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1 Introduction

It was found in [1, 2] that it is possible for some two-dimensional integrable field theories

to accommodate discontinuities in the fields and yet remain integrable. This discontinuity

is referred to as a defect in the theory, and the fields on either side of the discontinuity

are related by some set of defect conditions. There may be a potential and extra degrees

of freedom which exist only at the defect and influence the defect conditions. Here we

consider a Lagrangian set-up, where the Lagrangian density contains a term for the bulk

theory on either side of the defect (confined to the appropriate region) and a defect term

which is confined to a single point.

Affine Toda field theories (ATFTs) were first introduced in [3] when a one-dimensional

chain of particles with nearest neighbour interactions was investigated. The potential of

this system could be written in such a way that it depended upon the simple roots of affine

An. This was later modified to be dependent on both x and t [4], and then generalised

to give field theories based on the roots of any affine Lie algebra [5, 6]. Such theories are

integrable [4, 6, 7] and soliton solutions have been found [8–10].

Some of the earliest studies of defects were in quantum integrable field theories, for

example in a free fermion theory [11, 12] and in sine-Gordon theory [13], and here it was

shown that integrable defects must be purely reflecting or transmitting. Classical purely

transmitting defects first appeared in [1], where the Lagrangian approach to classical de-

fects used in this paper was pioneered. For the defects investigated in [1, 2, 14] the bulk
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fields couple to each other at the defect. These are type I defects and allow discontinu-

ities in the fields at the defect, provided that the defect conditions are satisfied. Initially

momentum and energy conservation, rather than full integrability with an infinite num-

ber of conserved charges in involution, were all that was investigated [1]. Despite the

defect breaking translational invariance it was found that, for particular type I defects,

it is possible for such systems to have conserved momentum. However these momentum

conserving defects are only compatible with an An ATFT in the bulk [2]. Constructing the

Lax pair showed that the restrictions on the defect which ensured energy and momentum

conservation were necessary and sufficient to ensure the existence of an infinite number of

conserved charges [2, 14]. The sine-Gordon and A2 type I defects have been shown to be

integrable [15, 16].

Since investigations of solitons and the integrability of ATFTs in the bulk found that

the results for ATFTs based on different sets of simple roots were closely linked it would not

be unreasonable to expect the type I defects to provide integrable defects for all ATFTs.

Unfortunately this is not the case, as it seems only ATFTs based on An can support a type

I defect whilst still remaining a momentum conserving (and so likely integrable) system [2].

However, in [17] a modification was proposed which allowed a momentum conserving defect

to appear within the Tzitzéica model (excluded from the integrable type I defects due to

being based on folded A2 roots rather than purely on An). This defect, referred to as a

type II defect, introduced an additional degree of freedom only at the defect. Although

this type II defect has not been explicitly shown to be integrable there is a strong body

of evidence to suggest that it is, namely that momentum and energy are conserved and

requiring momentum conservation gave sufficient constraints on the defect to ensure it was

integrable in the sine-Gordon and A2 cases, solitons were able to pass through it with

no change other than a delay (determined by the rapidity of the soliton and the defect

parameters), and that the existence of an infinite number of conserved charges has been

shown for the Tzitzéica defect [18]. Liouville integrability of defects with additional degrees

of freedom has been investigated in [19].

We will attempt to generalise these type II defects to accommodate any number of bulk

fields and degrees of freedom at the defect in the hope of finding momentum conserving

defects for all ATFTs. Since energy-momentum conservation was found to be such a

powerful tool in the type I case we will be looking for momentum conserving defects rather

than integrable defects, as it appears likely that they will be the same thing.

Such defects are also of interest because of their link with Bäcklund transformations.

In [1, 2] it was noted that the defect conditions of any momentum conserving type I defect

in an An ATFT were a Bäcklund transformation if the defect conditions were taken to hold

everywhere. In [17] a new Bäcklund transformation for the Tzitzéica model was found from

the defect conditions. In this paper we show that the defect conditions of a momentum

conserving defect can always be augmented to provide a set of equations which are a

Bäcklund transformation for the bulk theory. If the defect equations linking the theories

on either side are a Bäcklund transformation then we would expect the system to have

soliton solutions which pass through the defect, a feature of integrable systems.
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2 Momentum conservation and the generalised type II defect

In this section we shall derive conditions for a general class of type II defects to be mo-

mentum conserving. Type II defects were introduced in [17]. They differed from type 1

defects in having a single extra degree of freedom confined to the defect in addition to

the fields in the bulk. This extra freedom allowed the authors to construct a momentum

conserving defect for the Tzitzéica model, something which had not been possible within

the framework of type 1 defects. Here we shall generalise the results in [17] by considering

the situation where there are any number of bulk fields and any number of extra degrees

of freedom confined to the defect.

In what follows we take the defect to lie at x = 0. The bulk vector fields in the region

x ≤ 0 will be called u(x, t), the bulk vector fields in the region x ≥ 0 will be called v(x, t)

and the degrees of freedom living on the defect at x = 0 are labelled λ(t). We shall refer

to the λ(t) as auxiliary fields. (The term field may seem a peculiar choice as λ has no

spatial dependence; however when we come to consider Bäcklund transformations in the

next section we will see that it is natural to extend the definition of λ to take values in the

bulk.) Each of u, v and λ is a vector field and we denote their components as u1, u2, . . .,

v1, v2, . . ., λ1, λ2, . . .. Additionally we will assume that u and v describe two copies of the

same bulk theory but on different sides of the defect, so that the number of components of

u and v are equal. There may be any number of components of the auxiliary vector field λ.

The Lagrangian description of the theory in the presence of a defect at x = 0 is given

in terms of a density

L = Θ(−x)Lu +Θ(x)Lv + δ(x)LD, (2.1)

where the bulk Lagrangian densities

Lu =
1

2
(ui,tui,t − ui,xui,x)− U(u) (2.2)

Lv =
1

2
(vi,tvi,t − vi,xvi,x)− V (v). (2.3)

govern the behaviour of the bulk fields u and v. Subscripts of t and x denote partial

differentiation with respect to that variable and are separated from subscripts of indices by

a comma. Einstein sum notation is used throughout. The two bulk theories are coupled

at x = 0 via the defect Lagrangian LD which depends on u, v and λ.

The form of LD we will consider in the present work is motivated by combining features

from existing examples of defects. An example of a type I defect coupling multicomponent

fields u and v is the defect for An ATFT considered in [14]; its Lagrangian is of the form

LD =
1

2
uiAijuj,t +

1

2
viAijvj,t + ui(I −A)ijvj,t − F (u, v), (2.4)
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where A is a constant, antisymmetric matrix. The type II defect for the Tzitzéica model

considered in [17] is of the form

LD =uvt + 2λ (ut − vt)− F (u, v, λ), (2.5)

where u, v and λ are scalar fields.

In both of these examples, the defect Lagrangian consists of two parts: a defect po-

tential F = F (u, v, λ) and ‘kinetic terms’ coupling the time derivatives of the fields to the

fields themselves via constant matrices. In this paper we shall consider the most general

defect of this form, combining the vector field aspect of the type I defect (which allowed it

to encompass all An ATFTs) with the auxiliary field appearing in the type II defect (which

allowed a momentum conserving defect to be constructed for an ATFT not based on An).

The work in [20] went some way toward combining the two approaches, but required the

number of auxiliary fields to be equal to or a multiple of the number of bulk fields. The

defect Lagrangian density we consider is

LD =
1

2
uiAijuj,t +

1

2
viBijvj,t + uiCijvj,t

+
1

2
λiWijλj,t + λiXijuj,t + λiYijvj,t − F (u, v, λ), (2.6)

where A, B, C, W , X and Y are arbitrary, constant, real coupling matrices. This general

form of defect Lagrangian depends on a plethora of unknown couplings contained in the

matrices A, B, C, W , X and Y . The main purpose of this section will to be use the

freedom to make field redefinitions and the constraints arising from the condition that the

defect conserve momentum to pin down the form of this Lagrangian much more precisely.

