtt̄

∑
ij

L̃ij(N,µf ) c̃ij(N,Mtt̄,mt, cos θ, µf ) .

(3.18)

In the above equation, it is understood that Mtt̄ and cos θ should be expressed in terms of

the integration variables according to

Mtt̄ = 2mT cosh(ŷ) ≡ 2
√
p2
T +m2

t cosh(ŷ) , cos θ =
1

βt
tanh(ŷ) , (3.19)

where we have defined the transverse mass mT . The transverse momentum distribution

can be obtained by integrating over ŷ in the range

|ŷ| ≤ arccosh

( √
s

2mT

)
, (3.20)

while the range of pT is

0 ≤ pT ≤
√
s

4
−m2

t . (3.21)
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3.2 Resummation in the soft limit

Resummation of top-quark hadroproduction cross sections in the partonic threshold limit

z → 1 was considered in [38]. More recently, top-pair production in the soft limit was re-

analyzed by means of SCET methods.1 With this technique, it was possible to study the

resummation of soft gluon emission corrections both in PIM and 1PI kinematics [32, 40]

in momentum space. Here we follow closely the discussion and notation of the NNLL

calculation of [32], although we perform the resummation in Mellin rather than momentum

space. This approach was adopted in [31] for top-pair production. Subsequently, it was

also applied to the evaluation of the soft emission corrections to tt̄W± [41], tt̄H [42], and

tt̄Z [43] to NNLL accuracy. The starting point is the factorization of the partonic cross

section in the soft limit. In Mellin space, this takes the form

c̃ij(N,Mtt̄,mt, cos θ, µf ) = Tr

[
Hm
ij (Mtt̄,mt, cos θ, µf )

× s̃mij

(
ln

M2
tt̄

N̄2µ2
f

,Mtt̄,mt, cos θ, µf

)]
+O

(
1

N

)
. (3.22)

The hard functions Hm
ij and the soft functions s̃mij , referred to generically as matching

functions, are matrices in color space — explicit results for the two-by-two matrices in the

qq̄ channel and three-by-three matrices in the gg channel up to NLO in αs can be extracted

from [32], where the derivation of a momentum-space factorization formula analogous to

eq. (3.22) is given in detail. Comparing to the notation employed in [32], here we have

introduced a superscript m on these functions, indicating that they contain full dependence

on the top quark mass mt. This is to distinguish them from the corresponding functions

with mt = 0 used later in the boosted-soft limit.

Given the factorized form of the partonic cross section in Mellin space, one can derive

and solve renormalization group (RG) equations for the component functions. This allows

one to evaluate the hard and soft functions at an arbitrary hard scale µh and soft scale

µs, where large logarithms are absent. One then uses RG evolution to obtain the hard

scattering kernels at the factorization scale µf . These RG-improved hard-scattering kernels

can be written as

c̃ij(N,µf ) = Tr

[
Ũm
ij (N̄ , µf , µh, µs)H

m
ij (µh) Ũm†

ij (N̄ , µf , µh, µs)s̃
m
ij

(
ln

M2
tt̄

N̄2µ2
s

, µs

)]

+O
(

1

N

)
, (3.23)

where we have suppressed the dependence of all functions in eq. (3.23) on the variables Mtt̄,

mt and cos θ. The evolution matrices Ũm
ij contain all large logarithms in an exponentiated

form, and thereby resum them to all orders in αs. The explicit form of the evolution

matrices was derived in [32], and in Mellin space reads (suppressing for the moment the

1For a didactic introduction to SCET, see [39].
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subscript ij and the argument N̄)

Ũm(µf , µh, µs) = exp

{
2SΓcusp(µh, µs)− aΓcusp(µh, µs)

(
ln
M2
tt̄

µ2
h

− iπ
)

+ aΓcusp(µf , µs) ln N̄2 + 2aγφ(µs, µf )

}
× um(Mtt̄,mt, cos θ, µh, µs) . (3.24)

The explicit exponential in the above equation is color-diagonal, and contains the evolution

functions

Sγ(ν, µ) = −
∫ αs(µ)

αs(ν)
dα

γ(α)

β(α)

∫ α

αs(ν)

dα′

β(α′)
, aγ(ν, µ) = −

∫ αs(µ)

αs(ν)
dα
γ(α)

β(α)
, (3.25)

where γ stands for an anomalous dimension such as Γcusp or γφ, and β(αs) = dαs(µ)/d lnµ

is the QCD β-function. The matrix um in the second line of eq. (3.24) is given by

um(Mtt̄,mt, cos θ, µh, µs) = P exp

∫ αs(µs)

αs(µh)

dα

β(α)
γh,m(Mtt̄,mt, cos θ, α) , (3.26)

where γh,m is the color non-diagonal part of hard anomalous dimension with full mass

dependence, and P denotes path-ordering. The definition and the explicit expressions for

the various anomalous dimensions can be readily found in the appendix of [32]. Although

we have dropped indices indicating the partonic channel in eqs. (3.24) and (3.26), one

should keep in mind that the anomalous dimension γφ, (related to the PDFs), the cusp

anomalous dimensions Γcusp, and the non-color diagonal anomalous dimension γh,m are

different in the quark-annihilation and gluon fusion channels.

The above integrals appearing in the evolution matrices can be evaluated and truncated

to a given logarithmic order. The results can be expressed in terms of the strong coupling

constant evaluated at the various scales, αs(µf ), αs(µh) and αs(µs), as was done in [32].

This is convenient if the soft scale µs is chosen directly in momentum space, and is thus

a real number. However, in the current paper, we employ a more conventional choice of

the soft scale in Mellin space, µs ∼ Λ/N̄ for some mass scale Λ, which is now a complex

number. It is therefore more convenient to re-express αs(µs) in terms of αs(µh), keeping in

mind that ln(µh/µs) is a large logarithm. Actually, it is conventional to express all αs(µi)

in terms of αs(µh), where µi is any scale other than µh appearing in the formula. This

can be done by using the perturbative evolution of the strong coupling, which up to 3-loop

order is given by (see, e.g. [44])

αs(µ) =
αs(µh)

X

[
1− αs(µh)

4π

β1

β0

lnX

X

+

(
αs(µh)

4π

)2 1

X2

[
β2

1

β2
0

(
ln2X − lnX − 1 +X

)
+
β2

β0
(1−X)

]
+O(α3

s(µh))

]
, (3.27)
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where

X = 1− αs(µh)

2π
β0 ln

µh
µ
. (3.28)

Logarithmic orders are then determined according to powers of αs(µh) with ln(µh/µi)

counted as order 1/αs(µh). For this reason we introduce two O(1) parameters: λs and λf
defined by

λi =
αs(µh)

2π
β0 ln

µh
µi
, (3.29)

for i = {s, f}. The part of the exponent proportional to the identity matrix in eq. (3.24)

can now be expanded as a series in αs(µh), and the resulting evolution matrix can be

written in the form

Ũm(µf , µh, µs) = exp

{
4π

αs(µh)
gm1 (λs, λf ) + gm2 (λs, λf ) +

αs(µh)

4π
gm3 (λs, λf ) + · · ·

}
× um(Mtt̄,mt, cos θ, µh, µs) . (3.30)

Explicit expressions for the RG exponents gmi are given in appendix C.1, while a method

for evaluating um is detailed in [32] using techniques from [45].

The all-order resummed hard scattering kernel eq. (3.23) is formally independent of the

matching scales µs and µh. However, the truncation of the resummed formula to a given

logarithmic order introduces residual dependence on these scales. In order to perform the

resummation, one must choose these scales in such a way that the fixed-order expansion

of the hard and soft functions are free of large logarithms. The explicit form of the one-

loop hard and soft functions reveals that the leading logarithmic terms are αs ln2(M2
tt̄/µ

2
h)

and αs ln2(M2
tt̄/N̄

2/µ2
s), respectively, which motivates the näıve choices µh ∼ Mtt̄ and

µs ∼ Mtt̄/N̄ . However, we will study the analytic form of the hard and soft functions in

greater detail in section 4 in order to make a more informed choice of appropriate scales.

It should be noted however, that in picking the soft scale µs directly in Mellin space (as we

do in this work) the resummed hard-scattering kernel contains a branch cut at large N due

to the Landau pole in the running of αs. This leads to ambiguities in the choice of contour

for the inverse Mellin transform in eq. (3.11). We come back to this issue when discussing

the numerical implementation of our results in section 3.5. As mentioned earlier, one could

also choose the soft scale directly in momentum space, which is then independent of N , as

was done in [32]. With this choice the inverse Mellin (or Laplace) transform for the soft

function can be carried out analytically and is free from the Landau pole problem. On the

other hand, this comes at the price of resumming a different tower of logarithms compared

to the pure partonic threshold ones, as discussed in [40] and explored in more detail in,

e.g. [46, 47].

