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Abstract: We construct the quartic version of generalized quasi-topological gravity, which

was recently constructed to cubic order in arXiv:1703.01631. This class of theories in-

cludes Lovelock gravity and a known form of quartic quasi-topological gravity as special

cases and possess a number of remarkable properties: (i) In vacuum, or in the presence

of suitable matter, there is a single independent field equation which is a total derivative.

(ii) At the linearized level, the equations of motion on a maximally symmetric background

are second order, coinciding with the linearized Einstein equations up to a redefinition of

Newton’s constant. Therefore, these theories propagate only the massless, transverse gravi-

ton on a maximally symmetric background. (iii) While the Lovelock and quasi-topological

terms are trivial in four dimensions, there exist four new generalized quasi-topological terms

(the quartet) that are nontrivial, leading to interesting higher curvature theories in d ≥ 4

dimensions that appear well suited for holographic study. We construct four dimensional

black hole solutions to the theory and study their properties. A study of black brane solu-

tions in arbitrary dimensions reveals that these solutions are modified from the ‘universal’

properties they possess in other higher curvature theories, which may lead to interesting

consequences for the dual CFTs.
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1 Introduction

It is generally expected that in a quantum theory of gravity the Einstein-Hilbert action will

be modified by the addition of higher curvature terms. Within the context of string theory,

these appear in the α′ corrections to the low energy effective action, including the Gauss-

Bonnet term, which falls into the Lovelock class [1], and various higher order corrections

which have been computed by various authors [2–5].

More pragmatically, higher curvature gravity is interesting in its own right. It has

been known for more than forty years that these theories allow for renormalizable quantum
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gravity [6]. In the context of holography, the study of higher curvature toy models has led

to the discovery of numerous interesting properties — some universal [7] — of conformal

field theories [8–12]. For example, the inclusion of quadratic terms has been shown to lead

to violations of the Kovtun-Son-Starinets (KSS) viscosity/entropy ratio bound [12, 13] and

studies of cubic curvature theories have led to holographic c-theorems [14], valid in arbitrary

dimensions [15]. Thermodynamic considerations reveal that black holes in higher curvature

theories have nontrivial behaviour, giving rise to isolated critical points and superfluid-like

phase transitions [16–18].

Holographic considerations partially motivated the construction of a new cubic the-

ory of gravity, quasi-topological gravity [19–27], which possesses a number of remarkable

properties. While the cubic Lovelock term — the six dimensional Euler density — is grav-

itationally non-trivial only in d > 6, the cubic quasi-topological term contributes to the

field equations in five dimensions and higher. The equations of motion, which are fourth

order on general backgrounds, reduce to second order under the restriction to spherical

symmetry. The theory admits exact spherically symmetric black hole solutions with the

metric function determined by a polynomial equation very similar to the Wheeler polyno-

mial of Lovelock gravity. Remarkably, despite the field equations being fourth order on

general backgrounds, the linearized equations of motion describing graviton propagation

in a maximally symmetric background are second order and match the linearized Einstein

equations, up to a redefinition of Newton’s constant [21, 28]. In other words, the additional

massive scalar mode and massive, ghost-like graviton are absent. The upshot of this is that

quasi-topological gravity avoids an unpalatable feature that afflicts many higher curvature

theories: the propagation of ghosts and tachyons in the vacuum.

In a recent paper [29] two of us have shown that cubic quasi-topological gravity and

cubic Lovelock gravity can be understood as members of a class of gravitational theories —

generalized quasi-topological gravity — which, under the restriction of spherical symmetry,

have a single independent field equation. This is a sufficient condition to allow vacuum

static spherically symmetric (VSSS) solutions described by a single metric function; that

is, solutions of the form

ds2 = −N2fdt2 +
dr2

f
+ r2dΣ2

(d−2),k , (1.1)

with N = const., i.e., the solution is characterized in terms of a single metric function

f [30].1 Here dΣ2
(d−2),k is the line element on a surface of constant scalar curvature

k = +1, 0,−1 corresponding to spherical, flat, and hyperbolic topologies. In [29] we demon-

strated that the most general theory to cubic order in curvature having this property is

given by the action

I =
1

16πG

∫
ddx
√
−g
[
−2Λ +R+ αX4 + βX6 + µZd − λSd

]
. (1.2)

1Henceforth we normalize N to unity, setting N = 1. This can be achieved without loss of generality by

reparametrizing the time coordinate t.
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Here, Λ is the cosmological constant and α, β, µ, λ are arbitrary coupling constants. R

stands for the Ricci scalar and X4 and X6 are the four- and six-dimensional Euler densities,

X4 = −1

4
δa1b1a2b2c1d1c2d2

Ra1b1
c1d1Ra2b2

c2d2 ,

X6 = −1

8
δa1b1a2b2a3b3c1d1c2d2c3d3

Ra1b1
c1d1Ra2b2

c2d2Ra3b3
c3d3 , (1.3)

corresponding to the standard Gauss-Bonnet and cubic Lovelock terms, respectively. Zd
is the cubic quasi-topological term given by (2.6) below, and Sd is a new term whose

explicit form

Sd = 14Ra
e
c
fRabcdRbedf + 2RabRa

cdeRbcde −
4(66− 35d+ 2d2)

3(d− 2)(2d− 1)
Ra

cRabRbc

− 2(−30 + 9d+ 4d2)

(d− 2)(2d− 1)
RabRcdRacbd −

(38− 29d+ 4d2)

4(d− 2)(2d− 1)
RRabcdR

abcd

+
(34− 21d+ 4d2)

(d− 2)(2d− 1)
RabR

abR− (30− 13d+ 4d2)

12(d− 2)(2d− 1)
R3 (1.4)

was elucidated for the first time in [29]. Interestingly, while both the cubic Lovelock

and quasi-topological terms vanish in four dimensions, the new term S4 makes a non-

trivial contribution to the field equations, reducing to the contribution from Einsteinian

cubic gravity [31]. However, while Einsteinian cubic gravity does not permit solutions of

the form (1.1) in d > 4, Sd does. In this sense, Sd can be viewed as the d-dimensional

generalization of the four-dimensional Einsteinian cubic term.

In [29] it was observed that the linearized equations of motion derived from the ac-

tion (1.2) coincide with the linearized Einstein equations, up to a redefinition of Newton’s

constant. Thus, to cubic order in curvature, the entire class of theories which have a single

independent field equation for a VSSS ansatz enjoy the property of propagating only the

massless, transverse graviton familiar from Einstein gravity. In [29] it was conjectured

that this would be a general feature for this class of theories to all orders in the curvature.

Shortly after this, it was demonstrated in [32] that this is indeed the case for any theory for

which the metric (1.1) describes the gravitational field outside a spherically symmetric mass

distribution. This caveat explains why some theories, such as f(R) gravity, admit solutions

of the form (1.1) with N = 1 but also propagate additional modes on the vacuum: in these

theories, the metric (1.1) does not describe the gravitational field of a spherical mass [32].

The aim of the present paper is to provide the quartic version of generalized quasi-

topological gravity: describing all quartic Lagrangian densities which, under the restriction

to a VSSS ansatz, have only a single independent field equation. We find a rather broad

class of interesting theories, including five new quasi-topological theories and several quartic

generalizations of the cubic Lagrangian (1.4).

Our paper is organized as follows. In section 2 we first review the procedure by which

the generalized quasi-topological gravities can be constructed, and present the results of

this construction for the quartic case. In section 3 we discuss the linearized theory and in

section 4 we derive the field equations from the actions we construct. Finally, in section 5
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we present the contributions to the Wald entropy arising from each of the interactions

presented, and we present four-dimensional black hole solutions of this theory. We go on

to study black brane solutions in arbitrary dimensions, finding they satisfy the expected

relations of a CFT living in one dimension less.

2 Construction of the quartic theories

2.1 Review of the construction

We begin by briefly reviewing the construction used to obtain the generalized quasi-

topological theories in [29]. We refer the reader also to ref. [32] where this general strategy

has recently been nicely discussed. The central idea is to construct theories that supple-

ment Einstein gravity with higher curvature terms in a manner such that these terms can

be “turned off” by a suitable adjustment of parameters in the action. Our conditions are

the same as those mentioned in [33] and are, effectively, designed so that the most general

solution of the theory takes the form of (1.1) with N = 1. Explicitly, the conditions are:

1. The solution is not an ‘embedding’ of an Einstein gravity black hole into a higher

order gravity [34–36]. That is, the solution must be modified by the addition of the

higher curvature terms.

2. The solution is not of a pure higher order gravity, but includes the Einstein-Hilbert

term. For example, pure Weyl-squared gravity allows for four dimensional solutions

with N = 1 [34, 37–39].

3. Further, the theory must admit an Einstein-Gravity limit, i.e. reduce to the Einstein-

Hilbert action upon setting some of the parameters in the action to zero. This

excludes certain theories that tune the couplings between the various orders of cur-

vature terms [40, 41].