We can immediately see that some of the couplings in the defect Lagrangian (2.6) are

redundant. The matrices A, B and W can be taken to be antisymmetric as any symmetric

part simply adds a total derivative to the Lagrangian which is physically irrelevant, at

least in the classical case. Further simplifications can be made by using field redefinitions

to put the Lagrangian in a canonical form. The form of the Lagrangian is not altered under

the redefinition of the auxiliary fields λi → αijuj + βijvj + γijλj , where α and β are any

matrices and γ is an invertible matrix to ensure the degrees of freedom associated to the

auxiliary fields are not removed, because λ does not appear in the bulk Lagrangian. The

bulk fields can also be transformed as ui → Qijuj , vi → Q′
ijvj without changing the general

form of the bulk and defect Lagrangians provided Q and Q′ are orthogonal. We intend

to use these field redefinitions to simplify the Lagrangian in eq. (2.6) as far as possible,

‘absorbing’ the freedom in the arbitrary coupling matrices into the auxiliary fields. We

will find that any momentum conserving defect of the form given above is equivalent, up

to some field redefinitions, to a defect in which each component of the fields may couple in

either the type I or the type II manner seen in eqs. (2.4), (2.5).

We begin by further simplifying W , the antisymmetric matrix containing the couplings

between auxiliary fields. The spectral theorem states there exists a change of basis λi →
γijλj where the matrix γ is orthogonal, in which the antisymmetric matrix W takes the
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block-diagonal form

W → γTWγ =































0 l1 . . . 0 0 0 . . . 0

−l1 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...
...

...

0 0 . . . 0 lk 0 . . . 0

0 0 . . . −lk 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0
...

...
...

...
...
. . .

...

0 0 . . . 0 0 0 . . . 0































. (2.7)

where the matrix has 2k non-zero eigenvalues, ±ilj . We can also scale the auxiliary fields

λi → ciλi, where ci are some scalars, to take all entries in this block-diagonal matrix to

±1. These field redefinitions can be carried out without loss of generality, and so we can

always use them to set

W =































0 1 . . . 0 0 0 . . . 0

−1 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...
...

...

0 0 . . . 0 1 0 . . . 0

0 0 . . . −1 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0
...

...
...

...
...
. . .

...

0 0 . . . 0 0 0 . . . 0































. (2.8)

The field redefinition on λ will also affect the matrices X and Y but these can be ignored

as they amount to redefinitions of what are already arbitrary matrices. With W as above,

the components of the auxiliary field λi naturally divide into those for i = 1 . . . 2k which

couple to other auxiliary fields, and the remaining components in the zero eigenspace

of W which have no coupling to other auxiliary fields in the ‘kinetic’ part of the defect

Lagrangian. The components of λ which couple to other auxiliary fields are relabelled as

ξ1, ξ2, . . ., components of the field vector ξ, and the components of λ which couple to no

other auxiliary fields are relabelled as µ1, µ2, . . ., components of the field vector µ. In terms

of ξ and µ the defect Lagrangian density can now be rewritten as

LD =
1

2
uiAijuj,t +

1

2
viBijvj,t + uiCijvj,t +

1

2
ξiWijξj,t

+ µiXijuj,t + ξiX̂ijuj,t + µiYijvj,t + ξiŶijvj,t − F (2.9)

where matrices X and Y have been split into the smaller matrices X, X̂, Y and Ŷ in order

to separate the couplings of the bulk fields to {µi} and {ξi}, and the matrix W is from
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now on taken to be

W =

















0 1 . . . 0 0

−1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1

0 0 . . . −1 0

















. (2.10)

Having simplified W as far as we can we now turn to the couplings of ξ to the bulk

fields. The redefinitions ξi → WijX̂jkuk +Wij Ŷjkvk + ξi give

1

2
ξiWijξj,t →

1

2

(

WikX̂klul +WikŶklvl + ξi

)

Wij

(

WjkX̂klul,t +WjkŶklvl,t + ξj,t

)

. (2.11)

Using W 2 = −I it is then straightforward to show that this provides cancellations which

leave the Lagrangian density as

LD =
1

2
uiAijuj,t +

1

2
viBijvj,t + uiCijvj,t +

1

2
ξiWijξj,t + µiXijuj,t + µiYijvj,t − F. (2.12)

As before the effect of these field redefinitions on the arbitrary matrices A, B and C has

been negated by an appropriate redefinition of these matrices.

This is the canonical form for the Lagrangian that we shall work with henceforth. We

shall now look for the conditions on the matrices A, B, C, W , X and Y and potential F

which arise from demanding that the system described by the Lagrangian in eq. (2.12) has

a conserved momentum and energy. We expect that demanding momentum conservation

will be sufficient to ensure the integrability of the defect.

The Euler-Lagrange equations arising from the Lagrangian density in eq. (2.1) with

the defect Lagrangian in eq. (2.12) give the equations of motion

x < 0 : 0 =ui,tt − ui,xx + Uui
(2.13)

x > 0 : 0 = vi,tt − vi,xx + Vvi (2.14)

x = 0 : ui,x =Aijuj,t + Cijvj,t −Xjiµj,t − Fui
(2.15)

vi,x =Cjiuj,t −Bijvj,t + Yjiµj,t + Fvi (2.16)

0 =Wijξj,t − Fξi (2.17)

0 =Xijuj,t + Yijvj,t − Fµi
, (2.18)

where a subscript containing a field denotes partial differentiation with respect to that field.

The total energy of the fields in the bulk is

E =

∫ 0

−∞
dx

(

1

2
(ui,tui,t + ui,xui,x) + U

)

+

∫ ∞

0
dx

(

1

2
(vi,tvi,t + vi,xvi,x) + V

)

(2.19)

and we expect the conserved total energy to be the sum of this bulk energy plus some

contribution from the defect. Differentiating eq. (2.19) with respect to t and then using

the bulk equations of motion in eqs. (2.13), (2.14) to rewrite the integrand as a total x
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derivative allows us to carry out the integration (with {ui}, {vi} → constant and U, V → 0

as x → ±∞), giving

dE

dt
= (ui,xui,t − vi,xvi,t)|x=0 . (2.20)

In order for this term to be conserved we must be able to write the right hand side of this

equation as a total time derivative. Using the defect conditions in eqs. (2.15), (2.16) to

remove the x derivatives we find that eq. (2.20) may be rewritten as

dE

dt
= −dF

dt
. (2.21)

Therefore E + F is the conserved energy-like quantity, where E is the bulk energy and

F is the defect potential. The introduction of a defect at x = 0 does not break the time

translation symmetry of the system, so perhaps it is not surprising that it is always possible

to construct a conserved energy without placing any further constraints on the couplings

in the defect Lagrangian.