3.3 Resummation in the boosted-soft limit

Resummation of top-quark hadroproduction cross sections in the boosted-soft limit

eq. (3.10) was considered in [30]. We first collect the main results from that paper in
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the absence of perturbative corrections involving closed top-quark loops. In that case, the

functions Hm
ij and s̃mij in eq. (3.22) can be subfactorized in the mt → 0 limit as

Hm
ij (Mtt̄,mt, cos θ, µf ) = Hij(Mtt̄, cos θ, µf )C2

D(mt, µf ) +O
(
mt

Mtt̄

)
, (3.31)

s̃mij

(
ln

M2
tt̄

N̄2µ2
f

,Mtt̄,mt, cos θ, µf

)
= s̃ij

(
ln

M2
tt̄

N̄2µ2
f

,Mtt̄, cos θ, µf

)
s̃2
D

(
ln

mt

N̄µf
, µf

)
+O

(
mt

Mtt̄

)
. (3.32)

In the above formulas, the hard functions Hij and soft functions s̃ij without the superscript

m are independent of the top-quark mass mt. They were calculated to NNLO in [48]

and [49], respectively, and can also be applied to di-jet production. All mt-dependence

is factorized into the two functions CD and s̃D, which are related to the perturbative

heavy-quark fragmentation function [50] and were extracted at NNLO in [30]. After this

refactorization, the result for the partonic cross section in the boosted-soft limit reads

c̃ij(N,Mtt̄,mt,cosθ,µf ) = Tr

[
Hij(Mtt̄,cosθ,µf ) s̃ij

(
ln

M2
tt̄

N̄2µ2
f

,Mtt̄,cosθ,µf

)]

×C2
D(mt,µf ) s̃2

D

(
ln

mt

N̄µf
,µf

)
+O

(
1

N

)
+O

(
mt

Mtt̄

)
. (3.33)

As for the soft limit, the resummed hard-scattering kernel can be obtained by deriving

and solving RG equations for the component functions in the above factorization formula.

We write the result in the form

c̃ij(N,µf ) = Tr

[
Ũij(N̄ ,µf ,µh,µs)Hij(µh)Ũ †ij(N̄ ,µf ,µh,µs)s̃ij

(
ln

M2
tt̄

N̄2µ2
s

,µs

)]
(3.34)

× Ũ2
D(N̄ ,µf ,µdh,µds)C

2
D(mt,µdh) s̃2

D

(
ln

mt

N̄µds
,µds

)
+O

(
1

N

)
+O

(
mt

Mtt̄

)
.

In the l.h.s. of eq. (3.34) we dropped the dependence on the arguments Mtt̄, cos θ and mt.

Similarly, Ũij , Hij and s̃ij also depend on Mtt̄ and cos θ.

As mentioned with the massive hard and soft functions, we postpone discussion of

the most appropriate scale choices for the matching functions Hij and s̃ij until section 4.

However, since the functions CD and s̃D depend only on the scales mt and mt/N̄ , we

can immediately make the assignment µdh = mt and µds = mt/N̄ . The evolution of the

hard and soft functions is encoded in the functions Ũij , which are matrices in color space,

while the evolution of CD and s̃D is in the color-diagonal function ŨD. Suppressing for

the moment the channel labels ij, the explicit expressions for the evolution matrices are
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given by

Ũ(µf , µh, µs) = exp

{
2SA(µh, µs)− aA(µh, µs)

(
ln
M2
tt̄

µ2
h

− iπ
)

+ aA(µf , µs) ln N̄2

+ 2aγφ(µs, µf ) + 2aγφq (µs, µf )

}
u(Mtt̄, cos θ, µh, µs) , (3.35)

ŨD(µf , µdh, µds) = exp

{
−2SΓq(µdh, µds) + aΓq(µdh, µds) ln

m2
t

µ2
dh

− aΓq(µf , µds) ln N̄2

− 2aγS (µdh, µds)− 2aγφq (µdh, µf )

}
. (3.36)

The functions SA, aγ , and u are defined analogously to those in eqs. (3.25) and (3.26). Here

A is given by 2Γqcusp in the qq̄ channel and Γqcusp + Γgcusp in the gg channel. Definitions of

the various anomalous dimensions and their explicit perturbative expansions can be found

in [30]. In order to write the perturbative expansion of the evolution functions in the same

form as eq. (3.30) we introduce two additional O(1) parameters, λdh and λds in complete

analogy to λs and λf , as defined earlier in eq. (3.29). Following the same procedure as in

the soft limit, the evolution matrices can then be written as

Ũ(µf , µh, µs) = exp

{
4π

αs(µh)
g1(λs, λf ) + g2(λs, λf ) +

αs(µh)

4π
g3(λs, λf )

}
× u(Mtt̄, cos θ, µh, µs) , (3.37)

and

UD(µf , µdh, µds) = exp

{
4π

αs(µh)
gD1 (λdh, λds, λf ) + gD2 (λdh, λds, λf )

+
αs(µh)

4π
gD3 (λdh, λds, λf )

}
. (3.38)

We list the (lengthy) expressions for the RG-exponents gi and gDi in appendix C.2.

In the presence of heavy-quark loops the factorization of the partonic cross section in

the boosted-soft limit is more involved. It is necessary to introduce additional coefficients

related to matching six-flavor PDFs, heavy-quark fragmentation functions, and αs onto

five-flavor ones. To ease notation we cluster these contributions from heavy quarks together

in coefficients c̃ijt . Such corrections are proportional to powers of nh, the number of heavy

flavors, and introduce additional mt dependence into the formula via logarithms of the

form lnn(mt/Mtt̄). Our factorized hard scattering kernel is then written as

c̃ij(N,Mtt̄,mt, cos θ, µf ) = Tr

[
Hij(Mtt̄, cos θ, µf ) s̃ij

(
ln

M2
tt̄

N̄2µ2
f

,Mtt̄, cos θ, µf

)]

× C2
D(mt, µf ) s̃2

D

(
ln

mt

N̄µf
, µf

)
c̃ijt

(
ln

1

N̄2
,mt, µf

)
+O

(
1

N

)
+O

(
mt

Mtt̄

)
. (3.39)
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Γicusp, β γh, γS , γφ H(m), s̃(m), CD, s̃D αnsL
k

NLL NLO LO LO 2n− 1 ≤ k ≤ 2n

NNLL NNLO NLO NLO 2n− 3 ≤ k ≤ 2n

NNLL′ NNLO NLO NNLO 2n− 4 ≤ k ≤ 2n

Table 1. Our naming scheme for the logarithmic accuracies. We list the perturbative orders

at which the cusp anomalous dimension, the QCD β-function, all other anomalous dimensions

and matching functions need to be evaluated in order to obtain resummation at a given logarith-

mic order.

It is not entirely clear whether logarithms of the form lnn(mt/Mtt̄) appearing through

heavy-quark loops2 can be systematically resummed. Therefore, we add them onto the

resummation formula eq. (3.34) using fixed-order perturbation theory. At NNLO, these

mass logarithms come from two sources: those from the interference of two-loop amplitudes

with tree-level ones, and those from one-loop amplitudes squared. The one-loop squared

contributions can be extracted from the results in [51, 52], while the two-loop terms were

calculated in [53, 54]. Numerically, we have found that the contributions of these nh terms

to the differential cross sections are almost negligible.

3.4 Resummation accuracy

Having obtained resummed hard scattering kernels in the soft eq. (3.23) and boosted-soft

eq. (3.34) limits, we now examine what level of resummation can be achieved given the

current status of perturbative calculations. At this point, it should be pointed out that

there exist two naming schemes for the logarithmic accuracies of resummed results, as

discussed in [46] and summarized in table 1 of [55]. While they are purely conventions

and one is free to choose either, it is important to have internal consistency with the

earlier works [30–32, 37, 40]. We therefore adopt the so-called “Notation′” outlined in

table 1 of [55] to denote the accuracies of our resummed results. In table 1, we list the

perturbative orders at which the matching functions and anomalous dimensions need to be

evaluated in order to achieve resummation at a given logarithmic accuracy.

As highlighted in section 3.1 in the discussion following eq. (3.14), in Mellin space the

perturbative expansion of the resummed cross section gives corrections of the form αnsL
k

where L = ln N̄ . The power k of logarithms included in the expansion of the resummed

result at a given logarithmic accuracy is also indicated in the last column of table 1. As

can be seen there, the difference between the NNLL and NNLL′ accuracies amounts to a

single logarithm at each order in perturbation theory.

The cusp anomalous dimension is fully known to three-loop order [56], results for the

other anomalous dimensions to NLO can be found in [57–63], and the massive hardHm
ij and

soft functions s̃mij have been extracted to NLO [32]. We can therefore perform resummation

2Our definition of the boosted-soft limit, eq. (3.10), is such that production of additional on-shell top-

quark pairs through soft radiation is kinematically forbidden. This is reasonable phenomenologically since

the production of four top quarks is usually considered as a different process than top quark pair production.

As a result, we need only consider contributions proportional to nh related to virtual corrections.
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in the soft limit up to the NNLL accuracy.3 On the other hand, the matching functions

in the massless limit Hij , s̃ij , CD and s̃D are all known to NNLO [30, 48, 49], enabling

resummation to NNLL′ accuracy in the boosted-soft limit. In terms of the evolution factors

in eqs. (3.30), (3.37), and (3.38), we need to keep the first three g-functions and compute

the evolution matrices um and u to second order to obtain NNLL or NNLL′ accuracy.

Keeping only the first two g-functions and the LO um and u matrices results in NLL

resummation as can be seen by the lower perturbative order of the anomalous dimensions

in the first line of table 1.

3.5 Mellin inversion

Given the results for Mellin-space resummed hard-scattering kernels in eqs. (3.23)

and (3.34), we must perform the inverse Mellin transform of eq. (3.11) in order to get

the differential cross section in momentum space. For the invariant mass distribution

we have

d2σ

dMtt̄ d cos θ
=

8πβt
3sMtt̄

∑
ij

1

2πi

∫ c+i∞

c−i∞
dN τ−N L̃ij(N,µf ) c̃ij(N,Mtt̄,mt, cos θ, µf ) (3.40)

=
8πβt
3sMtt̄

∑
ij

∫ ∞
τ

dz

z
Lij(τ/z, µf )

1

2πi

∫ c+i∞

c−i∞
dN z−N c̃ij(N,Mtt̄,mt, cos θ, µf ) ,

and the transverse momentum distribution follows similarly. As indicated in eq. (3.40),

there are two ways of carrying out the inverse transform. The first line utilizes the parton

luminosity functions in Mellin space (N -space), while the second line uses the PDFs in

momentum space (x-space). The x-space PDFs are easier to obtain, but the z-integration

is numerically unstable due to the singular behaviour of L(y) around y ∼ 0, and one needs

to use some tricks to improve the convergence [66]. The use of the N -space PDFs, on

the other hand, avoids these instabilities and leads to a fast numerical implementation.

