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1 Introduction

The numerical conformal bootstrap [1] in three dimensions has produced impressive re-

sults, especially concerning critical theories in universality classes that also contain scalar

conformal field theories (CFTs). For the Ising universality class the bootstrap is in fact

the state-of-the-art method for the determination of critical exponents [2–5]. For theories

with continuous global symmetries there has also been significant progress, with important

developments for the Heisenberg universality class [6–8]. In this work we study critical

theories with discrete global symmetries in three dimensions, focusing on the hypercubic

and hypertetrahedral symmetry groups.

The motivation for our considerations is twofold. First, in the cubic case with N = 3

scalar fields1 the issue of its stability relative to the O(3) theory has, to our knowledge,

remained unresolved; see [9, 10] and references therein. Second, in the hypertetrahedral

case there exists a non-conformal window, at least as far as the ε expansion is concerned [11,

12], meaning that there is a range of the number N of scalar fields for which there are no

hypertetrahedral fixed points, while such fixed points can be found below and above that

range. In this paper we study these questions directly in d = 3 with the bootstrap by

considering a single four-point function, namely that of the scalar operator φi, i = 1, . . . , N .

1For N = 3 the cubic and tetrahedral (with a Z2) theories are equivalent.
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To our knowledge there have been no non-perturbative Monte Carlo studies of hyper-

cubic or hypertetrahedral CFTs in d = 3, although the cubic deformation at the O(3) fixed

point has been studied with Monte Carlo methods in [13]. The standard lore (see e.g. [9])

is thus mostly based on the perturbative ε = 4−d expansion [14] with the use of resumma-

tion techniques [15, 16]. The ε expansion has proven to be quite powerful in the O(N) and

Ising models, among others. Nevertheless, it is hard to argue rigorously and in generality

about its effectiveness in d = 3, or ε = 1. Therefore, it is very important to check the

results of the ε expansion whenever non-perturbative methods are available. In this paper

we attempt to do this for hypercubic and hypertetrahedral theories using the bootstrap.

Our expectation is that the predictions of the ε expansion should persist beyond pertur-

bation theory. Various results for the hypercubic and hypertetrahedral theories obtained

with the ε expansion were recently summarized in [12]. Many quantitative results for the

hypercubic theory can be found in [9] and references therein, while some newer results can

be found in [17], notably pertaining to non-singlet and non-scalar operators.

One aim of this work is to provide general bounds on scaling dimensions of operators in

hypercubic and hypertetrahedral theories. In some cases these bounds are found to display

kinks. In the bootstrap we typically think of kinks as special positions in parameter space

where the bounds are saturated by actual theories. We are also interested in bounds on

OPE coefficients, especially the central charge. Such bounds also display features that we

attribute to saturation from actual CFTs.

In this work we find that the solution of crossing that saturates a certain bound with

a kink (figure 2 below) has properties that do not agree with the ε expansion. To be more

specific, we are referring to the N = 3 case, where our bootstrap results show that the

first singlet scalar, i.e. what one would call the “φ2” operator, has scaling dimension that

differs significantly between the O(3) fixed point and the solution at the kink, called Cb3
here. The ε expansion indicates that the “φ2” operator should have more or less the same

scaling dimension both at the O(3) and the cubic theory Cε3 accessed with it [9, 18, 19].

Furthermore, when we study the stability of the Cb3 solution, we find another surprise.

Based on the ε expansion results of [20] it is expected that, if it exists, the stable fixed

point under a given set of deformations is unique.2 From our bootstrap analysis we find

that the Cb3 solution is stable, i.e. it has only one relevant scalar singlet operator (namely

the “φ2” operator). Now, stable fixed points should describe physical systems at second

order phase transitions reached by tuning the temperature. However, in cubic magnets,

where the cubic deformation is important, the critical exponents appear to take the O(3)

or Cε3 values according to experiments [9]. Since we find the critical exponents of the Cb3
solution to be very different from those of the Cε3 and O(3) models, we see that despite

the fact that the Cb3 solution is stable, it is the O(3) or Cε3 theory that describes cubic

magnets at criticality. From these observations one concludes that neither the Cb3 solution

nor one of the O(3) or Cε3 theories has a second relevant operator, directly contradicting

the perturbative result of [20]. To our knowledge there is no contradiction with having two

stable fixed points non-perturbatively.

2Note that this is very special to the ε expansion in 4− ε dimensions. For example, it is not true in 6− ε
dimensions.
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Our solution Cb3 appears unrelated to the Cε3 theory found with the ε expansion. We

are unable to determine if the Cb3 solution at the kink corresponds to an actual CFT.

Perhaps it does not, in which case the kink is an artifact of the numerics. Cb3 could also

correspond to a theory with cubic symmetry that cannot be obtained with the ε expansion.

We are unable to settle this question in this work.

For the hypertetrahedral theories we find that our non-perturbative results are con-

sistent with the perturbative ones. Focusing on the non-conformal window, we find

that its range as estimated with the bootstrap is reasonably close to that obtained

with the ε expansion. We should note, however, that our bootstrap determination is

approximate. We expect that more accurate results can be obtained by considering a

mixed-correlator bootstrap.

The structure of the paper is as follows. In the next section we outline some group

theory that allows us to obtain the hypercubic crossing equation. In section 3 we use

the numerical bootstrap method to find operator dimension bounds in various sectors of

hypercubic theories, analyze the spectrum of the solution at a bound, and discuss exten-

sively possible implications of our results both for cubic magnets and for structural phase

transitions. We also obtain bounds on the central charge. In section 4 we derive the hy-

pertetrahedral crossing equation. Finally, in section 5 we get operator dimension bounds

in hypertetrahedral theories and comment on the non-conformal window. We conclude in

section 6. In an appendix we perform a bootstrap analysis of the cubic crossing equation

in d = 3.8.