Since the defect breaks manifest translation invariance, the system is no longer obvi-

ously momentum conserving, and we expect requiring conservation of momentum to be far

more restrictive than requiring conservation of energy. Total momentum of the fields in

the bulk is given by

P =

∫ 0

−∞
dx (ui,xui,t) +

∫ ∞

0
dx (vi,xvi,t) (2.22)

and again we will require that this plus some defect contribution is conserved. Differenti-

ating eq. (2.22) with respect to t, using the bulk equations of motion in eqs. (2.13), (2.14)

to rewrite the integrand as a total x derivative and carrying out the integration gives

dP

dt
=

(

1

2
(ui,tui,t + ui,xui,x − vi,tvi,t − vi,xvi,x)− U + V

)∣

∣

∣

∣

x=0

. (2.23)

In order for the system to be momentum conserving we must be able to rewrite eq. (2.23) as

dP

dt
= −dΩ

dt
(2.24)

where Ω is the defect contribution to the total momentum of the system. Using the defect

conditions in eqs. (2.15)–(2.18) we now aim to find the restrictions on the couplings at

the defect and the defect potential which are necessary to ensure the system is momentum

conserving and so (hopefully) integrable. In order for eq. (2.23) to be written as a total

time derivative the x derivatives must be removed, which can only be done by substituting

– 7 –
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in eqs. (2.15), (2.16). This gives

dP

dt
=

1

2
ui,t

(

I −A2 − CCT
)

ij
uj,t −

1

2
vi,t

(

I −B2 − CTC
)

ij
vj,t − ui,t (AC − CB)ij vj,t

+ ui,t
(

AXT − CY T
)

ij
µj,t − vi,t

(

CTXT +BY T
)

ij
µj,t +

1

2
µi,t

(

XXT − Y Y T
)

ij
µj,t

−
(

Fui
Aij + FviC

T
ij

)

uj,t − (Fui
Cij − FviBij) vj,t +

(

Fui
XT

ij − FviY
T
ij

)

µj,t

+
1

2
(Fui

Fui
− FviFvi)− U + V

+ (−ξk,tWki − Fξi) (ρi + τijuj,t + φijvj,t)

+
(

uk,tX
T
ki + vk,tY

T
ki − Fµi

)

(σi + πijuj,t + χijvj,t + ψijµj,t + ωijξj,t) . (2.25)

For the right hand side of this equation to be a total time derivative we must remove all

terms which are not linear in time derivatives of the fields. In the last two lines of this

equation we have used the freedom to add multiples of the expressions in eqs. (2.17)–(2.18)

which vanish as a consequence of the equations of motion. We have not added multiples

of the expressions in eqs. (2.15)–(2.16), as these would reintroduce derivatives of the fields

with respect to x which cannot be expressed as time derivatives. Equally the multiplicative

factors of the expressions in eqs. (2.15)–(2.16) have been chosen to introduce no higher than

quadratic terms of time derivatives of fields into eq. (2.25) as these also could not be made

into a total time derivative. They also must not introduce any quadratic terms which do

not appear elsewhere in the expression, as such terms would have nothing to cancel with,

cannot be written as a total time derivative, and so would immediately be set to zero.

Let us begin by considering the term µi,t

(

XXT − Y Y T
)

ij
µj,t. For this to be a total

time derivative it must identically vanish, and as the quantity XXT − Y Y T is explicitly

symmetric, we have that XXT = Y Y T . Now consider the case in which a particular

auxiliary field decouples from u but not from v. It is always possible to permute the labels

on the fields {µi} by a field redefinition so that the field µ1 is the one decoupling from u but

not from v, so X1j = 0 ∀ j. The condition XijX
T
jk = YijY

T
jk then requires Y1jY

T
jk = 0 ∀ k.

One of the conditions from this is Y1jY1j = 0 and since all coupling matrices are assumed

to be real this is only satisfied if Y1j = 0 ∀ j. Therefore if an auxiliary field decouples

from u it must also decouple from v and vice versa. From eq. (2.18) we then have that the

equation of motion of the field µ1 is then Fµ1 = 0, and so if an auxiliary field decouples

completely from all other auxiliary fields and from one of the bulk field vectors then it

disappears from the defect Lagrangian.

Now consider the µi,tXijuj,t + µi,tYijvj,t terms. We take vectors u and v to have n

components and vector µ to have m components. The matrix XT has a kernel which will

be some subspace of the vector space µ is living in. By a transformation of µ we can take

the basis of the kernel of XT to be the final k elements of µ. After this transformation the

final k columns of XT will be zero. The final k components of µ completely decouple from

u, and so by the argument in the above paragraph they also completely decouple from v,

and so Y T also has the final k columns as zero. The final k components of µ are now

auxiliary fields which completely decouple from u and v, and so can be removed from the

Lagrangian. The vector µ is now length m − k and the matrices XT and Y T must have
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a kernel of 0, otherwise further µ components should have decoupled. A matrix can only

have a zero kernel if the number of rows is greater than or equal to the number of columns.

So X and Y are both (m − k) × n matrices with m − k ≤ n. The matrix X also has a

kernel, and we can take this to have a basis consisting of the first r components of u by

an orthogonal transformation of u. These components of u completely decouple from the

auxiliary fields, and so we choose to denote the vector containing only these components of

u as u(1), where the superscript indicates that these fields couple like a type I defect. We

will call the vector containing the remaining components of u u(2). The first r columns of

X are then zero, and by rewriting the term µi,tXijuj,t as µi,t (0X)ij uj,t = µi,tXiju
(2)
j,t we

have that X is a (m− k)× (n− r) matrix with zero kernel and so n− r ≤ m− k. But if

n− r < m− k then XT now has more columns than rows and can no longer have a kernel

of zero. So X is a square matrix coupling µ and u(2). By the same argument Y is also a

(n − r) × (n − r) matrix, with the first r elements of v now contained in the vector v(1)

thanks to an orthogonal transformation of v. The single bulk vector fields u and v have

each been split into two vectors, with u and v arranged so that

u =

(

u(1)

u(2)

)

v =

(

v(1)

v(2)

)

. (2.26)

The length r vectors u(1) and v(1) do not couple to any of the auxiliary fields and the

length n− r vectors u(2) and v(2) couple to the (n− r) auxiliary fields which have not been

removed by field redefinitions and do not couple to any other auxiliary fields. We relabel

the vector field µ as µ(2) to emphasise that it is coupling to the bulk fields in vectors

u(2) and v(2) only. So after these field redefinitions the term µi,tXijuj,t + µi,tYijvj,t has

become µ
(2)
i,t Xiju

(2)
j,t + µ

(2)
i,t Yijv

(2)
j,t with X and Y square with zero kernel. Because they are

square with zero kernel both X and Y are invertible, and we can use the field redefinition

µ(2) →
(

X−1
)T

µ(2) to set X = I. The condition XXT = Y Y T becomes Y Y T = I, and

so Y must be orthogonal. We no longer have complete freedom to carry out orthogonal

transformations on bulk field vectors u and v, but orthogonal transformations which do

not mix the components of u(1), v(1) with u(2), v(2) are still allowed. So we can use the

orthogonal field redefinition v
(2)
i → −Y T

ij v
(2)
j to set Y = −I. Finally to keep the type II

couplings in the form seen in eq. (2.5) we make the field redefinition µ(2) → 2µ(2), setting

X = 2I and Y = −2I.