A sufficient condition for this is that, upon setting N = 1 in the vacuum field equations,

we are left with only a single independent field equation for any metric function f(r). That

is, we demand that, (
E tt − Err

) ∣∣
N=1

= 0 , (2.1)

where

Eab =
1√
−g

δI
δgab

(2.2)

is the generalized Einstein tensor.2 We emphasize once again that in enforcing eq. (2.1)

we do not place any constraints on the metric function f . In a general quartic theory,

evaluating the field equations in full generality is an arduous task. It is more convenient to

enforce (2.1) by taking advantage of the Weyl method [42, 43]. Here, one inserts the metric

2Note that in the case of spherical symmetry, the angular components of the field equations are satisfied

provided the time and radial components of the field equations are satisfied. This is a consequence of the

contracted generalized Bianchi identity, ∇aEab = 0, which follows from the diffeomorphism invariance of

the theory.
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ansatz (1.1) into the action, integrates by parts to remove boundary terms, and varies the

action with respect to N and f to obtain the two field equations. A simple application of

the chain rule reveals that

δI
δN

= ω
(k)
(d−2)r

d−2 2Ett
fN2

,
δI
δf

= −
ω
(k)
(d−2)r

d−2

f

[
E tt −NErr

]
(2.3)

and so condition (2.1) becomes
δI
δf

∣∣∣∣
N=1

= 0 (2.4)

as was pointed out in [32].

Carrying out this procedure for a cubic theory of gravity, one is led to the following

action

I =
1

16πG

∫
ddx
√
−g
[
−2Λ +R+ αX4 + βX6 + µZd − λSd

]
, (2.5)

where Λ is the cosmological constant and α, β, µ, λ are arbitrary coupling constants. R

stands for the Ricci scalar and X4 and X6 are the four- and six-dimensional Euler densities,

corresponding to the standard Gauss-Bonnet and cubic Lovelock terms, respectively. Zd
is the cubic quasi-topological term,

Zd = Ra
b
c
dRb

e
d
fRe

a
f
c +

1

(2d− 3)(d− 4)

(
3(3d− 8)

8
RabcdR

abcdR− 3(3d− 4)

2
Ra

cRc
aR

− 3(d− 2)RacbdR
acb

eR
de + 3dRacbdR

abRcd + 6(d− 2)Ra
cRc

bRb
a +

3d

8
R3

)
, (2.6)

and Sd is a new term, written explicitly in (1.4).

Here we are interested in constructing the quartic generalization of this action. We

consider the following basis of quartic invariants [28, 44]:

L1=Ra
e
c
fRabcdRe

j
b
hRfjdh, L2=Ra

e
c
fRabcdRbjdhRe

j
f
h, L3=Rab

efRabcdRc
j
e
hRdjfh,

L4=Rab
efRabcdRce

jhRdfjh, L5=Rab
efRabcdRcdjhRef

jh, L6=Rabc
eRabcdRfhjdR

fhj
e,

L7=(RabcdR
abcd)2, L8=RabRc

h
eaR

cdefRdhfb, L9=RabRcd
h
aR

cdefRefhb,

L10=RabRa
c
b
dRefhcR

efh
d, L11=RRa

c
b
dRc

e
d
fRe

a
f
b, L12=RRab

cdRcd
efRef

ab,

L13=RabRcdRebfdR
e
a
f
c, L14=RabRcdRecfdR

e
a
f
b, L15=RabRcdRefbdR

ef
ac,

L16=RabRb
cRdefcR

def
a, L17=RefR

efRabcdR
abcd, L18=RdeRRabcdR

abc
e,

L19=R2RabcdR
abcd , L20=RabRe

dRecRacbd, L21=RacRbdRRabcd ,

L22=Ra
bRb

cRc
dRd

a, L23=(RabR
ab)2, L24=Ra

bRb
cRc

aR,

L25=RabR
abR2, L26=R4 . (2.7)

It is worth noting that in dimensions less than eight, the above 26 curvature invariants are

not independent. The reason is because a certain linear combination of these yields the

eight dimensional Euler density,

X8 =
1

24
δa1b1a2b2a3b3a4b4c1d1c2d2c3d3c4d4

Ra1b1
c1d1Ra2b2

c2d2Ra3b3
c3d3Ra4b4

c4d4 (2.8)
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which vanishes identically in dimensions less than eight. Furthermore, under the restric-

tion to spherical symmetry, there are additional, subtle degeneracies. There exist certain

combinations of the above curvature invariants that identically vanish for spherically sym-

metric metrics [45]. Thus, we can expect certain degeneracies of theories in the spherically

symmetric case: the field equations will not change upon the addition of one of these terms

to the action. However, we should note that the resulting theories will be different when

one moves away from spherical symmetry.

In what follows we focus on the quartic contributions to the action and write the

following action

I =
1

16πG

∫
ddx
√
−g

[
−2Λ +R+

26∑
i=1

ciLi

]
(2.9)

turning off the quadratic and cubic terms for the time being. In the following subsections

we will enforce condition (2.4) on this theory by fixing the constants ci such that the

condition is satisfied for any metric function f . From a practical perspective, we first

compute the action (2.9) in complete generality by explicitly determining each of the 26

terms in arbitrary dimensions for a VSSS ansatz. This procedure is made significantly more

manageable via a simple script used to determine the dimension dependence. Our results

have been cross-checked up to (in some cases) 19 dimensions. All subsequent calculations

were then performed working directly with this completely general action.

We will split our discussion into two main parts, focusing first on the case of dimensions

larger than four and then the four dimensional case separately. As was the case in the cubic

theory [29], the four dimensional case is somewhat special, while all other dimensions can

be treated on equal footing.

2.2 The case for dimensions larger than four

In five and higher dimensions, there are nine constraints that determine the class of theories

with this property. We, somewhat arbitrarily, solve the constraints for c12, c17, c19, c20,

c21, c22, c23, c24 and c25, yielding lengthy expressions that we have included in appendix A.

There are then 17 free parameters that we can adjust to find interesting quartic curvature

terms. For organizational purposes, to classify these theories we will split them into two

convenient categories: theories in which the resulting field equation is the total derivative

of a polynomial of the metric function, and theories in which the field equation contains

more than one derivative of the metric function. In each case we will make remarks about

the field equations, but postpone a full discussion of the resulting field equations until

section 4. Here our aim is to present a convenient basis for the 17 quartic theories.

2.2.1 Lovelock and quasi-topological theories

We begin by determining what additional constraints are required so that all terms in

the action leading to more than one derivative in the field equations for the VSSS metric

function f (see section 4) are eliminated. The resulting field equation is then a total

derivative of a polynomial in f . We find that two additional constraints is the minimum

number required to eliminate these higher derivative terms in the action. We have checked

– 6 –
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that the conclusions that follow do not intimately depend on which two constants are solved

for in these two constraints. Choosing somewhat arbitrarily c9 and c15, we find

c9 = −
2
(
−8 + 2d4 − 23d+ 39d2 − 16d3

)
(3d− 4) (d− 4) (d2 − 6d+ 11)

c1 −
2
(
122 + 130d2 − 207d− 37d3 + 4d4

)
(3d− 4) (d− 4) (d2 − 6d+ 11)

c2

− (5d− 7) (d− 4)

(3d− 4) (d2 − 6d+ 11)
c3 −

8
(
82 + 82d2 − 21d3 + 2d4 − 139d

)
(3d− 4) (d− 4) (d2 − 6d+ 11)

c4

−
16
(
82 + 82d2 − 21d3 + 2d4 − 139d

)
(3d− 4) (d− 4) (d2 − 6d+ 11)

c5 −
4 (d− 2) (d− 3)

(
4d2 − 17d+ 16

)
(3d− 4) (d− 4) (d2 − 6d+ 11)

c6

− 32 (d− 1) (d− 3) (d− 2)2

(3d− 4) (d− 4) (d2 − 6d+ 11)
c7 −

(d− 4)

2 (d2 − 6d+ 11)
c8 −

(d− 3) d

2 (d2 − 6d+ 11)
c10 ,

c15 =
8d7 − 111d6 + 570d5 − 1190d4 + 210d3 + 2725d2 − 3308d+ 1024

(3d− 4) (d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)
c1

+
2 (d− 1)

(
8d6 − 116d5 + 689d4 − 2141d3 + 3661d2 − 3197d+ 988

)
(3d− 4) (d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)

c2

+
13d5 − 167d4 + 781d3 − 1615d2 + 1396d− 384

(3d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)
c3

+
8
(
4d7 − 70d6 + 513d5 − 2022d4 + 4566d3 − 5760d2 + 3557d− 716

)
(3d− 4) (d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)

(c4 + 2c5)

+
4 (d− 1)

(
8d6 − 116d5 + 673d4 − 1966d3 + 2983d2 − 2148d+ 512

)
(3d− 4) (d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)

c6

+
32 (d− 1)

(
2d4 − 15d3 + 32d2 − 9d− 4

)
(d− 2) (d− 3)

(3d− 4) (d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)
c7

+
(d− 3)2

(
d2 − 6d+ 2

)
(d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)

c8 +
(d− 4)

(
3d3 − 21d2 + 37d− 11

)
(d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)

c10

− d3−8d2+19d−8

2 (d3−7d2+14d−4)
c13−

d (d−3)

d3−7d2+14d−4
c14+

(d−1) (d−4)

d3−7d2+14d−4
c16 . (2.10)