Note added: while this manuscript was in preparation [21] appeared which also con-

sidered the bootstrap with hypertetrahedral symmetry. There is a small overlap of their

results with ours in sections 4 and 5.

2 Hypercubic symmetry

For the hypercubic (or hyperoctahedral since hypercubes are dual to hyperoctahedra) group

at N = 4 useful references include [22, 23]. For general N a useful reference is [24].

To start, let us go through the N = 3 cubic symmetry group in some detail. In

Coxeter notation this is the group C3 (or B3). It is given by the semi-direct product

S3 nZ2
3 ' S4 nZ2, where Sn is the permutation group of n elements. C3 is a subgroup of

O(3). The group O(3) keeps the dot product of two arbitrary three-vectors invariant. If

these vectors have integer coefficients in the canonical R3 basis, then C3 also preserves that

property. This statement generalizes to CN = SN n Z2
N [24], which has 2NN ! elements.

The irreducible representations of C3 are those of S4 (for each parity due to the Z2),

which are known to be the 1, 1̄,2,3 and 3̄. If C3 is viewed as a subgroup of O(3), it

is the traceless symmetric representation of O(3) that gives rise to the representations 2

and 3̄. Terms that belong to the diagonal make up the 2, while off-diagonal terms give

rise to the 3̄. 1̄ is the one-dimensional sign representation, taking into account only the

signature of the permutation. Finally, 1 is the trivial representation and 3 corresponds to

the antisymmetric representation. For our purposes operators exchanged in the φi × φj

– 3 –
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OPE need to be considered. There are singlets of even spin and antisymmetric tensors of

odd spin, and, instead of traceless symmetric operators of even spin as in the O(3) case,

there are operators of even spin in the 2 and 3̄ of C3.

It turns out that many statements in the previous paragraph generalize to the CN case.

For example, the singlet and antisymmetric representation of O(N) remain irreducible un-

der CN [24], while the traceless-symmetric representation of O(N) splits into two irreducible

representations under CN , furnished separately by diagonal and off-diagonal terms.

In the case of O(N) symmetry the four-point function 〈φi(x1)φj(x2)φk(x3)φl(x4)〉 was

decomposed in conformal blocks in [6, 25]. In the 12→ 34 channel, for example,

x
2∆φ

12 x
2∆φ

34 〈φi(x1)φj(x2)φk(x3)φl(x4)〉 =
∑
S+
©

λ2
O δijδkl g∆, `(u, v)

+
∑
T+
©

λ2
O

(
δikδjl + δilδjk −

2

N
δijδkl

)
g∆, `(u, v)

+
∑
A−©

λ2
O (δikδjl − δilδjk)g∆, `(u, v) , (2.1)

where three classes of operators contribute, namely even-spin singlets, even-spin traceless-

symmetric tensors, and odd-spin antisymmetric tensors, as follows from the representation

theory of O(N).3 In the hypercubic case the first and the last term in (2.1) remain the

same, but the middle term gets further decomposed under the hypercubic group. In par-

ticular, the diagonal terms, with i = j and k = l, need to be distinguished from the

non-diagonal terms.

To proceed we introduce the tensors

Aijkl = δijkl , Bijkl = δijδkl − δijkl , δijkl =

{
1, i = j = k = l

0, otherwise
. (2.2)

The tensor Bijkl is only symmetric under i ↔ j, k ↔ l and ij ↔ kl. This allows us to

separate the diagonal terms, with i = j and k = l, from the non-diagonal terms in (2.1).

Indeed, using (2.2) equation (2.1) can be decomposed to the hypercubic form

x
2∆φ

12 x
2∆φ

34 〈φi(x1)φj(x2)φk(x3)φl(x4)〉 =
∑
S+
�

λ2
O (Aijkl +Bijkl)g∆, `(u, v)

+
∑
V+

�

λ2
O

((
2− 2

N

)
Aijkl −

2

N
Bijkl

)
g∆, `(u, v)

+
∑
Y+

�

λ2
O (Bikjl +Biljk)g∆, `(u, v)

+
∑
A−�

λ2
O (Bikjl −Biljk)g∆, `(u, v) , (2.3)

3We use the conventions of [26] for the conformal block g∆, `(u, v).
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where there are now four classes of operators that contribute, since the even-spin T+
©

operators of (2.1) decompose into the V+
� and Y+

� operators under hypercubic symmetry.

Equation (2.3) has appeared already in [17].

The hypercubic crossing equation can be derived by exchanging (1, i)↔ (3, k), collect-

ing terms that multiply the same tensor structure, and symmetrizing/antisymmetrizing in

u, v. Defining

F±∆, `(u, v) = v∆φg∆, `(u, v)± u∆φg∆, `(v, u) , (2.4)

we find

∑
S+
�

λ2
O


0

F−∆, `
F+

∆, `

F−∆, `

+
∑
V+

�

λ2
O


0

− 2
NF

−
∆, `

− 2
NF

+
∆, `

(2− 2
N )F−∆, `

+
∑
Y+

�

λ2
O


F−∆, `
F−∆, `
−F+

∆, `

0

+
∑
A−�

λ2
O


F−∆, `
−F−∆, `
F+

∆, `

0

=


0

0

0

0

 .

(2.5)

Compared to the O(N) case we have one more crossing equation for the hypercubic theory.

