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1 Introduction

The topological phases of matter [1–4] have been described by several approaches, such

as wavefunction modeling [5], band theory [6–10] and effective field theory of boundary

excitations [11, 12], whose interplay has been extremely rich and fruitful. In this paper, we

analyze (3+1)-dimensional time-reversal invariant topological insulators using field theory

methods.

The main motivation of our study is the success of the field theory approach for

(2+1)-dimensional topological states, where exact methods are available for describing

the one-dimensional edge excitations, most notably those of conformal field theory [13].

In several instances, these methods give access to strongly interacting dynamics and make

use of powerful symmetry principles. The rich modeling of quantum Hall states has been

applied to the quantum spin Hall effect and then to time-reversal invariant topological

insulators [14–17].

In particular, the Z2 characterization of stability for topological insulators, originally

derived within band theory by Fu, Kane and Mele [18–23], has been reformulated in field-

theory language and extended to interacting fermion models with Abelian [14–17] and non-

Abelian [24, 25] fractional statistics of excitations. The Z2 stability analysis also extends

to (3 + 1)-dimensional band insulators and it is interesting to find the corresponding field

theory argument for analyzing interacting systems. In this paper, we shall present results

in this direction.

More generally, the theoretical methods in (3 + 1) dimensions are facing the problem

of bosonization, namely that of finding correspondences between two seemingly different

approaches:

• That of fermionic theories, dealing with band structures and topological effects re-

lated to Berry phases, and leading to the ten-fold classification of non-interacting

topological states [6–10].

• That of bosonic theories, also called hydrodynamic approach, dealing with topolog-

ical gauge theories and their description of braiding relations and boundary excita-

tions [12, 26–31].

Bosonization is an exact map in (1 + 1)-dimensional field theories that is very well un-

derstood [13]; thus, the above interplay does not cause any problem for (2+1)-dimensional

topological states. The bosonic approach can provide exact results for interacting systems

and well as the methods for discussing bulk wavefunctions and braiding statistics [1, 5].

In this paper, we review and develop both the fermionic and bosonic field theory de-

scriptions of massless surface states for time-reversal invariant topological insulators in

(3 + 1) dimensions. Our main method is the study of partition functions on the space-time

geometry of the three-torus and their behaviour under flux insertions and modular transfor-

mations, namely for large gauge transformations of the electromagnetic and gravitational

backgrounds [24, 32]. In the fermionic theory, we study the free Dirac excitations at the

surface of topological insulators [33]. In the bosonic approach, we analyze the BF topo-

logical gauge theory and the associated surface excitations, described by the compactified

boson field in (2 + 1) dimensions [12, 34]. We then quantize this theory.
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Although these fermionic and bosonic theories are different in (2 + 1) dimensions, we

can establish some basic properties of bosonization that are exact being independent of

dynamics:

• We show that the quantization of the compactified boson in (2 + 1) dimension yields

eight sectors that correspond to the spin sectors of the fermionic theory on the three-

torus. The partition functions in the two theories transform in the same way under

flux insertions and modular transformations; actually, they become equal under di-

mensional reduction to (1 + 1) dimensions, where bosonization is an exact map.

• We identify the fermion parity of bosonic states and use this assignment to formulate

the Fu-Kane-Mele stability argument in the bosonic theory.

• We then prove the stability of interacting topological insulators described by the

hydrodynamic BF theory with odd integer coupling constant K, possessing fractional

changed quasiparticles and fractional Abelian braiding between quasiparticles and

vortices.

The paper includes the following parts. In section 2, we recall the fermionic theory

of surface states of topological insulators, compute the partition function on the three-

torus and study its transformations properties. We reformulate the Fu-Kane-Mele stability

analysis in terms of properties of the spectrum in the different spin sectors and study the

reduction to (1 + 1) dimensions. In section 3, we review the hydrodynamic approach of the

BF theory, derive the bosonic surface theory and discuss two Hamiltonians consistent with

the topological data. We then quantize the compactified boson and obtain the partition

functions. In section 4, we find their transformation properties, identify the fermion parity

of bosonic states, match the fermionic and bosonic spin sectors and extend the stability

analysis to the bosonic theory.

2 Fermionic topological insulators

2.1 Introduction: surface states and anomaly cancellation

We start by recalling some known features of three-dimensional topological band insulators,

involving non-interacting fermions with time reversal invariance [2]. At the microscopic

level, the topological states occur for an odd number of level crossings between the valence

and conduction bands. Near each crossing a Dirac cone is approximatively present and a

massless relativistic fermionic excitation is realized at small energies. Actually, this is a

(2 + 1)-dimensional Dirac fermion located at the surface of the system [6–10, 35, 36].

The low-energy effective field theory description of these topological states is realized

by the (3 + 1)-dimensional free Dirac fermion with mass M in the bulk that vanishes at

the surface [6–10, 28]. Let us consider a plane located at z = 0 separating the bulk of

the material (z < 0) from empty space (z > 0): we can take the mass profile M(z) =

−M0 tanh(z/`), where M0 is of the order of the bulk gap and ` of the lattice spacing (see

figure 1).
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The Dirac theory with this mass profile possesses massless surface excitations that are

obtained by the so-called Jackiw-Rebbi dimensional reduction, originally formulated for

the polyacetylene chain in (1 + 1) dimensions [1, 37]. Let us recall the main steps of this

argument in the case of reduction from (3 + 1) to (2 + 1) dimensions. A convenient basis

for the γ matrices is given by:

γ0 =

(
0 σ3

σ3 0

)
, γ1 = i

(
0 σ1

σ1 0

)
, γ2 = i

(
0 σ2

σ2 0

)
, γ3 = i

(
1 0

0 −1

)
, (2.1)

where the σ’s are the Pauli matrices. The Dirac Hamiltonian takes the form:1

H = −iγ0γ1∂x − iγ0γ2∂y − iγ0γ3∂z + γ0M(z) ≡ Hxy +Hz. (2.2)

We look for eigenstates of H which are simultaneously zero-energy eigenstates of Hz, so as

to realize the dimensional reduction. We assume the separation of variables,

Hψ = Eψ, ψ = ϕ(z)u(x, y), (2.3)

where ϕ(z) is a function and u(x, y) a spinor, and impose the zero-energy condition for

Hz, i.e. (
i∂z + γ3M(z)

)
ϕ(z)u(x, y) = 0. (2.4)

The solutions to this equation are of the form:

ψ± = ϕ±(z)u±, (∂z ±M(z))ϕ±(z) = 0 , γ3u± = ±iu± . (2.5)

In this equation, the spinor u± has non-vanishing components in the upper/lower two-

dimensional subspaces of the representation (2.1). Only one solution of (2.5) is normaliz-

able, given the kink shape in figure 1, namely ϕ−:

ϕ−(z) = exp

(∫ z

0
dz′ M(z′)

)
. (2.6)

The explicit calculation shows that this zero mode is localized at the surface z = 0 where

the mass changes sign.

The remaining surface dynamics is governed by the Hamiltonian Hxy acting on spinors

of the form u− = (0, χ−), where χ− is a bicomponent spinor. Once projected in this

subspace, Hxy takes the form,

(kyσ1 − kxσ2)χ− = Eχ− , (2.7)

in terms of surface momenta (kx, ky). This is the expected Hamiltonian of a massless Dirac

excitation in (2 + 1) dimensions. Of course, the dimensional reduction holds for energies

E �M0.

In a physical setup such as the slab geometry, the system has two boundaries along

the z axis, with the second surface at z = −z0 described by the inverted mass profile

1Throughout this paper we shall use natural units c = ~ = 1, normalize the Fermi velocity of massless

excitations to one and set the electric charge e = 1.
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z

M(z)

Figure 1. Mass profile M = M(z) (blue line) and wavefunction of the Hamiltonian zero mode

(red line).

M(z)→ −M(z + z0). Performing the same steps as before, the normalizable zero mode is

now given by the positive sign in (2.5), i.e. u+ = (χ+, 0). It turns out that the bispinor χ+

obeys the same Dirac equation (2.7).

In the study of the microscopic model of band topological insulators, the authors of

refs. [35, 36] considered the expansion of the Hamiltonian for momenta near the band

crossing point and obtained the result (2.7) at low energy. In that approach, the angular

momentum of the surface states was also discussed, involving the electron spin as well as

a L = 1 contribution from the p-wave orbitals involved. They found that the low-energy

surface excitations have angular momentum one-half that is represented by Si ∼ σi, where

the σi are the Pauli matrices introduced before. Therefore, the solutions of (2.7) have

associated the values:

〈Sz〉 = 0 , 〈Sxkx + Syky〉 = 0 . (2.8)

Namely, the spin lies on the surface and is orthogonal to momentum (helical spin exci-

tations). These results are in agreement with the time reversal symmetry T in (3 + 1)

dimensions: the Dirac mass is T invariant, as well as the helical states on the surface of

the topological insulator.

We remark that the analogous Jackiw-Rebbi dimensional reduction from (2 + 1) to

(1 + 1) dimensions would lead to chiral (resp. antichiral) edge fermions for kink (resp. an-

tikink) mass profile. Indeed, the massive Dirac theory in (2 + 1) dimensions breaks parity

and time reversal symmetries and can model chiral topological states such as the (anoma-

lous) quantum Hall effect and Chern insulators [1]. Analogous Jackiw-Rebbi reductions

exist for all ten classes of non-interacting fermionic topological states, and actually provide

an independent derivation of the classification [6–10].

Fermionic surface states with mass ±m can be introduced by adding the following T
breaking mass to the (3 + 1)-dimensional Dirac Hamiltonian (2.2):

∆H = iγ0γ5m . (2.9)
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Upon repeating the Jackiw-Rebbi reduction, one finds the following (2 + 1)-dimensional

Dirac Lagrangians on the two surfaces of the slab,

L− = χ−(i/∂ −m)χ−, L+ = χ+(i/∂ +m)χ+. (2.10)

Time reversal transformations act as T : m→ −m; moreover, the two electrons correspond

to inequivalent representations of the Clifford algebra, such that the mass sign is physically

relevant for surface fermions.

Another result that is relevant for the following discussion is the induced effective action

obtained by coupling the (2 + 1)-dimensional fermion to the electromagnetic field Aµ. The

expansion of the fermionic determinant det
(
i/∂ + /A−m

)
corresponds to an effective action

involving any power of Aµ. The leading quadratic term is given by the one-loop vacuum

polarization Πµν ,

Seff [A] = −1

2

∫
d3k

(2π)3
Aµ(k)Πµν(k,m)Aν(−k) + O

(
A3
)
. (2.11)

This reads in Euclidean space [38–40]:

Πµν(k,m) =
1

4π
kαε

αµν

(
m

|m|
arctan(x)

x
− Λ

|Λ|

)

−
(
k2δµν − kµkν

) 1

8π|k|

(
1

x
− 1− x2

x2
arctan(x)

)
,

x =
|k|

2|m| . (2.12)

This expression has been regularized by subtracting the contribution of a Pauli-Villars

fermion with mass Λ→∞. The first term in Πµν is odd in momentum and breaks parity

and time reversal symmetries. The second, even term is parity invariant and will be relevant

for the discussion in section 3.2

In the limit of large mass |m| → ∞, the expression for Πµν becomes:

Πµν(k,m) =
1

4π
kαε

αµν

(
m

|m| −
Λ

|Λ|

)
−
(
k2δµν − kµkν

) 1

12π|m| , (|m| � |k|). (2.13)

The vanishing of the effective action in the static limit fixes the sign of the regulator mass

to be sign(Λ) = sign(m) in (2.12). In the massless limit, one thus obtains the result:

Πµν(k,m) = − 1

4π
kαε

αµν m

|m| −
(
k2δµν − kµkν

) 1

16|k| , (|m| � |k|). (2.14)

The first term corresponds to an induced Chern-Simons action,

SCS [A] = i
K

4π

∫
d3x εµνρAµ∂νAρ, K =

1

2

m

|m| . (2.15)

Therefore, in the massless theory the parity and time reversal symmetries are broken

at the quantum level: this is the Z2 anomaly of (2 + 1)-dimensional fermions [39, 40].
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Note that the sign of Chern-Simons coupling K, i.e. the sign of the Pauli-Villars regulator,

cannot be determined in the massless theory without referring to a massive phase [41].

In the case of topological insulators, the anomaly (2.15) of surface massless states

cancels against the bulk contribution. Let us recall how this is realized. The bulk action

is given by the Abelian theta term [28],

Sθ[A] = − θ

32π2

∫
d4x εµνλρFµνFλρ, (2.16)

with parameter θ = π. In the geometry of the slab considered here, Sθ[A] is a total

derivative that reduces to the Chern-Simons action (2.15) on the two surfaces with coupling

taking opposite values K = ±1/2.

Furthermore, in the earlier discussion of the Jackiw-Rebbi reduction we showed that the

(3 + 1)-dimensional time-reversal breaking term (2.9) induces opposite fermion masses ±m
on the two surfaces, eq. (2.10). Thus, in the m→ 0 limit the corresponding anomalies are

unambiguously identified and are given by Chern-Simons actions S+
CS [A] and S−CS [A] with

couplings K− = 1/2 and K+ = −1/2, respectively. Summing up the bulk and boundary

time-reversal breaking actions, we find:

Stot[A] = S+
CS [A] + Sθ[A] + S−CS [A] = 0 . θ = π, (2.17)

Namely, they cancel among themselves by matching their signs.