This splitting of the field vectors u and v into u(1) and u(2) and v(1) and v(2) respectively

will also require the coupling matrices A, B and C to be split up. We take

A =

(

A(11) A(12)

−A(12)T A(22)

)

B =

(

B(11) B(12)

−B(12)T B(22)

)

C =

(

C(11) C(12)

C(21) C(22)

)

(2.27)

where A(11), A(22), B(11) and B(22) are antisymmetric to ensure A and B are antisymmetric

matrices. The matrices τ , φ, π and χ introduced in eq. (2.25) split into

τ =
(

τ (1) τ (2)
)

φ =
(

φ(1) φ(2)
)

π =
(

π(1) π(2)
)

χ =
(

χ(1) χ(2)
)

. (2.28)
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The field redefinition µ
(2)
i → 1

2

(

C(12)T
)

ij
u
(1)
j + 1

4A
(22)
ij u

(2)
j + 1

2C
(21)
ij v

(1)
j − 1

4B
(22)
ij v

(2)
j +µ

(2)
i

can be used to set C(12) = A(22) = B(22) = 0. With this simplification the defect Lagrangian

can now be written

LD =
1

2
u
(1)
i A

(11)
ij u

(1)
j,t + u

(1)
i A

(12)
ij u

(2)
j,t +

1

2
v
(1)
i B

(11)
ij v

(1)
j,t + v

(1)
i B

(12)
ij v

(2)
j,t

+ u
(1)
i C

(11)
ij v

(1)
j,t + u

(2)
i C

(22)
ij v

(2)
j,t + 2µ

(2)
i

(

u
(2)
i,t − v

(2)
i,t

)

+
1

2
ξiWijξj,t − F. (2.29)

Having set the term µi,t

(

XXT − Y Y T
)

ij
µj,t to zero, let us return to the other terms

on the right hand side of eq. (2.25) which must be a total time derivative for the defect to

conserve momentum. The eq. (2.25) can now be rewritten as

dP

dt
=

1

2
u
(1)
i,t

(

I −A(11)2 − C(11)C(11)T +A(12)A(12)T
)

ij
u
(1)
j,t

+
1

2
u
(2)
i,t

(

I − C(22)C(22)T +A(12)TA(12) + 4π(2)
)

ij
u
(2)
j,t

− 1

2
v
(1)
i,t

(

I −B(11)2 − C(11)TC(11) +B(12)B(12)T
)

ij
v
(1)
j,t

− 1

2
v
(2)
i,t

(

I − C(22)TC(22) +B(12)TB(12) + 4χ(2)
)

ij
v
(2)
j,t

− u
(1)
i,t

(

A(11)A(12) − 2π(1)T
)

ij
u
(2)
j,t + v

(1)
i,t

(

B(11)A(12) − 2χ(1)T
)

ij
v
(2)
j,t

− u
(1)
i,t

(

A(11)C(11) − C(11)B(11)
)

ij
v
(1)
j,t + 2u

(2)
i,t

(

χ(2) − π(2)T
)

ij
v
(2)
j,t

− u
(1)
i,t

(

A(12)C(22) − C(11)B(12) + 2π(1)T
)

ij
v
(2)
j,t

+ u
(2)
i,t

(

A(12)TC(11) − C(22)B(12)T + 2χ(1)
)

ij
v
(1)
j,t

+ 2u
(1)
i,t A

(12)
ij µ

(2)
j,t + u

(1)
i,t

(

τ (1)W
)

ij
ξj,t + 2v

(1)
i,t B

(12)
ij µ

(2)
j,t + v

(1)
i,t

(

φ(1)TW
)

ij
ξj,t

+ 2u
(2)
i,t

(

C(22) + ψ
)

ij
µ
(2)
j,t + u

(2)
i,t

(

2ω + τ (2)TW
)

ij
ξj,t

− 2v
(2)
i,t

(

C(22)T + ψ
)

ij
µ
(2)
j,t − v

(2)
i,t

(

2ω − φ(2)TW
)

ij
ξj,t

+ u
(1)
i,t

(

A
(11)
ij F

u
(1)
j

+A
(12)
ij F

u
(2)
j

− C
(11)
ij F

v
(1)
j

− π
(1)T
ij F

µ
(2)
j

− τ
(1)T
ij Fξj

)

− u
(2)
i,t

(

A
(12)T
ij F

u
(1)
j

+ C
(22)
ij F

v
(2)
j

+ π
(2)T
ij F

µ
(2)
j

+ τ
(2)T
ij Fξj − 2σi

)

− v
(1)
i,t

(

C
(11)T
ij F

u
(1)
j

+B
(11)
ij F

v
(1)
j

+B
(12)
ij F

v
(2)
j

+ χ
(1)T
ij F

µ
(2)
j

+ φ
(1)T
ij Fξj

)

− v
(2)
i,t

(

C
(22)T
ij F

u
(2)
j

−B
(12)T
ij F

v
(1)
j

+ χ
(2)T
ij F

µ
(2)
j

+ φ
(2)T
ij Fξj + 2σi

)

+ µ
(2)
i,t

(

2F
u
(2)
i

+ 2F
v
(2)
i

− ψT
ijFµ

(2)
j

)

− ξi,t

(

ωT
ijFµ

(2)
j

+Wijρj

)

+
1

2

(

F
u
(1)
i

F
u
(1)
i

+ F
u
(2)
i

F
u
(2)
i

− F
v
(1)
i

F
v
(1)
i

− F
v
(2)
i

F
v
(2)
i

)

− F
µ
(2)
i

σi− Fξiρi−U+V. (2.30)
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Terms in eq. (2.30) containing two t derivatives must be set to zero, as they cannot be

written as a total time derivative. From the coefficients of u
(1)
i,t µ

(2)
j,t and v

(1)
i,t µ

(2)
j,t in eq. (2.30)

we have A(12) = 0 and B(12) = 0. The u
(1)
i,t ξj,t and v

(1)
i,t ξj,t terms set τ (1) = 0 and φ(1) = 0.

The coefficients of u
(2)
i,t ξj,t and v

(2)
i,t ξj,t constrain ω = 1

2φ
(2)TW and τ (2) = −φ(2), whilst

we can see that π(1) = 0 and χ(1) = 0 by looking at the coefficients of u
(1)
i,t u

(2)
j,t , v

(1)
i,t v

(2)
j,t ,

u
(1)
i,t v

(2)
j,t and u

(2)
i,t v

(1)
j,t . For the coefficient of u

(2)
i,t v

(2)
j,t to vanish we need that χ(2) = π(2)T

and from the coefficients of u
(2)
i,t µ

(2)
j,t and v

(2)
i,t µ

(2)
j,t we find that ψ = −C(22) and that C(22)

is symmetric. The field redefinition µi → Siju
(2)
j + S′

ijv
(2)
j + µi, where S and S′ are

symmetric can always be used to set the symmetric part of C(22) (the symmetry of S

and S′ ensure we do not introduce new terms proportional to u
(2)
i,t u

(2)
j,t or v

(2)
i,t v

(2)
j,t into the

Lagrangian in eq. (2.29)). Since C(22) must be entirely symmetric we can choose to set

C(22) = I. The vanishing of the coefficients of u
(2)
i,t u

(2)
j,t and v

(2)
i,t v

(2)
j,t then set χ(2) and π(2) to

be antisymmetric. The coefficient of u
(1)
i,t u

(1)
j,t would be zero if I−A(11)2−C(11)C(11)T could

be made antisymmetric, but as it is explicitly symmetric we must set it to zero. Following

the method in [2] we set C(11)C(11)T =
(

I −A(11)
) (

I −A(11)T
)

. The matrix A(11) is

antisymmetric and so has purely imaginary eigenvalues, therefore the matrix (I − A(11))

has no zero eigenvalues and we can write
(

I −A(11)
)−1

C(11)
(

(

I −A(11)
)−1

C(11)
)T

= I.

Therefore
(

I −A(11)
)−1

C(11) = Q, where Q is an orthogonal matrix and we can set C(11) =
(

I −A(11)
)

Q. As previously mentioned we still have the freedom to carry out an orthogonal

transformation on u(1) or v(1) without changing the form of the Lagrangian in eq. (2.29),

and we can use such transformations to set C(11) =
(

I −A(11)
)

. The condition from the

coefficient of u
(1)
i,t v

(1)
j,t is now A(11)

(

I −A(11)
)

=
(

I −A(11)
)

B(11), and as
(

I −A(11)
)

is

both invertible and commutes with A(11) we have B(11) = A(11). This also ensures that the

coefficient of v
(1)
i,t v

(1)
j,t also vanishes. We will set A(11) = A as the superscript is no longer

necessary to identify this matrix. All the coupling matrices apart from A have now been

set, either to ensure momentum conservation or via field redefinitions.