Another way to derive the hypercubic crossing equation is to recall the presence of a

rank-four traceless-symmetric primitive invariant tensor dijkl in theories with hypercubic

symmetry, satisfying [12]

dijmndmnkl =
N

(N + 2)2

(
δikδjl + δilδjk −

2

N
δijδkl

)
+
N − 2

N + 2
dijkl . (2.6)

We can then define the linearly-independent invariant projectors

P
(1)
ijkl =

1

N
δijδkl ,

P
(2)
ijkl = dijkl +

1

N + 2

(
δikδjl + δilδjk −

2

N
δijδkl

)
,

P
(3)
ijkl = −dijkl +

N

2(N + 2)

(
δikδjl + δilδjk −

2

N
δijδkl

)
,

P
(4)
ijkl = −1

2
(δikδjl − δilδjk) , (2.7)

that satisfy

P
(I)
ijmnP

(J)
nmkl = P

(I)
ijkl δ

IJ ,
∑
I

P
(I)
ijkl = δilδjk , P

(I)
ijkl δilδjk = d(I)

r , (2.8)

where d
(I)
r is the dimension of the representation indexed by I. The four-point function of

φ can be decomposed in the basis of tensors P (I), and it is easy to check that the crossing

equation that follows is equivalent to (2.5). Note that the three rank-four projectors of

O(N) are given by P
(1)
ijkl, P

(2)
ijkl + P

(3)
ijkl, and P

(4)
ijkl.

3 Bounds in hypercubic theories

We are now ready to obtain bounds using (2.5). In this work we use PyCFTBoot [26]

to produce the input for SDPB [27], which performs the numerical optimization. Unless

– 5 –
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C10

C20
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∆S�

Figure 1. Upper bound on the dimension of the first singlet scalar in the φi×φj OPE as a function

of the dimension of φ. Areas above the curves are excluded in the corresponding theories.

otherwise noted, for the plots of this paper we use nmax = 9, mmax = 6, kmax = 36,

cutoff = 10−10 in PyCFTBoot, and we include spins up to `max = 26. For SDPB we use the

options --findPrimalFeasible and --findDualFeasible,4 and we set precision = 660,

dualErrorThreshold = 10−20 and default values for other parameters. We have found

that with these choices we obtain O(N) bounds that look identical to those of [6]. The

bounds are obtained with a vertical tolerance of 10−3.

3.1 Operator dimension bounds

A bound on the dimension of the first singlet scalar in the OPE of φi × φj is shown in

figure 1. The high degree of similarity of figure 1 with the O(N) bounds of [6] suggests

that although we only require hypercubic symmetry, the bound on ∆S� is saturated by

the O(N) solution. For N = 3 we have explicitly checked that the bound obtained from

the crossing equation (2.5) is exactly the same as that obtained from the O(3) crossing

equation. In the singlet sector, therefore, the O(N) solution gets in the way and does not

allow saturation of the bound with purely hypercubic theories, which lie somewhere in the

allowed region.

We now move on to the V+
� sector. A bound on the first scalar operator in that sector,

called V� here, is shown in figure 2.5 Perturbation theory gives us two hypercubic fixed

points: one is fully interacting, while the other is obtained by taking N decoupled Ising

models [12]. In the latter case V� has the scaling dimension of the ε operator in the Ising

model, ∆ε ≈ 1.4126. While the putative theory that saturates the bound of figure 2 for

4With these options if SDPB finds a primal feasible solution then the assumed operator spectrum is

allowed, while if it finds a dual feasible solution then the assumed operator spectrum is excluded.
5From a weakly-coupled point of view the operator V� is of the form (δijkl − 1

N
δijδkl)φkφl [17].

– 6 –



J
H
E
P
0
5
(
2
0
1
8
)
0
3
5

0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535
1

1.1

1.2

1.3

1.4

1.5

C3

C4
C5

C10
C20
C100

∆φ

∆V�

0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535
1

1.1

1.2

1.3

1.4

1.5

C3

C4
C5

C10
C20
C100

∆φ

∆V�

Figure 2. Upper bound on the dimension of the first scalar operator in the V+
� sector of the φi×φj

OPE as a function of the dimension of φ. Areas above the curves are excluded in the corresponding

theories. The x-marker indicates the position of the decoupled Ising theory.

0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535
1

1.1

1.2

1.3

1.4 C3

C4

C5

C10

C20

∆φ

∆Y�

Figure 3. Upper bound on the dimension of the first scalar operator in the Y+
� sector of the φi×φj

OPE as a function of the dimension of φ. Areas above the curves are excluded in the corresponding

theories.

small N is unknown to us at this point, we can easily see that it is not the decoupled Ising

one. Of course the latter is always in the allowed region, and in fact at large N the bound

gets closer to it.
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Figure 4. Upper bound on the dimension of the first vector operator in the A−� sector of the φi×φj
OPE as a function of the dimension of φ. Areas above the curves are excluded in the corresponding

theories.

We can also obtain bounds for the first scalar operator in the Y+
� sector and the first

vector operator in the A−� sector. These bounds are shown in figures 3 and 4, respectively.

Unfortunately, they do not show any interesting features. In figure 4 the genaralized free

theory line 2∆φ + 1 is of course in the allowed region of all bounds. Note that because the

hypercubic symmetry is discrete we do not have a conserved current in the A−� sector.