Equation (2.17) establishes the bulk-boundary cancellation of the Z2 anomaly in (3 +

1)-dimensional topological insulators [42–44]. Actually, this should rather be called a

boundary-boundary cancellation: the theta term does not imply local effects in the bulk;

its role is that of ‘transporting’ the anomalous action SCS [A] from one surface to the

other. This result should be contrasted with the mechanism of ‘anomaly inflow’ [45] in the

quantum Hall effect in (2 + 1) dimensions, where the chiral anomaly of the edge, i.e. the

non-conservation of charge, is compensated by the classical Hall current in the bulk [1, 46].

In the case of compact (3 + 1)-dimensional manifolds, Stot[A] = Sθ[A] does not vanish,

but is proportional to the integral of the second Chern class C2 of the gauge field, Sθ[A] =

θ C2. Since C2 is an integer valued topological invariant quantity, the coupling θ is defined

modulo 2π. Therefore, Stot[A] is time reversal invariant due to the equivalence of the values

θ = π and θ = −π [28].

Altogether, topological insulators are time reversal invariant topological phases of mat-

ter. Their stability with respect to interactions and perturbations is not guaranteed and

should be checked carefully. If time reversal symmetry is broken they decay into trivial

insulators, i.e. they belong to the class of symmetry protected topological states, to be con-

trasted with other states, such as Chern insulators, that are chiral and stable [3, 47, 48].

Topological insulators are characterized by a Z2 index of stability, that is zero for unsta-

ble/trivial insulators and one for stable/topological insulators [18–23]. At the level of band

theory, this index distinguishes the cases of even number of level crossings, that can be

smoothly deformed to no crossing, from that of odd crossings, that can be deformed to

one crossing. Within the effective theory, we should consider even and odd numbers of

Dirac surface fermions [3, 28]. Since a time-reversal invariant quadratic (mass) interaction

– 7 –
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can be written in terms of two fermion species, it can be used to gap them in pairs, thus

remaining with zero or one massless fermion.

In (2 + 1)-dimensional topological insulators, the Z2 index of stability also holds for

systems of interacting fermions, including Abelian [14–17] as well as non-Abelian [24, 25]

fractional insulators. Stability in (3 + 1)-dimensional interacting states is not yet fully

understood and some results will be presented in the following sections of the paper.

We finally discuss the explicit breaking of time reversal symmetry at the boundary,

for example due to proximity with a magnetic material [28]. In this case, the surface

fermion acquires a mass and its effective action is given by the expression (2.12) with

sign(Λ) = sign(m). In the low energy limit, |k| � |m|, the anomalous term vanishes, as

shown by (2.13). It follows that the bulk theta term Sθ[A] is not cancelled as in (2.17) and

it reduces to (minus) the Chern-Simons action (2.15) at the surface. This implies a surface

Hall effect with conductivity σH = e2ν/h, ν = 1/2 [49].

2.2 Torus partition functions

In this section, we derive the partition function of the Dirac fermion on the surface of

the (3 + 1)-dimensional topological insulator. Extending our earlier analysis in one less

dimension [24], we use the partition function to reformulate the Fu-Kane-Mele stability

argument for the existence of massless surface states in presence of disorder and interactions

that are time reversal invariant (the ‘strong topological insulators’ of refs. [18–21]). These

results are also the starting point for discussing the stability of bosonic surface states in

section 4.

We consider the spatial geometry of a ‘Corbino donut’ (see figure 2), whose internal and

external surfaces are two-torii. The space-time three-torus T3 is obtained by considering

one of the two surfaces and the Euclidean time period T , equal to temperature. The

partition functions for periodic (P ) and anti-periodic (A) boundary conditions in space

and time form a eight-dimensional multiplet, corresponding to the eight spin sectors of T3.

Our derivation of the partition functions uses results of refs. [33, 50].

The T3 torus is defined by the generators of the periodicity lattice ωµ, µ = 0, 1, 2, (see

figure 3), whose components form the following matrix:

ω =



ω0

ω1

ω2


 =



ω00 ω01 ω02

0 ω11 ω12

0 ω21 ω22


 . (2.18)

The dual vectors kµ are defined by kµ · ων = δµν ; their spatial components will be indi-

cated as:

~ωi = (ωi1, ωi2), ~ki = (ki1, ki2), i = 1, 2. (2.19)

The volumes V (3) and V (2) of the 3D space-time and 2D space cells are respectively

given by:

V (3) = det(ω), V (2) = det ~ω = |ω1 × ω2|. (2.20)

Some useful relations are:

k11 =
ω22

V (2)
, k12 = − ω21

V (2)
, k21 = − ω12

V (2)
, k22 =

ω11

V (2)
, ω00 =

V (3)

|ω1 × ω2|
. (2.21)

– 8 –
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Figure 2. Three-dimensional Corbino donut. The addition of fluxes Φ1 and Φ2 modifies the

quantization of kx and ky momenta, respectively.

The partition function is given in terms of the on-shell data of the free fermion, namely

its spectra of energy, momentum, charge and fermion number. The usual creation and

annihilation operators of particles (a†~n, a~n) and antiparticles (b†~n, b~n) , where ~n = (n1, n2) ∈
Z2, obey anti-commutation relations and satisfy the vacuum conditions

a~n |Ω〉 = b~n |Ω〉 = 0 , n1, n2 ∈ Z . (2.22)

The energy, momentum, charge and fermion number of excitations are given by the follow-

ing normal ordered expressions:

E =
∑

~n

E~n

(
a†~na~n + b†~nb~n − 1

)
, E~n = 2π

∣∣(n1 + α1)~k1 + (n2 + α2)~k2

∣∣, (2.23)

Pi =
∑

~n

p~n,i

(
a†~na~n + b†~nb~n

)
, p~n,i = 2π ((n1 + α1)k1i + (n2 + α2)k2i) , (2.24)

Q =
∑

~n

a†~na~n − b
†
~nb~n, (2.25)

(−1)F = (−1)
∑
~n a
†
~n
a~n+b†

~n
b~n . (2.26)

In the expression of the energy, the infinite sum (−∑~nE~n) to be regularized later yields the

Casimir energy and the parameters αi specify the boundary conditions along the i = 1, 2

spatial directions: αi = 0 (resp. αi = 1/2) for periodic (P) conditions (resp. anti-periodic

(A)) conditions. For convenience, we shall also denote the P (resp. A) conditions in time

by using another parameter α0 = 0 (resp. α0 = 1/2).

The partition function is defined as usual by the trace over the Hilbert space of the

transfer matrix. For (A) boundary conditions in time, it is given by the following expression:

ZF1
2
,α1α2

= Tr

[
exp

(
− T (E +QA0) + iω01P1 + iω02P2

)]
. (2.27)

– 9 –
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!0
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!2

Figure 3. Vector moduli of T3 torus in (2 + 1) dimensions.

Beside the Hamiltonian realizing Euclidean time translations over the period T = ω00, the

momenta Pi generate space translations for twisted boundary conditions specified by the

other components of the vector ω0 (2.18). Note also the inclusion of the scalar potential

A0 coupled to the charge of excitations.

For (P ) boundary conditions in time, the trace should include the operator (−1)F :

ZF0,α1α2
= Tr

[
(−1)F exp

(
− T (E +QA0) + iω01P1 + iω02P2

)]
. (2.28)

The trace over the fermionic Fock space is straightforward. In the result, we substitute the
~ki vectors in terms of the ~ωi and introduce the constant α0 = 0, 1/2, to obtain:

ZFα0,α1α2
= e−V

(3)F0
∏

n1,n2∈Z

{
1− exp

(
−2πEα1α2

n1n2
+ 2πiPα1α2

n1n2
− 2πiA

)}

×
{

1− exp
(
−2πEα1α2

n1n2
− 2πiPα1α2

n1n2
+ 2πiA

)}
. (2.29)

In this expression,

A = α0 − i
V (3)A0

2π|ω1 × ω2|
, (2.30)

Eα1α2
n1n2

=
V (3)

|ω1 × ω2|2
|(n1 + α1)ω2 − (n2 + α2)ω1|, (2.31)

Pα1α2
n1n2

=
(ω1 × ω2)

|ω1 × ω2|2
[(n1 + α1)(ω0 × ω2)− (n2 + α2)(ω0 × ω1)] , (2.32)

F0 =
1

2π

∑

n1,n2

′ e
−2πi(α2n1−α1n2)

|n1ω2 − n2ω1|3
, (2.33)

where F0 is the Casimir energy regularized by using Epstein’s analytic continuation formula

(see ref. [50]), with the sum
∑ ′ excluding the value (n1, n2) = (0, 0).

– 10 –
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Figure 4. Kramers degeneracy at half flux.

2.3 Flux insertions and stability argument

The Fu-Kane-Mele argument for stability of time-reversal topological insulators involves

three main steps (see figure 4 for the two-dimensional case) [14–21, 24]:

i) First, the ground state of the system is adiabatically deformed by adding half mag-

netic fluxes, so as to create a neutral spin one-half excitation at the boundary.

ii) Secondly, the Kramers theorem is invoked, saying that this excitation is part of a

doublet that remains degenerate in presence of any time-reversal invariant interaction.

iii) Finally, the partner state of the doublet is evolved back to zero added flux, where it

is found to be an excited state with energy O(1/R), where R is the size of the system,

thus proving that there is no mass gap in the thermodynamic limit.

In its original implementation for band insulators, this argument reproduces the Z2

stability index, because for Nf fermion species, the created excitation possesses spin Nf/2,

such that the Kramers degeneracy is assured for odd Nf only. Moreover, it extends the

validity of the Z2 index to systems with interactions and disorder that are time reversal

invariant [18–21].

In an earlier work on (2+1)-dimensional topological insulators [24], the stability argu-

ment was reformulated in terms of properties of the partition function of edge excitations.

Since the addition of half flux at the center of the Corbino disk changes the spatial bound-

ary condition from the (A) to (P), it implies a map between the corresponding partition

functions, pertaining to the Neveu-Schwarz and Ramond sectors, respectively. The analy-

sis of the low-energy leading terms in these partition functions showed the presence of the

excitations with degeneracies and quantum numbers mentioned before.

This formulation of the stability argument is rather useful because it can be extended

to any system for which the partition function is known. For (1+1) dimensional edges, this

function has been be computed for many models of the quantum spin Hall effect by using

conformal field theory methods [32]. Furthermore, its general structure is understood [51]:

this results allowed to extend the Z2 stability index to topological insulators with Abelian

and non-Abelian fractional statistics [24]. In (3 + 1) dimensions, we shall first formulate

– 11 –
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the argument for the fermionic surface states in this section and then extend it to bosonic

systems in section 4.

2.3.1 Neveu-Schwarz sector

The natural boundary conditions for the fermion field are antiperiodic both in space and

time, i.e (α0, α1, α2) = (1/2, 1/2, 1/2) in the partition function (2.29). We call this choice

the Neveu-Schwarz sector, in analogy with (1 + 1) dimensions.

The low-lying excitations in this sector can be more easily understood for a rectangular

torus, setting ω1 and ω2 along the Cartesian axes (see figure 3), i.e. ω12 = ω21 = 0 in (2.18).

In this case the energy of excitations (2.31) has the form:

E
1
2

1
2

n1n2 = ω00

√(
n1 +

1

2

)2 1

ω2
11

+

(
n2 +

1

2

)2 1

ω2
22

. (2.34)

There are four low-lying degenerate energy levels, for (n1, n2) = (0, 0), (0,−1), (−1, 0),

(−1,−1). The expansion of the partition function gives:

ZF1
2
, 1
2

1
2

∼ 1 +
∑

(n1,n2)=(0,0),(0,−1),(−1,0),(−1,−1)

e−2πE~n+2πiP~n−ω00A0 + e−2πE~n−2πiP~n+ω00A0 . (2.35)

Therefore, the low-lying states are the ground state plus four particle and four antiparticle

excitations; their fermion parity can be read from the definition (2.26). In particular, for

the ground state,

(−1)F |Ω〉NS = |Ω〉NS , (−1)2S = (−1)F . (2.36)

In order to discuss the Fu-Kane-Mele stability argument, we need to distinguish between

surface excitations with integer and half-integer spin, and to this effect, we shall introduce

the ‘spin parity’ (−1)2S , that is equal to the fermion parity of the (2 + 1)-dimensional

surface theory, (−1)2S = (−1)F [13, 24].

2.3.2 Ramond sector

The first step of the stability argument consists on adiabatically inserting two Φ0/2 fluxes

in the three-dimensional Corbino geometry (see figure 2). We call V
1/2
i , with i = 1, 2, the

related transformations. These insertions modify the quantization of the momenta kx and

ky, i.e. the spatial boundary conditions αi → αi + 1/2. Starting from the Neveu-Schwarz

sector ZF1
2
, 1
2

1
2

and applying V
1/2

1 and V
1/2

2 we obtain:

V
1/2

1 : Φ1 → Φ1 + Φ0/2, ZF1
2
, 1
2

1
2

−→ ZF1
2
,0 1

2

, (2.37)

V
1/2

2 : Φ2 → Φ2 + Φ0/2, ZF1
2
,0 1

2

−→ ZF1
2
,00
, (2.38)

eventually reaching the periodic-periodic sector with partition function ZF1
2
,00

, that can be

called the (2 + 1)-dimensional Ramond sector. Figure 5 shows the transformations of all

partition functions under half-flux insertions.

– 12 –
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V
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1 : �1 $ �1 + �0/2

Figure 5. Transformations of partition functions ZFα0,α1α2
under addition of half fluxes, V

1/2
1 and

V
1/2
2 ; the indices αµ = 0 (resp. 1/2) indicate periodic (resp. antiperiodic) boundary conditions,

µ = 0, 1, 2.