However, public libraries such as LHAPDF [67] only give x-space PDFs and one needs to

construct the N -space ones by performing the Mellin transform and analytically continuing

to complex N . To this end we employ the methods from [55, 68], namely, we approximate

the x-space luminosity functions in terms of Chebyshev polynomials, from which the Mellin

transform can be carried out analytically.

At fixed order in αs, the inverse Mellin transform in eq. (3.40) is well-defined (in

the sense of the delta function and plus distributions) and independent of the integration

contour as long as it lies to the right of all (physical) singularities of the hard-scattering

kernels c̃ij . However, after resummation the c̃ij develop dependence on the running coupling

αs(µ) at the soft scale µs with the canonical choice µs ∼ Mtt̄/N̄ (and likewise with the

soft-collinear scale µds ∼ mt/N̄ in the boosted-soft case). This introduces an unphysical

Landau pole singularity at large N in c̃ij , and the inverse transform is ambiguous against

the choice of contour. In this paper we adopt the so-called Minimal Prescription (MP) [69],

3The NNLO massive soft function has recently been calculated in [64]. The NNLO massive hard func-

tion could be extracted from the virtual amplitude in [65]. It should therefore be possible to push the

resummation accuracy to include NNLL′m in the future.
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in which the contour is chosen to be to the left of the Landau pole but to the right of all

other singularities. It is because of this prescription that the first integration in z runs

from τ to ∞, not τ to 1. Our hard scattering kernel c̃ij no longer vanishes for z > 1, but

does asymptote to zero quickly enough so that parton model assumptions are not violated.

This point is addressed in detail in appendix B of [69]. Other prescriptions such as the

Borel Prescription exist in the literature [70], and we have checked that in our case there

is no large numerical difference between the two.

3.6 Ingredients for matching with fixed-order

We outlined the procedure for matching fixed-order calculations with soft (and boosted-

soft) gluon resummation formulas in section 2. In the following, we make more precise

some of the definitions introduced in the matching equations.

In eq. (2.3), we need the NLO and the NNLO expansions of the NNLLm resummed

result. For the NLO expansion, we can make use of the following result:

dσNNLLm
∣∣∣ NLO
expansion

= dσNNLLm
∣∣∣
µh=µs=µf

. (3.41)

The reason that the NLO expansion of the NNLL formula is so simple is that µh and

µs dependence in the NLO matching functions cancels against factors that come from

expanding the RG evolution factors in eq. (3.23). The end result can thus be obtained

directly by setting these scales to µf at the beginning as indicated in eq. (3.41), which

turns off the RG evolution and leaves the NLO matching functions evaluated at those

scales. A similar result holds for the NNLO expansion of the NNLL′b result, namely

dσNNLL′b

∣∣∣ NNLO
expansion

= dσNNLL′b

∣∣∣
µi=µf

, (3.42)

where µi ∈ {µh, µs, µds, µdh}.
The NNLO expansion of the NNLLm resummed result, which we write as

dσNNLLm
∣∣∣ NNLO
expansion

= dσNNLLm
∣∣∣ NLO
expansion

+ dσNNLLm,(2) , (3.43)

is not as simple, because the NNLO matching functions are absent. As a result, the µh
and µs dependence does not completely cancel at NNLO. We can express dσNNLLm,(2) by

inserting the following c̃(2) into eq. (3.12) or (3.18) in place of c̃ij :

c̃(2) = Tr
[
H(2)
m (µf ) s̃(0)

m (µf ) +H(1)
m (µf ) s̃(1)

m (µf ) +H(0)
m (µf ) s̃(2)

m (µf )
]

− Tr
[
H(2)
m (µh) s̃(0)

m (µs) +H(1)
m (µh) s̃(1)

m (µs) +H(0)
m (µh) s̃(2)

m (µs)
]
, (3.44)

where we have suppressed all arguments in the expansion coefficients of the hard and soft

functions with the exception of the scale at which they should be evaluated. The expansion

coefficients are defined through

Hm = α2
s

[
H(0)
m +

(αs
4π

)
H(1)
m +

(αs
4π

)2
H(2)
m + · · ·

]
,

s̃m = s̃(0)
m +

(αs
4π

)
s̃(1)
m +

(αs
4π

)2
s̃(2)
m + · · · . (3.45)
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The form of c̃(2) in eq. (3.44) requires a bit of explanation. First of all, eq. (3.41)

tells us that c̃(2) should vanish if we set µh = µs = µf , since the NNLLm calculation

includes only the NLO matching coefficients. Secondly, note the fact that the NNLLm
resummed result dσNNLLm would be independent of µs and µh up to NNLO if the NNLO

contributions from the hard and soft functions were known and included (which would

upgrade the resummation accuracy to NNLL′m). Therefore, in a fixed order expansion of

the resummed result to NNLO, one should recover the first line of eq. (3.44) by adding

the NNLO contributions from the hard function (evaluated at µh) and the soft function

(evaluated at µs). The form of eq. (3.44) follows directly from these two facts. Evidently,

we must also explain how to evaluate eq. (3.44) without knowing the massive two-loop

hard and soft functions H
(2)
m and S

(2)
m . The logarithmic terms of these two functions

can be determined from their RG equations and in fact this is all one needs. The non-

logarithmic “constant” terms which could also appear in H
(2)
m and S

(2)
m (and which are

not determined by the RG equation) cancel between the first and second lines in eq. (3.44)

and therefore do not contribute to c̃(2). This concludes the matching of the NNLLm results

with fixed-order calculations.

We now turn to eqs. (2.4) and (2.5), which describe the matching between (N)NLO,

NNLLm, and NNLL′b results. For this we need the NNLO expansion of dσNNLL′b given in

eq. (3.42), as well as the NNLO expansion of the NNLL resummation formulas given in

eq. (3.43). A further ingredient is the mt → 0 limit of the NNLLm formula appearing in

eq. (2.4). To evaluate that we exploit the fact that the boosted-soft resummation formula

is the small-mass limit of the soft resummation formula at any fixed order in αs. This leads

to the result

dσNNLLm
∣∣
mt→0

= dσNNLLb
∣∣µds=µs
µdh=µh

. (3.46)

This follows because setting µdh = µh and µds = µs in the boosted-soft result removes

RG evolution between the functions H and cD in eq. (3.31), and s̃ and s̃D in eq. (3.32),

thus leaving behind the leading contributions from threshold resummation in the limit

mt/Mtt̄ → 0.

It is worth mentioning some additional subtleties concerning the virtual top-quark

loops at NNLO (we mentioned in the footnote on page 14 that we do not consider real top-

quark pair emissions). As discussed in the last paragraph of section 3.3, it is not entirely

clear how to resum these contributions to all orders in αs, and we choose to add them in

fixed order. For the NNLO+NNLL′ result this is automatically taken into account by the

matching formula while for the NLO+NNLL′ result we have to add them manually. A

complication arises from the fact that the soft resummed result, dσNNLLm , generates some

(but not all) of the α2
snh terms through RG running. We need to subtract these terms

out before adding back the full NNLO heavy quark contributions introduced at the end of

section 3.3 in order to avoid double counting. Again, we only consider these contributions

for completeness, practically their numerical impact is negligible.
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4 Choosing the kinematics-dependent matching scales

The (massive) hard and soft functions depend on the Mandelstam variables t1, u1 and ŝ,

and the appropriate choice of the matching scales µh and µs appearing in the resummation

formalism depends on the kinematic regime probed by the differential cross section under

study. The focus of this section will be to identify a well-motivated set of these kinematics-

dependent matching scales for the top-pair invariant mass and pT distributions, which can

be used all the way from the low-energy regime where all kinematic invariants are on the

order of the top-quark mass, up to the boosted regime where mt is small compared to Mtt̄

or pT . We begin our analysis by highlighting and comparing some important kinematic

features of the low-energy and high-energy regions of the Mtt̄ and pT distributions in

section 4.1. We then devote section 4.2 to scale choices for the top-pair invariant mass

distribution and section 4.3 to those for top-quark pT distribution.

Throughout the rest of the paper we use the following numerical inputs. We fix the

LHC collider energy to
√
s = 13 TeV, take mt = 173.3 GeV, and use the NNPDF3.0 PDF

sets with αs(MZ) = 0.118 [71] in conjunction with LHAPDF6 [67]. We use NNLO PDFs

for all predictions unless otherwise indicated. In the numerical evaluation of the resummed

formulas we have made use of the CUBA integration library [73].

4.1 Some kinematic considerations that underpin the choice of scales

In this section we point out some important kinematic features of the Mtt̄ and top-quark

pT distributions which are instrumental in determining appropriate values of the matching

scales µh and µs. In particular, we study the high-energy and low-energy regimes for both

distributions, and explain the differences between them that impact their description in

fixed-order and resummed perturbation theory.

The main idea is that soft gluon resummation works in the limit where the kinematic

features of a given observable resemble those of the LO process. This can be studied

by introducing kinematic variables sensitive to higher-order hard emissions. A kinematic

variable we find particularly useful is

RT ≡
HT

Mtt̄
≡ 1

Mtt̄

[√
m2
t + p2

T,t +
√
m2
t + p2

T,t̄

]
. (4.1)

At LO

R2
T =

4t1u1

M4
tt̄

= 1−
(

1− 4m2
t

M2
tt̄

)
cos2 θ , (4.2)

and RT ≤ 1, with RT = 1 corresponding to θ = π/2 (central scattering). Moreover, one

finds that the Jacobian factors arising from rewriting the double differential cross sections in

terms of RT and either Mtt̄ or pT have integrable singularities proportional to 1/
√

1−R2
T .