To recover the O(N) solution the V� and Y� operators should have the same scaling

dimension and combine to the lowest-dimension scalar traceless-symmetric operator of

O(N) with dimension ∆T© . That possibility should be allowed by our bounds in figures 2

and 3, i.e. ∆T© should be in the allowed region of the corresponding bound in both figures 2

and 3. It is immediately verified based on the results of [6, 7] that this is indeed the case.

Some of our bounds can be compared with the ε expansion using the three-loop result,

see e.g. [28] or [17],

∆ε
φ = 1− 1

2
ε+

(N − 1)(N + 2)

108N2
ε2

+
(N − 1)(109N3 − 222N2 + 1728N − 1696)

11664N4
ε3 + O(ε4) , (3.1)

and the two-loop results of [17],

∆ε
V� = 2− 2(N + 1)

3N
ε+

19N3 + 131N2 − 538N + 424

162N3
ε2 + O(ε3) ,

∆ε
Y� = 2− 3N − 2

3N
ε+

3N3 − 127N2 + 530N − 424

162N3
ε2 + O(ε3) . (3.2)

As an example, choosing N = 3 and sending ε → 1 neglecting O(ε4) or O(ε3) terms we

find ∆ε=1
φ ≈ 0.52, ∆ε=1

V� ≈ 1.23 and ∆ε=1
Y� ≈ 1.25. These values are in the allowed regions of

– 8 –
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the corresponding bounds in figure 2 and figure 3. At large N ∆ε=1
φ ≈ 0.52, ∆ε=1

V� ≈ 1.45,

and ∆ε=1
Y� ≈ 1.02, so in that case ∆ε=1

V� is in the excluded region of figure 2. Of course these

ε = 1 results should be taken with a grain of salt. Higher-order results for ∆ε
V� and ∆ε

Y�
would allow proper resummations and the extraction of more meaningful results.

3.2 Analysis of the spectrum of the C3 boundary solution

So far we have applied the standard numerical bootstrap logic for operator dimension

bounds. Let us summarize it briefly and schematically here. First, we bring the crossing

equation to the form ∑
all sectors

λ2
O
~V∆, ` = −~V0,0 , (3.3)

where in the right-hand side we have isolated the contribution of the identity operator,

whose OPE coefficient has been normalized to unity. The vectors ~V stand for the various

contributions in (2.5) for example. Now we take a linear functional ~α of appropriate

dimension and form the inner product with (3.3), i.e. we write∑
all sectors

λ2
O ~α · ~V∆, ` = −~α · ~V0,0 . (3.4)

At this point we make an assumption on the spectrum and we scan over the space of linear

functionals ~α demanding

~α · ~V0,0 = 1 , ~α · ~V∆, ` ≥ 0 , for all allowed ∆, `. (3.5)

If we manage to find such a functional, then (3.4) leads to a contradiction and so the

assumption we made on the spectrum is not consistent with unitarity (i.e. with assuming

that all λO’s are real).

Right at the boundary of the allowed region knowledge of the functional is enough

to give us information about the spectrum of the actual solution to crossing symmetry

there [29, 30]. This is because when we cross the bound we go from having a functional to

not having one, which means that right on the boundary of the allowed and the disallowed

region (on the disallowed side) the action of the associated extremal functional should

saturate the inequalities in (3.5) and give zero on ~V∆, ` for all physical operators in the

spectrum. In other words, right on the bound (on the disallowed side) the left-hand side

of (3.4) is zero because all contributions (at discrete ∆’s for allowed `’s) are zero.6 Note

that the right-hand side of (3.4) is equal to −1 due to (3.5). The functional we obtain is

thus truly extremal when for generic ∆, ` outside the spectrum ~α · ~V∆, `/~α · ~V0,0 →∞.

Our results below are extracted by plotting the logarithm of the action of the functional

on the convolved conformal blocks7 and looking at the positions of the dips in those plots.8

These give us the scaling dimensions of operators that solve crossing at the bound.

6Of course some OPE coefficients could also become zero, but we do not expect this to happen away

from the unitarity bounds.
7To obtain these plots we made some minor additions to PyCFTBoot and used Matplotlib [31].
8To find the positions of the dips we used WebPlotDigitizer [32].
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Figure 5. The dimension of Sb� at the Cb3 solution, i.e. assuming that ∆V�
is equal to the bound

of figure 2. The markers indicate the points at which we have computed the spectrum.

Let us first obtain the functional along the bound of figure 1. From the spectrum in

the V+
�, Y+

� and A−� sectors we can verify that our ∆S� bound is saturated by the O(N)

solution. Indeed, operators in the V+
� and Y+

� sectors have the same scaling dimension,

and the first operator in the A−� sector has dimension exactly equal to two.

We will now perform an analysis of the spectrum along the C3 bound using the func-

tional obtained from figure 2. We will refer to the spectrum at the kink as the Cb3 solution.

Note that we have obtained the bound of figure 2 with a vertical tolerance of 10−6 for the

spectrum analysis that follows. We would like to mention that the results reported in the

remainder of this section do not change by making the numerics more demanding. We

have checked this by running with nmax = 11, mmax = 8, kmax = 36, cutoff = 10−12 in

PyCFTBoot, and including spins up to `max = 32.

First, we look at the dimension of Sb� in the Cb3 solution in figure 5. Our result is that

the Cb3 solution at the kink, occurring at ∆φ ≈ 0.518, has much lower ∆Sb�
than ∆S© at the

O(3) fixed point. Indeed, we find ∆Sb�
≈ 1.329, while [8] gives ∆S© ≈ 1.5957. This suggests

that the Cb3 solution does not correspond to the Cε3 theory found with the ε expansion,

where the scaling dimensions ∆Sε� and ∆S© at Cε3 and O(3), respectively, are calculated

to be nearly degenerate [9, 18, 19]. We would also like to note here that we now have a

further indication that the bound in figure 2 is not saturated by the decoupled Ising theory.