In the Ramond sector, the energy and momentum (2.31)–(2.32) are vanishing for

(n1, n2) = (0, 0), i.e E0,0
0,0 = P0,0

0,0 = 0. Upon expanding the Ramond partition function,

we find four degenerated states,

ZF1
2
,00
∝ 1 + e−ω00A0 + eω00A0 + e−ω00A0eω00A0 + . . . , (2.39)

that we call |v(i)〉, i = 1, . . . , 4. Let us analyze their quantum numbers. Two of them have

charge Q = ±1,

e−ω00A0 ↔ |v(2)〉 , eω00A0 ↔ |v(3)〉 . (2.40)

The other two states are neutral: upon following the evolution of the spectrum while adding

the fluxes, i.e. αi : 1/2 → 0, we can see that the Neveu-Schwarz ground state is mapped

into the following Ramond state: |Ω〉NS → |v(1)〉. The fourth term is identified as the

expected partner of the Kramers pair, |v(4)〉 = T |v(1)〉,

1↔ |v(1)〉 , e−ω00A0eω00A0 ↔ |v(4)〉 , Q |v(1)〉 = Q |v(4)〉 = 0. (2.41)

This identification should be checked by evaluating the spin parity of the four states,

that should read:

(−1)2S = (−1)F = −1 on |v(1)〉 , |v(4)〉 ,
(−1)2S = (−1)F = 1 on |v(2)〉 , |v(3)〉 . (2.42)

We recall that the fermion number of Ramond states is well understood in (1 + 1)-

dimensions, being the sum of the chiral and anti-chiral numbers, F = FR + FL [13]. We

now discuss its definition in (2 + 1) dimensions, and show that it is actually independent
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of the dimension and chiral splitting. The Fock space expression of the four states in the

Ramond sector follows from the definitions (2.22) and the previous arguments:

|v(1)〉 = |Ω〉R , |v(2)〉 = a†00 |Ω〉R , |v(3)〉 = b†00 |Ω〉R , |v(4)〉 = b†00a
†
00 |Ω〉R , (2.43)

where |Ω〉R is the Ramond ground state. Let us reconsider the normal ordering of the

charge and fermion number given in (2.25)–(2.26), starting from the expansion around

the Fermi level of a non-relativistic spectrum at finite volume. In the case of the Neveu-

Schwarz sector, the Fermi level is located in between the empty and filled states, because the

energy spectrum (2.34) is strictly positive. This gives a clear identification of particles and

antiparticles and determines the standard normal-ordering of the relativistic expressions

used in (2.25)–(2.26).

In the Ramond sector, there is an ambiguity because some excitations are exactly

located at the Fermi level. We shall assume that they are partially filled:

〈a†00a00〉 = x, 〈b†00b00〉 = 1− x, 0 ≤ x < 1. (2.44)

Thus, the normal-ordered expressions of charge and fermion number (2.25)–(2.26) should

be modified in the term (n1, n2) = (0, 0) of the sums, as follows:

Q =
∑

~n

a†~na~n − b
†
~nb~n + 1− 2x, (2.45)

(−1)F = (−1)
∑
~n a
†
~n
a~n+b†

~n
b~n+1. (2.46)

Upon further assuming the particle-hole symmetric filling x = 1/2, we obtain the quantum

number assignments given before in (2.40), (2.42).

In conclusion, the Ramond states |Ω〉R and b†00a
†
00 |Ω〉R, have vanishing charge and

negative spin parity and are identified with the Kramers doublet that we were looking for.

Since the Ramond sector corresponds to a time-reversal invariant point for the Hamiltonian,

this degeneracy is robust to any invariant perturbation. To conclude the Fu-Kane-Mele

stability argument, we return to zero flux: while the Ramond ground state |Ω〉R goes back to

the Neveu-Schwarz state |Ω〉NS , its Kramers partner maps into the following excited state,

|ex〉NS ↔ e−2πE
1
2

1
2

−1−1+ω00A0e−2πE
1
2

1
2

−1−1−ω00A0 . (2.47)

The energy of this excitation is O(1/R), where R is the typical dimension of the system;

this proves that the spectrum is gapless (in the thermodynamic limit) for any time-reversal

invariant interaction.

We remark that the neutral S = 1/2 excitation created by adding half fluxes is a non-

perturbative excitation in the fermionic theory with respect to the Neveu-Schwarz ground

state, namely:

|Ω〉R = σ(0) |Ω〉NS . (2.48)

In the (1 + 1)-dimensional theory, σ(x) is called the ‘spin field’ and its properties are
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well understood, e.g. within the fermionic description of the Ising model [13]; in (2 + 1)

dimensions, much less is known about this field.

The stability of the surface excitations can be related to a Z2 anomaly, as in the case

of lower dimensional systems [24, 52]. The Neveu-Schwarz and Ramond ground states are

eigenstates of a time-reversal invariant Hamiltonian and possess different values of the spin

parity, i.e.

(−1)2S |Ω〉NS = |Ω〉NS , (−1)2S |Ω〉R = − |Ω〉R . (2.49)

This quantity is conserved by time reversal symmetry, but changes value between the two

ground states without having broken the symmetry explicitly or spontaneously. Therefore,

this change can be interpreted as a discrete Z2 anomaly, which is equivalent to the Z2 index

of stability.

2.4 Modular transformations

In this section we study the behavior of the eight partition functions under the discrete

changes of coordinates that map the three-torus into itself. The pattern of transformations

will further characterize the different sectors. Moreover, we shall associate the stability of

topological insulators to the impossibility of writing a modular invariant partition function

that is consistent with all physical requirements. These results are close analogs of the

(2 + 1)-dimensional ones [24].

In the following we set A0 = 0 for simplicity, and rewrite the partition function (2.29)

as follows:

ZFα0,α1α2
= e−V F0

∏

n1,n2∈Z

∣∣∣∣1− exp
(
−2πEα1α2

n1,n2
+ 2πiPα1α2

n1,n2
− 2πiα0

) ∣∣∣∣
2

. (2.50)

The modular transformations of the torus T3 are discrete reparameterizations of the

moduli (ω0,ω1,ω2), and form the group SL(3,Z). Two subgroups SL(2,Z) act on the

two-dimensional subspaces (x0, xi), i = 1, 2, and have generators Ti : ω0 → ω0 + ωi
and Si : ω0 → −ωi, ωi → ω0 [13]. The three-dimensional group is generated by T1 and

U1 = S1P12, where P12 is the permutation of spatial vectors, i.e. P12 : ω1 → −ω2, ω2 → ω1.

The generators (T2, S2) are clearly expressed in terms of T1 and S1 by T2 = P12T1P12 and

S2 = P12S1P12.

The action of P12 on the partition functions (2.50) is manifest: ZF
α0,

1
2

1
2

and ZFα0,00 are

left invariant, while the others exchange in pairs, e.g. ZF
α0,

1
2

0
↔ ZF

α0,0
1
2

. Therefore it is

sufficient to study the modular transformations given by T1 and S1 and then apply P12 to

find the action of the entire group.

The action of T1 is also simply derived from (2.50). If α1 = 0, the partition functions

ZFα0;0α2
are invariant. If α1 = 1/2, T1 changes the temporal boundary conditions from (A)

to (P ) and viceversa, i.e ZF1/2,1/2α2
↔ ZF0,1/2α2

.
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The action of the transformation S1 requires some calculations. Following [33], it is

useful to choose coordinates in which the ω matrix is triangular:

ω =



ω00 ω01 ω02

0 ω11 ω12

0 0 ω22


 =




2πR0 −2παR1 −2πγR2

0 2πR1 −2πβR2

0 0 2πR2


 . (2.51)

In this basis, the fermionic partition functions (2.27) and (2.28), before making the regu-

larization of the vacuum energy, takes the following form:

ZFα0,α1α2
=
∏

n2∈Z




∏

n1∈Z
|1− expA~n|2 expB~n



 ,

A~n =− 2πr01

√
[(n1 + α1) + β(n2 + α2)]2 + [r12(n2 + α2)]2

+ 2πi [α(n1 + α1) + (n2 + α2)(αβ + γ)]− 2πiα0 ,

B~n = 2πr01

√
[(n1 + α1) + β(n2 + α2)]2 + [r12(n2 + α2)]2 ,

(2.52)

where we split the products on n1 and n2 and introduced the two quantities r01 = R0/R1

e r12 = R1/R2.

The strategy of the calculation [33] is to reduce the partition function to a product of

‘massive Θ functions’ whose S transformation is know. These functions are defined by [53]:

Θ[a,b](τ ;m) =
∏

n∈Z

∣∣∣1− exp
[
−2πIm(τ)

√
(n+ a)2 +m2 + 2πiRe(τ)(n+ a) + 2πib

]∣∣∣
2

× exp [4πIm(τ)∆(m; a)] , (2.53)

where a, b,m are real parameters and τ belongs to the upper half of the complex plane H+.

The quantity ∆(m; a) is given by,

∆(m; a) = − 1

2π2

∑

l>0

∫ +∞

0
dt e−

π2m2

t
−tl2 cos(2πla). (2.54)

Identifying:

a = α1 + β(n2 + α2), b = γ(n2 + α2) + α0, m = r12(n2 + α2),

τ = −ω01

ω11
+ i

ω00

ω11
= α+ ir01, (2.55)

the fermionic partition function (2.52) can be rewritten,

ZFα0,α1,α2
=
∏

n2∈Z
Θ[α1+β(n2+α2),γ(n2+α2)+α0] (α+ ir01; r12(n2 + α2)) . (2.56)

The action of S1 in the basis (2.51) is given by:

τ → −1

τ
, α→ − α

α2 + r2
02

, r01 →
r01

α2 + r2
01

,

R0 →
R0

|τ | , R1 → R1|τ |, R2 → R2, γ → −β, β → γ. (2.57)
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Figure 6. Pattern of modular transformations T1, T2, S1, S2 for the partition functions ZFα0,α1α2
.

We now use the transformation of the massive Θ function [53],

Θ[a,b](τ ;m) = Θ[b,−a]

(
−1

τ
;m|τ |

)
, (2.58)

for each factor in the partition function (2.56), to obtain:

S1 : Θ[α1+β(n2+α2),γ(n2+α2)+α0](τ ; r12(n2 + α2)) −→

Θ[α1+γ(n2+α2),−β(n2+α2)+α0]

(
−1

τ
; r12(n2 + α2)|τ |

)
=

Θ[−α0+β(n2+α2),γ(n2+α2)+α1](τ ; r12(n2 + α2)),

(2.59)

Finally, the S1 transformation of the partition function is found to be:

S1 : ZFα0,α1α2
(ω0,ω1,ω2) → ZFα0,α1α2

(−ω1,ω0,ω2) = ZFα1,α0α2
(ω0,ω1,ω2). (2.60)

This behavior agrees with the expectations. Altogether, the pattern of modular transfor-

mations of the eight partition functions ZFα0,α1α2
is shown in figure 6.

2.4.1 Stability and modular invariance

The sum over the eight spin sectors,

ZFIsing =
∑

α0,α1,α2=0, 1
2

ZFα0,α1α2
, (2.61)

is found to be invariant under flux insertions V
1/2

1 , V
1/2

2 and modular transformations by

using the results in figure 5 and figure 6. We can call this modular invariant the ‘Ising

partition function’ being the generalization of a typical partition function of a statistical

model in two dimensions [13, 24]. However, we have seen that some sectors, such as the

Neveu-Schwarz and Ramond sectors, possess different values of the ground state spin parity

(−1)2S and cannot be part of the same theory without breaking the time reversal symmetry.
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Namely, the Z2 spin parity anomaly requires that the partition functions stay separate and

form a eight-dimensional vector. The first component ZF1
2

1
2

1
2

describes the unperturbed

time-reversal invariant surface system, while the other functions contain excited states due

to changes of electromagnetic and gravitational backgrounds.

In conclusion, the stability of topological insulators has been related to the Z2 spin

parity anomaly, which also implies the modular covariance of the partition function, namely

a discrete gravitational anomaly [13, 24]. We mention that other authors have been relating

the modular covariance of the boundary partition function to the stability of the bulk

topological phase [54, 55].

2.5 Dimensional reduction

In this section we further characterize the eight fermionic partition functions by perform-

ing a reduction from two to one spatial dimensions that let us recover well-known expres-

sions [13].

Let us consider the partition functions for a rectangular torus, i.e. ω12 = ω21 = 0, and

vanishing scalar potential A0 = 0, for simplicity. We perform a dimensional reduction of the

Kaluza-Klein type, namely take the limit R2 → 0 of the Corbino donut, such that the modes

of energy O(n2/R2) are never excited, corresponding to n2 → 0. The remaining geometry

is that of two-torus in the plane (x0, x1); about the energy spectrum (2.31), there are two

possibilities: i) for periodic boundary condition along x2, i.e. α2 = 0, the spectrum becomes

exactly that of the massless fermion in (1 + 1) dimensions; ii) for antiperiodic conditions,

α2 = 1/2, there remains the constant 1/(4πR2)2 that plays the role of a relativistic mass

term in (1 + 1)-dimensions.