For instance,

dMtt̄ d cos θ =
RT

βt

√
1−R2

T

dMtt̄ dRT . (4.3)
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Figure 1. The distributions of RT = HT /Mtt̄ at LO (green) and NLO (black), in the four regions

Mtt̄ ∈ [380, 420] GeV (top-left), Mtt̄ ∈ [2500, 3000] GeV (bottom-left), pT ∈ [50, 100] GeV (top-

right), and pT ∈ [1200, 1400] GeV (bottom-right). The distributions are normalized to the integrated

cross section in each of the four regions.

Beyond LO, however, HT is only constrained to be smaller than
√
ŝ. Hard emissions

generate non-vanishing cross section in the region RT > 1, in addition to contributing to the

RT < 1 region, and the singularity at RT = 1 is resolved into a Jacobian peak. The quantity

RT thus offers a useful kinematic discriminant: the more sensitive an observable to the

region RT ≤ 1, the greater the potential for an improved prediction through resummation.

Conversely, observables characterized by RT > 1 are inaccessible to soft kinematics and

dominated by hard emissions.

In figure 1, we show the distributions of RT in four kinematic regions, normalized to the

integrated cross section in each region. The first is Mtt̄ ∈ [380, 420] GeV, representative of

“low Mtt̄”, Mtt̄ & 2mt; the second is Mtt̄ ∈ [2500, 3000] GeV, representative of “high Mtt̄”,

Mtt̄ � 2mt; the third and fourth regions are pT ∈ [50, 100] GeV and pT ∈ [1200, 1400] GeV,

representative of “low pT ” and “high pT ” respectively. We will also refer to these as

“low-energy” and “high-energy” bins of Mtt̄ or pT . An interesting observation is that the

differences between the LO and NLO distributions are quite distinctive in the four cases.

It is the task of this subsection to explore the explanations and implications of these facts.

We first discuss the low-Mtt̄ bin of the top-pair invariant mass distribution, whose RT
distribution is shown in the top-left plot of figure 1. At both LO (the green curve) and

NLO (the black curve), the distribution is peaked at RT ∼ 1, a fact following from eq. (4.3).

However, at NLO, hard emissions generate a non-negligible fraction of the distribution in

the RT > 1 region. In terms of a perturbative description beyond NLO, this indicates that

while soft-gluon resummation can potentially improve the description in this bin, matching

with NNLO in order to describe the RT > 1 region is needed for a precise prediction.
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The RT distribution in the high-Mtt̄ bin is displayed in the bottom-left plot of figure 1.

A remarkable feature of this bin is that the RT distribution is peaked at values close to

RT ∼ 0.2, both at LO and NLO. This feature can be traced to a property of the partonic

cross section for gg → tt̄ scattering, namely that the Born diagrams possess t- and u-

channel singularities in the limit mt → 0. These singularities are cut off by the finite

value of the top-quark mass. However, we show below with analytic arguments that their

presence implies that in the boosted regime where mt � Mtt̄ the integral over cos θ used

to calculate the differential cross section is dominated by the regions of small RT . One

implication of this feature is that the high-invariant mass region is especially amenable to

soft-gluon resummation, as we shall see in section 5. Another is that, in spite of what one

might expect, the most relevant perturbative scale in the high-energy tail of the top-pair

invariant mass distribution is HT rather than Mtt̄ itself. As a result, the partonic cross

section, as well as the hard and soft functions appearing in the factorized form of the cross

section in the soft limit, are better evaluated at scales µ ∼ HT in this region. This was

indeed a main result of the fixed-order study of the top-pair invariant mass distribution to

NNLO [24], which identified µf = HT /4 as the choice at which fixed-order perturbation

theory converges best.

We now turn to the RT distributions in the two bins of top-quark pT . The low and

high pT regions are shown in the top-right plot and the bottom-right plot of figure 1,

respectively. The Jacobian peaks at RT ∼ 1 are still present, similar to the Mtt̄ case. The

distributions exhibit long tails toward lower values of RT . These come from the t- and

u-channel singularities, the same effect at work in the high Mtt̄ bin discussed in the last

paragraph. On the other hand, the behavior of the NLO distribution in this case is rather

different from the Mtt̄ case. The measured value of the top quark pT can only constrain

the combined pT of the anti-top-quark and the extra parton, but puts no constraints on

their separate transverse momenta. It is therefore kinematically allowed to have the tt̄ pair

recoiled against a separate hard parton, such that one ends up with a large HT and a small

Mtt̄. This explains the long tail at the NLO towards RT > 1, particularly in the high pT
bin. In fact, at µf = mT /2, one finds that 47% of the distribution lies at RT > 1. From

these facts, we expect that it is important to incorporate the effects of hard emissions for

the pT distribution, especially in the high-pT region.

4.2 Scales for the Mtt̄ distribution

The main goal of this and the next subsection is to identify the optimal choices of the hard

scale µh and the soft scale µs, based on the kinematic features of the hard and soft functions.

Since the hard and soft functions may be evaluated analytically, this will also help to

understand the kinematic features of the RT distribution given in the previous subsection.

The philosophy of RG-improved perturbation theory is to choose the matching scales

such that the fixed-order expansion of the hard and soft functions is well behaved. The

massless hard and soft functions depend on the kinematic invariants M2
tt̄, t1 and u1. As

long as all of these scales are of the same size numerically, the choices µh ∼ Mtt̄ and

µs ∼ Mtt̄/N̄ free these functions of potentially large logarithmic corrections and thus

ensure good perturbative convergence. The situation becomes more subtle in the boosted
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regime, where mt �Mtt̄. In that case, when the top quark is produced in the very forward

region, cos θ → 1, the kinematic invariants develop a hierarchy |t1| � M2
tt̄ ∼ |u1|. An

analogous hierarchy develops for very backward production, with |t1| ↔ |u1|. Both of

these situations correspond to the region HT �Mtt̄, since for Born kinematics

−t1
∣∣
mt→0

≈ M2
tt̄

2
(1− cos θ) +m2

t cos θ
cos θ→1−−−−−→ p2

T +m2
t ≡ m2

T = H2
T /4 , (4.4)

−u1

∣∣
mt→0

≈ M2
tt̄

2
(1 + cos θ)−m2

t cos θ
cos θ→−1−−−−−−→ m2

T = H2
T /4 . (4.5)

On the other hand, the region where mt ∼ Mtt̄ corresponds to HT ∼ Mtt̄, irrespective of

the value of cos θ.

The top-pair invariant mass distribution is calculated from the double differential cross

section in eq. (3.6) by integrating over the scattering angle in the region −1 < cos θ < 1.

At large Mtt̄, the results for the RT distribution shown in the bottom-left panel of figure 1

and discussed in the previous subsection make clear that the integral is dominated by the

region where | cos θ| ∼ 1 and RT is significantly smaller than unity. This kinematic feature

is explained by the fact that at Born level the gg partonic cross section has t- and u-channel

singularities, related to the hard function. For example, in the limit t1 → 0, the LO hard

function reads

H(0)
gg

∣∣
t1→0

=
1

2xt


1
N2
c

1
Nc

1
Nc

1
Nc

1 1
1
Nc

1 1

 , (4.6)

where xt ≡ −t1/M2
tt̄ and Nc = 3 is the number of colors in QCD. The expression in

the limit u1 → 0 is obtained by replacing xt → 1 − xt. Therefore, at fixed Mtt̄ � mt,

the cross section gets large contributions from the region HT � Mtt̄, due to t- and u-

channel enhancements in the gg channel. The qq̄ channel is free of such t- and u- channel

enhancements.

The dynamical enhancement of the forward and backward scattering regions at large

Mtt̄ has important implications for the choice of the matching scales µh and µs. We can

study this issue analytically by expanding the higher-order corrections to the hard and

soft functions in the limit RT → 0. The gg partonic cross section is symmetric under

the exchange of t1 and u1, so the RT → 0 limit can be easily obtained from the xt → 0

results, which we focus on for concreteness. While the soft function itself has no 1/xt
singularities in this limit, it enters the factorization formula in a matrix product with the

hard function, so we must deal with both functions at once in order to take the correct

limit of the differential cross section. This leads us to study the higher-order perturbative

corrections at the level of the objects

HLO
ij (µh) = α2

s(µh) Tr
[
H

(0)
ij s̃

(0)
ij

]
,

HNLO
ij (µh) = HLO

ij (µh) +
α3
s(µh)

4π
Tr
[
H

(1)
ij (µh)s̃

(0)
ij

]
,

HNNLO
ij (µh) = HNLO

ij (µh) +
α4
s(µh)

(4π)2
Tr
[
H

(2)
ij (µh)s̃

(0)
ij

]
, (4.7)
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and

SLO
ij = Tr

[
H

(0)
ij s̃

(0)
ij

]
,

SNLO
ij (µs) = SLO

ij +
αs(µs)

4π
Tr
[
H

(0)
ij s̃

(1)
ij (µs)

]
,

SNNLO
ij (µs) = SNLO

ij (µs) +

(
αs(µs)

4π

)2

Tr
[
H

(0)
ij s̃

(2)
ij (µs)

]
, (4.8)

where we have suppressed the dependence of the matching functions on all parameters and

scales other than µh and µs. Explicit results for the NLO corrections can be written as

HNLO
gg (µh)

HLO
gg (µh)

∣∣∣∣
t1→0

= 1+
αs(µh)

36π

[
−78 ln2

(−t1
µ2
h

)
+24 ln

(−t1
µ2
h

)
(3+2 lnxt)+37π2 − 168

]
,

SNLO
gg (µs)