Indeed, if that were the case then the dimension of Sb� should be equal to that of the ε

operator in the Ising model, which is clearly not the case based on figure 5.

We can also fix ∆φ to its value at the kink, ∆φ = 0.518, and obtain a bound on ∆V�
by imposing a gap on ∆S� in the allowed region of figure 1. That is, instead of allowing

∆S� above the unitarity bound, we allow it only above the value in the figure. This bound
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Figure 7. The dimension of S′b� at the Cb3 solution, i.e. assuming that ∆V�
is equal to the bound

of figure 2. The markers indicate the points at which we have computed the spectrum.

is shown in figure 6.

We may also obtain the dimension of the second scalar singlet in the φi × φj OPE,

called S′b� here. If the scaling dimension of this operator were less than three, then Cb3
would be a tricritical solution (two relevant scalar singlets). From figure 7 we see that

∆S′b�
> 3 around ∆φ = 0.518, and so Cb3 is a critical solution (one relevant scalar singlet).
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Figure 8. The perovskite structure ABX3. A is red, B is green, and X3 is blue.

3.3 Discussion

Our results may have implications for the theory of structural phase transitions. It was

suggested a long time ago [18] that critical exponents of the Cε3 theory should be com-

pared to experiment, for example the structural phase transition of SrTiO3 (strontium

titanate) [33–37] where the lattice structure undergoes a transition from cubic to tetrago-

nal at a critical temperature Tc ≈ 100 K. Crystals of the type ABX3 are called perovskites.

X is usually oxygen. The undistorted (high-temperature) phase has A on the corners of a

cube, B at the base center, and X3 at the face centers; see figure 8.

In these systems, and in the context of the Landau theory of phase transitions, a term

preserving cubic symmetry is allowed in the expansion of the free energy, and so its effects

need to be taken into consideration [38, section I.4.2]. A transition to a distorted phase

occurs due to rotations of the X3 octahedra around a four-fold axis of the cube as the

temperature is lowered below a critical value. The phase transition is continuous (second

order), in the sense that the rotation of the octahedra is continuous. The crystal structure

above and below the transition temperature is depicted in figure 9 in a top-down view. In

the third direction two adjacent octahedra rotate in opposite directions and so the unit cell

is enlarged by a factor of 2 in that direction. Taking everything into account the unit cell of

the distorted phase is enlarged by
√

2×
√

2× 2 relative to the undistorted phase, and so it

belongs to the tetragonal crystal system. The symmetry of the undistorted phase is given

by the group Oh (which is the same as what we call C3), while that of the distorted phase

is given by the 16-element group D4h. A review on structural phase transitions is [38, 39],

while some information can also be found in [40, Chapter XIV].

As we already mentioned, the ε expansion gives ∆Sε� very close to ∆S© [9, 18, 19],

which was already noticed in [18] as a possible disagreement with experiment. It was later

suggested that residual strains in the crystals used in the experiments may be responsible for

a crossover to Ising-like behavior [41].9 The Ising critical exponents match the experimental

results very well, thus offering a way out of the apparent incompatibility between the ε

expansion results and the experiments. The suggestion that systematic strains induce an

9The presence of strains brings about new terms in the expansion of the free energy in the context of

the Landau theory of phase transitions.
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(a) T > Tc

(b) T < Tc

Figure 9. The crystal structure in a top-down view above (a) and below (b) the critical transition

temperature Tc ≈ 100 K. The unit cell is highlighted by the dotted line.

Ising-like behavior was investigated in subsequent experiments [42]. To our knowledge

critical exponents in strain-free crystals have not been reported, although such results are

mentioned in [37] (presumably pertaining to [43]) to be close to those obtained in crystals

with strains. In light of our results it would be very interesting to revisit these experiments

in order to see if our Cb3 solution corresponds to the theory describing structural phase

transitions of strain-free perovskites.

Our results also imply that the Cb3 solution is not relevant for cubic magnets, whose

critical exponents have been measured and found close to those predicted by the O(3) model

and the Cε3 theory [9]. This is despite the fact that the Cb3 solution has only one relevant

scalar singlet, as we deduce from figure 7. We do not know if the cubic deformation

is relevant in the O(3) theory. Note that in the O(N) model the cubic deformation is

drawn from a traceless-symmetric scalar operator with four O(N) indices, Oijkl [9]. In

the ε expansion it is known that, when it exists, the stable fixed point is unique [20].10 If

the Cb3 solution were to correspond to the Cε3 theory, then the non-perturbative situation

would contradict that intuition. On the one hand cubic magnets would be described by

the O(3) theory at criticality according to the experimental results. This would mean

that at the O(3) fixed point the cubic deformation is not relevant. On the other hand

the bootstrap would be showing that Cb3 has just one relevant operator and so it would

correspond to a stable fixed point. Despite that, cubic magnets at criticality would not be

in this universality class.

We would then be forced to conclude that neither the Cb3 or O(3) fixed point has a

second relevant operator (assuming that the critical exponents of cubic magnets have been

measured correctly). Besides the possibility that both fixed points are stable, it could also

be that the O(3) model has an exactly marginal operator. A Monte Carlo study of the

10We reiterate that by “stable” we mean that the only relevant deformation is the mass.
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Figure 10. Lower bound on the central charge as a function of the dimension of φ. Areas below

the curves are excluded in the corresponding theories.

cubic deformation at the O(3) fixed point was performed in [13]. Their results for the

anomalous dimension of the cubic deformation are consistent with the value zero. If zero

were indeed the correct answer, this would obviously imply that the cubic deformation

is exactly marginal at the O(3) fixed point. The necessary condition is that a traceless-

symmetric scalar operator Oijkl of the O(3) theory has dimension exactly equal to three.