We can place two additional constraints to remove the factors containing more than

two derivatives of N(r) in the action. Of course, these terms would vanish anyway since

the theory is constructed in such a way that N = 1 solves one of the field equations, but

imposing these additional constraints renders the variational principle much less cumber-

some. The fact that it is possible in this class of theories to kill off the higher powers of

derivatives of N(r), combined with the fact that the field equations for the resulting theory

are algebraic, is consistent with Conjecture 2 of [32]. Choosing c18 and c26 for this task,

we find

c18 =
1

(3d− 4) (d− 4) (d2 − 6d+ 11) (d3 − 7d2 + 14d− 4) (d3 − 9d2 + 26d− 22)
×

×
[
− 2(2d10 − 112640d2 + 6558d6 + 71315d3 − 2329d7 − 16827d4 + 447d8

− 46d9 − 6654d5 + 87822d− 28032)c1 − 4(2d10 + 156501d2 + 16490d6

− 158736d3 − 3749d7 + 107067d4 + 562d8 − 50d9 − 50145d5 − 92828d+ 25270)c2

− 2(d− 4)(4d8 − 92d7 + 900d6 − 4901d5 + 16264d4 − 33711d3 + 42690d2

– 7 –
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− 30290d+ 9280)c3 − 16(d10 + 81391d2 + 10461d6 − 93331d3 − 2292d7

+ 67198d4 + 325d8 − 27d9 − 32176d5 − 39268d+ 7550)c4 − 32(d10 + 81391d2

+ 10461d6 − 93331d3 − 2292d7 + 67198d4 + 325d8 − 27d9 − 32176d5

− 39268d+ 7550)c5 − 8(2d10 + 88410d2 + 15059d6 − 106219d3 − 3597d7

+ 81940d4 + 555d8 − 50d9 − 42522d5 − 42618d+ 9088)c6

− 32 (d− 2) (d− 3) (d8 − 18d7 + 137d6 − 573d5 + 1436d4 − 2191d3 + 1884d2

− 584d− 164)c7 + 1
2(3d− 4)(d− 4) (d− 3) (5d5 − 60d4 + 281d3 − 626d2

+ 632d− 184)c8
]
−

(d− 5)
(
d3 − 6d2 + 10d− 6

)
(d2 − 6d+ 11) (d3 − 7d2 + 14d− 4)

c10

+
3 (d− 1) (d− 3)

d3 − 9d2 + 26d− 22
c11 −

(d− 3)2

d3 − 7d2 + 14d− 4
c13 + 2

(d− 3)

d3 − 7d2 + 14d− 4
c14

− 2 (d− 3)2

d3 − 7d2 + 14d− 4
c16 ,

c26 =
1

(3d− 4) (d− 2)3 (d2 − 6d+ 11) (d3 − 9d2 + 26d− 22) (d2 − 7d+ 14) (d− 4)
×

×
[
c1
24

(147d10 + 340880d2 + 2457d6 − 20d11 − 475564d3 + 6300d7 + 317426d4

− 927d8 − 366d9 + d12 − 97214d5 − 87616d− 2048) +
c2
12

(200d10 − 467516d2

− 29192d6 − 22d11 + 359578d3 + 3084d7 − 208682d4 + 1757d8 − 919d9 + d12

+ 94783d5 + 393168d− 155456) +
c3
12

(d− 4)(d10 − 20d9 + 150d8 − 440d7

− 401d6 + 6292d5 − 16150d4 + 12280d3 + 13312d2 − 26080d+ 10240)

+
c4
6

(d− 2)(d11 − 22d10 + 194d9 − 806d8 + 995d7 + 4130d6 − 13426d5 − 20342d4

+ 181192d3 − 412060d2 + 442000d− 194240) +
c5
3

(d− 2)(d11 − 22d10 + 194d9

− 806d8 + 995d7 + 4130d6 − 13426d5 − 20342d4 + 181192d3 − 412060d2

+ 442000d− 194240) +
c6
6

(195d10 + 499536d2 − 13335d6 − 22d11 − 403948d3

+ 3582d7 + 163666d4 + 1153d8 − 826d9 + d12 − 14578d5 − 316736d+ 79872)

+
c7
3

(d− 2)(d11 − 18d10 + 122d9 − 324d8 − 169d7 + 2302d6 + 810d5 − 28868d4

+ 88832d3 − 152480d2 + 168128d− 87552)

]
−

(
3d4 − 28d3 + 105d2 − 176d+ 120

)
(d− 4)2

4 (d2 − 7d+ 14) (d3 − 9d2 + 26d− 22) (d2 − 6d+ 11) (d− 2)3
c8

−
(
d4 − 6d3 + 8d2 + 18d− 24

)
2 (d2 − 7d+ 14) (d2 − 6d+ 11) (d− 2)3

c10

+

(
d5 − 10d4 + 29d3 + 16d2 − 172d+ 152

)
2 (d2 − 7d+ 14) (d3 − 9d2 + 26d− 22) (d− 2)3

c11 +
(d− 4)

2 (d2 − 7d+ 14) (d− 2)3
c13

– 8 –



J
H
E
P
0
5
(
2
0
1
7
)
1
3
4

−
(
d2 − 6d+ 12

)
2 (d2 − 7d+ 14) (d− 2)3

c14 +
(d− 4)

(d2 − 7d+ 14) (d− 2)3
c16

−
(
d3 − 8d2 + 20d− 8

)
2 (d2 − 7d+ 14) (d− 2)3

c18 . (2.11)

Such theories yield a field equation of the form appearing in quartic Lovelock gravity or

the more general quartic quasi-topological gravity [26]: a total derivative of a polynomial

in f(r). However, although there are still 13 free parameters after the two additional con-

straints (2.10) are imposed, given the constraints in appendix A and eqs. (2.10) and (2.11),

we find that only seven of these terms make non-trivial contributions to the field equations;

these are characterized by the constants c1, c2, c3, c4, c5, c6 and c7. Of these seven non-

trivial theories, we know that one must correspond to quartic Lovelock gravity; i.e. there

must be a choice of constants that produces the eight dimensional Euler density. We find

that this to be

X8 : c1=96, c2=−48, c3=96, c4=−48, c5=−6, c6=48, c7 = −3,

c8=−384, c10=−192, c11=32, c13=−192, c14=192, c16=−192. (2.12)

Another known term ensuring a non-trivial field equation is the selection

Z(1)
d : c1 = 0, c2 = 8(d−2)(860−2113d+1959d2−810d3+102d4+30d5−11d6+d7)

c3 = 0, c4 = 0, c6 = 0,

c5 = −(d− 2)(1108− 2723d+ 2639d2 − 1224d3 + 235d4 + 10d5 − 10d6 + d7),

c7 = −1292 + 2929d− 2741d2 + 1527d3 − 684d4 + 276d5 − 82d6 + 14d7 − d8,
c8 = 0, c10 = 0, c11 = 0, c13 = 0,

c14 = 16(d− 2)3(274− 389d+ 183d2 − 34d3 + 2d4), c16 = 0 , (2.13)

corresponding to quartic quasi-topological gravity [26].

We thus have five new quartic quasi-topological theories, which to our knowledge

have not been discussed in the literature to date. We therefore choose a simple basis for

these terms:

Z(2)
d : c1 = 1, other ci =0 except those constrained in appendix A and eqs. (2.10) and (2.11),

Z(3)
d : c2 = 1, other ci =0 except those constrained in appendix A and eqs. (2.10) and (2.11),

Z(4)
d : c3 = 1, other ci =0 except those constrained in appendix A and eqs. (2.10) and (2.11),

Z(5)
d : c4 = 1, other ci =0 except those constrained in appendix A and eqs. (2.10) and (2.11),

Z(6)
d : c5 = 1, other ci =0 except those constrained in appendix A and eqs. (2.10) and (2.11).

(2.14)

The resulting expressions for the Lagrangian densities of the quasi-topological theories

listed above exhibit complicated dependence on the spacetime dimension. We have included

explicit expressions for these, valid in any dimension d > 4, in appendix B. Each of the

quasi-topological theories contributes to the field equations in dimensions d ≥ 5, but are
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‘quasi-topological’ in d = 8, i.e. they do not contribute to the equations of motion for

eight dimensional spherically symmetric metrics, but do not correspond to a topological

invariant of general metrics.

A remark about these new quasi-topological Lagrangians is in order. As discussed

above, we have found that there are seven terms that make identical “Lovelock-like” con-

tributions to the field equations in the quartic case. One of these is of course quartic

Lovelock gravity, while we have found six Lagrangian densities (only one of which [26] was

previously known) that would all fall into the class of theories known as quasi-topological

gravity. It is not possible to “move between” these quasi-topological terms by adding a

term proportional to the eight-dimensional Euler density: there is no linear combination

of the Z(i)
d terms we have defined yielding X8. This is in notable contrast to the cubic case

where, in five dimensions, there are two contributions to the field equations named, in the

notation of [21], Z5 and Z ′5. However these densities obey the relationship [21]

X6 = 4Z ′5 − 8Z5 (2.15)

and since the six dimensional Euler density identically vanishes in five dimensions for any

metric, it follows that there are not really two independent theories. Cubic quasi-topological

gravity is unique. The fact that in the quartic case

X8 6=
6∑
i=1

ciZ(i)
d (2.16)

for any choice of the coefficients ci means that each of these theories are distinct for general

metrics. However, as mentioned at the beginning of this section, there is a sense in which

these theories are degenerate. Under the constraint of spherical symmetry, there exist

invariants that vanish for any spherically symmetric metric [45]. In fact, the combination

I(ij) =
µ̂(i)

µ(i)
Z(i) −

µ̂(j)

µ(j)
Z(j) (2.17)

will always be such a term [the quantities with the hats are defined below in eq. (2.22)].