Putting this all together we have found that in order for a defect to be momentum

conserving its Lagrangian must, up to orthogonal transformations of the bulk fields u and

v and field redefinitions of the auxiliary fields µ and ξ, be of the form

LD =
1

2
u
(1)
i Aiju

(1)
j,t +

1

2
v
(1)
i Aijv

(1)
j,t + u

(1)
i (I −A)ij v

(1)
j,t

+ u
(2)
i v

(2)
i,t + 2µ

(2)
i

(

u
(2)
i,t − v

(2)
i,t

)

+
1

2
ξiWijξj,t − F (2.31)

where A may be any antisymmetric matrix, W is given in eq. (2.10) and the components

of the bulk vector fields may be divided in any way between the vector fields u(1), v(1) and

u(2), v(2). The Lagrangian appears to have split into a type I defect, a type II defect and

some extra degrees of freedom, with these separate systems only interacting through the

defect potential. Note that if there are no auxiliary fields, so that µ(2), ξ, u(2) and v(2) are

absent, then this Lagrangian reduces to the form of the An ATFT Toda defect in eq. (2.4).

On the other hand, in the case of a single auxiliary field coupling to single component
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bulk fields, the fields u(1), v(1) and ξ vanish and the Lagrangian is in the same form as the

Lagrangian of the Tzitzéica defect (2.5).

That the defect Lagrangian is in the form eq. (2.31) is a necessary but not yet a

sufficient condition for the defect to be momentum-conserving. So far we have eliminated

all the terms in eq. (2.30) which are quadratic in time derivatives. To ensure that the defect

is momentum conserving we must consider the terms which are linear or independent of

time derivatives; in this way we shall find additional constraints, in particular on the form

of the defect potential F . Applying the constraints on the coupling matrices which we have

just found the momentum conservation condition for the defect becomes

dP

dt
= u

(1)
i,t

(

AijFu
(1)
j

− (I −A)ij Fv
(1)
j

)

− u
(2)
i,t

(

F
v
(2)
i

− π
(2)
ij F

µ
(2)
j

− φ
(2)T
ij Fξj − 2σi

)

− v
(1)
i,t

(

(I +A)ij Fu
(1)
j

+AijFv
(1)
j

)

− v
(2)
i,t

(

F
u
(2)
i

+ π
(2)
ij F

µ
(2)
j

+ φ
(2)T
ij Fξj + 2σi

)

+ µ
(2)
i,t

(

2F
u
(2)
i

+ 2F
v
(2)
i

+ F
µ
(2)
i

)

+ ξi,t

(

1

2
Wijφ

(2)
jk Fµ

(2)
k

−Wijρj

)

+
1

2

(

F
u
(1)
i

F
u
(1)
i

+ F
u
(2)
i

F
u
(2)
i

− F
v
(1)
i

F
v
(1)
i

− F
v
(2)
i

F
v
(2)
i

− 2F
µ
(2)
i

σi − 2Fξiρi

)

− U + V.

(2.32)

From eq. (2.24) we see that the terms involving one t derivative will set the derivatives of

the unknown quantity Ω. The terms containing no t derivatives cannot be written as a

total time derivative, so must be set to zero. The conditions for momentum conservation

are therefore

Ω
u
(1)
i

=−AijFu
(1)
j

+ (I −A)ij Fv
(1)
j

(2.33)

Ω
v
(1)
i

= (I +A)ij Fu
(1)
j

+AijFv
(1)
j

(2.34)

Ω
u
(2)
i

=F
v
(2)
i

− π
(2)
ij F

µ
(2)
j

− φ
(2)T
ij Fξj − 2σi (2.35)

Ω
v
(2)
i

=F
u
(2)
i

+ π
(2)
ij F

µ
(2)
j

+ φ
(2)T
ij Fξj + 2σi (2.36)

Ω
µ
(2)
i

=− 2F
u
(2)
i

− 2F
v
(2)
i

− F
µ
(2)
i

(2.37)

Ωξi =− 1

2
Wijφ

(2)
jk Fµ

(2)
k

+Wijρj (2.38)

2(U − V ) =F
u
(1)
i

F
u
(1)
i

+ F
u
(2)
i

F
u
(2)
i

− F
v
(1)
i

F
v
(1)
i

− F
v
(2)
i

F
v
(2)
i

− 2F
µ
(2)
i

σi − 2Fξiρi (2.39)

where P +Ω is the conserved momentum-like quantity. At this point we can simplify these

momentum conservation conditions significantly by introducing new fields p = 1
2 (u+ v),

q = 1
2 (u− v) and new quantities D and D̄ with F = D + D̄ and Ω = D − D̄. The field

vectors p and q split into p(1), p(2) and q(1), q(2) in exactly the same way as the u and v

vector fields split into u(1), u(2) and v(1), v(2). The momentum conservation conditions in
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eqs. (2.33)–(2.38) then simplify to

D̄
p
(1)
i

=0 (2.40)

D̄
p
(2)
i

=0 (2.41)

D
q
(1)
i

=−AijDp
(1)
j

(2.42)

D
µ
(2)
i

=−D
p
(2)
i

(2.43)

2σi =−D
q
(2)
i

− π
(2)
ij

(

D
µ
(2)
j

+ D̄
µ
(2)
j

)

− φ
(2)T
ij

(

Dξj + D̄ξj

)

(2.44)

2ρi =φ
(2)
ij

(

D
µ
(2)
j

+ D̄
µ
(2)
j

)

− 2Wij

(

Dξj − D̄ξj

)

. (2.45)

The first four of these equations are satisfied if we require the dependencies of D and D̄

to be

D =D
(

p(1) +Aq(1), p(2) − µ(2), q(2), ξ
)

(2.46)

D̄ = D̄
(

q(1), q(2), µ(2), ξ
)

. (2.47)

The second two equations simply set the two arbitrary vectors σ and ρ we introduced

previously. Rewriting eq. (2.39) using eqs. (2.40)–(2.45) and recalling A and π(2) are

antisymmetric gives

2(U − V ) =D
p
(1)
i

D̄
q
(1)
i

+D
q
(2)
i

D̄
µ
(2)
i

−D
µ
(2)
i

D̄
q
(2)
i

− 4DξiWijD̄ξj . (2.48)

So a momentum conserving defect has a Lagrangian density which can, using field re-

definitions, be written in the form given in eq. (2.31) and a defect potential given by

F = D + D̄ where quantities D
(

p(1) +Aq(1), p(2) − µ(2), q(2), ξ
)

, D̄
(

q(1), q(2), µ(2), ξ
)

sat-

isfy the momentum conservation condition in eq. (2.48). The total conserved energy and

momentum of the system are E + D + D̄ and P + D − D̄, where E and P are the bulk

energy and momentum.

A redefinition µ
(2)
i → µ

(2)
i +f

(

q(2)
)

q
(2)
i

does not alter the defect Lagrangian in eq. (2.31)

as it only introduces a total time derivative. Therefore it does not affect the defect equations

or any of the subsequent working to find the momentum conservation condition in eq. (2.48),

and so once D and D̄ satisfying the condition have been found these field redefinitions can

be used to give other D and D̄ satisfying the same momentum conservation condition.

3 Defects and Bäcklund transformations

The link between defects and Bäcklund transformations is not surprising, as a Bäcklund

transformation is a set of first order equations which, when satisfied, imply that the fields

involved also satisfy some other non-linear equations and in constructing the defect equa-

tions we are attempting to find some system of first order equations which are satisfied by

the same fields as satisfy the non-linear bulk equations of motion.
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In [1, 2] it was noticed that if the defect equations of motion were taken to hold

everywhere then they were a Bäcklund transformation for the bulk equations of motion.