To our knowledge this has not been excluded in the literature, but without a principle that

would fix the dimension of Oijkl to three it seems unlikely.

3.4 Central charge bounds

Without any assumptions we can bound the central charge C� as a function of ∆φ. Here we

present lower bounds on the ratio C�/Cfree, where Cfree = 3
2N . We remind the reader that

C appears in the coefficient of the two-point function of the stress-energy tensor, which in

d dimensions is constrained by conformal invariance to be of the form

〈Tµν(x)Tρσ(0)〉 = C
1

S2
d

1

(x2)d
Iµνρσ(x) , (3.6)

where Sd = 2π
1
2
d/Γ(1

2d) and

Iµνρσ =
1

2
(Iµρ Iνσ + Iµσ Iνρ)−

1

d
ηµνηρσ , Iµν = ηµν −

2

x2
xµxν . (3.7)

In these conventions a free scalar’s contribution to the central charge is equal to d/(d− 1).

Without any assumptions the bounds are shown in figure 10. They are essentially

identical to the ones obtained for the O(N) models [6].
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Figure 11. Value of the central charge of the Cb3 solution as a function of the dimension of φ.

For C3 we may assume, as we have before, that ∆V� saturates the bound of figure 2

(obtained with a vertical tolerance of 10−6). The value of Cb� is then shown in figure 11.

Much like in the O(N) and Ising models there is a minimum. As we see it is rather wide

and is attained slightly to the left of ∆φ = 0.52. Based on figure 11 we may conclude

that the Cb3 solution has a central charge slightly higher than the O(3) value [6], namely

Cb� ≈ 0.947× 3× 3
2 , while C© ≈ 0.944× 3× 3

2 .

4 Hypertetrahedral symmetry

Hypertetrahedral symmetry may be implemented by considering N + 1 vectors ei
α, α =

1, 2, . . . , N + 1, forming the vertices of an N -dimensional hypertetrahedron, satisfying∑
α

ei
α = 0,

∑
α

ei
αej

α = δij , ei
αei

β = δαβ − 1

N + 1
≡ Pαβ . (4.1)

In this case the symmetry group is TN = SN+1, and we can borrow some results from the

literature. Crucial representation theory was worked out in [44, 45]. In [46] the four-point

function of the field φα = ei
αφi was given. Using results of [47, 48] one can indeed write,

in the 12→ 34 channel,

x
2∆φ

12 x
2∆φ

34 〈φ
α(x1)φβ(x2)φγ(x3)φδ(x4)〉

=
∑
S+
4

λ2
OP

αβP γδg∆, `(u, v) +
∑
V+
4

λ2
OQ

αβγδ g∆, `(u, v)

+
∑
Y+
4

λ2
OR

αβγδg∆, `(u, v) +
∑
A−4

λ2
OS

αβγδg∆, `(u, v) , (4.2)
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where

Qαβγδ =

(
δαβ − 2

N + 1

)(
δγδ − 2

N + 1

)(
δαγ + δαδ + δβγ + δβδ − 4

N + 1

)
,

Rαβγδ = δα 6=βδγ 6=δ
(
δαγδβδ + δαδδβγ − 1

N − 1
(δαγ + δαδ + δβγ + δβδ) +

2

N(N − 1)

)
,

Sαβγδ = δαγδβδ − δαδδβγ − 1

N + 1
(δαγ − δαδ − δβγ + δβδ) = PαγP βδ − PαδP βγ . (4.3)

It is easy to show that

Qαβγδ = 4

(
PαβPαγP γδ − 1

N + 1
(PαβPαδ + P βγP γδ) +

1

(N + 1)2
P βδ

)
, (4.4)

and, using δa 6=β = 1− δαβ , that

Rαβγδ = − N + 1

2(N − 1)
Qαβγδ + PαγP βδ + PαδP βγ − 2

N
PαβP γδ . (4.5)

With (4.4) and (4.5) the crossing equation that arises from (4.2) can be easily worked out.

We find

∑
S+
4

λ2
O


0

F−∆, `
F+

∆, `

0

+
∑
V+
4

λ2
O


0

0

− 4
N+1F

+
∆, `

F−∆, `



+
∑
Y+
4

λ2
O


F−∆, `

2(N−1)
N F−∆, `

− (N+1)(N−2)
N(N−1) F+

∆, `

− N+1
2(N−1)F

−
∆, `

+
∑
A−4

λ2
O


F−∆, `

0

F+
∆, `

0

 =


0

0

0

0

 . (4.6)

This crossing equation is equivalent to the one that recently appeared in [21].11

Using the primitive invariant tensor dijkl of [12] for the hypertetrahedral case and the

relation

dijmndmnkl =
N(N − 2)

(N + 1)(N + 2)2

(
δikδjl + δilδjk −

2

N
δijδkl

)
+

N2 − 3N − 2

(N + 1)(N + 2)
dijkl , (4.7)

we can find the projectors

P
(1)
ijkl =

1

N
δijδkl ,

P
(2)
ijkl =

N + 1

N − 1
dijkl +

N

(N − 1)(N + 2)

(
δikδjl + δilδjk −

2

N
δijδkl

)
,

P
(3)
ijkl = −N + 1

N − 1
dijkl +

(N − 2)(N + 1)

2(N − 1)(N + 2)

(
δikδjl + δilδjk −

2

N
δijδkl

)
,

P
(4)
ijkl = −1

2
(δikδjl − δilδjk) . (4.8)

Just like in the hypercubic case these satisfy (2.7).