SLO
gg

∣∣∣∣
t1→0

= 1+
αs(µs)

36π

[
78 ln2

( −t1
µ2
sN̄

2

)
− 48 ln

( −t1
µ2
sN̄

2

)
lnxt + 24 ln2 xt+31π2

]
,

(4.9)

and those for the NNLO corrections as

HNNLO
gg (µh)

HNLO
gg (µh)

∣∣∣∣
t1→0

= 1+

(
αs(µh)

4π

)2[
37.6ln4

(−t1
µ2
h

)
−
(
46.2lnxt+47.2

)
ln3

(−t1
µ2
h

)
+
(
14.2ln2xt+22.2lnxt−248

)
ln2

(−t1
µ2
h

)
+
(
154lnxt+102

)
ln

(−t1
µ2
h

)
+12.7lnxt+577

]
+O(α3

s) ,

SNNLO
gg (µs)

SNLO
gg

∣∣∣∣
t1→0

= 1+

(
αs(µs)

4π

)2[
37.6ln4

( −t1
µ2
sN̄

2

)
−
(
46.2lnxt+22.1

)
ln3

( −t1
µ2
sN̄

2

)
+
(
37.3ln2xt+20.4lnxt+354

)
ln2

( −t1
µ2
sN̄

2

)
−
(
14.2ln3xt+20.4ln2xt+218lnxt+12.9

)
ln

( −t1
µ2
sN̄

2

)
+3.56ln4xt+6.81ln3xt+109ln2xt−42.6lnxt+356

]
+O(α3

s) , (4.10)

where we have set Nc = 3 and the number of light quarks to Nl = 5 in the above equations.4

An important feature of eqs. (4.9) and (4.10) is that both the NLO and the NNLO

corrections depend on the two physical scales −t1 andMtt̄ (through the ratio xt). Therefore,

any choice of µh and µs will lead to corrections of the form αns lnm(xt)/xt in the xt → 0

limit. However, the structure of such corrections is rather different for the hard and soft

functions. For the hard function, the choice µ2
h = −t1 frees the NLO corrections of such

logarithmic corrections in xt → 0 limit, and reduces the logarithmic terms in the NNLO

corrections to a single power of ln xt. On the other hand, the choice µh = Mtt̄ generates

4Although not immediately apparent from the results above, one finds that the real parts of H
(1,2)
gg are

proportional to H
(0)
gg in the xt → 0 limit.
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a double logarithmic series whose corrections have the form αns ln2n(xt)/xt. Using that√−t1 = HT /2 in the xt → 0 limit along with the symmetry of the gg channel under

t1 ↔ u1, one thus expects the perturbative corrections from the hard function to the Mtt̄

distribution to be well behaved across phase space with the choice µh = HT /2.

For the soft corrections Sgg, double logarithmic corrections of the form αns ln2n(xt)/xt
are generated even when µs =

√−t1/N̄ is chosen. To understand this result, we note that

NLO corrections to the massless soft function can be written in the form [30, 49]

s̃(1) = −
4∑

(I,J)=1

wIJ

[
ln2

(
sIJ
µ2
sN̄

2

)
+
π2

6
+ 2Li2

(
1− sIJ

M2
tt̄

)]
, (4.11)

where s12 = s34 = M2
tt̄, s13 = s24 = −t1, s14 = s23 = −u1, and the sum over (I, J)

excludes the terms where I = J . The matrices wIJ differ for the qq̄ and gg channels, and

can be found in, for instance, [49]. The NLO corrections to the soft functions are thus

characterized by the three different scales sIJ/N̄ , the relative importance of each scale

being determined by the properties of matrix elements wIJ , which are pure color factors.

Taking the xt → 0 limit of S(N)NLO
gg then leads to the double logarithmic series mentioned

above, irrespective of the choice of µs.

The analytic results above give very useful insight into the nature of perturbative

corrections arising from the hard and soft functions. In particular, they hint at the use

of a HT -based scale for the hard function, which is also a reasonable choice for the soft

function. However, they are derived in the formal limit RT → 0, which for the top-pair

invariant mass distribution is relevant because of a dynamical enhancement from t- and

u- channel singularities in the high Mtt̄ region. It is therefore useful and necessary to

supplement these analytic arguments with a numerical study. To do this, we define NLO

and NNLO K factors for the hard and soft functions in the following way. For the hard

functions, we evaluate the differential cross section with respect to Mtt̄ using H(N)NLO
ij for

the hard-scattering kernel in eq. (3.12), and define NLO and NNLO K factors by dividing

these results by those found using HLO
ij . These ratios are indicated by K

H,(N)NLO
ij (Mtt̄, µh).

The parton luminosity cancels in the ratio since the soft function is independent of the

Mellin parameter N̄ at LO, so we can write

KH,NLO
ij (Mtt̄, µh) =

∫ 1

−1
d cos θHNLO

ij (µh)

/∫ 1

−1
d cos θHLO

ij (µh) ,

KH,NNLO
ij (Mtt̄, µh) =

∫ 1

−1
d cos θHNNLO

ij (µh)

/∫ 1

−1
d cos θHLO

ij (µh) .

(4.12)

Ratios KS,(N)NLO(Mtt̄, µs), which take into account corrections from the soft function, are

defined similarly. The important difference in the case of the soft function is that it depends

on N̄ and one must take the product with the Mellin-transformed parton luminosities before

performing the inverse Mellin transform in order to get the contribution to the differential

cross section. For simplicity, we use these luminosities evaluated at the scale µf = Mtt̄.

We have checked that the luminosity dependence nearly completely cancels in the ratio
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Figure 2. The K factors for the corrections to the hard (top) and soft (bottom) functions in the

gg channel as defined in the text, at Mtt̄ = 400 GeV (left) and Mtt̄ = 2750 GeV (right).

defining the soft K factors, so that the results depend very little on the exact choice of µf
and also the collider energy.

Numerical results for the hard and soft K factors in the gg channel are shown in

figure 2, for two values of Mtt̄. The first is Mtt̄ = 400 GeV (left-hand plots), indicative

of mt ∼ Mtt̄, and the second is Mtt̄ = 2750 GeV (right-hand plots), indicative of the high

invariant-mass region where mt �Mtt̄. Results for the hard function, shown in the top two

panels of the figure, are given for the two different parametric choices µh = rHT (red lines)

and µh = rMtt̄ (blue lines), where r is a numerical factor. Results for the soft function,

shown in the bottom two panels of the figure, are given instead for µs = rHT /N̄ (red lines)

and µs = rMtt̄/N̄ (blue lines). At Mtt̄ = 400 GeV there is little difference between the

K factors with the two different parametric choices, and both the hard and the soft K

factors are moderate as long as the proportionality factor r is not too small. At the higher

value of Mtt̄, the corrections with the two different parametric scale choices differ by quite

a large amount. For the hard function, the corrections remain moderate for µh ∼ HT /2, as

anticipated from the analysis above. For the soft function, the NLO corrections cannot be

made smaller than about 50%. This happens, for instance, at µs ∼ HT /N̄ . The K factor

at this scale is flat with respect to changes of µs around this value, at both the low and

high values of Mtt̄ and the NNLO corrections are also moderate.

The above analysis leads us to identify µh = HT /2 and µs = HT /N̄ as a well-motivated

choice of matching scales across the full range of Mtt̄ in the gg channel. We have checked

that the soft and hard K factors in the qq̄ channel (which gives a considerably smaller

contribution to the cross section at both large and small Mtt̄) are also well behaved for these
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Figure 3. The K factors for the corrections to the hard (top) and soft (bottom) functions in the

gg channel as defined in the text, at pT = 75 GeV (left) and pT = 1300 GeV (right).

choices. Therefore, we will use these choices by default in all further numerical analysis of

the Mtt̄ distribution. Of course, at the level of differential cross sections the dependence

on these scales cancels against that in the RG evolution factors, so that resummed results

are independent of the exact choice at the order at which one is working. The unphysical,

residual dependence can be reduced by calculating more orders in the logarithmic series,

but with a proper choice of matching scales these higher-order terms are expected to be

small corrections.

It is worth noting that [31], as well as all other works on soft-gluon resummation with

PIM kinematics, used Mtt̄-based matching scales instead of HT -based ones. For moderate

Mtt̄ there is little difference, but at higher Mtt̄ the perturbative uncertainties estimated

from µh and µs variations are larger with the Mtt̄-based choice. Some numerical results

with Mtt̄-based choices are given at the end in appendix A.

4.3 Scales for the pT distribution

We now turn our attention to the top-quark pT distribution. We again motivate a suitable

choice of µh and µs by studying K factors for the hard and soft functions analogous to

those for the Mtt̄ distribution, but this time obtained by substituting the hard-scattering

kernel in eq. (3.18) with the appropriate terms in eqs. (4.7) and (4.8) before inverting the

Mellin transform to compute the cross section as a function of pT . We show the results in

figure 3 for a high and a low value of pT , examining both Mtt̄ and mT based scales. Note

that while KH,(N)NLO(Mtt̄, µh) displayed explicitly in eq. (4.12) can be calculated without

reference to the parton luminosities, this is not the case for KH,(N)NLO(pT , µh). We used
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Figure 4. Results for the absolute (left) and normalized (right) top-pair invariant mass distribution

at the LHC with
√
s = 13 TeV. In all cases the ratio is to the NNLO result with µf = HT /4. The

uncertainty bands are obtained through scale variations as described at the beginning of section 5

and in eqs. (5.1) and (5.2).

µf = mT in the luminosities in calculating both the hard and soft K factors, and have

checked that varying µf to other values produces only a small effect in the K factor ratios.