Thus, in spherical symmetry, there is a “unique” quasi-topological theory in the sense that

each of the Z(i)
d terms makes the same contribution to the field equations and are related

to one another by the addition of a term that vanishes on spherically symmetric metrics.

We emphasize, however, that these theories are ultimately distinct because they will each

yield different dynamics when spherical symmetry is not imposed.

The quartic quasi-topological term (2.13) was also claimed to be unique; however this

does not appear to be the case, at least in the sense originally described [26]. That theory is

unique only in the sense described above: terms vanishing under the constraint of spherical

symmetry can be added to the action without altering the field equations. However, away

from spherical symmetry these will be distinct theories, even in less than eight dimensions.

Many of these considerations are nicely discussed in the recent paper [23], where a

quintic quasi-topological theory was presented. It would be interesting to know how many

theories contribute to the field equations in that case. More ambitiously, it would be

interesting to know more general criteria that allows one to construct the quasi-topological

Lagrangians in general, a problem that remains open.
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2.2.2 Generalized quasi-topological terms

We now move on to consider generalized quasi-topological terms. Of the 13 free parameters

remaining under the restrictions imposed by the constraints in appendix A and eqs. (2.10)

and (2.11), the Lovelock and six quasi-topological terms comprise the only seven non-

trivial theories. The remaining six terms do not contribute to the field equations of a

VSSS ansatz. Here we do not explicitly present the Lagrangians for these terms, but

rather simply indicate choices of constants by which they are produced. We make the

following choices:

C(1)d : c8 = 1, other ci =0 except those constrained in appendix A and eqs. (2.10) and (2.11),

C(2)d : c10 = 1, other ci =0 except those constrained in appendix A and eqs. (2.10) and (2.11),

C(3)d : c11 = 1, other ci =0 except those constrained in appendix A and eqs. (2.10) and (2.11),

C(4)d : c13 = 1, other ci =0 except those constrained in appendix A and eqs. (2.10) and (2.11),

C(5)d : c14 = 1, other ci =0 except those constrained in appendix A and eqs. (2.10) and (2.11),

C(6)d : c16 = 1, other ci =0 except those constrained in appendix A and eqs. (2.10) and (2.11).

(2.18)

These remaining six terms yield vanishing contributions to the field equations when N = 1

is permitted (e.g. in vacuum or for electromagnetic matter), but would make non-vanishing

contributions in the presence of more general matter distributions.

We shall now relax the additional constraints imposed in eqs. (2.10) and (2.11) in order

to obtain the full family of theories satisfying the constraint (2.1). These four distinct new

theories — the quartet — have a field equation that is a total derivative of a quantity that

is a polynomial in both f(r) and its first two derivatives. We make the following selections:

S(1)d : c1 = 1 ,

c9 = −2d6 − 23d5 + 106d4 − 292d3 + 588d2 − 709d+ 320

d (d− 3) (3d2 − 18d+ 19) (d2 − 6d+ 11)
,

c15 =
1

(d− 3)2 (d3 − 9d2 + 26d− 22) d (3d2 − 18d+ 19) (d2 − 6d+ 11)
×

×
[
d10 − 20d9 + 188d8 − 1211d7 + 6287d6 − 25778d5 + 75674d4

− 146251d3 + 172418d2 − 110076d+ 28160
]
,

All other ci = 0 except those constrained in appendix A,

S(2)d : c2 = 1 ,

c9 = −
2
(
2d6 − 24d5 + 103d4 − 161d3 − 67d2 + 409d− 274

)
d (d− 3) (3d2 − 18d+ 19) (d2 − 6d+ 11)

,

c15 =
2

(d− 3)2 (d3 − 9d2 + 26d− 22) d (3d2 − 18d+ 19) (d2 − 6d+ 11)
×

×
[
d10 − 16d9 + 55d8 + 601d7 − 7258d6 + 35933d5 − 102275d4

+ 177665d3 − 184591d2 + 104237d− 24112
]
,

All other ci = 0 except those constrained in appendix A,
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S(3)d : c4 = 1 ,

c9 = −4(2d6 − 25d5 + 112d4 − 185d3 − 70d2 + 494d− 340)

d (d− 3) (3d2 − 18d+ 19) (d2 − 6d+ 11)
,

c15 =
4

(d− 3)2 (d3 − 9d2 + 26d− 22) d (3d2 − 18d+ 19) (d2 − 6d+ 11)
×

×
[
d10 − 18d9 + 99d8 + 193d7 − 5212d6 + 30115d5 − 93864d4

+ 175930d3 − 196892d2 + 120000d− 29920
]
,

All other ci = 0 except those constrained in appendix A,

S(4)d : c5 = 1 ,

c9 = −8(2d6 − 25d5 + 112d4 − 185d3 − 70d2 + 494d− 340)

d (d− 3) (3d2 − 18d+ 19) (d2 − 6d+ 11)
,

c15 =
8

(d− 3)2 (d3 − 9d2 + 26d− 22) d (3d2 − 18d+ 19) (d2 − 6d+ 11)
×

×
[
d10 − 18d9 + 99d8 + 193d7 − 5212d6 + 30115d5 − 93864d4

+ 175930d3 − 196892d2 + 120000d− 29920
]
,

All other ci = 0 except those constrained in appendix A. (2.19)

We have chosen these constants to render the field equations in general dimensions as

simple as possible. Our choices have been further motivated by the four dimensional case,

which will be presented in the following subsection. The explicit Lagrangian densities that

result for these terms are presented in appendix C.

Although we have made many different attempts, it does not seem possible to select ad-

ditional constraints such that the reduced Lagrangian of these generalized quasi-topological

theories takes the form,

LN,f = NF0 +N ′F1 +N ′′F2 (2.20)

where Fi are functions of f and its derivatives and the primes denote differentiation with

respect to r. In other words, it does not seem possible to eliminate terms that are higher

order in the derivatives of N (e.g. N ′2/N , etc.) without also eliminating the theory. This

adds further support to Conjecture 2 made in [32] since we also find that the field equations

for these theories are not algebraic.

We have now listed a basis for all 17 theories which satisfy condition (2.1) at the

quartic level. We are now able to write down the explicit action for the full theory in five

and higher dimensions. This takes the form

I =
1

16πG

∫
ddx
√
−g

[
− 2Λ +R+ α2X4 + α3X6 + µZd − λSd + α4X8

+
6∑
i=1

µ̂(i)Z
(i)
d −

4∑
i=1

λ̂(i)S
(i)
d +

6∑
i=1

γ(i)C
(i)
d

]
(2.21)

For any situation in which the stress energy tensor satisfies T tt = T rr (including the vacuum)

the C(i)d terms will make no contribution to the field equations: their contributions to the
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generalized Einstein tensor all contain derivatives of N . For this reason, we shall not

include these terms in our action in any of the discussion to follow.

In the above, we have made the following rescalings of the coupling constants to simplify

the resulting field equations:

µ̂(1) =
1

(d− 1) (d− 2) (d− 3)2 (d− 4) (d− 8)P
µ(1) ,

µ̂(2) =
24(3d− 4)

(d− 3) (d− 8) (28d3 − 173d+ 160 + d5 + 18d2 − 10d4)
µ(2) ,

µ̂(3) =
12(3d− 4)

(d− 3) (d− 8) (−12d4 + 61d3 + 242d− 167d2 + d5 − 137)
µ(3) ,

µ̂(4) =
12(3d− 4)

(d− 3) (d− 8) (d− 4) (d3 − 10d2 + 31d− 26)
µ(4) ,

µ̂(5) =
6(3d− 4)

(d− 3) (d− 8) (d5 + 79d3 − 14d4 + 316d− 170− 224d2)
µ(5) ,

µ̂(6) =
3(3d− 4)

(d− 3) (d− 8) (d5 + 79d3 − 14d4 + 316d− 170− 224d2)
µ(6) ,

λ̂(1) =
d
(
3d3 − 27d2 + 73d− 57

)
(2d5 − 20d4 + 56d3 + 36d2 − 346d+ 320)

λ(1) ,

λ̂(2) =

(
3d3 − 27d2 + 73 d− 57

)
d

4 (d5 − 12d4 + 61d3 − 167d2 + 242 d− 137)
λ(2) ,

λ̂(3) =

(
3d3 − 27d2 + 73 d− 57

)
d

8 (d5 − 14d4 + 79d3 − 224d2 + 316 d− 170)
λ(3) ,

λ̂(4) =

(
3d3 − 27d2 + 73 d− 57

)
d

16 (d5 − 14d4 + 79d3 − 224d2 + 316 d− 170)
λ(4) . (2.22)

In the first term above we have defined

P =
(
d5 − 20 d4 + 142 d3 − 472d2 + 743 d− 436

)
. (2.23)

This concludes our discussion of the theories in dimensions larger than four. We now

turn to a discussion of the four dimensional case.