We start from the expression (2.27)–(2.28) before regularization of the ground state

energy and rewrite it in the coordinates (2.18):

ZFα0,α1α2
=
∏

n2

{
exp

[
2πω00

ω11

∑

n1

√
(n1 + α1)2 + (n2 + α2)2

ω2
11

ω2
22

]

×
∏

n1

∣∣∣∣1− exp

(
− 2πω00

ω11

√
(n1 + α1)2 + (n2 + α2)2

ω2
11

ω2
22

+
2πiω01

ω11
(n1 + α1) +

2πiω02

ω22
(n2 + α2) + 2πiα0

)∣∣∣∣
2}
. (2.62)

The regularized form of the n1 sum in the exponent of the first term is again written in

terms of the ∆ function (2.54):

∑

n1

√
(n1 + α1)2 + (n2 + α2)2

ω2
11

ω2
22

= ∆

[
ω11

ω22
(n2 + α2);α1

]
. (2.63)

The two-torus is specified by the modular parameter τ in (2.55). A further convenient

simplification is setting ω02 = 0, i.e. no bending of this torus in three dimensions. Al-

together, the expression (2.62) can be written as a product over n2 ∈ Z of massive Θ
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functions (2.53). In the limit ω22 → 0, the leading behaviour is given by the factor with

n2 = 0; the dimensional reduction is therefore:

ZFα0,α1α2
−→ ZFα0,α1|α2

= Θ[α1,α0]

(
τ ;

ω11

ω22
α2

)
. (2.64)

The reduced partition function is denoted by a vertical line before the index α2 of the

direction x2 → 0. We now analyze this result more explicitly.

2.5.1 Massless case α2 = 0

In this case, the prefactor ∆(m; a) appearing in the theta-function (2.64) reads:

∆(0;α1 = 0) = − 1

12
, ∆

(
0;α1 =

1

2

)
=

1

24
, (2.65)

and the Casimir energy prefactor becomes,

exp (4πImτ∆(0;α1)) =

{
(qq̄)1/12 , α1 = 0,

(qq̄)−1/24 , α1 = 1
2 ,

(2.66)

where q = exp (2πiτ). Remembering that η(q) = q1/24
∏∞
n=1(1 − qn) is the Dedekind

function, the reduced partition functions (2.64) become the following expressions:

ZF
1
2
, 1
2

∣∣0 =

∣∣∣∣∣
1

η(τ)

∞∏

n=1

(1− qn)(1 + qn−1/2)2

∣∣∣∣∣

2

=

∣∣∣∣∣
1

η(τ)

∑

m∈Z
qm

2/2

∣∣∣∣∣

2

= ZNS , (2.67)

ZF
0, 1

2

∣∣0 =

∣∣∣∣∣
1

η(τ)

∞∏

n=1

(1− qn)(1− qn−1/2)2

∣∣∣∣∣

2

=

∣∣∣∣∣
1

η(τ)

∑

m∈Z
(−1)mqm

2/2

∣∣∣∣∣

2

= ZÑS , (2.68)

ZF
1
2
,0
∣∣0 =

∣∣∣∣∣
1

η(τ)
2q1/8

∞∏

n=1

(1− qn)(1 + qn)2

∣∣∣∣∣

2

=

∣∣∣∣∣
1

η(τ)

∑

m∈Z
q(m+1/2)2/2

∣∣∣∣∣

2

= ZR, (2.69)

ZF
0,0
∣∣0 =

∣∣∣∣∣
1

η(τ)
q1/8

∞∏

n=1

(1− qn)(1− qn)(1− qn−1)

∣∣∣∣∣

2

= ZR̃ = 0. (2.70)

These are the well-known partition functions of the (1 + 1)-dimensional Dirac fermion that

describes the edge of the two-dimensional topological insulator [24]. In these formulas, we

identify the sectors (AA), (PA), (AP ), (PP ) as NS, ÑS,R, R̃, respectively. We also wrote

the bosonic version of these expressions [13] for later use in section 4. The SL(2,Z) modular

transformations of these partition functions is denoted as the ‘massless subgroup’ shown

in figure 7.

2.5.2 Massive case α2 = 1/2

As anticipated, in this case the (large) mass term M = ω11/2ω22 remains in the energy

spectrum in (1+1) dimensions. Therefore the reduction leads to the following four partition

functions of the massive fermion, that read:

ZF
1
2
, 1
2

∣∣ 1
2

= Θ[ 1
2
, 1
2

](τ ;M), ZF
0, 1

2

∣∣ 1
2

= Θ[ 1
2
,0](τ ;M),

ZF
1
2
,0
∣∣ 1
2

= Θ[0, 1
2

](τ ;M), ZF
0,0
∣∣ 1
2

= Θ[0,0](τ ;M). (2.71)
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Figure 7. Action of the modular group SL(2,Z) over of the eight fermionic partition func-

tions (2.67)–(2.71) dimensionally reduced to the (x0, x1) plane.

Their transformations under the subgroup SL(2,Z) are the same of those of the massless

sector, and are indicated as the ‘massive subgroup’ in figure 7.

3 Bosonic topological insulators

In this section, we discuss the effective field theory description of free and interacting

topological insulators in (3 + 1) dimensions given by the topological BF gauge theory and

the associated bosonic surface theory. We recall some known facts, derive the action at the

boundary, its quantization and the partition function on the three-torus. We then compare

these results with those found in the previous section for the fermionic theory and discuss

the insight they provide on bosonization in (2 + 1) dimensions.

The motivations for introducing bosonic degrees of freedom in (3 + 1)-dimensional

topological states are the following:

• The great success of bosonic theories in explaining interacting topological states in

(2+1) dimensions, starting from the original work by Wen on the fractional quantum

Hall effect, that provided a complementary view to wavefunction approaches [11].

Furthermore, the conformal field theories describing edge states and braiding relations

are usually formulated in terms of bosonic fields [13].

• In particular, the canonical quantization of the compactified free boson theory in

(1+1) dimensions (the so-called chiral Luttinger liquid) provides an exact description

of interacting Hall edge states with Abelian fractional statistics [46]; this approach

can be generalized to topological insulators by taking pairs of theories with opposite

chirality and spin [14–17, 24].

• Such an approach actually corresponds to the BF bulk theory [28], that can be

naturally extended to (3 + 1) dimensions [26, 27], where it accounts for particle-

vortex braiding relations and other topological effects [56, 57].
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• We can thus study the corresponding bosonic surface theory in (2 + 1) dimensions

and the dynamics it can support [12]. Of course, an exact map between fermions and

bosons cannot be achieved [58–61]; nonetheless, we shall find some physical properties

that do not depend on interactions and can be described exactly.

• Finally, there are other topological states in (3 + 1) dimensions that are formulated

in terms of bosonic microscopic degrees of freedom [62, 63].

3.1 Hydrodynamic BF effective action

We consider low-energy matter fluctuations that are described by the conserved currents

Jµ for quasiparticles and Jµν for vortices in (3 + 1) dimensions: these can be expressed in

terms of two hydrodynamic gauge fields,

Jµ =
1

2π
εµνρσ∂νbρσ, Jµν =

1

2π
εµνρσ∂ρaσ, (3.1)

that are the two-form b = 1/2 bµν dx
µ ∧ dxν and the one-form a = aµdx

µ. The topological

effects in time-reversal invariant topological states at energies below the bulk gap can be

described by the following BF action, with first order derivatives and gauge symmetries

a→ a+ dλ and b→ b+ dξ [12, 28],

SBF [a, b, A] =

∫

M

K

2π
b da+

1

2π
b dA− θ

8π2
da dA+ aµJ µ +

1

2
bµνJ µν , (3.2)

where A = Aµdx
µ is the electromagnetic background and Jµ, Jµν are sources for quasipar-

ticle and vortex excitations. The time reversal transformations of the fields are: aµ =

(a0,~a) → (a0,−~a), Aµ = (A0, ~A) → (A0,− ~A) and bµν = (b0i, bij) → (−b0i, bij), for

µ = (0, i). Thus, the action (3.2) is invariant but for the term proportional to θ. The

coupling K is an odd integer for fermionic systems [56, 57].

Same features of the BF theory are:

• For Aµ = 0, the solutions of the equations of motion in presence of the sources, i.e.

J µν =
K

2π
εµνλρ∂λaρ , J µ =

K

4π
εµλρν∂λbρν , (3.3)

imply a non-trivial monodromy of quasiparticles around vortices in three space di-

mensions, with Aharonov-Bohm phases ϕ = 2πN0N1/K, where N0, N1 are the quasi-

particle electric charge and the vortex magnetic charge, respectively.

• For J µ = 0,J µν = 0, one can compute the induced action for the electromagnetic

background by integrating out the hydrodynamic fields [12],

Sind[A] =
θ

8π2K

∫

M
dAdA =

θ

32π2K

∫
d4x εµνλρFµνFλρ . (3.4)

This is the Abelian theta term already discussed in the previous section (2.16) [28]:

the case θ = 0 corresponds to the time reversal invariant system, where bulk and
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boundary contributions cancel each other (see section 2.1). For θ = π, time reversal

symmetry is broken at the surface, leading to the induced Chern-Simons term,

Sind[A] =
1

8πK

∫

∂M
AdA , (3.5)

implying a surface quantum Hall effect with filling fraction ν = 1/2K. In particular,

for K = 1 the fermion anomaly (2.15) is recovered.

• This is the first indication that the bosonic theory for K = 1 matches the fermionic

description, at least for the topological properties. Other values of K describe inter-

acting theories with quasiparticle-vortex braiding phases.

• For manifoldsM with a boundary, an additional surface action should be introduced

to compensate for the gauge non-invariance of the BF theory (3.2) [12]. This action is:

Ssurf [ζ, a, A] = −
∫

∂M

K

2π
ζda+

1

2π
ζdA, (3.6)

where the one-form gauge field ζ = ζµdx
µ absorbs the gauge transformation of the b field,

namely b→ b+ dξ and ζ → ζ + ξ.

3.2 Surface bosonic theory

In this section we discuss the massless excitations at the surface and introduce two dynamics

for them that are compatible with the bulk BF theory and time reversal invariance. Note

in passing that the (2 + 1)-dimensional boundary may also support massive phases with

topological excitations, whose induced action precisely cancels the Chern-Simons term from

the bulk [64–67]. These cases will not be discussed here.

The action (3.6) (putting Aµ = 0 momentarily) involves boundary degrees of freedom

that can be viewed as (singular) gauge configurations reproducing the bulk loop observ-

ables, namely b = dζ and a = dφ, where ζ and φ are a vector and a scalar field, respectively.

The topological BF theory implies a vanishing Hamiltonian, i.e. the static case; after choos-

ing the gauge ζ0 = a0 = 0, the action (3.6) becomes,

Ssurf =
K

2π

∫
d3x εij∂iζj φ̇. (3.7)

This expression shows that there are two scalar degrees of freedom at the surface, φ and

χ, that are canonically conjugate, being the longitudinal part ai = ∂iφ, and the transverse

part ζi = εik∂kχ, respectively,

Ssurf =

∫
d3xπ φ̇, π =

K

2π
εij∂iζj = −K

2π
∆χ. (3.8)

Since the surface excitations possess a relativistic dynamics, we should add a suitable

Hamiltonian. We first consider the free scalar theory in (2 + 1) dimensions, as follows [12]:

Ssurf →
∫
d3x

(
πφ̇−H(π, φ)

)
=

∫
d3x

(
πφ̇− 1

2m
π2 − m

2
(∂iφ)2

)
. (3.9)
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In this equation, we introduced a mass parameter for adjusting the mismatch of dimensions

between bulk and boundary. Indeed, the bulk gauge fields imply the mass dimensions

[φ] = 0 and [π] = 2, which are different from those of the three-dimensional scalar theory,

1/2 and 3/2, respectively. A dimensionless coupling could also be introduced for the third

term in the action (3.9), that would determine the Fermi velocity of excitations. This is

conventionally fixed to one. The equations of motion of the action (3.9) are:

π = mφ̇, π̇ = m∆φ , (3.10)

and the Lagrangian form of the action is clearly

Ssurf =
m

2

∫
d3x (∂µφ)2 . (3.11)

The Hamiltonian equations of motion (3.10) can be recast into a duality relation be-

tween the boundary scalar and vector fields, that can be written in covariant form (with

ζ0 = 0) [29]:
K

2π
εµνρ∂νζρ = m∂µφ. (3.12)

This is just the electric-magnetic duality in (2 + 1) dimensions: it plays a role in

the bosonization of (2 + 1)-dimensional fermions through the tomographic representa-

tion [12, 58–61] and other approaches [30, 31]. In our setting, this duality is just the

first-order Hamiltonian description of the relativistic wave equation, that is inherited from

the first-order bulk theory. We also stress that the main motivation for introducing the

Hamiltonian (3.9) is its simplicity. On one side, we know that the surface fermion of the

previous section cannot be exactly matched to a free boson (for K = 1). On another side,

any dynamics of bosonic states that can model interacting fermions is interesting to inves-

tigate at the present stage of understanding of (3 + 1)-dimensional topological insulators.