The soft and hard K factors exhibit only a mild hierarchy between the two types of

scale choices in the low-pT region, which is even smaller in the high-pT region. This can be

understood from figure 1, which shows that in both pT regions the cross section sits mainly

at 2mT ∼ Mtt̄ due to the Jacobian peak at RT = 1. The K factors are moderate when

µh = mT and µs = 2mT /N̄ , and we shall use these as the default choices in our resummed

calculations. Recall that in the soft limit the pT of the top is equal to that of the anti-top,

so that mT = HT /2 and these are the exact same choices as for the Mtt̄ distribution after

a trivial renaming.

5 Results and discussion

In this section we give our main results for the top-pair invariant mass and (anti) top-quark

pT distributions, as well as the total cross section, with a focus on comparing NNLO results

with NNLO+NNLL′ ones. Some further comparisons across different perturbative orders

and between standard and threshold resummed PDFs are presented in appendices A and B

respectively. Although we present only a limited set of results for the LHC operating at

a center-of-mass energy of 13 TeV, distributions with alternate binning and at different

collider energies can be produced on request from the authors.

Results for the absolute (normalized) Mtt̄ distribution are shown in left (right) panel

of figure 4. The NNLO results use µf = HT /4 by default (we shall always set the renor-

malization scale appearing in the NNLO calculation to µr = µf unless otherwise specified),

which is the scale favored by the analysis of perturbative convergence of the fixed-order se-

ries performed in [24]. The NNLO+NNLL′ results are obtained from the matching relation

eq. (2.5). All pieces of that equation must be evaluated at a common µf , which is also cho-
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sen as µf = HT /4 by default. In addition, we draw on the analysis of the previous section

and use µh = HT /2 and µs = HT /N̄ by default, as well as µdh = mt and µds = mt/N̄ . In

both the NNLO and the NNLO+NNLL′ results, the bands in figure 4 represent perturba-

tive uncertainties estimated through scale variations. For the NNLO calculation, we obtain

the bands by keeping the factorization and renormalization scales equal and varying them

up and down by a factor of two. For the NNLO+NNLL′ calculation, both the factorization

scales and the resummation scales are independently varied in the interval [µi,0/2, 2µi,0],

where i ∈ {f, h, s, dh, ds} and the subscript “0” denotes the default value of that scale as

previously specified. To determine the upper and lower uncertainties ∆O+ and ∆O− for

the cross section O in a given bin, one first evaluates

∆O+
i = max{O(κi = 1/2, κi = 1, κi = 2)} − Ō ,

∆O−i = min{O(κi = 1/2, κi = 1, κi = 2)} − Ō , (5.1)

for each scale i, where κi = µi/µi,0 and Ō denotes the value of the cross section as given by

eq. (2.5) in that bin using the default scale choices. For example, O(κf = 2) means each

term in eq. (2.5) is evaluated at µf = 2µf,0, with all other scales set to their default value.

The upper (lower) uncertainty bands are then given by Ō + ∆O+ (Ō −∆O−), where

∆O± =

√∑
i

(
∆O±i

)2
, (5.2)

so that this method amounts to adding the uncertainties from independent scale variations

in quadrature.5

A remarkable feature of figure 4 is that the NNLO+NNLL′ and NNLO results are in

close agreement when µf = HT /4 is chosen. To add context to this result, we compare

in figure 5 the ratio of the NNLO and NNLO+NNLL′ results with µf = Mtt̄/2 to the

NNLO result with µf = HT /4, using the same set of matching scales and method of

estimating perturbative uncertainties as in figure 4. These two figures deliver a couple of

important messages. Firstly, the NNLO+NNLL′ result is rather stable against switching

the factorization scale between HT -based and Mtt̄-based schemes. This implies that the

even higher order corrections to the NNLO+NNLL′ result are not so important. On the

other hand, the NNLO result changes drastically when switching the schemes. In particular,

higher order contributions beyond NNLO encoded in the resummation produce a very large

effect for the choice µf = Mtt̄/2, as already forseen in [31]. Given these observations, the

close compatibility between the NNLO+NNLL′ result (with either scale choice) and the

NNLO result with µf = HT /4 is a highly non-trivial fact. This provides an important

confirmation of the result of [24], which favors the choice µf = HT /4 for the fixed-order

5While we have used correlated µr = µf variations in the NNLO piece of the calculation, we have

checked that the uncertainties estimated this way differ little from those obtained by varying µf and µr
with the 7-point method. The NNLO+NNLL′ calculation varies four resummation scales and also µf = µr
independently and adds the uncertainties in quadrature, so a direct numerical comparison with the 7-point

method is not straightforward. However, we have experimented with a 7-point scan over µf and µh, and

found that the uncertainty estimates change only marginally compared to the quadrature method.
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Figure 5. Results for the absolute (left) and normalized (right) top-pair invariant mass distribution

at the LHC with
√
s = 13 TeV as a ratio to the NNLO result evaluated using µf = HT /4. The

uncertainty bands are obtained through scale variations as described at the beginning of section 5

and in eqs. (5.1) and (5.2).
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Figure 6. Results for the absolute (left) and normalized (right) pT,avt distributions at the LHC

with
√
s = 13 TeV. In all cases the ratio is to the NNLO result with µf = mT /2. Uncertainty

bands are obtained in complete analogy to those in figure 4.

calculation of the Mtt̄ distribution. The overall picture emerging from the above analysis is

that the perturbative description of the top-quark pair invariant mass distribution is under

good control.

Results for the absolute (normalized) average top/anti-top (pT,avt) distribution at

NNLO and NNLO+NNLL′ are shown in the left (right) panel of figure 6. The NNLO

results (with which resummation is matched) have been calculated using the definition

dσ

dpT,avt
=

1

2

(
dσ

dpT,t
+

dσ

dpT,t̄

)
, (5.3)

where pT,t (pT,t̄) denotes the transverse momentum of the top (anti-top) quark, and we

have labeled the distributions in figure 6 accordingly. The pT distribution is calculated
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Figure 7. Predictions for the total top-pair production cross section at the LHC with
√
s = 13 TeV,

where the error bars represent perturbative uncertainty estimates through scale variations. The

method for obtaining results and the uncertainty estimates at different values of µf is described in

the second to last paragraph of section 5.

using the scale choice µf = mT /2 (where mT refers to the transverse mass of either the

top or anti-top quark depending on the distribution under consideration), which is favored

by the study [24]. The resummed results use µh = mT and µs = 2mT /N̄ by default, as

justified in the previous section. The bands refer to perturbative uncertainties estimated

through scale variations using the same procedure as for the Mtt̄ distribution above. We

see that the NNLO+NNLL′ result is consistent with the NNLO one. On the other hand,

we show in appendix A that upgrading matching with fixed-order from NLO+NNLL′ to

NNLO+NNLL′ is an important effect for the pT distributions, especially in reducing the

scale uncertainties in the high pT region. This is an important fact to keep in mind when

using NLO-based Monte Carlo event generators to model pT distributions.

Finally, in figure 7 we show results for the total cross section, obtained in several

different ways. The NNLO and NNLO+NNLL′ results with µf = HT /4 are obtained by

integrating the top-pair invariant mass distribution in figure 4, while those with µf = mT /2

are obtained by integrating the pT distribution in figure 6. In these results with dynam-

ical scales, perturbative uncertainties are estimated through the same procedure of scale

variations used for the distributions, and are displayed as error bars in figure 7. These are

compared to the “standard” results for the total cross section, which are calculated using

fixed scales with µf = µr = mt by default. We obtain them from the Top++ program [74],

which implements both the NNLO results from [28] as well as a soft-gluon resummation

in the absolute threshold production limit βt → 0 [75]. In these fixed scale results, pertur-

bative uncertainties are estimated in both the NNLO and the NNLO+NNLL′ results by

varying µf and µr up and down by a factor of two using the seven-point method. Evidently,

while this resummation result for the total cross section is also labelled NNLO+NNLL′ in

figure 7, one should keep in mind that it uses a different framework than the current work,

including the treatment of resummation scales and how they are varied as just described.

From figure 7 we see that the integral of both the NNLO+NNLL′ Mtt̄ distribution

with µf = HT /4 and the NNLO+NNLL′ pT distribution with µf = mT /2 yield nearly the
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same total cross section as the widely quoted result from the Top++ program. This shows

that the results of this work not only provide the most precise QCD results for the top pair

invariant mass distribution and the top quark transverse momentum distribution across

phase space, but also give the correct normalization for these distributions.

6 Conclusions

In this paper we combined state-of-the-art results from soft-gluon resummation (NNLL′)

and fixed-order perturbation theory (NNLO) in order to produce NNLO+NNLL′ predic-

tions for the top-pair invariant mass and the average top/anti-top quark pT,avt distributions

at hadron colliders. These results represent the most complete QCD calculations of these

observables to date. They are also the first instance where an NNLO calculation has been

supplemented with resummation in a process where the Born-level cross section contains

four partons and thus has non-trivial matrix structure in color space.

The resummation formalism used here contains several elements which have not ap-

peared in the literature so far. Some of these involve the details of weaving together three

different kinds of calculations to obtain results optimized throughout phase space. In this

procedure, it is crucial to avoid counting the same contribution more than once. In partic-

ular, in section 2 we presented a matching procedure which allows us to combine NNLO

results in fixed order [24], NNLL′b results in a joint resummation of overlapping soft and

collinear logarithms [30], and NNLLm results in pure soft-gluon resummation [32], in order

to achieve what we have called NNLO+NNLL′ accuracy. All ingredients required to im-

plement this matching procedure, as well as the resummation itself, carried out in Mellin

space, were given in section 3 and appendix C.