2.3 The case for four dimensions

As was the case in the cubic version of generalized quasi-topological gravity, the four

dimensional case is somewhat special, with only seven constraints as opposed to nine (see

previous subsection). We find that the most general four dimensional theory satisfying (2.1)

is given by placing the following seven constraints on the quartic terms in the action:

c12 = −19

60
c1 −

1

2
c2 −

1

12
c3 −

4

5
c4 −

8

5
c5 −

14

15
c6 −

56

15
c7 −

1

8
c8 −

1

4
c9 −

1

2
c11,

c17 = −23

30
c1 −

4

3
c2 −

1

12
c3 −

11

5
c4 −

22

5
c5 −

41

15
c6 −

28

5
c7 −

1

24
c8 − c9 −

11

12
c10

− 1

6
c13 −

1

3
c14 −

1

12
c15 −

1

4
c16 ,
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c19 =
11

30
c1 +

7

12
c2 +

1

12
c3 +

9

10
c4 +

9

5
c5 +

17

15
c6 +

16

5
c7 +

5

48
c8 +

1

4
c9 +

1

6
c10

+
3

8
c11 −

1

48
c13 +

1

12
c14 −

1

24
c15 −

1

4
c18 ,

c20 =
36

5
c1 +

32

3
c2 + 2c3 +

72

5
c4 +

144

5
c5 +

104

5
c6 +

1088

15
c7 +

7

3
c8 +

4

3
c10 + 8c11

− 8

3
c13 +

2

3
c14 −

10

3
c15 − 2c16 − 4c18 + 2c24 + 8c25 + 32c26 ,

c21 = −5

3
c1 −

8

3
c2 −

1

3
c3 − 4c4 − 8c5 −

16

3
c6 −

32

3
c7 −

1

3
c8 − c9 −

4

3
c10 − c11

+
1

6
c13 −

2

3
c14 +

1

3
c15 − c24 − 4c25 − 16c26 ,

c22 = −7

3
c1 −

10

3
c2 −

2

3
c3 − 4c4 − 8c5 −

20

3
c6 −

64

3
c7 −

2

3
c8 −

2

3
c10 − 2c11

+
1

3
c13 −

1

3
c14 +

2

3
c15 − 2c24 + 16c26 ,

c23 =
1

15
c1 +

1

3
c2 −

1

6
c3 +

4

5
c4 +

8

5
c5 +

14

15
c6 −

28

5
c7 −

1

3
c8 + c9 +

7

6
c10 −

3

2
c11

+
5

12
c13 +

1

3
c14 +

1

3
c15 +

1

2
c16 + c18 − 2c25 − 12c26 . (2.24)

Thus, one is left with a 19 parameter family of quartic densities whose solutions are of the

form eq. (1.1) with N = constant. We shall now discuss a useful basis for these theories.

In general, only the six terms corresponding to c1, c2, c4, c5, c6 and c7 make nonzero

contribute to field equations in the context of VSSS metrics. Furthermore, each of these six

terms make the same contributions to the field equations, up to overall constants. These

six terms provide the quartic generalizations of the cubic S4 term in four dimensions. The

remaining 13 terms do not contribute to the field equations of a VSSS ansatz, or in any

case where the stress energy tensor satisfies T tt = T rr . Our focus here will be to present the

six non-vanishing contributions.

In the previous subsection we presented four Lagrangian densities, S(i)d with i=1, 2, 3, 4.

These terms account for four of the six contributions in four dimensions, upon setting d = 4

in the expressions presented in appendix C. The two additional non-trivial contributions

can be obtained by the following selection of free parameters.

S(5)4 : c6 = 1 , c9 = −56

15

All other ci = 0 except those constrained in eq. (2.24),

S(6)4 : c7 = 1 , c9 = −224

15
,

All other ci = 0 except those constrained in eq. (2.24). (2.25)

We have presented explicit forms for these expressions in appendix C. In addition to the

six non-trivial terms, there are 13 terms that are the four dimensional analogs of the C(i)d
terms. We do not present full expressions for these terms here since they have no effect on

the field equations in the situations we are interested in. A simple basis for these terms is

obtained simply taking ci = 1 and all other cj = 0 (except those which are constrained)

for each of the constants that have not been fixed by the above considerations.
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We note again that the imposition of spherical symmetry yields a degeneracy amongst

these theories: they differ by terms that vanish for a spherically symmetric metric. How-

ever this degeneracy is lifted if spherical symmetry is relaxed and so the theories are

ultimately distinct.

The action for the non-trivial contributions to the field equations in four dimensions

reads

I =
1

16πG

∫
d4x
√
−g

[
−2Λ +R− λS4 −

6∑
i=1

λ̂(i)S
(i)
4

]
(2.26)

where

λ̂(5) = − 5

24
λ(5) , λ̂(6) = − 5

96
λ(6) (2.27)

with all other λ̂(i) as defined in eq. (2.22) with d = 4. These choices of normalization have

been made to simplify the form of the field equations.

3 Linear theory and vacua

In this section we provide a brief discussion of the linearized equations of motion for the

theories presented in the section 2. As conjectured in [29] and then demonstrated in [32], a

theory satisfying eq. (2.1) must necessarily have linearized equations of motion that agree

with the linearized Einstein equations on a maximally symmetric background, up to an

overall constant. The only caveat being that, in this theory, the metric (1.1) describes the

gravitational field outside of a spherically symmetric mass distribution. Thus, this section

provides a useful check of the correctness of the theories, and the results may be useful in

future studies of these theories.

In what follows we will follow closely reference [28], adopting the conventions therein.

We consider a perturbation hab away from a maximally symmetric spacetime ḡab such that,

gab = ḡab + hab . (3.1)

The curvature of the maximally symmetric background is given by,

R̄abcd = 2Kḡa[cḡd]b . (3.2)

The linearized equations of motion for hab are then given by [28],

1

2
ELab =

[
e− 2K (a(d− 1) + c) + (2a+ c)�̄

]
GLab + [a+ 2b+ c]

[
ḡab�̄− ∇̄a∇̄b

]
RL

−K
[
a(d− 3)− 2b(d− 1)− c

]
ḡabR

L =
1

4
TLab (3.3)

where a, b, c and e are a convenient choice of parameters based on the linearization pro-

cedure; see [28] for further details. In the above, all quantities with a bar correspond to

those defined for the background metric, ḡab, while

GLab = RLab −
1

2
ḡabR

L − (d− 1)Khab ,

RLab =
1

2

[
∇̄a∇̄chbc + ∇̄b∇̄chac − �̄hab − ∇̄a∇̄bh

]
+ dKhab −Khḡab

RL = ∇̄a∇̄bhab − �̄h− (d− 1)Kh (3.4)
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where h = ḡabhab. The additional scalar and massive graviton modes will be absent pro-

vided 2a+c = 0 and 4b+c = 0 [28]. In other words, these terms will be absent provided the

linearized equations are proportional to the linearized Einstein tensor (plus cosmological

term) on the same background. Let us now explicitly present the linearized equations for

the theories we have constructed. Specifically, we consider the theory

I =
1

16πG

∫
ddx
√
−g

[
−2Λ +R−

4∑
i=1

λ̂(i)S
(i)
d +

6∑
i=1

µ̂(i)Z
(i)
d

]
, (3.5)

which includes all of the non-trivial contributions at the quartic level, except for the Love-

lock term, which has been thoroughly studied. The results can be easily extended to cases

with additional terms appearing in the action by simply adding the contributions arising

from these terms to the relevant equations below.

We will define, for convenience, the following constants:

µ :=
6∑
i=1

µ(i) , λ :=

4+2δd,4∑
i=1

λ(i) . (3.6)

Then it is a matter of calculation to show that the linearized equations are given by,

ELab =
1

2

[
1 + 4

(
µ+

(d− 8)

3
λ

)
K3

]
GLab (3.7)

Note that in the above, it is the couplings without hats that appear; the definitions made

in eq. (2.22) significantly simplify the form of the linearized equations. As expected, we

see the result is proportional to the Einstein tensor linearized on the same background.

In four dimensions, the additional terms S(5)4 and S(6)4 also contribute, while the quasi-

topological terms make no contribution. The linearized field equations then become

ELab =
1

2

[
1− 16

3
λK3

]
GLab , in d = 4 (3.8)

where the sum defining λ now runs over all six couplings, λ(i).

The full field equations will relate the curvature of the background, K, to the length

scale introduced by the cosmological constant, Λ. This dependence can be obtained by

evaluating the field equations (see next section) on the maximally symmetric background.

One finds that the following relationship must hold,

− 2Λ

(d− 1)(d− 2)
+K +

(
µ+

(d− 8)

3
λ

)
K4 = 0 , (3.9)

with µ and λ defined by the sums above. Note that when the higher curvature terms are

switched off, the cosmological constant uniquely determines the curvature of the maximally

symmetric solutions of the theory. However, when the higher curvature terms are present

there will generically be multiple solutions for K: four in this quartic theory. In general,

only a single one of these solutions will have a smooth limit to the vacuum of Einstein

gravity upon sending µ, λ→ 0.
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In order to ensure the proper coupling to matter, the prefactor appearing in front of

GLab in the linearized equations must have the same sign as in Einstein gravity. If this

were not the case, then the graviton would be a ghost. For the theory discussed here, this

requirement demands,

1 + 4

(
µ+

(d− 8)

3
λ

)
K3 > 0 . (3.10)

This condition must be satisfied by any physically reasonable solution to the equations

of motion.