The coupling to the electromagnetic field Aµ can be used to test the correspondence

between boson and fermion theories. The coupling inherited from the bulk theory is shown

in (3.6) and it amounts to the shift aµ → aµ + Aµ/K. This can be implemented in the

symplectic form (3.7) (using the gauge condition ∂iAi = 0) and in the Hamiltonian (3.9),

thus leading to the following action:

Ssurf [ζ, φ,A] =

∫
d3x

[
π

(
φ̇− A0

K

)
− 1

2m
π2 − m

2

(
∂iφ−

Ai
K

)2
]
. (3.13)

Upon integrating the scalar fields, we obtain the induced action,

SBind[A] = − m

4K2

∫
d3x Fµν

1

�
Fµν . (3.14)

This result should be compared for K = 1 with the fermionic induced action computed in

section 2.1: using eq. (2.14), we disregard the anomalous term cancelled by the bulk and

obtain the expression for m→ 0:

SFind[A] ∼
∫
d3xFµν

1

�1/2

(
1 +O

(
m2

�

))
Fµν . (3.15)
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We thus find that the bosonic and fermionic induced actions, (3.14) and (3.15) do not

match, to leading quadratic order in Aµ; one difference is given by the explicit dimensionful

parameter of the bosonic theory. This could be scaled out by the field redefinition,

φ̃ =
√
mφ, ζ̃i =

ζi√
m
, π̃ =

1√
m
π, (3.16)

but it would not change the induced action (3.14), unless a corresponding shift is considered

for the electromagnetic coupling. This is not justified because it would imply different bulk

and boundary responses for topological insulators.

We now introduce another Hamiltonian for the bosonic surface states that is also

compatible with the symplectic structure (3.7) and relativistic invariance. Let us reconsider

the duality relation between vector and scalar fields (3.12) and modify it as follows:

K

2π
εµνρ∂νζρ = �1/2 ∂µφ, (3.17)

by replacing the mass parameter with a Lorentz invariant non-local operator. This modified

duality corresponds to the following Hamiltonian equations of motion:

π =
K

2π
εij∂iζj = �1/2φ̇, π̇ = �1/2∆φ, (3.18)

that follow from the action,

S′surf =

∫
d3x

(
πφ̇− 1

2
π

1

�1/2
π − 1

2
∂iφ�

1/2∂iφ

)
. (3.19)

In the Lagrangian formulation, this reads:

S′surf = −1

2

∫
φ�3/2φ =

1

2

∫ (
∂µφ̃

)2
, φ = �1/4φ̃, (3.20)

that is again the free bosonic theory in the rescaled field variable φ̃. The coupling to the

electromagnetic field implied by the bulk theory is still given by the Higgs-like substitution,

∂µφ→ ∂µφ+Aµ/K, leading to the action:

S′surf [φ,A] =
1

2

∫
d3x

(
∂µφ−

Aµ
K

)
�1/2

(
∂µφ−

Aµ
K

)
. (3.21)

Upon integration of the scalar field, we obtain the induced action SB
′

ind that is equal to

the fermionic expression SFind (3.15) up to a constant. Therefore, the non-local bosonic

theory (3.19) has the same response to weak electromagnetic backgrounds as the fermionic

theory.

We note that a Lagrangian similar to (3.19), (3.20) was also introduced in the studies

of bosonization of refs. [58–61]. Although legitimate, a non-local effective action usually

means that further massless excitations have been integrated out. This may indicate that

this description of surface dynamics is incomplete.

In conclusion, we have shown that the surface degrees of freedom of (3+1)-dimensional

topological insulators amount to a Hamiltonian conjugate pair of scalar fields. The simpler
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quadratic Hamiltonian for them is not able to reproduce the fermionic electromagnetic

response to leading order, while a modified non-local dynamics does work. The two theories

are identical on-shell, since both imply the free wave equation for suitably rescaled field

variables, but may differ in the solitonic excitations.

These open issues are left for further investigations; we remark again that the analysis

in the rest of this paper will deal with properties that are independent of the specific dy-

namics. It is nevertheless important to stress that the topological data in (3+1) dimensions

given by the BF action (3.2) do not determine a unique dynamics for the surface states,

contrary to the case of (2 + 1)-dimensional topological insulators.

We finally remark that the local action (3.20) with coupling to electromagnetic field

given by (3.21) is equivalent to the Abelian Higgs model in (2 + 1) dimensions in the

deep infrared limit of the spontaneously broken phase. Namely, the scalar field φ is the

Goldstone mode of a complex scalar:

Φ = ρ eiφ , 〈ρ2〉 = m, (3.22)

while the mass parameter m fixes the vacuum expectation value, i.e. the Higgs field is frozen.

We conclude that in cases where the electromagnetic field could be considered dynamic,

we could have a superconducting phase at the surface of the topological insulator. On

the other hand, the nonlocal dynamics (3.21) would keep the photon massless as in the

fermionic theory.

3.3 Canonical quantization of the compactified boson in (2+1) dimensions

In this section we consider the canonical quantization of the compactified boson with local

action (3.8), (3.9) and compute its partition functions on the three-torus. We shall pay

particular attention to the properties of solitonic modes of the φ and ζi fields, in such a

way that they consistently reproduce the topological properties of the bulk BF theory. We

shall follow the analysis of ref. [34] and extend it in some directions that are rather relevant

for the final result. Some background knowledge can be found in the quantization of the

compactified chiral boson in (1 + 1) dimensions of ref. [46]. The quantization of the other

non-local theory (3.21) is left for future investigations.

3.3.1 Bulk topological sectors and boundary observables

The quantization of the BF theory (3.7) on the spatial three-torus M = T3 × R, leads to

the topological order of K3 ‘anyon’ sectors, for odd integer values of the coupling K. The

proof of this results is very simple [1]: one considers the integrals of the gauge fields b and

a on the closed surfaces Σij and curves γi of the torus, respectively:

πij =

∫

Σij

b, i 6= j, qi =

∫

γi

a, i, j, k = 1, 2, 3. (3.23)

These integrals define the global variables (πij(t), qk(t)); once inserted into the BF action,

they become three pairs of canonically conjugate variables. The canonical quantization

yields the following commutation relations:

[πij(t), qk(t)] = i
2π

K
εijk . (3.24)
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Figure 8. (a) Flux due to the electric charge N0 in the bulk. (b) Bulk vortex of magnetic charge

N2 along x1 and closed line Γ2 encircling it on the surface. In grey the branch cut surface from the

vortex excitation to the boundary.

A basis of holonomies on the torus is given by the operators Ui = exp(iqi) and Vij =

exp(iπij): their algebraic relations realize three pairs of K-dimensional clock and shift

matrices, thus leading to a K3-dimensional representation, namely to the topological order

K3. In the following, we shall find a corresponding symplectic structure among the solitonic

modes of the boundary fields φ, ζi, that are defined on the space-time three-torus.

The relation between bulk and boundary observables can be studied in the three-

dimensional spatial geometry of the filled two-torus V = D2 × S1, i.e. the donut, whose

boundary is the two-torus ∂V = S1×S1. This is represented in figure 8 as a filled cylinder

with upper and lower caps identified. We first consider a bulk quasiparticle with charge N0

at rest in ~x = ~x0, whose current is J 0(~x) = N0δ
(3)(~x− ~x0) (see figure 8(a)). The solution

of the equations of motion (3.3) leads to a flux of the b field across a surface enclosing the

charge [34], that becomes the following expression on the boundary surface ∂V :

2πN0

K
=

∫

∂V
d2x εij∂iζj . (3.25)

Next, a static vortex in the bulk stretched along the non-trivial cycle with magnetic

charge N2 corresponds to the current J 01(~x) = N2δ
(2)(~x − ~x0) (see figure 8(b)). The

equations of motion imply a non-vanishing integral of the a field along a closed path

encircling the vortex; for the path Γ2 on the boundary surface, it reads:

2π

K
N2 =

∮

Γ2

dx2∂2φ . (3.26)

An analogous relation holds for the other non-trivial cycle of the boundary,

2π

K
N1 =

∮

Γ1

dx1∂1φ . (3.27)
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3.3.2 Quantization

The bosonic action (3.9) is considered on the space-time geometry ∂M = ∂V × R =

S1 × S1 × R. The conjugate momentum π is:

π =
K

2π
εij∂iζj , (3.28)

and the Hamiltonian equations of motion are,

K

2π
εij∂iζj = mφ̇ ,

K

2π
εij∂iζ̇j = m∆φ . (3.29)

The canonical quantization proceeds by expanding the fields in terms of solutions of the

equations of motion, with boundary conditions of the spatial two-torus specified by the

periods ~ωi (2.19) and dual vectors ~ki (2.21), i = 1, 2. Let us write the field expansions and

then explain them:

φ(~x, t) = φ0 + 2πΛi~ki · ~x+
KΛ0t

mV (2)

+
1√

mV (2)

∑

~n 6=(0,0)

1√
2E~n

[
a~n e−iE~nt+2πi~k~n·~x + a†~n eiE~nt−2πi~k~n·~x

]
, (3.30)

ζj(~x, t) =
εji

V (2)
(ω2iγ1 − ω1jγ2 − πΛ0xi)

+
8π2

K

√
m

V (2)

∑

~n 6=(0,0)

εjm (n1k1m + n2k2m)

(2E~n)3/2

[
a~n e−iE~nt+2πi~k~n·~x + a†~n eiE~nt−2πi~k~n·~x

]
.

(3.31)

These expressions involve oscillating functions specified by energies and momenta

E~n = 2π
∣∣∣n1

~k1 + n2
~k2

∣∣∣ =
2π

V (2)
|n1~ω2 − n2~ω1| , (3.32)

~k~n = (k1~n, k2~n) =
1

V (2)
(n1ω22 − n2ω12, −n1ω21 + n2ω11) . (3.33)

The field expansions (3.30), (3.31) also contain constant and linear terms, almost uncon-

strained by the equations of motion, that are needed for specifying the solitonic modes.

Actually, upon inserting these expressions in the boundary observables (3.25)–(3.27), we

find the following values of the ζi flux and ∂iφ circulations:

Λµ =
Nµ

K
, α = 0, 1, 2 , (3.34)

that explain the normalizations adopted in (3.30), (3.31).

The commutation relations between the fields φ and π,

[
φ(~x, t), εij∂iζj(~y, t)

]
= i

2π

K
δ(2)(~x− ~y), (3.35)

imply the following non-vanishing commutators:

[
a~n, a

†
~k

]
= δ

~n,~k
, [φ0,Λ0] =

i

K
. (3.36)
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Moreover, integrating by parts the symplectic form in the action (3.7), we can also consider

ζi and εij∂jφ, for i = 1, 2, as two pairs of coordinates and momenta, leading to two further

commutation relations:

[ζi(~x, t), εij∂jφ(~y, t), ] = −i2π
k
δ(2)(~x− ~y), i = 1, 2. (3.37)

These are independent relations for the solitonic modes only; they imply the earlier quan-

tizations plus the following ones:

[γ1,Λ2] = − i

K
, [γ2,Λ1] =

i

K
. (3.38)

These two commutation relations together with that of Λ0 in (3.36) represent the bulk

degrees of freedom (3.23) within the boundary theory: one quantity in each pair param-

eterizes the bulk observable evaluated at the boundary, i.e. Λµ = (Λ0,Λ1,Λ2), while the

conjugate variable is a field zero mode, (φ0, γ2, γ1). After quantization, the eigenvalues of

Λµ can be identified with the spectra (3.34), that are consistent with the periodicities of

the field zero modes,

φ0 ≡ φ0 + 2πr, γi ≡ γi + 2πri, i = 1, 2, (3.39)

for compactification radii r = r1 = r2 = 1. It is also immediate to see that these peri-

odicities are commensurate with those of the fields φ(~x), ζi(~x) winding around the cycles

of the torus. In conclusion, the Λµ spectra (3.34) are both suggested by the bulk theory

and consistently obtained by quantization of the boundary theory. The same result holds

in the better-known quantization of the bosonic theory in (1 + 1) dimensions at the edge

of the quantum Hall effect [46]. We remark that in both bosonic theories, there are other

consistent values of the compactification radii, but they would imply solitonic spectra that

are not related to the bulk topological data and should be discarded.

The Hamiltonian and the momenta are expressed in terms of Fock and solitonic oper-

ators by substituting the field expansions (3.30)–(3.31) into standard field expressions of

the bosonic theory (3.9). The results are:

H =
K2Λ2

0

2mV (2)
+

(2π)2m

2V (2)

[
(Λ1ω22 − Λ2ω12)2 + (Λ1ω21 − Λ2ω11)2

]

+
∑

~n 6=(0,0)

E~n

(
a†~na~n +

1

2

)
, (3.40)

P 1 =
2πkΛ0

V (2)
(−Λ1ω22 + Λ2ω12) + 2π

∑

~n 6=(0,0)

k1~n a
†
~na~n, (3.41)

P 2 =
2πkΛ0

V (2)
(Λ1ω21 − Λ2ω11) + 2π

∑

~n 6=(0,0)

k2~n a
†
~na~n, (3.42)

where the energies E~n are momenta ~k~n are given in (3.32)–(3.33).
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3.4 Bosonic partition functions

We now compute the partition functions by compactifying the time direction, i.e. taking the

trace over the states. The sums over the bosonic Fock space and solitonic modes can be done

independently, because their contributions add up in the expressions of Hamiltonian (3.40)

and momentum (3.41), (3.42). Thus, the partition function can be factorized into solitonic

and oscillator parts Z(0) and ZHO, respectively:

ZB = Z(0)ZHO. (3.43)

The straightforward calculations of the traces on the spectra (3.40)–(3.42) is done by using

the coordinates (2.19) and (2.21), then the resulting expressions are written in covariant

(2 + 1)-dimensional notation as functions of the moduli ωµ, leading to:

ZHO = exp(F )
∏

(n1,n2) 6=(0,0)

(
1− exp (−2πE~n + 2πiK~n)

)−1

, (3.44)

and

Z(0) =
∑

Λµ∈Z3/K

exp

[
− V (3)

|ω1 × ω2|2
(
K2Λ2

0

2m
+ 2π2m|Λ1ω2 − Λ2ω1|2

)

− i2πKΛ0

|ω1 × ω2|2
(ω1 × ω2) · (Λ1ω0 × ω2 − Λ2ω0 × ω1)

]
, (3.45)

with

F =
V (3)

4π

∑

(n1,n2) 6=(0,0)

1

|n1ω2 − n2ω1|3
, E~n = V (3) |n1ω2 − n2ω1|

|ω1 × ω2|2
, (3.46)

K~n =
(ω1 × ω2)

|ω1 × ω2|2
(n1ω0 × ω2 − n2ω0 × ω1) . (3.47)

The vacuum energy F is regularized by analytic continuation as in the fermionic case [50].