Our analysis in section 4 revealed some important kinematic features of the Mtt̄ and pT
distributions. These can not only be understood analytically using results from soft-gluon

resummation, but also affect its implementation, and are useful to keep in mind when

interpreting the numerical results for the Mtt̄ and pT distributions given in section 5. In

the case of the Mtt̄ distribution, the analysis of section 4 demonstrates that in the boosted

regime where mt � Mtt̄, the most relevant hard scale is not Mtt̄ itself but rather HT .

This fact is related to the dynamical enhancement of the forward and backward scattering

regions due to the t- and u-channel diagrams appearing in the Born level partonic cross

section in the gg initiated production process. We used this feature to identify a well-

motivated set of matching scales for the kinematics-dependent hard and soft functions

appearing in the resummation formalism, and also to argue that the high Mtt̄ region is

particularly amenable to soft gluon resummation. On the other hand, we observed that

the high-energy region of the pT distribution is rather sensitive to hard emissions, so that

matching resummation with NNLO is an essential improvement. This is certainly the

case for the analytic resummation performed here, but should also be kept in mind when

predicting the high-energy tail of the pT distribution with NLO-based event generators.

In section 5 we presented numerical results for the absolute and normalized Mtt̄ and

pT,avt distributions, as well as the total cross section, valid to NNLO+NNLL′. For the pT,avt

distribution the resummation effects are mild, especially at the scale µf = mT /2 favored
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by the NNLO analysis of perturbative convergence in [24]. For the Mtt̄ distribution, an

interesting outcome of our analysis is the stability of the NNLO+NNLL′ results under

parametric changes in µf , as shown in figures 4 and 5. Given the large shifts in the NNLO

calculation under such µf changes, it is an important result that the NNLO+NNLL′ results

stabilize the differential cross section close to the NNLO prediction with µf = HT /4, which

is the setting favored by [24] and currently being used in all NNLO phenomenology. The

consistency between the NNLO and NNLO+NNLL′ results gives us confidence that even

higher-order corrections are under good control.
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A Perturbative stability across orders

In this section we perform some comparisons of results for the top-pair invariant mass and

average top/anti-top-quark pT distribution across different perturbative orders.

Figure 8 displays results for the cross section at (N)NLO and (N)NLO+NNLL′ in the

same low-energy and high-energy bins of Mtt̄ considered in section 4.1. The NLO results

are generated using NLO PDFs, while all other results are generated using NNLO PDFs

(including the NLO+NNLL′ ones). The resummed results use the default matching scales

from section 5. The figure compares results obtained with the default µf indicated explicitly

in the figure legend, with perturbative uncertainties estimated through scale variations and

displayed as error bars. In both bins, adding resummation to the fixed-order result is a

clear improvement: the (N)NLO+NNLL′ results are considerably more stable against µf
variations than the (N)NLO ones, especially in the high Mtt̄ bin. An important message

to be drawn from the figure is that the NNLO+NNLL′ results at different µf congregate

near the NNLO one with µf = HT /4.

Figure 9 shows results for the pT,avt distribution at different perturbative orders in

the two sample bins considered in section 4.1. The resummed results use the same default

matching scales as in section 5 and are completely analogous to those in figure 8. Compared

to the Mtt̄ distribution, where the parametric difference between the HT and Mtt̄-based µf
is large, there is no such hierarchy of scales to consider for the pT distribution. Therefore,

we have shown results for three different mT -based choices, ranging from µf = mT /2 to

µf = 2mT by default. While the resummation is of some benefit in stabilizing the (N)NLO
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Figure 8. Cross sections obtained for two sample bins, Mtt̄ = [380 − 420] GeV (upper plot) and

Mtt̄ = [2500− 3000] GeV (lower plot). The default value of µf is indicated explicitly, and the error

bars represent perturbative uncertainties estimated through scale variations as described at the

beginning of section 5 and in eqs. (5.1) and (5.2).

results in the low-pT bin, the picture is less clear in the high-pT bin. For instance, there

is a dramatic reduction in µf dependence in the NNLO+NNLL′ results compared to the

NLO+NNLL′ ones. This is an indication that the high-pT region is more sensitive to hard

radiation than the high-Mtt̄ region. We have given some qualitative explanations for why

this should be the case when discussing the RT distribution in section 4.1. Numerically, we

have found that the NLO results for the high-pT region of the distribution are quite sensitive

to both the qg channel and the RT > 1 region, in a strongly µf -dependent fashion. Soft-

gluon resummation cannot stabilize such µf dependence, which explains the importance of

matching to NNLO in fixed order.

The uncertainties associated with each of the distributions presented here result from

a combination of the uncertainties generated from the variation of each scale in accordance

with eqs. (5.1) and (5.2). It is interesting to decompose the source of these uncertainty

bands in terms of the contributions which arise from varying the factorization scale µf
compared with the other matching scales. We present such a sample decomposition in

table 2 for the two “low” and “high” energy bins used throughout section 4. We show the

cross section in each bin with two sets of uncertainties, the first refers to those obtained

through variations of µf alone while the second refers to the combined uncertainty gener-
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Figure 9. Same as figure 8 but for the pT,avt distribution.

Bin (GeV) NNLO+NNLL′ (pb)

Mtt̄
[380, 420] 3.60 +4%

−2%
+1%
−1%

[2500, 3000] (1.55× 10−4) +9%
−4%

+3%
−4%

pT,avt
[50, 100] 5.04 +4%

−2%
+1%
−1%

[1200, 1400] (2.92× 10−5) +0%
−7%

+1%
−1%

Table 2. Cross section in “high” and “low” energy bins. The first uncertainties refer to those from

µf variation only while the second set are generated by the variation of the matching scales.

ated by varying each of the matching scales. In most instances, the dominant contribution

to the uncertainty arises from the variation of µf . For the Mtt̄ distribution at high Mtt̄

the uncertainty from the matching scales is larger than at low Mtt̄ while across the pT
spectrum this source of uncertainty remains constant.

Finally, it is interesting to compare the results of the present work with the earlier

resummation results at NLO+NNLL′ accuracy in [31]. To this end it is important to note

that the differences between the current work and the work in [31] are two-fold: 1) we have

matched with the exact NNLO calculation here compared to an NLO matching in [31]; and

2) we have employed different settings of the factorization scale and the matching scales

than [31]. Concerning the scale choices, we remind the reader that in this work we by
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Figure 10. Comparison of the 3 results for the absolute (upper) and normalized (lower) Mtt̄

distributions: 1) NLO+NNLL′ with old scales (red bands); 2) NLO+NNLL′ with new scales (blue

bands on the left side); 3) NNLO+NNLL′ with new scales (blue bands on the right side). They are

all normalized by the central values of 1).

default use µh = HT /2, µs = HT /N̄ , µf = HT /4 for the Mtt̄ distribution, and µh = mT ,

µs = 2mT /N̄ , µf = mT /2 for the pT distribution. We refer to this scale setting as the “new

scales”. On the other hand, [31] by default uses µh = Mtt̄, µs = Mtt̄/N̄ , and µf = Mtt̄/2

(for the Mtt̄ distribution) or µf = mT (for the pT distribution). We call this scale setting

the “old scales”.

In order to quantify the effect of switching to the new scales and the effect of matching

with NNLO, we compare the 3 kinds differential cross sections: 1) NLO+NNLL′ with

old scales from [31]; 2) NLO+NNLL′ with new scales from the present work; and 3)

NNLO+NNLL′ with new scales which are the best predictions of the present work. Such a

comparison for the absolute as well as normalized Mtt̄ distributions is shown in figure 10.

It can be seen from the plots on the left side that, by changing to the new scales, the

apparent scale uncertainties are reduced. This is a hint that with the new scale choice the

higher order corrections are indeed smaller. The effect of matching with the NNLO results

is shown in the plots on the right side of figure 10. We see that the matching changes

the differential cross section most significantly in the low Mtt̄ bins, which can be expected.

A similar comparison in the case of pT distributions is shown in figure 11. One can see

that the change of default scales does not reduce the scale uncertainties (actually leading

to larger uncertainties in the high pT bins). Matching with the NNLO is important here,

which stabilizes the scale variation. Overall, the NNLO+NNLL′ results are consistent with

the NLO+NNLL′ results when the new scales are used.

B Comparison with resummed PDFs

In the main part of this work, all computations have been carried out using the (N)NLO

NNPDF3.0 PDF set [71]. However, one can also use threshold resummed PDFs [72], into
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Figure 11. Same as figure 10 but for the pT,avt distribution.

which the effects of soft gluon radiation are incorporated. Including these contributions

in the PDFs can produce non-negligible differences in threshold resummed cross section

predictions when compared to those obtained with regular PDFs. An example of this can

be found in [76], which considered sparticle pair production. In particular, for a large range

of sparticle masses considered it was found that while K-factors (defined as the ratio of the

resummed result to the fixed order one) obtained with regular PDFs were almost always

greater than unity, this was not always the case when resummed PDFs were employed.

Although the resummed PDFs are obtained with a reduced data set and are therefore

not yet suitable for precision calculations, we consider this an appropriate opportunity to

explore their implications for top-quark pair production at the LHC. In order to compare

results obtained with threshold resummed PDFs to those with standard PDFs we compute

the Mtt̄ and pT,t/t̄ distributions using the same settings as in section 5. To enable a fair

comparison the NNPDF collaboration also provides PDFs which do not include thresh-

old resummation but which are compiled from the same data set as the resummed ones.

Specifically we use the NNPDF30 nnlo disdytop PDFs as the benchmark for PDFs with-

out threshold resummation and the NNPDF30 nnll disdytop PDFs for those with thresh-

old resummation.