11To see this one needs to rescale, with positive N -dependent factors as is necessary, the projectors defined

by those authors.
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It is straightforward to verify that for N = 3 (4.6) and (2.5) are equivalent, with

V+
4 ↔ Y+

� and Y+
4 ↔ V+

� . This equivalence is a consequence of the fact that for N = 3

the vertices of the tetrahedron also form diagonals of the cube [11]. For other N the

hypertetrahedral group is not a subgroup of the hypercubic group. We should note here

that our symmetry group is really SN+1 × Z2. The Z2 gives a minus sign to all fields, and

it can be broken if we assume that φγ appears in the OPE φα × φβ . In this work we do

not make this assumption.

Let us now mention some results that the ε expansion gives for hypertetrahedral the-

ories [12]. For generic N there are two hypertetrahedral fixed points with

∆
T

(1)
N
φ =

1

2
(d− 2) +

(N + 1)(N + 7)

108 (N + 3)2
ε2 +

(N + 1)(109N3 + 969N2 + 5463N + 7411)

11664(N + 3)4
ε3 ,

∆
T

(2)
N
φ =

1

2
(d− 2) +

(N − 1)(N − 2)(N2 − 6N + 11)

108 (N2 − 5N + 8)2
ε2 (4.9)

+
(N − 1)(N − 2)(109N6 − 1752N5 + 12336N4 − 48804N3 + 114807N2 − 151944N + 88208)

11664(N2 − 5N + 8)4
ε3 .

(4.10)

These fixed points do not exist for all N . In the framework of the ε expansion one can

see that the hypertetrahedral fixed points collide and disappear into the complex plane at

some N−, and again reappear at some N+. These are given by [12]

N± = 5 + 6 ε+
281

32
ε2 − 61

8
ζ3 ε

2 ±
√

24 ε+
289

4
ε2 − 30 ζ3 ε2 , (4.11)

where ζ3 is Apéry’s constant. For N− < N < N+ there are no hypertetrahedral fixed

points. If we brazenly plug in ε = 1 to (4.11) we find

N± ≈ 10.62± 7.76 . (4.12)

5 Bounds in hypertetrahedral theories

In the singlet sector the bound on ∆S4 is again saturated by the O(N) solution. A bound

on the dimension of the first scalar operator in the V+
4 sector is shown in figure 12. As we

see, for low values of N there is no kink in the bounds. The kink develops as N increases;

this is consistent with the absence of CFTs with hypertetrahedral symmetry for low values

of N as expected from (4.12). We also see that at large N the decoupled Ising theory is in

the allowed region and in fact saturates the bound.

Although for N = 3 there is no kink in the bound of figure 12, a kink appears in the

Y+
4 sector as in figure 13. Indeed, for N = 3 we see a kink in the dimension of Y4 ≡ V�.

This is the same as the kink in the C3 curve of figure 2, and so its interpretation as a

CFT is questionable. No kink is seen for other values of N , however, consistently with our

expectations from the ε expansion.

Although a precise determination of N± with the bootstrap of a single correlator is

perhaps not feasible, we expect N− . 4 and N+ . 15 based on the presence of a kink

in the bound of ∆V4 . We have looked at the spectrum of the solution that saturates the

bounds of figure 12, but we have not been able to identify a feature that can serve as
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Figure 12. Upper bound on the dimension of the first scalar operator in the V+
4 sector of the

φα × φβ OPE as a function of the dimension of φ. Areas above the curves are excluded in the

corresponding theories. The x-marker indicates the position of the decoupled Ising theory.
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Figure 13. Upper bound on the dimension of the first scalar operator in the Y+
4 sector of the

φα × φβ OPE as a function of the dimension of φ. Areas above the curves are excluded in the

corresponding theories.

a conclusive indicator of the existence of a CFT. It would be interesting to study this

important problem in a mixed-correlator setting.
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indicates the position of the decoupled Ising theory.

6 Conclusion

In this paper we studied hypercubic and hypertetrahedral theories in d = 3 with the non-

perturbative numerical conformal bootstrap. We focused mainly on the N = 3 cubic theory

due to its importance for phase transitions of cubic magnets and perovskites. We found

that the bound of the first scalar operator in the V+
� sector is saturated by a kink solution,

called Cb3, with properties that cannot be reconciled with the ε expansion.

There are (at least) three possibilities for the fate of Cb3 (and CbN ):

1. it corresponds to a hypercubic CFT that is inaccessible with the ε expansion,

2. it corresponds to the hypercubic CFT found with the ε expansion,

3. it does not correspond to an actual CFT.

Perhaps the most conservative possibility is the last one. The presence of the kink would

then be an artifact of the numerics. In any case, without independent arguments at our

disposal we cannot convincingly settle on the correct interpretation of CbN .