These results are in agreement with those found in ref. [34].

3.4.1 Spin sectors of the bosonic theory

The experience with topological insulators in (2 + 1) dimensions and bosonization of edge

excitations [24] suggests that the partition function just found (3.44)–(3.45) should possess

the following properties:

• ZB should split into the sum over K3 terms, each one pertaining to an anyon sector

with given fractional values of the charges of the theory.

• Further partition functions should be found that correspond to different quantizations

of the solitonic modes, and could be associated to the eight fermionic spin sectors of

the three-torus.

• As in the fermionic case, these eight functions should transform one into another by

adding half-flux quanta and changing modular parameters.
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Let us gradually derive these results in the (3 + 1)-dimensional theory. The anyon

sectors in Z(0) can be identified by splitting the summations over the charge lattice Λµ ∈
Z3/K (3.45) into integer and fractional values, by substituting:

Λµ = Mµ +
mµ

K
, Mµ ∈ Z, mµ = 0, 1, · · · ,K − 1, µ = 0, 1, 2. (3.48)

In this way we get the K3 terms, each one involving summations over integer-spaced charges

only, as follows:

Z(0) =
∑

Λµ∈Z3/K

· · · =
K−1∑

m0,m1,m2=0

∑

M0,M1,M2∈Z
· · · =

K−1∑

m0,m1,m2=0

Z(0)m0m1m2 . (3.49)

In section 2.3, we formulated the flux insertion argument for the stability of topological

insulators in terms of fermionic partition functions. Starting from the Neveu-Schwarz

sector, we added half fluxes through the donut and obtained the other spin sectors of

the theory. In the bosonic theory, adding fluxes clearly modify the values of the loop

observables (3.26), (3.27): for example, one flux Φ0 adds one unit of magnetic charge to

the corresponding vortex, causing Ni → Ni + 1, i = 1, 2. This is in agreement with the

coupling to Aµ in (3.13).

For K = 1 adding one flux is clearly a symmetry of the Hamiltonian (3.40) and of

the partition function (3.49), owing to the summation over Λi ≡ Ni ∈ Z; thus, we should

consider adding half fluxes by the transformations,

V
1/2
i : Φi → Φi +

Φ0

2
, Λi → Λi +

1

2
, i = 1, 2. (3.50)

that shift the Λi summation variables. For K > 1 odd, again building on the experience

in (2 + 1) dimension [14–17, 24], we should add a number of fluxes that does not change

the anyon sector, i.e. the fractional value of Λi. Thus, we consider the transformations:

V
K/2
i : Λi = Mi +

mi

K
→ Λi +

1

2
, i = 1, 2. (3.51)

We shall introduce three labels αµ = 0, 1/2, µ = 0, 1, 2 to the partition function (3.43), as

follows:

ZBα0,α1α2
= ZHO Z

(0)
α0,α1α2

, α0, α1, α2 = 0,
1

2
. (3.52)

Two of them, α1, α2, specify the half-integer values taken by the variables M1,M2 after

flux insertions (3.51), while α0 = 1/2 amounts to adding the sign (−1)KΛ0 to the summand

in (3.45) for reasons that will be clear in the following. Note that oscillator part ZHO stays
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Figure 9. V
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1 and V

K/2
2 flux transformations on the bosonic partition functions ZBα0,α1α2

.

invariant. In conclusion, we have the following eight partition functions:

ZBα0,α1α2
=

∑

mµ∈Z3
K

ZBm0m1m2
α0,α1α2

= ZHO
∑

mµ∈Z3
K

∑

Mµ∈Z3

(−1)2α0KΛ0

× exp

[
− V (3)

|ω1 × ω2|2
(
K2Λ2

0

2m
+ 2π2m|Λ1ω2 − Λ2ω1|2

)

− i2πKΛ0

|ω1 × ω2|2
(ω1 × ω2) · (Λ1ω0 × ω2 − Λ2ω0 × ω1)

]
, (3.53)

with parameters,

Λ0 = M0 +
m0

K
, Λ1 = M1 +

m1

K
+ α1, Λ2 = M2 +

m2

K
+ α2,

α0, α1, α2 = 0,
1

2
. (3.54)

These partition functions are mapped one into another by the flux insertions V
K/2
i , i = 1, 2

as shown in figure 9. The characterization of these functions as the bosonic analogues of

the fermionic spin sectors will become clear in the following discussion.

4 Bosonization in (2+1) dimensions

In this section we focus on the bosonic partition functions ZBα0,α1α2
for K = 1. We show

that they have the same modular transformations and other properties of the fermionic

functions ZFα0,α1α2
. We then argue that these quantities are actually describing a fermionic

theory, although different from the free theory of section 2. Our results provide some exact

instances of bosonization in (2 + 1) dimensions, namely on the correspondence between
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(interacting) fermion and boson theories. They concern the transformation properties of

the spectrum under changes of backgrounds, that are actually independent of the dynamics

and thus can be studied in the free limit of the two theories.

The fermionic characterization of the bosonic partition functions will be based on the

following properties:

• The bosonic ZBα0,α1α2
and fermionic ZFα0,α1α2

transform in the same way under mod-

ular transformations and flux insertions.

• Within each sector, they become equal under dimensional reduction to (1 + 1) di-

mensions, where the free bosonic and fermionic theories match exactly.

• The fermion parity is associated to the states of the bosonic theory, and checked

under dimensional reduction.

• The stability argument for fermionic topological states of section 2 is reformulated in

the bosonic theory for K = 1 and then extended to K > 1, thus proving the stability

of fractional topological insulators with odd integer K.

4.1 Modular transformations

We recall from section 2.4 that the action of the modular group SL(3,Z) is described by

the generators T1, S1 and P12. Their action on the oscillator ZHO and solitonic Z
(0)
α0,α1,α2

factors of the partition functions will be described in turn.

Under the P12 transformation,

P12 : ω0 → ω0, ω1 → −ω2, ω2 → ω1, (4.1)

we find that ZHO (3.44) is manifestly invariant. The action on the solitonic part Z(0) (3.53)

(for K = 1) is equivalent to the relabeling of the variables (Λ1 → −Λ2, Λ2 → Λ1), whose

values are integer or half integer depending on the values of α1, α2. Thus, we find

P12 : ZBα0,α1α2
→ ZBα0,α2α1

, α1, α2 = 0,
1

2
. (4.2)

The transformation,

T1 : ω0 → ω0 + ω1, (4.3)

leaves again ZHO invariant. The solitonic partitions do not change under T1 if M1 takes

integer values; for half-integer values, the sums acquire the factor (−1)M0 , thus changing

the value of the index α0 from zero to 1/2 in ZBα0,α1α2
(3.53).

The action of the transformation S1 is obtained by following the same strategy of the

fermionic case in section 2.4 [33]. We first choose the coordinates given in (2.51); the

solitonic part of the partition function Z
(0)
0,00 in (3.53) takes the form (K = 1):

Z
(0)
0,00 =

∑

Mµ∈Z3

exp

(
− τ2M

2
0

4πmR2
− τ2m(2π)3

2R2

[
R2

2 (M1 + βM2)2 +R2
1M

2
2

]

+ 2πiαM0 (M1 + βM2) + 2πiγM0M2

)
, (4.4)
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with parameters defined as,

τ = τ1 + iτ2 = −ω01

ω11
+ i

ω00

ω11
= α+ ir01,

ω12

ω22
= −β, ω02

ω22
= −γ, (4.5)

and r01 = R0/R1. The expressions of the functions for other αµ values are found by replac-

ing M1 →M1 + 1/2, M2 →M2 + 1/2 and inserting the factor (−1)M0 . The transformation

of this expression is,

S1 : Z
(0)
0,00 (τ,R0, R1, R2, β, γ) → Z

(0)
0,00

(
−1

τ
,
R0

|τ | , R1|τ |, R2, γ,−β
)
. (4.6)

The first step is to apply the Poisson resummation formula [13] on the M0 sum, i.e.

∑

M0∈Z
exp

(
−πAM2

0 + 2πiM0B
)

=
1√
A

∑

M ′0∈Z

exp
(
− π
A

(
M ′0 −B

)2)
. (4.7)

Then, another resummation is done on the M1 index and the result is recast into the

original function Z
(0)
0,00(τ,R0, R1, R2, β, γ) times the factor |τ |.

The oscillator part, in the chosen frame and before regularization of the vacuum en-

ergy, reads

ZHO =
∏

~n 6=(0,0)

[(
1− exp

(
−2πτ2

√
(n1 + βn2)2 + (n2r12)2 − 2πi(αn1 + n2(γ + τ1β))

))−1

× exp
(
−πτ2

√
(n1 + βn2)2 + (n2r12)2

)]
. (4.8)

The product over (n1, n2) is separated in the ranges (n1 ∈ Z 6= 0, n2 = 0) and (n1 ∈
Z, n2 ∈ Z 6= 0). The first product, after regularization of the zero point energy, gives

the inverse modulus square of the Dedekind functions |η(τ)|−2, where q = exp(2πiτ).

The second factor can be rewritten in terms of the massive theta functions introduced in

section 2 (2.53), finally leading to the expression:

ZHO(τ,R0, R1, R2, β, γ) =

∣∣∣∣
1

η(q)

∣∣∣∣
2 ∏

n2>0

Θ−1
[βn2,n2γ](τ, r12n2). (4.9)

In this form, the S1 transformation, acting on torus parameters as in (2.57), can be evalu-

ated for each Θ factor. The Dedekind function obeys η(−1/τ) =
√
−iτ η(τ) [13], and the

theta function transforms as given in (2.58). It follows that:

ZHO

(
−1

τ
,
R0

|τ | , R1|τ |, R2, γ,−β
)

=

∣∣∣∣
1

η (−1/τ)

∣∣∣∣
2 ∏

n2>0

Θ[γn2,−βn2]

(
−1

τ
; r12n2|τ |

)

=
1

|τ |

∣∣∣∣
1

η(q)

∣∣∣∣
2 ∏

n2>0

Θ[βn2,γn2](τ ; r12n2)

=
1

|τ |ZHO(τ,R0, R1, R2, β, γ). (4.10)
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Figure 10. Action of the three-dimensional modular group on the bosonic partition functions

ZBα0,α1α2
.

In summary,

S1 : ZB0,00 → ZB0,00. (4.11)

Following the steps illustrated above, we find for the other partition functions the expected

results (K = 1),

S1 : ZBα0,α1α2
(ω0,ω1,ω2) −→ ZBα1,α0α2

(ω0,ω1,ω2). (4.12)

Finally, the complete set of modular transformations is shown in figure 10. This pattern as

well as that for flux insertions in figure 9 are identical to those of the fermionic theory in

figures 5 and 6, provided that the ZBα0,α1α2
are put in suitable positions. Before establishing

a correspondence term to term we need two further steps, the dimensional reduction and

a change of basis, that we now discuss.

4.2 Dimensional reduction

In this section we further characterize the eight bosonic partition functions ZBα0,α1α2
by

performing a dimensional reduction from two to one spatial dimensions, as done in section

2.5 for fermions. The mapping to well-know relations of two-dimensional bosonization [13]

will give useful informations on the nature of the (2 + 1)-dimensional bosonic sectors.

Let us consider the bosonic partition functions (3.53) with K = 1 for a rectangular

torus in the spatial directions, i.e. ω12 = ω21 = 0, for simplicity. We perform again

the Kaluza-Klein dimensional reduction R2 → 0, such that the oscillating and solitonic

modes of energy, respectively, O(n2/R2) and O(M2/R2), are never excited, corresponding

to n2,M2 → 0. Upon setting ω02 = 0, the remaining geometry is that of two-torus in the

plane (x0, x1), with modular parameter τ defined in (4.5). The reduction of the oscillator

part ZHO in eq.(4.4) clearly gives:

ZHO(τ)

∣∣∣∣
n2=0

=

∣∣∣∣
1

η(τ)

∣∣∣∣
2

. (4.13)
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functions ZBα0α1|α2
dimensionally reduced to the (x0, x1) plane.

The solitonic factors Z
(0)
α0,α1α2 are similarly expanded for ω22 → 0. Note that the

classical action (3.9) would vanish in this limit, as well as the solitonic modes. Thus, we

should also vary the mass that appears as a factor, m→∞, such that the following product

remains finite,

mω22 = r2/π, finite, ω22 → 0. (4.14)

We then find the (1 + 1)-dimensional limit:

Z
(0)
0,0|0 =

∑

M0,M1∈Z
q

1
2

(
M0
2r

+rM1

)2
q

1
2

(
M0
2r
−rM1

)2
. (4.15)

This shows that r is the compactification radius of the scalar field in (1+1) dimensions, that

is fixed to r = 1 for mapping to the free fermion [13]. Similar expressions are obtained for

the reductions of the other functions Z
(0)
α0,α1|0, by shifting the integers N1, N2, and adding

the sign as indicated in (3.53), (3.54).