However, the defect equations for a type II defect do not give a Bäcklund transformation

directly. In [17] a new Bäcklund transformation of the Tzitzéica model was found by

considering the Bäcklund transformation for the type I A2 defect and then folding this

model to the Tzitzéica model. In doing so the defect equations for a momentum conserving

Tzitzéica defect are retrieved and an additional equation also appeared. It was noticed that

this additional equation was the same as that obtained by taking the momentum conserving

defect equations but with x ↔ t and D̄ → −D̄. Taking the set of defect equations and

adding to that the set of defect equations with x ↔ t and D̄ → −D̄, whilst taking these

equations to hold everywhere, gave a Bäcklund transformation for the Tzitzéica theory.

As we are attempting to find Bäcklund transformations for a general field theory with the

bulk Lagrangians as given in eqs. (2.2), (2.3), which is obviously not obtained by folding

An, this observation is crucial. Note that this procedure applied to type I defect equations

leaves them unchanged. The main stumbling block in getting a Bäcklund transformation

directly from the type II defect equations is that these equations involve the auxiliary fields,

which are only defined at x = 0. However the procedure described above will introduce x

derivatives of these fields to the equations.

The momentum conserving defect Lagrangian is given in eq. (2.32), with F = D + D̄

where D and D̄ must satisfy eqs. (2.46), (2.47), (2.48). Using this in the Euler-Lagrange

equations gives the defect equations of motion, which we choose to write here in terms of

the fields p = 1
2(u + v) and q = 1

2(u − v) and light cone coordinates x± = 1
2(t ± x). We

denote ∂x±
as ∂±.

p
(1)
i,− +Aijq

(1)
j,− =

1

2
D̄

q
(1)
i

(3.1)

p
(2)
i,− − µ

(2)
i,+ − µ

(2)
i,− =− 1

2

(

D
q
(2)
i

+ D̄
q
(2)
i

)

(3.2)

q
(1)
i,+ =− 1

2
D

p
(1)
i

(3.3)

q
(2)
i,+ =− 1

2
D

p
(2)
i

(3.4)

q
(2)
i,− =

1

2
D̄

µ
(2)
i

(3.5)

ξi,+ + ξi,− =− 2Wij

(

Dξj + D̄ξj

)

. (3.6)

Carrying out the transformations x ↔ t (so ∂− → −∂−) and D̄ → −D̄ gives the additional

set of equations

p
(1)
i,− +Aijq

(1)
j,− =

1

2
D̄

q
(1)
i

(3.7)

p
(2)
i,− + µ

(2)
i,+ − µ

(2)
i,− =

1

2

(

D
q
(2)
i

− D̄
q
(2)
i

)

(3.8)

q
(1)
i,+ =− 1

2
D

p
(1)
i

(3.9)
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q
(2)
i,+ =− 1

2
D

p
(2)
i

(3.10)

q
(2)
i,− =

1

2
D̄

µ
(2)
i

(3.11)

ξi,+ − ξi,− =− 2Wij

(

Dξj − D̄ξj

)

. (3.12)

Taking both sets of equations to hold simultaneously and over all space rather than just

at x = 0 we can remove any repeated equations. Rearranging the remaining equations to

simplify them gives

p
(1)
i,− +Aijq

(1)
j,− =

1

2
D̄

q
(1)
i

(3.13)

p
(2)
i,− − µ

(2)
i,− =− 1

2
D̄

q
(2)
i

(3.14)

q
(1)
i,+ =− 1

2
D

p
(1)
i

(3.15)

q
(2)
i,+ =− 1

2
D

p
(2)
i

(3.16)

q
(2)
i,− =

1

2
D̄

µ
(2)
i

(3.17)

µ
(2)
i,+ =

1

2
D

q
(2)
i

(3.18)

ξi,+ =− 2WijDξj (3.19)

ξi,− =− 2WijD̄ξj . (3.20)

Cross-differentiating these equations and using the dependencies of D and D̄ given in

eqs. (2.46), (2.47) and the fact that D and D̄ must obey the momentum conservation

condition in eq. (2.48) we can easily see that these give the bulk equations of motion for

field vectors p and q, plus some bulk equations of motion for what were the auxiliary fields.

So the systems of equations uitt − uixx + U(u) = 0 and vitt − vixx + V (v) = 0 where

u = p+ q, v = p− q have a Bäcklund transformation given by eqs. (3.13)–(3.20) if quanti-

ties D
(

p(1) +Aq(1), p(2) − µ(2), q(2), ξ
)

and D̄
(

q(1), q(2), µ(2), ξ
)

can be found which satisfy

eq. (2.48). Here A can be any antisymmetric matrix, W is given by eq. (2.10), the bulk

fields may be divided between p(1), q(1) and p(2), q(2) in any way and the auxiliary fields

may be divided between µ(2) and ξ in any way as long as p(1) and q(1) are the same length,

p(2), q(2) and µ(2) are the same length and ξ contains an even number of fields due to the

form of the matrix W .

4 Defects in affine Toda field theories

An ATFT is described by the Lagrangian density

Lu =
1

2
ui,tui,t −

1

2
ui,xui,x − U U =

m2

β2

r
∑

i=0

nie
β(αi)juj (4.1)

where αi, i = 1, . . . , n are the simple root vectors of a Lie algebra, ni, i = 1, . . . , n are a

set of integers characteristic of each algebra, n0 = 1 and α0 = −∑r
i=1 niαi gives the root
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which corresponds to the extra node on an affine Dynkin diagram [6, 21]. m is the mass

constant, β is the coupling constant and as they are unimportant in the classical case we

set m = β = 1. The vector u = (u1, . . . , un)
T lies in the space spanned by the simple

root vectors and the fields {ui} are the projections of u onto the basis of this vector space.

Recall that the components of the vector u appear in the vector u(1) if they do not couple

to the auxiliary field µ(2) and in the vector u(2) if they do couple to µ(2). Call the vector

space in which u(1) (and v(1)) live the 1-space and the vector space in which u(2) (and v(2)

and µ(2)) live the 2-space. The vector u(1) can be thought of as a projection of u onto the

1-space and u(2) as the projection of u onto the 2-space. The 1- and 2-space are orthogonal

and sum to the vector space in which the vector u lives, that is, the space spanned by the

simple root vectors. Therefore we can have α
(1)
i as the projection of a simple root αi onto

the 1-space and α
(2)
i as the projection onto the 2-space.

All ATFTs have been shown to be integrable [4, 6, 7] and soliton solutions have been

found for all ATFTs [10]. In order for soliton solutions to exist the potential U must have

multiple vacua, and so the exponent within the potential must take imaginary values as

x → ±∞ (specifically it must be 2πni so we can use the definition of α0 to ensure Uui
= 0).

Normally the constant β would be taken to be purely imaginary, but as we have set β = 1

we instead allow the field u to be complex, taking an appropriate purely imaginary value

as x → ±∞.

Defects were first introduced in [1], where a momentum conserving type I sine-Gordon

defect was found. This type I defect was generalised to allow any number of bulk fields

in [2], a Lax pair was constructed for the system with a defect, and it was found that

requiring the defect to be momentum conserving gave the same constraints as requiring

the defect to be integrable. In the cases of solitons and integrable boundaries the results for

ATFTs based on different algebras were fairly similar. However, in [2] it was shown that

the momentum conservation condition found for they type I defects could only be satisfied

if the bulk ATFTs were based on the An series. In [17] the introduction of an extra degree

of freedom at the defect to give a type II defect admitted a momentum conserving Tzitzéica

defect and here we hope that the generalisation of the type II defect to one with any number

of bulk and auxiliary fields will allow momentum conserving defects for all ATFTs.