According to the ε expansion for N = 2 there is no fully-interacting CFT other than

the O(2) model in d = 4−ε [12]. The only solution with “cubic symmetry” for N = 2 is the

decoupled Ising model. We would thus expect the N = 2 bound on ∆V� to be saturated at

the Ising point. This is, however, not what we find, as we see in figure 14. The bound is in

fact weaker than the C3 bound of figure 2. The (smooth) kink observed suggests that there

may be a CFT not seen by the ε expansion, or that a CFT with higher symmetry gets in

the way. It could also be an artifact of the numerics and correspond to no actual CFT.
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Let us close by reminding the reader that when N →∞ the hypercubic theory should

go the constrained Ising model [49–51], in which the first scalar singlet has scaling dimension

3−∆ε ≈ 1.5874. This is a non-perturbative result. We have checked that this is not what

happens for Cb∞, i.e. for the solution obtained at the kink of the bound on the dimension

of V� at large N . However, in the ∆V�-∆φ slice of parameter space there are two CFTs at

the same exact position for N → ∞. One is the decoupled Ising theory, and the other is

the constrained Ising one. In the former the lowest-dimension singlet scalar has dimension

∆ε ≈ 1.4126, while in the latter it has dimension 3 −∆ε. Therefore, the interpretation of

the spectrum of the Cb∞ solution in that case, solely derived from the solution at the kink

in the ∆V�-∆φ slice, is unclear. It is plausible that in order to derive meaningful results

one needs to use information from other sectors of operators, specifically those in which

the two CFTs do not have spectra of operators with the same scaling dimensions.
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A An analysis of Cb
3 in d = 3.8

In this appendix we study the Cb3 solution in fractional spacetime dimension, namely d =

3.8. We expect our analysis not to be invalidated by the fact that in such fractional

dimensions unitarity is not expected to be present [52]. For the Ising model a similar

analysis was performed in [53]. Our aim is to explore the properties of the Cb3 solution, and

compare with the ε expansion at ε = 0.2, a value we expect is low enough for perturbative

results to be more trustworthy than in the ε = 1 case.12 Again, ∆Sε� and ∆S© are expected

to be very close according to the ε expansion. For the plots of this appendix we use

nmax = 9, mmax = 6, kmax = 40, cutoff = 10−15 in PyCFTBoot, and the same options and

parameters as before for SDPB. We find the bounds with a vertical tolerance of 10−6.

First, we obtain a bound on the first singlet scalar in the O(3) model, using the O(N)

crossing equation directly [6]. The bound is shown in figure 15, and it displays a strong

kink around ∆φ = 0.9005. If the O(3) model lives on the kink, then ∆S© ≈ 1.8969.

The bound on the scaling dimension of V� is shown in figure 16. There is again a

very sharp kink. On the bound at ∆φ ≈ 0.90045 we have ∆V� ≈ 1.8710. At this point

it is not easy to tell if the kink is actually saturated by the decoupled Ising theory, for in

the latter case the dimension of V� would be equal to the dimension of the ε operator in

12We could also go to smaller ε, but the fact that the region where the kink is expected moves towards

the free theory makes the numerics slower. This is because of the singular behavior of conformal blocks at

the free theory.
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Figure 15. Upper bound on the dimension of the first singlet scalar in the φi × φj OPE as a

function of the dimension of φ in the O(3) model in d = 3.8.

the Ising model, which in d = 3.8 is very close to 1.87. This can be seen both with the ε

expansion [54], and by looking at the relevant kink in [53]. To resolve this we look at the

spectrum.13

The scaling dimensions of the first and second scalar singlet of Cb3 are shown in fig-

ures 17 and 18, respectively. At the kink we have ∆Sb�
≈ 1.8665. Although close to

∆V b�
≈ 1.8710, the two dimensions are different which gives us confidence that we are not

in the decoupled Ising theory. For the second scalar singlet we have ∆S′b�
> 3.8, which

means that the Cb3 solution is critical in d = 3.8.

Finally we can compare with ∆S© ≈ 1.8969 in d = 3.8. For ε = 0.2 we have ∆S© −
∆Sb�

≈ 0.03. The results for ∆S© and ∆Sb�
are significantly closer compared to the ε = 1

case considered in the main text, where ∆S©−∆Sb�
≈ 0.2667. Nevertheless, we would expect

a much smaller ∆S©−∆Sb�
if the Cb3 solution at the kink were to become the Cε3 CFT found

with the ε expansion at ε = 0.2. Using the five-loop results of [28, 54] we find, using a

simple Padé[3,4] approximant, ∆S©−∆Sε=0.2
�

≈ −2.5×10−4. The negative sign here seems

to be at odds with the bootstrap results, but, given the smallness of |∆S© −∆Sε=0.2
�
|, we

expect this issue to be resolved by considering higher-order corrections and/or more robust

resummation techniques. With the same Padé[3,4] approximant we find ∆S© − ∆Sε=1
�
≈

0.01. At ε = 1 more advanced resummation techniques give ∆S©−∆Sε=1
�
≈ 6×10−4 [9, 19].

From this analysis we may then conclude that it is not likely that the Cb3 solution at the

kink is related to the Cε3 cubic CFT. However, given that there is a sharp kink in figure 16

13We have also obtained the bound on ∆V�
in C20 in d = 3.8, and at the corresponding kink ∆V b

�
is

slightly lower than that in the Cb3 solution of figure 16. This indicates that we have not saturated the bound

with the decoupled Ising theory in figure 16.
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Figure 16. Upper bound on the dimension of the first V+
� scalar operator in the φi × φj OPE as

a function of the dimension of φ in the C3 theory in d = 3.8.
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Figure 17. The dimension of Sb� at the Cb3 solution in d = 3.8, i.e. assuming that ∆V�
is equal to

the bound of figure 16. The markers indicate the points at which we have computed the spectrum.
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the bound of figure 16. The markers indicate the points at which we have computed the spectrum.

we may speculate that the Cb3 solution is in fact accessible with the ε expansion. We hope

to return to these issues in the future.
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