We close this section by noting that, in a d > 4 theory that contains both the quasi-

topological and generalized quasi-topological terms, the value

µ = −(d− 8)

3
λ (3.11)

seems to be special. When the couplings are constrained in this way, the theory has a

unique vacuum coinciding with the Einstein gravity vacuum. Further, the above inequality

for the absence of ghosts is trivially satisfied. It would be interesting to see if there are any

additional interesting properties associated with this value of µ.

4 Nonlinear field equations in spherical symmetry

Here we present the field equations that are derived from the actions presented in section 2.

We consider first the theory defined in dimensions larger than four, and then close with

the four dimensional case.

4.1 The field equations in dimensions larger than four

4.1.1 Quasi-topological theories

We consider first the field equations for the quasi-topological gravities constructed in

section 2. The field equations of Lovelock gravity are well known and we do not discuss

them here. We consider the following action,

I =
1

16πG

∫
ddx
√
−g

[
(d− 1)(d− 2)

`2
+R+

6∑
i=1

µ̂(i)Z
(i)
d

]
, (4.1)

where the µ̂(i) terms are as in eq. (2.22). A spherically symmetric metric (1.1) satisfies the

field equations F ′ = 0 with N = 1 and

F = (d− 2)rd−1

[
1

`2
− ψ +

6∑
i=1

µ(i)ψ
4

]
(4.2)

where we have defined

ψ =
f − k
r2

. (4.3)

Equation (4.2) can be easily integrated revealing that f is determined by the following

algebraic relationship,

(d− 2)rd−1

[
1

`2
− ψ +

6∑
i=1

µ(i)ψ
4

]
= m (4.4)
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where m is an integration constant which is related to the mass. Note that in passing from

the action to the field equations, the hats have been removed from the µ’s. It was for this

simplification that the µ̂(i) terms were defined as in eq. (2.22). Note that these equations

only hold for d > 4 but d 6= 8: in eight dimensions, the quasi-topological terms are trivial.

4.1.2 Generalized quasi-topological theories

We next present the field equations for the four non-trivial generalized quasi-topological

terms that were presented in section 2. The field equations for these theories are not

algebraic, but rather, in vacuum, integrate to a second order differential equation that the

metric function f must satisfy.

We consider now the following action,

I =
1

16πG

∫
ddx
√
−g

[
(d− 1)(d− 2)

`2
+R−

4∑
i=1

λ̂(i)S
(i)
d

]
, (4.5)

where the λ̂(i) terms are as defined in eq. (2.22). The field equations of this theory can be

written in the following simple form,

F ′ = 0 , (4.6)

where

F = (d− 2)rd−3
[
k − f +

r2

`2

]
+ (d− 2)

(
4∑
i=1

λ(i)

)
FSd , (4.7)

and the FSd represents the contribution from each S(i)d to the field equations, which is the

same for each term S(i)d due to the choices made in eq. (2.19). Note that, once again, in

passing from the action to the field equations, the hats have been removed from the λ’s. It

was for this simplification that they were normalized in this way in eq. (2.22). Explicitly,

the contribution made to the field equations from each S(i)d is given by

FSd = (k − f)

[
(d− 4) f (k − f) f ′′ + f ′

2
((

d2 − 23

2
d+ 32

)
f − 1

2
k (d− 4)

)]
rd−7

+ 2 ff ′f ′′
(

(k − f) (d− 5) rd−6 +
f ′

8
(3d− 16) rd−5

)
+ ff ′ (k − f)2 (d− 4) (d− 7) rd−8 +

f ′3

12

[
((3d− 16) f − 8k) (d− 5) rd−6

− 3
f ′

4
(3d− 16) rd−5

]
, (4.8)

where f = f(r) and a prime denotes a derivative with respect to r.

4.2 The field equations in four dimensions

In four dimensions, the only non-trivial contributions to the field equations come from the

generalized quasi-topological terms. Considering the action

I =
1

16πG

∫
d4x
√
−g

[
− 2Λ +R−

6∑
i=1

λ̂(i)S
(i)
4

]
, (4.9)
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with the λ̂(i) terms defined in eqs. (2.22) and (2.27), the field equations read

F ′ = 0 , (4.10)

where

F = 2r

[
k − f +

r2

`2

]
+ 2

(
6∑
i=1

λ(i)

)
FS4 , (4.11)

and FS4 is given by the same expression as in eq. (4.8) evaluated in d = 4. Explicitly, this

takes the relatively simple form,

FS4 = 2
ff ′f ′′

r2

(
f − 1

2
rf ′ − k

)
+
f ′4

4r
+
f ′3

3r2
(f + 2k) + 2

ff ′2

r3
(k − f) . (4.12)

Having presented the field equations for the new quartic theories, we now move on to a

discussion of their black hole solutions.

5 Black holes

5.1 Black hole entropy

We begin with a discussion of the black hole entropy for the various theories considered

so far in this work. In a higher curvature theory of gravity, the Bekenstein-Hawking

entropy is modified by additional terms. These terms can be calculated using the Iyer-

Wald prescription [46, 47] where the entropy is given by,

S = −2π

∮
dd−2x

√
γ Eabcdε̂abε̂cd (5.1)

where

Eabcd =
∂L

∂Rabcd
(5.2)

and ε̂ab is the binormal to the horizon, normalized to satisfy ε̂abε̂
ab = −2. The integral is

evaluated on the horizon of the black hole, which has induced metric γab and γ = det γab.

In the following we will present the entropy densities,

s =
S

ω(d−2),k
(5.3)

where ω(d−2),k is the volume of the submanifold with line element dΣ2
(d−2),k.

Considering first the quartic quasi-topological theories, we find that each Z(i)
d makes

the same contribution to the Wald entropy. For the theory written down in eq. (4.1), this

contribution to the entropy reads,

s
(i)
4 =

(d− 2)

(d− 8)

k3

r6+
µ(i)r

d−2
+ , for Z(i)

d (5.4)

giving

s =
rd−2+

4

[
1 +

(d− 2)

(d− 8)

k3

r6+

(
6∑
i=1

µ(i)

)]
(5.5)
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for the theory (4.1). For a theory containing additional terms, the above entropy density is

simply modified by the addition of the entropy densities corresponding to the extra terms.

In the case of the generalized quasi-topological terms, S(i)d , due to our choices of con-

straints and the normalization of λ̂(i) in eq. (2.22), we find the same contribution to the

entropy from each S(i)d . For the particular case of the theory presented in eq. (4.5) this

contribution reads,

s
(i)
4 = −π(d− 2)T

r3+
rd−2+

[
(d− 4)k2

r2+
+

4π(d− 5)kT

r+
+

(4π)2

12
(3d− 16)T 2

]
λ(i) (5.6)

giving for the theory in eq. (4.5),

s =
rd−2+

4

{
1−

4∑
i=1

4π(d−2)T

r3+

[
(d−4)k2

r2+
+

4π(d−5)kT

r+
+

(4π)2

12
(3d−16)T 2

]
λ(i)

}
(5.7)

where T = f ′(r+)/4π is the temperature. Note that in each case above we have set

G = 1. Again, if the Lagrangian contains additional terms, then the corresponding entropy

densities of these terms will be simply added to the above.

The above result applies equally well to the four dimensional case, where the only

modification is the addition of the two additional terms corresponding to the contributions

from S(5)4 and S(6)4 yielding:

sd=4 =
r2+
4

[
1 +

32π2T 2

r4+

6∑
i=1

λ(i)

(
k +

4π

3
r+T

)]
. (5.8)

A particularly noteworthy feature of the generalized quasi-topological theories is that

the entropy density of a black brane is modified from the Bekenstein-Hawking result. In

Lovelock and quasi-topological gravity, while the entropy density is modified for spherical

and hyperbolic black holes, the entropy of the black brane is universal to all orders in

the curvature in these theories and is given simply by one quarter the horizon area, as in

Einstein gravity. In both cubic and quartic generalized quasi-topological gravity, there are

modifications to this result [29, 32]. It would be worthwhile to explore the holographic

consequences of this fact in, for example, how it applies to the ratio of shear viscosity to

entropy density.

5.2 Black hole solutions in four dimensions

In this section we aim to study the vacuum field equations and their asymptotically flat

black hole solutions in four dimensions. It is a noteworthy feature of the generalized

quasi-topological theories that higher curvature corrections occur in four dimensions while

maintaining relatively simple field equations. Here we only focus on the spherically sym-

metric solutions that can easily be generalized to topological black holes (i.e. those with

k = 0 or −1). The field equations naively contain up to third derivatives of the metric

function, but after imposing spherical symmetry and setting N = 1 they reduce to a single
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equation F ′ = 0, where

F =
r

κ
(k − f) +

24κ2

5
K

[
ff ′f ′′

r2

(
f − 1

2
rf ′ − k

)
+
f ′4

8r

+
f ′3

6r2
(f + 2k) +

ff ′2

r3
(k − f)

]
(5.9)

with κ = 8πG, f = f(r) and we have set the cosmological term to zero. We have introduced

the quantity K which is defined in the following way,

K =
5

12κ3

6∑
i=1

λ(i) , (5.10)

note when K = 0 the the field equation reduces to the Einstein gravity case. In many

of the following equations we shall keep factors of k visible, since they serve as useful

accounting devices, but at the end of the calculation we will set k = 1 to study the

spherical asymptotically flat black hole.