When considering the general defect found in section 2 with a particular potential

the fact that we carried out rotations on the bulk fields in order to simplify the defect

Lagrangian becomes relevant. Fortunately, for the potential given in eq. (4.1) the fact that

the root vectors αi are defined only by their inner products with each other means that

rotations of u and v do not fundamentally change U and V . Take {αi} to be the simple

root vectors fixed to be certain, reasonably simple vectors. Over the course of the previous

section the bulk fields have undergone the transformations u → Qu and v → Q′v, where

Q and Q′ are some orthogonal transformations which we do not specify here. But the sets

of simple roots {QTαi} and {Q′Tαi} have the same Dynkin diagram as {αi}, and so we

can begin with U dependent on {QTαi} and V dependent on {Q′Tαi}. After u and v have

undergone their field redefinitions both U and V will be dependent on {αi}, but will still
be the bulk potentials for the same ATFT we started with.
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By considering the exponentials of the field p in the momentum conservation condition

in eq. (2.48) when we use the potentials U and V as given in eq. (4.1), and the dependencies

of D and D̄ in eqs. (2.46), (2.47), we see that they must take the form

D = σ

n
∑

i=0

xi

(

q(2), ξ
)

e
(αi)

(1)
j

(

p
(1)
j +Ajkq

(1)
k

)

+(αi)
(2)
j

(

p
(2)
j −µ

(2)
j

)

(4.2)

D̄ =
1

σ

n
∑

i=0

yi

(

q(1), q(2), ξ
)

e−(αi)
(1)
j Ajkq

(1)
k

+(αi)
(2)
j µ

(2)
j (4.3)

where σ is a constant and xi and yi are functions yet to be determined.

There is no obvious systematic way of ensuring that D and D̄ satisfy the momentum

conservation condition in eq. (2.48) for a particular set of simple roots. In particular, we

have not yet found any systematic way of splitting the root space into the 1- and 2-spaces.

Instead we have used trial and error to find momentum conserving defects for some ATFTs.

4.1 D4 defect

For an ATFT based on the root vectors of D4 we choose to use

α0 =











−1

−1

0

0











α1 =











1

−1

0

0











α2 =











0

1

−1

0











α3 =











0

0

1

−1











α4 =











0

0

1

1











. (4.4)

The bulk potentials are then [6]

U = e−u1−u2 + eu1−u2 + 2eu2−u3 + eu3−u4 + eu3+u4 (4.5)

V = e−v1−v2 + ev1−v2 + 2ev2−v3 + ev3−v4 + ev3+v4 . (4.6)

Through trial and error it was found that when A = 0, there are no ξ fields and the

basis of the 1-space is (e1, e4) (so u(1) = (u1 u4)
T ) and the basis of the 2-space is (e2, e3)

(so u(2) = (u2 u3)
T ) the Lagrangian in eq. (2.31) gives a momentum conserving defect.

Written out explicitly the momentum conserving defect Lagrangian for D4 ATFT is

LD = u1v1,t + u2v2,t + u3v3,t + u4v4,t + 2µ2(u2,t − v2,t) + 2µ3(u3,t − v3,t)− F. (4.7)

Recalling that pi =
1
2(ui + vi), qi =

1
2(ui − vi) the momentum conservation condition in

eq. (2.48) in this case is

2(U − V ) = Dp1D̄q1 +Dq2D̄µ2 −Dµ2D̄q2 +Dq3D̄µ3 −Dµ3D̄q3 +Dp4D̄q4 (4.8)

and is satisfied by

D = σ
(

(

ep1 + e−p1
) (

eq2 + e−q2
)

e−p2+µ2 + 2
(

eq3 + e−q3
)

ep2−p3−µ2+µ3

+
(

ep4 + e−p4
)

ep3−µ3

)

(4.9)

D̄ =
1

σ

(

(

eq1 + e−q1
)

e−µ2 +
(

eq2 + e−q2
)

eµ2−µ3 +
(

eq3 + e−q3
) (

eq4 + e−q4
)

eµ3

)

. (4.10)
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A field redefinition of µ2 → µ2+f(q2, q3)q2 and µ3 → µ3+f(q2, q3)q3 would not change the

form of the Lagrangian in eq. (4.7), and so would not affect any of the working up to the

momentum conservation condition. It would only affect the form of D and D̄. Therefore

we can use this redefinition to give a family of defect potentials which all satisfy the same

momentum conservation condition.

This momentum conserving defect can be used to give a Bäcklund transformation for

the D4 ATFT as discussed in the previous section.

Using the method introduced in [17] and expanded on in [20], whereby a procedure

involving squeezing together several defects and then folding the associated Dynkin diagram

gives rise to a defect in the folded ATFT, it should be possible to use this D4 defect to

construct a G2 defect, however this has not yet been achieved.

4.2 D4 solitons and defects

As in [10] the solitons are given by

u = −
n
∑

i=0

αi ln τi (4.11)

where the τ functions are dependent on E = e
√
λ(cosh θx−sinh θt)+c with λ and c being

constants. For D4 there is one soliton with λ = 2 which is associated with the central node

on the Dynkin diagram and three with λ = 6 which are associated with the outer nodes

on the Dynkin diagram. The τ functions of these solitons are

λ = 2 : τ0 = τ1 = 1 + E τ3 = τ4 = 1− E τ2 = 1 + E2 (4.12)

τ0 = τ3 = 1 + E τ1 = τ4 = 1− E τ2 = 1 + E2 (4.13)

τ0 = τ4 = 1 + E τ1 = τ3 = 1− E τ2 = 1 + E2 (4.14)

λ = 6 : τ0 = τ1 = τ3 = τ4 = 1 + E τ2 = 1− 4E + E2. (4.15)

Solitons appear when the field interpolates between two vacua in the potential, given

in eq. (4.1) for ATFTs. Here a vacuum occurs when the vector field is a weight of D4

multiplied by 2πni. Weight lattices are associated with roots, and depending on which

lattice the soliton vacuum is in we say it is associated with that root. For D4 it is possible to

change which root a soliton with λ = 2 is associated with by an orthogonal transformation

of the field.

In both the quantum and linearised classical cases the type I defects were found to

be purely transmitting [1, 12, 13], so here we are considering purely transmitting defects

and expect the soliton to be delayed by the defect. We do not consider whether a soliton

associated with one root can be transformed by the defect to a soliton associated with a

different root. To find the delays from the defect we write the soliton to the right of the

defect in terms of E and the soliton to the left in terms of zE, where z is the delay. The

defect equations can then be solved for z to give the delay experienced by the soliton as it

passes through the defect.
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For the soliton given in eq. (4.12) the possible delays are

z =
(1− ρ)(ω − ρ)

(1 + ρ)(ω + ρ)
or

(1− ρ)(ω2 − ρ)

(1 + ρ)(ω2 + ρ)
or

(ω − ρ)(ω2 − ρ)

(ω + ρ)(ω2 + ρ)
(4.16)

with ρ = 2
1
6σeθ and ω = e

2πi
3 = 1

2(−1 +
√
3i), so all powers of ω are cube roots of unity. ρ

and ω take these values in all the soliton delays calculated here. For the soliton in eq. (4.13)

the delays are

z =
1 + ρ

1− ρ
or

ω + ρ

ω − ρ
or

ω2 + ρ

ω2 − ρ
. (4.17)

The delays are identical for the soliton in eq. (4.14). Finally for the soliton in eq. (4.15)

the possible delays are

z =
(i− ρ)(iω + ρ)

(i+ ρ)(iω − ρ)
or

(i+ ρ)(iω2 − ρ)

(i− ρ)(iω2 + ρ)
or

(iω − ρ)(iω2 + ρ)

(iω + ρ)(iω2 − ρ)
. (4.18)

Note that for all the sets of delays taking ρ → ωρ cycles through the possible delays.