The reduction of the partition functions with α2 = 1/2 and r = 1 leads to the result

ZB
0,0| 12 = (qq)ω

2
11/8ω

2
22

∣∣∣∣
1

η(τ)

∣∣∣∣
2 ∑

M0,M1∈Z
q

1
2

(
M0
2

+M1

)2
q

1
2

(
M0
2
−M1

)2
. (4.16)

This expression differs from (4.15) for the overall ground state energy E0 = O(1/R2
2)→∞,

due to the minimal energy of waves with twisted boundary conditions, that should be

subtracted for a finite limit. Note that in the fermionic dimensional reduction of section 2.5,

a similar factor appeared as a mass in the dispersion relation (2.31). After reduction, the

modular transformations of bosonic functions split again into two SL(2,Z) subgroups, as

shown in figure 11.

It is convenient to rewrite the expressions (4.15), (4.16) in terms of the fermionic

functions for the spin sectors NS, ÑS,R, R̃, by using the bosonization formulae given
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in (2.67)–(2.70). The rewriting of (4.15) requires the following standard manipulations [13]:

splitting in two equal parts, substituting (M0,M1) = (2`, n) (resp. (M0,M1) = (2`−1, n) in

the first (resp. second) part, then replacing `+n = α0, `−n = −α0 in both of them. Next,

the constraint α0 − α0 = 2` can be enforced by inserting the projector (1 + (−1)α0+ᾱ0) /2

into the sums, finally obtaining:

ZB0,0|0 =
1

2

∣∣∣∣
1

η

∣∣∣∣
2 ∑

α0,α0 ∈Z

(
q

1
2
α2
0 q̄

1
2
α2
0 + (−1)α0+α0q

1
2
α2
0 q̄

1
2
α2
0

+ q
1
2(α0+ 1

2)
2

q̄
1
2(α0+ 1

2)
2

+ (−1)α0+α0q
1
2(α0+ 1

2)
2

q̄
1
2(α0+ 1

2)
2
)
. (4.17)

Namely, we find:

ZB0,0|0 =
1

2

(
ZNS + ZÑS + ZR + ZR̃

)
= ZDirac. (4.18)

The other one-dimensional limits of the partition functions become, following similar steps:

ZB
1
2
,0
∣∣0 =

1

2

(
ZNS + ZÑS − ZR − ZR̃

)
∼ ZB

1
2
,0
∣∣ 1
2

, (4.19)

ZB
0, 1

2

∣∣0 =
1

2

(
ZNS − ZÑS + ZR − ZR̃

)
∼ ZB

0, 1
2

∣∣ 1
2

, (4.20)

ZB
1
2
, 1
2

∣∣0 =
1

2

(
−ZNS + ZÑS + ZR − ZR̃

)
∼ ZB

1
2
, 1
2

∣∣ 1
2

. (4.21)

In these formulae, we removed the zero-point energies from the partition functions with

α2 = 1/2.

4.3 Fermion parity in the bosonic theory

Equations (4.18)–(4.21) show that under dimensional reduction the eight bosonic partition

functions ZBα0,α1α2
become linear combinations of fermionic sectors NS, ÑS,R, R̃. Since

ÑS and R̃ involve sums of states with fermion parity (−1)F in (1 + 1) dimensions, we

find that the linear combinations obtained by dimensional reduction realize the projectors

(1 ± (−1)F ), as seen in (4.17). Namely, they identify (1 + 1)-dimensional states of given

parity, that is actually the same for the Neveu-Schwarz and Ramond sectors. This result

is summarized in the following table:

NS R positive Z indefinite Z

(−1)F 1 1 ZB0,0|0 , Z
B
0,0| 1

2

ZB1
2
,0|0 , Z

B
1
2
,0| 1

2

(−1)F −1 −1 ZB
0, 1

2
|0 , Z

B
0, 1

2
| 1
2

ZB1
2
, 1
2
|0 , Z

B
1
2
, 1
2
| 1
2

. (4.22)

In this table, we also distinguish the partition functions that are sums of positive terms,

corresponding to α0 = 0, from those with negative signs, due to the factor (−1)M0 in the

definition (3.53) for α0 = 1/2.

We now discuss the definition of the fermion parity (−1)F in the bosonic theory in

(2+1) dimensions. Lacking a precise construction of fermionic fields in this theory, we shall

adopt a practical approach. A state in (2 + 1) dimensions will be identified as fermionic if
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it matches a (1 + 1) dimensional fermionic state under dimensional reduction. We should

consider both the limits x2 → 0 given by (4.22) and x1 → 0, corresponding to exchanging

α1 ↔ α2. Following this identification, we obtain the table:

Z (−1)F

ZB000 , ZB1
2
,00

1

ZB
0, 1

2
1
2

, ZB1
2
, 1
2

1
2

−1

ZB
0, 1

2
0
, ZB

0,0 1
2

/

ZB1
2
, 1
2

0
, ZB1

2
,0 1

2

/

. (4.23)

The first four partition functions have states with definite fermion parity, because both di-

mensional reductions gives the same assignment. The other four functions have no fermion

parity assignment, denoted by (/), because the dimensional reductions give different re-

sults. For example, ZB
0, 1

2
0

would have fermionic states according to the dimensional reduc-

tion x2 → 0, i.e. ZB
0, 1

2
|0 in table (4.22), and bosonic states under the reduction x1 → 0,

corresponding to ZB
0,0| 1

2

. The nature of solitonic states in these four sectors is unclear: they

could correspond to non-local degrees of freedom in the fermionic theory that are neither

bosonic nor fermionic.

4.4 Bosonic Neveu-Schwarz and Ramond sectors in (2+1) dimensions

In the analysis of the fermionic theory, we were able to identify (2+1)-dimensional analogs

of the partition functions for Neveu-Schwarz and Ramond sectors, that are sums of positive

terms and possess the low-energy expansions:

NS : ZF1
2
, 1
2

1
2

∼ 1 + · · · , R : ZF1
2
,00
∼ 2 + · · · . (4.24)

The first state in the NS sector is the ground state and is bosonic, while the lowest

doublet of the R sector is fermionic. These sectors are mapped one into another by half-

flux insertions, according to figure 5; moreover they occupy a definite position in the pattern

of modular transformations, as shown in figure 6.

In the following, we want to identify bosonic functions that possess these same proper-

ties and, moreover, became equal to the corresponding fermionic functions under reduction

to (1 + 1) dimensions.

According to the patter of bosonic modular transformations shown in figure 10, one

would be led to the identification ZBα0,α1α2
∼ ZFα0,α1α2

; however, the bosonic functions go

into sums of fermionic sectors under dimensional reduction, and moreover, the would-be

bosonic NS sector ZB1
2
, 1
2

1
2

is not a sum of positive terms, that is not physically acceptable.

Note also that dimensional reduction and fermion parity assignments would favor ZB000 as

the candidate NS sector, but this does not have correct modular properties.

The solution to this puzzle is found by considering a change of basis among the bosonic

functions that is an isometry with respect to the action of the modular group and flux
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insertions. Let us first write this transformation and then discuss its features. The map

between the original eight-dimensional basis,

ZB = (ZB1
2
, 1
2

1
2

, ZB
0, 1

2
1
2

, ZB1
2
, 1
2

0
, ZB

0, 1
2

0
, ZB1

2
,0 1

2

, ZB
0,0 1

2

, ZB1
2
,00
, ZB0,00), (4.25)

and the new basis Z ′B = MZB is given by the following matrix:

M =
1

2




−1 1 1 1 1 1 1 1

1 −1 1 1 1 1 1 1

1 1 −1 1 1 1 1 1

1 1 1 −1 1 1 1 1

1 1 1 1 −1 1 1 1

1 1 1 1 1 −1 1 1

1 1 1 1 1 1 −1 1

1 1 1 1 1 1 1 −1




. (4.26)

This transformation leaves invariant the patterns of modular transformations and flux in-

sertions given in figure 10 and figure 9, respectively; namely, M commutes with Ti, Si, V
1/2
i ,

for i = 1, 2. Furthermore, it is unique up to exchanges of space coordinates x1 ↔ x2, that

is the up-down reflection of the patterns of transformations.

The idea behind the derivation of (4.26) is very simple: the action of the modular

group in figure 10 shows that there are two invariants given by the sum of the first seven

elements of the multiplet in (4.25) and by the last element ZB0,00. In the new basis, the

eighth component should be either the sum or the difference of the two invariants; the first

choice is not correct because it would also be invariant under flux insertions. The second

choice is valid; then, the other components of the matrix M are obtained by the action of

flux and modular transformations.

4.4.1 Neveu-Schwarz sector

In the new basis, we are ready to identify the bosonic analogue of the Neveu-Schwarz sector,

that is:

Z ′B1
2
, 1
2

1
2

←→ ZF1
2
, 1
2

1
2

, (4.27)

as suggested by the position occupied in the patterns of transformations. The superposition

of bosonic function is given by:

Z ′B1
2
, 1
2

1
2

=
1

2

(
−ZB1

2
, 1
2

1
2

+ ZB
0, 1

2
1
2

+ ZB1
2
, 1
2

0
+ ZB

0, 1
2

0
+ ZB1

2
,0 1

2

+ ZB
0,0 1

2

+ ZB1
2
,00

+ ZB0,00

)
. (4.28)

This expression involves four pairs of functions that differ for the value of α0 = 0, 1/2:

going back to the definition (3.53), we find that the trace over the states for the first pair

−ZB1
2
, 1
2

1
2

+ ZB
0, 1

2
1
2

includes the projector (−(−1)M0 + 1)/2, M0 ∈ Z, while the other three

pairs involve the term ((−1)M0 +1)/2. In conclusion, the partition function (4.28) contains

terms with positive integer coefficients only, as required.
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The low-energy expansion of the partition functions is done by inspecting the energy

spectrum of solitonic modes (3.40) (K = 1),

Eα1α2
M0M1M2

=
M2

0

2mV (2)
+

(2π)2m

2V (2)
|(M1 + α1)ω2 − (M2 + α2)ω1|2 . (4.29)

This vanishes for α1 = α2 = 0 and M0 = M1 = M2 = 0 and the relative state is found in

the term (ZB1
2
,00

+ ZB0,00)/2 in (4.28). It gives:

Z ′B1
2
, 1
2

1
2

∼ 1 + · · · . (4.30)

This state can be identified with the Neveu-Schwarz, i.e. unperturbed, ground state of the

fermionic system: it is neutral, since M0 = 0, and bosonic owing to the fermion parity

assignments (4.23) to the functions ZB1
2
,00

and ZB0,00. The identification of the ground state

is further confirmed by dimensional reduction. Applying the limits (4.18)–(4.21) to the

linear combination in (4.28), we see that the reductions for x2 → 0 or x1 → 0 gives the

same result by construction, that reads:

Z ′B1
2
, 1
2

1
2

→ 1

2

(
ZNS + ZÑS + ZR − ZR̃

)
+ (exp(−E0))ZNS , (4.31)

where E0 is the energy shift for αi = 1/2 (cf. eq. (4.16)). Therefore, the (2+1)-dimensional

Neveu-Schwarz ground state maps into its (1 + 1)-dimensional analog, as expected. In

summary, we found the following properties of the bosonic Neveu-Schwarz ground state in

(2 + 1) dimensions,

1↔ |Ω〉NS , H |Ω〉NS = Q |Ω〉NS = 0, (−1)F |Ω〉NS = (−1)2S |Ω〉NS = |Ω〉NS . (4.32)

In conclusion, the partition function Z ′B1
2
, 1
2

1
2

in (4.28) has been identified as the bosonic

description of the Neveu-Schwarz sector of an interacting fermionic theory. It involves a

unique ground state and excitations with positive weights. This identification is also sup-

ported by the transformation properties under flux insertions and modular transformations,

as well as by the dimensional reduction. We remark that this boson-fermion correspondence

involves a linear combination of all the partition functions ZBα0,αiα2
, corresponding to the

different quantizations of the bosonic solitonic modes in presence of magnetic and electric

fluxes α0, αi (see section 3.4.1). Analogous linear combinations of partition functions occur

in the (1 + 1)-dimensional bosonization map [13]. In the Discussion, we further comment

this result in relation with the recent literature of bosonization in (2 + 1) dimensions.

4.4.2 Ramond sector

The (2+1)-dimensional Ramond sector is found by doing half-flux insertions V
1/2
i , i = 1, 2,

that map Z ′B1
2
, 1
2

1
2

→ Z ′B1
2
,00

. The corresponding linear combination of bosonic partition

functions (4.25) is given by:

Z ′B1
2
,00

=
1

2

(
ZB1

2
, 1
2

1
2

+ ZB
0, 1

2
1
2

+ ZB1
2
, 1
2

0
+ ZB

0, 1
2

0
+ ZB1

2
,0 1

2

+ ZB
0,0 1

2

− ZB1
2
,00

+ ZB0,00

)
. (4.33)
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As in (4.28), negative terms in the partition sums cancel in pairs and the final expres-

sion only involves positive factors. Therefore, this is consistent with the description of a

fermionic theory in the Ramond sector.