After integrating the field equation we get

F =
C

κ
(5.11)

where C is the integration constant and the factor 1/κ gives us the valid contribution to

the mass coming from the large r solution, as we will see shortly.

The field equation is not solvable exactly therefore we construct a perturbative solution.

We consider the asymptotic flat solution, hence as r →∞, assuming K terms to be small

corrections, the expansion of the metric function reads

f(r) = k − C

r
+ εh(r) (5.12)

where ε indicates the order of contribution of h(r). We substitute above expansion into

eq. (5.9) and only keep the linear terms in h(r). This way, we get a second order inhomo-

geneous differential equation where we set ε = 1. Up to the first order in K, a particular

solution is given by

hp(r) =
108κ3kKC3

5r9
− 97κ3KC4

5r10
+O

(
K2C5

r17

)
. (5.13)

The homogeneous equation takes the form,

h′′h −
5

r
h′h − ω2r6hh = 0 (5.14)

where

ω2 =
5

36κ3kC2|K|
(5.15)

Here we assume ω2 is positive, which requires that K is negative. This equation can be

solved exactly in terms of Bessel functions, but here the relevant behaviour can be captured
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using an approximate solution. For large r, the first derivative term is negligible and the

solution is approximately,

hh(r) ≈ A exp

(
ωr4

4

)
+B exp

(
−ωr

4

4

)
(5.16)

For asymptotic flat spacetime we get A = 0, so at leading order we obtain

h(r) ≈ hp(r) +B exp

(
−ωr

4

4

)
(5.17)

The homogeneous solution is similar to Yukawa-type terms and exponentially decaying,

thus it can be neglected and we left with the particular solution as the correction. Also it

is justified from the fact that the theory does not have massive modes in its spectrum.

For the asymptotically flat solutions, the ADM mass is given by [48]

M =
d− 2

2κ
ω(k)d−2 lim

r→∞
rd−3(k + gtt) =

ω(k)2C

8πG
(5.18)

where ω(k)d−2 is the volume of the space with the line element dΣ(k)d−2; for a two-sphere

this is just ω2 = 4π.

We also study the behaviour of the solution near the event horizon by expanding the

metric function as

f(r) = 4πT (r − r+) +
∑
n=2

an(r − r+)n (5.19)

where T = f ′(r+)/(4π) is the Hawking temperature and we use temperature instead of

f ′(r+). By inserting this expansion into the field equation (5.9) and performing series

expansion in (r − r+), at zero and first orders we find following relations

C

κ
=

1

5κr2+

(
5kr3+ + 512π3kKκ3T 3 + 768π4Kκ3r+T

4
)
,

0 =
1

5κr3+

(
5kr3+ − 20πr4+T + 512π3kKκ3T 3 + 256π4Kκ3r+T

4
)
. (5.20)

These equations determine C that is related to the mass according (5.18), and T in terms

of the horizon radius, r+. The second equation is quartic in T but only one of its roots

approaches real nonnegative value as K → 0. This is the appropriate branch to take since

it has a smooth Einstein limit and we shall use it in what follows.

With near horizon and asymptotic solutions constructed, we now join the two together

by numerically solving the field equation. The essential idea is to evaluate the near horizon

expansion very near to the horizon and use this as initial data for the numerical scheme.

For this purpose one should include higher orders in the expansion (5.19). Although the

higher order terms are more cumbersome, it turns out that at each order one can solve

for the new parameter an in terms of parameters in previous orders that themselves are

eventually related to the single free parameter a2 at second order. We consider the value

of this free parameter as [49]

a2 =
f ′′(r+)

2
= − 1

r2+
[1 + δ] (5.21)
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Figure 1. Numerical solution (color online). A plot showing numeric solutions for an asymptoti-

cally flat black hole in the quartic theory. The black curve corresponds to the usual Schwarzschild

solution of Einstein gravity. The blue, red and green curves correspond to K = −0.32,−1,−3

respectively.

where δ states the amount of correction with respect to the Schwarzschild solution where

δ = 0. The value of δ must be carefully chosen for consistency with the boundary conditions

(i.e. f(r) → 1 as r → ∞) and we use the shooting method to determine it. In the

calculations we used terms up to order (r − r+)12 in the near horizon series expansion.

Good results can be obtained with fewer terms, but the construction these terms is easily

automated and therefore working to a high order comes with no extra difficulty. We have

found that determining δ to ten significant digits is sufficient to integrate the solution to

the point where the large r expansions become accurate (see figure 1).

The numeric results are presented in figure 1, where for various values of K, we ex-

hibit f(r) in terms of a dimensionless distance in four dimensions r/C. The graph shows

that the solution approaches the expected value for asymptotically flat black holes. For

larger quartic coupling we get more outward displacement of the horizon compared to the

Schwarzschild black hole. In fact the presence of the higher curvature terms removes metric

singularity as r → 0. However, the curvature singularity remains, with the Kretschmann

scalar diverging as 1/r4 and Ricci scalar as 1/r2 as can be confirmed through an expansion

of f(r) as r → 0. These results are similar to what was observed in the cubic case [29, 33].

It is worth highlighting the fact that, despite the equation of motion for f(r) in this

class of theories being a third order differential equation (albeit a total derivative), asymp-

totically the black hole solutions we have obtained are characterized only by their mass. In

the near horizon solution, the free parameter a2 is equivalent to a choice of boundary con-

ditions, and it appears that their is a unique value yielding asymptotically flat conditions.

One might naively expect that since the equations of motion are third order that the black

holes may possess “higher derivative hair” (see, e.g. [50] for a recent discussion). However,
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the above discussion shows that this is clearly not the case for this class of theories. The

black holes are characterized by a single free parameter (after fixing boundary conditions)

and that is the black hole mass. In [32] it was suggested that this may be a general feature

of this class of theories.

As a consistency check of the calculations, one can verify that the first law of black

hole thermodynamics holds. Using eq. (5.20), and replacing C with M from eq. (5.18), we

find that

δM = TδS (5.22)

where

S =
ω2r

2
+

2κ

[
1 +

192π2T 2

5r4+
κ3K

(
k +

4π

3
r+T

)]
(5.23)

from above. Since each of the terms going into the first law was computed independently,

the fact that this relationship holds provides an important check of our calculations.

5.3 Black branes

We next consider black brane solutions of the quartic generalized quasi-topological theo-

ries. We consider only the Einstein-Hilbert term supplemented by the quartic generalized

quasi-topological terms to see more directly the effects of these terms. We employ the

following metric

ds2 =
r2

`2

[
−N(r)2f(r)dt2 +

d−2∑
i=1

dx2i

]
+

`2dr2

r2f(r)
(5.24)

in terms of which the field equations read F ′ = 0 with

F = (d− 2) (r`)d−3
[
r2 (f − 1)

]
+

(d− 2)λ

4
`d−3rd−1

[ (
(3d− 16) rf ′ + 4 (d− 6) f

)
r3ff ′

− 1

4
(3d−16) r4f ′

4
+

(3d−16) (d+1)

3
r3ff ′

3
+2d (d−6) f2r2f ′

2
+

4f4

3
(d−8)

]
, (5.25)

and we have set k = 0 and rescaled λ with powers of ` so that it is dimensionless. Inte-

grating we obtain F = C, where C is an integration constant to be related to the mass. In

this case, we will set N = 1/
√
f∞ which, from a holographic perspective, is the statement

that the speed of light in the dual CFT is equal to unity.

As with the spherical case presented above, we were unable to solve the field equations

exactly. We therefore employ perturbative methods here. Considering first the asymptotic

solution, we write

f(r) = f∞ −
`2C

(r`)d−1
+ εh(r) . (5.26)

The quantity f∞ is the asymptotic value of the metric function which is a solution of the

quartic polynomial equation,

1− f∞ +
(d− 8)

3
λf4∞ = 0 . (5.27)

Defined this way, the black branes asymptote to an AdS space with curvature radius
˜̀= `/

√
f∞.
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We plug this ansatz for f(r) into the field equations, set all terms proportional to

εn equal to zero for n > 1 and then finally set ε = 1 to obtain an inhomogenous second

order differential equation for the correction h(r). The general form of this expression is

complicated, and so we do not present it here. However, it is easy to show that a particular

solution takes the form,

hp(r) =
4(d− 8)f3∞λ

4(d− 8)f3∞λ− 3

`2C

(r`)d−1
(5.28)

−
3(d4 − 8d3 + 13d2 − 10d+ 32)

(
4(d− 8)λf3∞ + 3

)
λf2∞

2 (4(d− 8)λf3∞ − 3)2
`4C2

(r`)2d−2
+O

(
λC3

r3d−3

)
We note that, provided f∞ 6= 0, there are corrections of the same order as the mass of the

black brane from the higher curvature terms.