The values of ρ which correspond to a pole or a zero in the soliton delay give the defect

parameter and soliton rapidity which lead to the soliton being absorbed by the defect. The

same phenomenon was observed for sine-Gordon solitons passing through a defect in [1].

The absorption of a soliton by the defect makes sense in terms of Bäcklund transformations,

as Bäcklund transformations can be used to obtain a n soliton solution from an n−1 soliton

solution.

4.3 Dn defect

For the Dn ATFT the potential is given by [6]

U = e−u1−u2 + eu1−u2 +

n−2
∑

i=2

2eui−ui+1 + eun−1−un−1 + eun−1+un (4.19)

V = e−v1−v2 + ev1−v2 +
n−2
∑

i=2

2evi−vi+1 + evn−1−vn−1 + evn−1+vn . (4.20)

In the D4 defect the fields which appeared in the type II part of the defect were those which

appeared in the term in the potential associated with the central node on the Dynkin

diagram. To move from D4 to Dn we assume that the fields appearing in the terms

associated with the central chain of nodes on the Dynkin diagram will appear in the type

II part of the defect. So we take A = 0, no ξ fields and that the basis of the 1-space is (e1, en)

and the basis of the 2-space is (e2 . . . en−1). The momentum conserving defect Lagrangian

is given by inserting these values into eq. (2.31) and the momentum conservation condition
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in eq. (2.48) is satisfied by

D =σ

(

(

ep1 + e−p1
) (

eq2 + e−q2
)

e−p2+µ2 + 2
n−2
∑

i=2

(

eqi+1 + e−qi+1
)

epi−pi+1−µi+µi+1

+
(

epn + e−pn
)

epn−1−µn−1

)

(4.21)

D̄ =
1

σ

(

(

eq1 + e−q1
)

e−µ2

n−2
∑

i=2

(

eqi + e−qi
)

eµi−µi+1

+
(

eqn−1 + e−qn−1
) (

eqn + e−qn
)

eµn−1

)

. (4.22)

As at the end of subsection 4.1 redefinitions of the µi fields can be used to give different

defect potentials satisfying the same momentum conservation condition.

4.4 An defect

The potential of the ATFT based on An may be written as [6]

U = e−u1+un+1 +
n
∑

i=1

eui−ui+1 (4.23)

V = e−v1+vn+1 +
n
∑

i=1

evi−vi+1 . (4.24)

The fields in the An ATFT have the additional constraint
∑n+1

i=1 ui = 0,
∑n+1

i=1 vi = 0. This

potential is entirely made up of terms similar to those associated with the central chain of

nodes in Dn, and so we take A = 0, no ξ fields and the 2-space covers the whole vector

space spanned by the simple roots. That is, there are the same number of auxiliary fields

as there are bulk fields, with the same condition on them. The momentum conservation

condition in eq. (2.48) is satisfied by

D = σ

(

n
∑

i=1

(

eqi+1 + e−qi+1
)

epi−pi+1−µi+µi+1 +
(

eq1 + e−q1
)

epn+1−p1−µn+1+µ1

)

(4.25)

D̄ =
1

σ

(

n
∑

i=1

(

eqi + e−qi
)

eµi−µi+1 +
(

eqn+1 + e−qn+1
)

eµn+1−µ1

)

. (4.26)

This is the same as the defect given by squeezing two An defects together [17, 20].

4.5 Bn defect

The potential of the ATFT based on Bn may be written as [6]

U =e−u1−u2 + eu1−u2 +
n−1
∑

i=2

2eui−ui+1 + 2eun . (4.27)

– 20 –



J
H
E
P
0
5
(
2
0
1
7
)
1
5
3

Taking A = 0, no ξ fields and the basis of the 1-space to be (e1) and the basis of the 2-

space to be (e2 . . . en) gives a momentum conserving defect. The momentum conservation

condition in eq. (2.48) is satisfied by

D = σ

(

(

ep1 + e−p1
) (

eq2 + e−q2
)

e−p2+λ2

+ 2

n
∑

i=1

(

eqi+1 + e−qi+1
)

epi−pi+1−λi+λi+1 + 2epn−λn

)

(4.28)

D̄ =
1

σ

(

(

eq1 + e−q1
)

e−λ2 +
n
∑

i=1

(

eqi + e−qi
)

eλi−λi+1 +
(

eqn + e−qn
)

eλn

)

. (4.29)

4.6 Cn defect

The bulk potential of the ATFT baased on Cn may be written as [6]

U = e−2u1 +

n−1
∑

i=1

2eui−ui+1 + e2un . (4.30)

For a momentum conserving defect we take A = 0, no ξ fields and that the 2-space covers

the whole vector space spanned by the simple roots. The momentum conservation condition

in eq. (2.48) is satisfied by

D = σ

(

(

eq1 + e−q1
)2

e−2p1+2µ1

+ 2
n−1
∑

i=1

(

eqi+1 + e−qi+1
)

epi−pi+1−µi+µi+1 + e2pn−2µn

)

(4.31)

D̄ =
1

σ

(

e−2µ1 +
n−1
∑

i=1

(

eqi + e−qi
)

eµi−µi+1 +
(

eqn + e−qn
)2

e2µn

)

. (4.32)

For C2 this momentum conserving defect is the same as that found in [20] by squeezing

together An type I defects and then carrying out a folding procedure.

5 Conclusions

This work has confirmed previous results (the squeezed sine-Gordon defects found in [17]

and the C3 defects found in [20]), provided new energy and momentum conserving defects,

and gives us a framework which will hopefully cover all defects in ATFTs. The fact that

all defects satisfying the conditions given in this paper can be used to give a Bäcklund

transformation suggests that these momentum conserving defects are also integrable, as

well as being interesting in its own right. The explicit calculations for transmission of

solitons through the D4 defect also strongly suggest that it is an integrable system.

The obvious next step is to attempt to find defects in the remaining exceptional simply

laced ATFTs (E6, E7, E8). In principle these are the only remaining cases it is necessary
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to solve, as all non simply laced ATFTs can be found by folding simply laced ATFTs and

the folding procedure for defects in [20] can then be used to find momentum conserving

defects, and so Bäcklund transformations, for all ATFTs. These momentum conserving

defects have not been found so far due to the difficultly of finding appropriate 2-space. It

may also be that a non-zero A matrix or ξ vector field is required. However we have no

systematic way of finding the 1- and 2-space splitting, A matrix or ξ field required for a

momentum conserving defect and this is a difficult task to complete by trial and error alone.

The existence of a Lax pair for the defects found so far would confirm the integrability of

a system with a defect. Studying Lax pairs has the added advantage of potentially giving

us some more insight into the structure of these defects in ATFTs, and work currently

being carried out on this problem by one of the authors [22] has already yielded some

pointers towards the correct 1- and 2-space splitting for the E series defects. Similar work

has already been carried out for a boundary and a defect in the nonlinear Schrödinger

model [23] as well as for the type I defects in ATFTs in [2, 14–16].

The D4 defect is the simplest of the new defects found, and so is the obvious candidate

for investigating how these defects behave when interacting with solitons. Although we

have checked that solitons are transmitted by the defect we yet to make investigations into

the details about the topological charge of the defect before and after a soliton has passed

through it, whether the defect can change one soliton into another soliton with different

topological charge, and the behaviour of the auxiliary fields during soliton transmission.

We intend to pursue this further.

Such investigations into the interactions between classical solitons and defects are likely

to be necessary for our final suggested angle of continuation, finding the transmission ma-

trix for a quantum defect. Quantum multi-field defects were investigated in [24], a single

quantum auxiliary field was investigated in [25], and quantum type II An defects and

quantum algebras relating to other ATFTs were investigated in [26]. Finding the quan-

tum transmission matrix for the defects in this paper would probably involve combining

these ideas.
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