In figure 12 we compare the central values of the NNLO and NNLO+NNLL′ predic-

tions for the pT,avt and Mtt̄ distributions, obtained using µf = mT /2 and µf = HT /4,

respectively. The NNLO predictions are calculated using the PDFs without resumma-

tion, while the NNLO+NNLL′ predictions are computed using the PDFs with (labelled

NNLL PDF) and without (labelled FO PDF) threshold resummation. In this manner, the

NNLO and NNLO+NNLL′ predictions with the fixed order PDFs act as an equivalent set

of predictions to those in the main part of our paper, but now with a PDF set which can be

compared to those incorporating threshold resummation. The left plot in figure 12 shows

the Mtt̄ distribution, where the effect of using resummed PDFs is significant. Here the
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Figure 12. Comparison of predictions obtained for the Mtt̄ and pT,avt distributions with regular

and resummed PDFs. Plotted are the NNLO prediction (red) using a fixed order PDF as well as the

NNLO+NNLL′ predictions computed both with fixed order (blue) and NNLL threshold resummed

PDFs (purple). Each distribution is normalized to the NNLO one.

use of resummed PDFs produces a suppression in the cross section at high Mtt̄ compared

to predictions produced with regular fixed order PDFs. The plot on the right, showing

the pT,avt distribution, also displays noticeable changes. Here again the resummed PDFs

produce a greater suppression of the cross section in the tail of the distribution than when

regular PDFs are used. It will be interesting to perform further studies using resummed

PDFs in the future as the fits improve and experimental measurements in the tails of these

distributions become more accurate.

C The RG exponents

In this appendix we collect explicit expressions for the RG exponents appearing in

eqs. (3.30), (3.37), and (3.38). In order to ease notation we introduce the following short-

hand

Lh = ln
M2
tt̄

µ2
h

, Ls = ln
M2
tt̄

N̄2µ2
s

, Ldh = ln
m2
t

µ2
dh

, Lds = ln
m2
t

N̄2µ2
ds

,

and remind the reader that

λi =
αs(µh)

2π
β0 ln

µh
µi
.

Perturbative expansions of the anomalous dimensions and beta function are given by

γ(αs) =
(αs

4π

)
γ0 +

(αs
4π

)2
γ1 +

(αs
4π

)3
γ2 + . . . ,

β(αs) = −2αs

[(αs
4π

)
β0 +

(αs
4π

)2
β1 + . . .

]
.

Note that since the g-functions are derived from the part of the evolution functions

in eqs. (3.24) and (3.35) which are proportional to the identity matrix in color space, the

factors of iπ which appear there cancel out in the resummed cross section. As such, we do

not retain these iπ factors in our expressions for the g-functions.
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C.1 Soft limit

First, we present the gmi functions appearing in the evolution factor eq. (3.30) for the

threshold resummed result:

gm1 (λs,λf ) =
Γ0

2β2
0

[
λs+(1−λs) ln(1−λs)+λs ln(1−λf )

]
, (C.1)

gm2 (λs,λf ) =
Γ0β1

2β3
0

[
ln(1−λs)+

1

2
ln2(1−λs)

]
− Γ1

2β2
0

ln(1−λs)+
γφ0
β0

ln
1−λs
1−λf

+
Γ0

2β0
Ls ln

1−λs
1−λf

+
Γ0

2β0
Lh ln(1−λf )

+
1

1−λf

{
Γ0β1

2β3
0

λs [1+ln(1−λf )]− Γ1

2β2
0

λs

}
, (C.2)

gm3 (λs,λf ) =
1

1−λs

{
Γ0β

2
1

4β4
0

[
λs+2λs ln(1−λs)+ln2(1−λs)

]

+
Γ0β2

2β3
0

[
λs
2

+(1−λs) ln(1−λs)
]
−Γ1β1

2β3
0

[
3

2
λs+ln(1−λs)

]

+
Γ2

4β2
0

λs+
β1γ

φ
0

β2
0

[
1+ln(1−λs)

]
− γ

φ
1

β0

+
Γ0β1

2β2
0

[[
1+ln(1−λs)

]
Ls−(1−λs)Lh

]
+

Γ1

2β0

[
(1−λs)Lh−Ls

]}

+
1

1−λf

{
−Γ0β

2
1

2β4
0

λs+
Γ0β2

2β3
0

λs−
γφ0 β1

β2
0

[
1+ln(1−λf )

]
+
γφ1
β0

+
Γ1

2β0

[
Ls−Lh

]
+

Γ0β1

2β2
0

[
Lh−Ls

][
1+ln(1−λf )

]}

+
λs

(1−λf )2

{
Γ0β

2
1

4β4
0

[
1−ln2(1−λf )

]
−Γ0β2

4β3
0

+
Γ1β1

2β3
0

[
1

2
+ln(1−λf )

]
− Γ2

4β2
0

}
.

(C.3)

C.2 Boosted-soft limit

Here we present the g-functions which appear in the evolution factors eqs. (3.37) and (3.38)

for the boosted-soft resummation formula. The functions gi are simply given by their

massive counterparts (gmi as above) using the replacement,

γφ → γφ + γφq ,

for each instance of γφ in the gmi in appendix C.1. Each instance of Γcusp(αs) in gmi is

replaced with A(αs) (this is due to the presence of SA and aA rather than SΓ and aΓ in

eq. (3.35)) with A(αs) given by

A(αs)→
{

2Γqcusp, qq̄-channel

Γqcusp + Γgcusp, gg-channel .
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We decompose each of the gDi , which are functions of three arguments into two two-

argument functions gDi,dh and gDi,ds as follows

gDi (λdh, λds, λf ) = gDi,dh(λdh, λf ) + gDi,ds(λds, λf ) .

Using this decomposition, we present below the functions as used in this work.

gD1,dh(λdh,λf ) =
Γ0

2β2
0

[
ln(1−λdh)+λdh

[
1−ln

(
1−λdh
1−λf

)]]
, (C.4)

gD1,ds(λds,λf ) =− Γ0

2β2
0

[
ln(1−λds)+λds

[
1−ln

(
1−λds
1−λf

)]]
, (C.5)

gD2,dh(λdh,λf ) =
β1Γ0

2β3
0

[[
1+

1

2
ln(1−λdh)

]
ln(1−λdh)

]
− Γ1

2β2
0

ln(1−λdh)

− γ
S
0

β0
ln(1−λdh)+

Γ0

2β0
Ldh ln(1−λdh)− γ

φq
0

β0
ln

(
1−λdh
1−λf

)
+

1

1−λf

{
β1Γ0

2β3
0

λdh
[
1+ln(1−λf )

]
− Γ1

2β2
0

λdh

}
, (C.6)

gD2,ds(λds,λf ) =−β1Γ0

2β3
0

[[
1+

1

2
ln(1−λds)

]
ln(1−λds)

]
+

Γ1

2β2
0

ln(1−λds)

+
γS0
β0

ln(1−λds)−
Γ0

2β0
Ldh ln(1−λds)−

Γ0

2β0

[
Lds−Ldh

]
ln

(
1−λds
1−λf

)
+

1

1−λf

{
−β1Γ0

2β3
0

λds
[
1+ln(1−λf )

]
+

Γ1

2β2
0

λds

}
, (C.7)

gD3,dh(λdh,λf ) =−β
2
1 Γ0

2β4
0

ln(1−λdh)+
β2Γ0

2β3
0

ln(1−λdh)

+
1

1−λdh

{
β2

1Γ0

4β4
0

[
1+ln(1−λdh)

]2
+
β2Γ0

4β3
0

−β1Γ1

2β3
0

[
3

2
+ln(1−λdh)

]
+

Γ2

4β2
0

− β1

β2
0

(
γ
φq
0 +γS0

)[
1+ln(1−λdh)

]
+

1

β0

(
γ
φq
1 +γS1

)
+
β1Γ0

2β2
0

[
1+ln(1−λdh)

]
Ldh−

Γ1

2β0
Ldh

}

+
1

1−λf

{
−β

2
1Γ0

2β4
0

λdh+
β2Γ0

2β3
0

λdh+
β1

2β2
0

γ
φq
0

[
1+ln(1−λf )

]
− γ

φq
1

2β0

+
β1Γ0

4β2
0

[
Lds−Ldh

][
1+ln(1−λf )

]
− Γ1

4β0

[
Lds−Ldh

]}

+
1

(1−λf )2

{
β2

1Γ0

4β4
0

λdh
[
1−ln2(1−λf )

]
−β2Γ0

4β3
0

λdh

+
β1Γ1

2β3
0

λdh

[
1

2
+ln(1−λf )

]
− Γ2

4β2
0

λdh

}
, (C.8)
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gD3,ds(λds,λf ) =
β2

1 Γ0

2β4
0

ln(1−λds)−
β2Γ0

2β3
0

ln(1−λds)

+
1

1−λds

{
−β

2
1Γ0

4β4
0

[
1+ln(1−λds)

]2−β2Γ0

4β3
0

+
β1Γ1

2β3
0

[
3

2
+ln(1−λds)

]
− Γ2

4β2
0

+
β1

β2
0

γS0
[
1+ln(1−λds)

]
− γ

S
1

β0

−β1Γ0

2β2
0

[
1+ln(1−λds)

]
Lds+

Γ1

2β0
Lds

}

+
1

1−λf

{
β2

1Γ0

2β4
0

λds−
β2Γ0

2β3
0

λds+
β1

2β2
0

γ
φq
0

[
1+ln(1−λf )

]
− γ

φq
1

2β0

+
β1Γ0

4β2
0

[
Lds−Ldh

][
1+ln(1−λf )

]
− Γ1

4β0

[
Lds−Ldh

]}

+
1

(1−λf )2

{
−β

2
1Γ0

4β4
0

λds
[
1−ln2(1−λf )

]
+
β2Γ0

4β3
0

λds

−β1Γ1

2β3
0

λds

[
1

2
+ln(1−λf )

]
+

Γ2

4β2
0

λds

}
. (C.9)
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