Let us analyze the levels with lower energies (4.29) that are present in the four pairs

(±ZB1
2
α1α2

+ ZB0α1α2
)/2, for α1, α2 = 0, 1. Owing to the minus sign in (−ZB1

2
,00

+ ZB0,00)/2,

the earlier Neveu-Schwarz ground state is absent and the lowest states in this pair occurs

for index M0 = ±1 with energy O(1/mV (2)). The other three pairs of partition functions

are inspected for M0 = 0: they all possess degenerate level pairs, due to form of the

energy (4.29) for αi = 1/2. In particular, let us focus on the level pair coming from the

term (ZB1
2
, 1
2

1
2

+ ZB
0, 1

2
1
2

)/2, which is,

Z ′B1
2
,00
∼ · · ·+ exp

(
−E

1
2

1
2

000

)
+ exp

(
−E

1
2

1
2

0−1−1

)
+ · · · . (4.34)

From the earlier assignments of fermion parity (4.23), the functions ZB1
2
, 1
2

1
2

and ZB
0, 1

2
1
2

possess

fermionic states, (−1)F = (−1)2S = −1. Thus, the two states form a Kramers pair under

time reversal transformations. These are not the lowest energy states in the Ramond sector,

but they are fermionic and one of them, i.e. E
1
2

1
2

000, is the evolution of the Neveu-Schwarz

ground state under the flux insertions. Thus, the states in (4.34) realize the setting of the

Kane-Fu-Mele stability argument, as shown in figure 4. The other low-lying degenerate

pairs belonging to partition functions such as ZB
0, 1

2
0
, do not have a definite fermion parity

assignment; thus, they are not protected by the Kramers theorem.

Summarizing, we have identified in the Ramond sector two degenerate states |v〉R , |v′〉R
with the following properties:

exp(−E
1
2

1
2

000)↔ |v〉R , exp(−E
1
2

1
2

0−1−1)↔ |v′〉R , E
1
2

1
2

000 = E
1
2

1
2

0−1−1,

Q |v〉R = Q |v′〉R = 0, (−1)F = −1 on |v〉R , |v′〉R , T |v〉R = |v′〉R . (4.35)

The analysis of dimensional reduction in the Ramond sector (4.33) shows that the

Kramers pair identified in (4.35) is different from the analog pair relevant in (1+1) dimen-

sions, that is present in the reduction of partition functions with only one flux insertion,

such as ZB
0, 1

2
0
. This result is consistent with the distinction between strong and weak

stability for topological insulators in three space dimensions [18–21]: the surface theo-

ries considered here realize the strong stability case, while the weak topological insulators

correspond to stacks of two-dimensional systems.

4.5 Stability of bosonic topological insulators

The previous analysis has shown that the bosonic edge theory for K = 1 possesses fermionic

degrees of freedom: these are not free particles, but nonetheless their partition functions

show the characteristic eight spin sectors, that are mapped one into the other by the

addition of half fluxes across the two loops of the Corbino geometry and by modular

transformations.
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The analysis regarding transformations, dimensional reductions and fermion parity can

be extended to the bosonic theory with odd integer values of K > 1 describing fractional

topological insulators. A few clarifications are needed:

• The maps between sectors are found by adding K/2 fluxes instead of half fluxes, as

shown in figure 9.

• Each partition function splits into K3 anyon sectors for mµ = 0, 1, . . . ,K − 1 and

µ = 0, 1, 2, as shown in eq. (3.53):

ZBα0,α1α2
=

∑

mµ∈Z3
K

ZBm0m1m2
α0,α1α2

, (4.36)

where the indices mµ are as the fractional parts of solitonic numbers, Λµ = Mµ +

mµ/K.

• The analysis of states and energetics for K = 1 is also valid for K > 1, since it applies

to the electron spectrum that is contained in the sub-partition function (4.36) with

mµ = 0 for each spin sector.

• The pattern of modular transformations among the spin sectors is again given by

figure 9; the anyonic sectors transform linearly by K3-dimensional unitary matrices

that will be described later.

The strategy to prove the stability of bosonic (fractional) topological insulators will

be the following: repeat the Fu-Kane-Mele stability argument for fermionic insulators of

section 2.3, addressing the fermionic states identified in the bosonic theory by the previous

analysis.

The ground states |Ω〉NS of the bosonic Neveu-Schwarz sector Z ′B1
2
, 1
2

1
2

in (4.30), (4.32),

with energy E00
000, evolves under flux additions ∆Φi = KΦ0/2, i = 1, 2, into the Ra-

mond state |v〉R, with energy E
1
2

1
2

000 in (4.34), (4.35). Being fermionic, this state possesses

a Kramers partner with energy E
1
2

1
2

0−1−1; the pair remains degenerate upon adding time-

reversal invariant interactions to the Hamiltonian. Then, the evolution back to zero flux

of the partner state |v′〉R leads to the following excited state of the Neveu-Schwarz sector,

|ex〉NS ↔ exp(−E00
0−1−1), (4.37)

whose energy is of order O(1/R1, 1/R2) (see figure 4). It follows that the bosonic spectrum

stays gapless (in the thermodynamic limit) in presence of time-reversal invariant interac-

tions. This completes the proof of stability of fractional topological insulators described

by the BF theory with odd integer coupling K.

It is worth stressing the usefulness of the effective field theory approach for interacting

topological states. The stability argument originally formulated using band theory was

first translated into the language fermionic surface states and then reformulated in terms

of properties of partition functions [24]. Then, the map between fermionic and bosonic

– 41 –



J
H
E
P
0
5
(
2
0
1
7
)
1
3
5

partition functions was used to extend the argument to interacting topological states within

the hydrodynamic approach.

The stability of surface excitations can be again related to a Z2 anomaly. Indeed,

the half-flux addition maps states in the bosonic Neveu-Schwarz and Ramond sector that

possess different spin parity (fermion parity), according to the earlier discussion. However,

this quantity is conserved by time-reversal symmetry and no explicit breaking has been

introduced. Therefore, similarly to the fermionic case, we interpret this change as being a

discrete Z2 anomaly, which is equivalent to the Z2 index of stability [24].

4.5.1 Modular transformations

We now determine the transformations of the bosonic partition functions (3.53) with K > 1.

The oscillator part of partition functions ZHO does not depend on K and its transforma-

tions were described in section 4.1. The K3 anyon sectors ZBm0m1m2
α0,α1α2

for each spin sector

carry a unitary linear representation of the modular group. This is just the generalization

of the K2 sectors in in (1 + 1) dimension, called Kλ(τ)K(τ)λ′ ,λ, λ
′ ∈ ZK in [24, 32], with

the difference that there is no chiral factorization. The action of T1 reads:

T1 : ZBm0m1m2
α0,0α2

→ exp
(
−2πi

m0m1

K

)
ZBm0m1m2
α0,0α2

,

ZBm0m1m2
1
2
, 1
2
α2

→ exp
(
−2πi

m0m1

K

)
ZBm0m1m2

0, 1
2
α2

,

ZBm0m1m2

0, 1
2
α2

→ exp
(
−2πi

m0m1

K

)
ZBm0m1m2

1
2
, 1
2
α2

. (4.38)

Furthermore, S1 is represented by:

S1 : ZBm0m1m2
α0,α1α2

→
∑

m̃0,m̃1∈ZK

1

K
exp

(
2πi

m̃1m0 + m̃0m1

K

)
ZB m̃0m̃1m2
α1,α0α2

. (4.39)

The map between spin sectors for K > 1 is equal to that of K = 1 shown in figure 10. As

in earlier discussions, the action of T2 and S2 can be found with the help of the parity P12,

leading to the matrices:

(T2)mµ,m̃µ = δ
(3)
mµ,m̃µ

exp
(

2πi
m0m2

K

)
,

(S2)mµ,m̃µ =
1

K
δm1,m̃1 exp

(
2πi

m̃2m0 + m̃0m2

K

)
, (4.40)

acting between sectors as in figure 10.

In section 3.3 we recalled the quantization of the global degrees of freedom of the BF

theory on the spatial three-torusM = T3×R. We then discussed the relation between bulk

and boundary observables, and how the bulk spectra is reproduced in the quantization of

the surface bosonic theory, through the quantum numbers of solitonic states. We note that

the matrices T1, T2 reproduce the statistical phases coming from braiding anyons around

vortex lines [68, 69]. This is one instance of the ‘bulk-boundary’ correspondence between

observables, that has been stressed in ref. [34] and further investigated for more general

hydrodynamic theories realizing the three-loop braiding statistics [70–73].
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More precisely, in the geometry of the thick spatial two-torus of figure 8, the conser-

vation of charge and flux between bulk and boundary implies that the partition function

with anyon indices (m0,m1,m2) describes the edge theory in presence of bulk charge −m0

and bulk fluxes (−m1,−m2). Modular invariant partition functions are obtained as usual

by taking linear combinations of anyon sectors. We should consider the case of vanishing

bulk charge m0 = 0, otherwise there is no symmetry on exchanging space and time. The

following expression summing over all fractional values of the fluxes (m1,m2),

ZBα0,α1α2
=

∑

m1,m2∈ZK

Z ′B 0m1m2
α0,α1α2

, (4.41)

is left invariant by the modular transformations, apart from the usual maps between spin

sectors in figure 10. Of course this expression matches earlier results [24] under the dimen-

sional reduction of section 4.2.

We remark that the stability of the bosonic topological insulators is again related to

the the impossibility of writing a modular invariant partition function that is consistent

with the physical requirements. The expression that is invariant under V
K/2

1 , V
K/2

2 and

the modular group is the sum over the eight bosonic spin sectors of (4.41),

ZBINV =
∑

α0,α1,α2=0, 1
2

ZBα0,α1α2
. (4.42)

In analogy with the fermionic case in section (2.4), this partition function is not consistent

with time-reversal symmetry due to the presence of the Z2 anomaly, the change of the

spin parity between the Neveu-Schwarz and Ramond sectors. Therefore, time-reversal

symmetry requires not to sum over the sectors, leaving an octet of functions ZBα0,α1α2
that

are modular covariant.

5 Discussion

In this paper we have analyzed the fermionic and bosonic theories for massless surface

states of topological insulators in (3 + 1) dimensions. We have discussed their effective

actions and computed the partition functions on the three-dimensional torus. We have

found that their expressions are different in the two theories but transform in the same

way for large gauge transformations of the backgrounds, i.e. for magnetic flux insertions

and modular transformations. Of course, the partition functions become equal under di-

mensional reduction, owing to the exact map between free bosons and fermions in (1 + 1)

dimensions.

In particular:

• The theory of the compactified boson with properly quantized solitonic spectra dis-

plays eight spin sectors on the torus geometry as the fermionic theory.

• The Neveu-Schwarz (antiperiodic in space) and Ramond (periodic) sectors of the

fermionic theory have been identified in the bosonic theory, together with their

fermion parity assignments.
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• The Fu-Kane-Mele argument for stability of topological insulators in presence of

time-reversal invariant interactions has been reformulated in terms of properties of

partition functions for fermionic surface states.

• The stability argument has been extended to bosonic states, using the map between

fermionic and bosonic partition functions.

• The bosonic theory in (2 + 1) dimensions corresponds to a yet unknown theory of

massless interacting fermions, and may also contain non-local degrees of freedom. It

describes the surface states of topological insulators with fractional Abelian statistics

of odd integer parameter K.

These results add small bits of information for understanding the bosonization of rel-

ativistic particles in (2 + 1) dimensions, that are nonetheless exact properties at the quan-

tum level.

Let us briefly discuss how our study of the bosonic theory is related with recent con-

jectures of bosonization in (2 + 1) dimensions (for K = 1). The basic physical picture

underlying these correspondences is that of ‘attaching flux tubes to particles’, that changes

the statistics from fermionic to bosonic and viceversa. One flux per particle can be at-

tached by coupling matter to a ‘statistical’ gauge field Aµ with Chern-Simons action and

coupling K = 1: this interaction can be removed by a (singular) gauge transformation that

changes the statistics of wavefunctions [1]. Flux attachment is an experimental fact for non-

relativistic quasiparticles in the fractional quantum Hall effect, although only understood

at the level of ansatz wavefunctions and mean field theory.

Recently, several authors have suggested that flux attachment also holds for relativistic

theories [74–80]. For example, a map exists between the Dirac fermion and complex scalar

theories, both including self-interactions, with the boson coupled to the Chern-Simons field

for changing statistics [79, 80]. In our analysis of the bosonic theory, we do not include

the Chern-Simons field, but the flux attachment is represented by the choice of boundary

conditions for the soliton excitations in the Ramond sector (3.50)–(3.51), corresponding

to half fluxes added along the two spatial cycles of the torus. A main difference between

our approach and recent bosonization studies is the compactification of the bosonic field

that is not discussed in [79, 80]. Let us remark that our attempts to bosonization are

physically motivated by the hydrodynamic theory of topological states of matter, uniquely

fixing the surface degrees of freedom and the coupling to the backgrounds, as explained

in section 3. Regarding the dynamics of the bosonic theory, we pointed out that more

than one Hamiltonian is compatible with the topological data; in section 3.2 we actually

introduced a second non-local bosonic action (3.19).

Possible developments of our analysis are the following:

• The study of the bosonic theory presented in this paper can be repeated for the

non-local dynamics (3.19).

• The study of bosonic surface theories can also be extended to models with two BF

hydrodynamic fields that are necessary to describe the three-loop braiding statistics,

following the works [70–73].
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• The bosonic theory (3.9) discussed in this paper can be further analyzed for construct-

ing fermionic operators in (2 + 1) dimensions. So far, attempts to finding generalized

vertex operators by the so-called tomographic representation have been done at the

semiclassical level [58–61]. A first question in this direction is about the realization

of the conformal symmetry in the bosonic theories (3.9) and (3.19).
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