The form of the homogenous equation, at large r, must be considered in two separate

cases. First, we consider the d 6= 6 case. There we have,

h′′ − (3 d− 16) (d− 1)2C

4 (d− 6) f∞rd`d−3
h′ − ω2

dr
d−3h = 0 , (for d 6= 6) (5.29)

with

ω2
d =

3− 4 (d− 8)λf3∞
3λ (d− 1) (d− 6)Cf2∞

`d−3 . (5.30)

To keep with the AdS boundary conditions and avoid oscillating solutions we must have

ω2 > 0 which constrains the coupling to satisfy,

3− 4(d− 8)λf3∞
(d− 6)λ

> 0 . (5.31)

Physically reasonable solutions in must satisfy this inequality. Provided this condition is

met, an approximate solution to the homogenous equation is given by,

h(r) ≈ A exp

(
2ωdr

(d−1)/2

d− 1

)
+B exp

(
−2ωdr

(d−1)/2

d− 1

)
. (5.32)

We of course set A = 0 to maintain consistency with our boundary conditions and also

note that the second term is hugely suppressed and so can be discarded.

When the calculation is done in six dimensions, the homogeneous equation reads,

h′′ − 5

r
h′ − ω2

6r
8h = 0 (5.33)

where

ω2
6 =

2(3 + 8λf3∞)

75λC2f∞
`6 (5.34)

and we must have
3 + 8λf3∞

λ
> 0 for d = 6. (5.35)
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The approximate solution then reads,

h(r) ≈ A exp

(
ω6r

5

5

)
+B exp

(
−ω6r

5

5

)
. (5.36)

We again set A = 0 in this case for consistency with the boundary conditions, and discard

the second term since it is enormously suppressed relative to the particular solution.

The above considerations reveal restrictions which must be enforced on the couplings

that are not clear from the particular solution alone. Further, we see that we are permitted

to drop the exponential terms from our considerations.

Next we turn to the near horizon solution where we expand the metric function as,

f(r) =
4πT
√
f∞`

2

r2+
(r − r+) +

∑
i=2

an(r − r+)n, (5.37)

assuming that the metric function vanishes linearly as r → r+ for non-extremal black

holes. Substituting this ansatz into the field equations, one arrives at recurrence relations

determining the coefficients in the series expansion. The first two of these are

C = `d−3rd−1+ − 16(3d− 16)π4λrd−5+ `d+5f2∞T
4 ,

0 = (d− 1)r4+ − 4π
√
f∞Tr

3
+`

2 +
16λ

3
(d− 5)(3d− 16)f2∞`

8π4T 4, (5.38)

and allow us to determine the temperature and integration constant C in terms of the hori-

zon radius. The higher order terms in the series solution can be easily computed, but they

rapidly become increasingly complex and are not actually needed to study the thermody-

namics. As has been observed in several instances now [29, 32, 33, 51] the thermodynamics

of black objects in the generalized quasi-topological theories can be studied exactly despite

the lack of an exact solution to the full field equations.

An interesting feature of the above result is that in five dimensions, the quartic gen-

eralized quasi-topological terms do not modify the temperature from the Einstein gravity

result. However, in all other dimensions, the temperature gets corrected by these terms.

Recasting the entropy density presented earlier into the notation used for the black

branes, we arrive at

s =
1

4

(r+
`

)d−2 [
1− 16λ

3

(d− 2)(3d− 16)π3`6f
3/2
∞ T 3

r3+

]
, (5.39)

which is not simply given by the Bekenstein-Hawking area law, but rather contains cor-

rections due to the generalized quasi-topological contributions. This is notably different

from what is observed in both Lovelock and quasi-topological gravity, where the area law

remains unaffected for black branes, and may have interesting holographic consequences.

For d ≤ 5 the entropy is larger than that in Einstein gravity (λ = 0), whereas for d ≥ 6 it

is smaller.

It is easy to verify that the entropy density above satisfies the first law,

dε = Tds (5.40)
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with the energy density given by,

ε =
(d− 2)

16π
√
f∞`2d−3

C ,

=
(d− 2)

16π
√
f∞`2d−3

[
`d−3rd−1+ − 16(3d− 16)π4λrd−5+ `d+5f2∞T

4
]
. (5.41)

The factors of r+ appearing in the entropy and energy densities can be eliminated by

solving the second equation of (5.38). This is made easier by writing,

r+ = γλ
4π`2
√
f∞

d− 1
T , (5.42)

where γλ solves the equation,

γ4λ − γ3λ +
λ

48
(d− 1)3(d− 5)(3d− 16) = 0 , (5.43)

which is obtained by substituting r+ for the above definition in the second equation

of (5.38). Here we have included the subscript λ to illustrate that this quantity depends

directly on the coupling, λ. The entropy and energy densities can then be recast as,

s =
12γ3λ − λ(d− 1)3(d− 2)(3d− 16)

48γ3λ

(
γλ

4π`
√
f∞T

d− 1

)d−2
,

ε =
(d− 2)`d−4

256πγ4λ

[
16γ4λ − (d− 1)4(3d− 16)λ

](
γλ

4π`2
√
f∞

d− 1
T

)d−1
. (5.44)

By studying the polynomial (5.43), we can conclude that there will be real, positive solu-

tions for γλ provided the coupling satisfies,

λ ≤ 81

16(d− 1)3(d− 5)(3d− 16)
, (5.45)

with equality corresponding to a positive, real double root. Of course, the above constraint

does not apply in d = 5, but in this case, λ does not contribute to the polynomial, and the

only valid solution is γλ = 1, which holds for any value of the coupling.

From the entropy and energy densities, one can construct the free energy density, which

is given by,

F = ε− Ts = −
12γ3λ − λ(d− 1)3(d− 2)(3d− 16)

192π`
√
f∞γ4λ

(
γλ

4π`
√
f∞T

d− 1

)d−1
. (5.46)

The entropy and energy densities can be shown [using eq. (5.43)] to satisfy the relation,

ε =
d− 2

d− 1
Ts , (5.47)

as expected for a CFT living in d− 1 dimensions.

An interesting aspect of the above results is that the entropy and energy densities

are modified from the Einstein gravity result. Similar results were noted in [32] for five
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dimensional black branes in cubic generalized quasi-topological gravity. In Lovelock and

quasi-topological gravity, this is not the case: the expressions are identical, apart from the

appearance of the term f∞ characterizing the curvature of the AdS space [21]. In a sense,

the properties of black branes in these latter theories are ‘universal’.

We expect that differences appearing in the generalized quasi-topological case will lead

to further interesting results when a full holographic study of these theories is performed.

6 Conclusions

We have constructed a complete set of theories of gravity that are quartic in curvature and

whose field equations each reduce to a total derivative of a functional of one metric function

under the restriction to spherical symmetry. In four dimensions, the non-trivial contribu-

tions arise from six generalized quasi-topological theories given by (2.25) and (2.19) which

have equations of motion that are a total derivative of a polynomial of f(r) and its first two

derivatives. In five or higher dimensions, these theories break up into the following classes:

1. 4-th order Lovelock gravity, whose Lagrangian is given by the eight dimensional Euler

density X8. The field equations of this theory are always second-order, and under

restriction to spherical symmetry becomes one equation that is a total derivative of

a polynomial in a single metric function f .

2. Six quasi-topological theories, whose Lagrangians are given by (2.13) and (2.14). The

theory described by (2.13) was found previously [26]; the remaining five in (2.14)

are new. For all six, under restriction to spherical symmetry the field equations

become a single equation that is a total derivative of a polynomial in a single metric

function f . In the context of spherical symmetry, the field equations of all six theories

coincide, since the Lagrangians are equivalent up to terms which vanish for spherically

symmetric metrics. Relaxing the constraint of spherical symmetry, the field equations

of the theories will no longer coincide (since they are distinct Lagrangians) and are

fourth order differential equations.

3. A quartet of generalized quasi-topological theories, whose Lagrangians are given

by (2.19). For all four, under restriction to spherical symmetry the field equations

become a single equation that is a total derivative of a polynomial in a single metric

function f and its first and second derivatives.

4. Six theories, whose Lagrangians are given by (2.18), and for which the field equations

vanish if the function N is constant. For situations where the stress-energy T tt 6= T rr
there will be two non-trivial field equations that determine N and f .

We have also studied several aspects of these theories. We have considered their lin-

earized spectrum, finding that it is only a massless, transverse graviton that is propagated

on a constant curvature background. We have presented the field equations of the theories,

valid for a static spherically symmetric metric in any dimension, and have determined the

expression for black hole entropy in arbitrary dimensions. This latter result is particularly
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interesting since, for black branes, there are corrections to the Bekenstein-Hawking area

law, something which does not occur in either Lovelock or quasi-topological gravity, and

may have interesting holographic consequences. Studying four dimensional asymptotically

flat black hole solutions, we have found that the solutions are characterized simply by their

mass and are free from any higher derivative hair. In this case, the thermodynamics can

be studied exactly (despite having only perturbative and numeric solutions) and we find

the first law holds. Black brane solutions of the theory were studied in arbitrary dimen-

sions. These solutions satisfy the expected thermodynamic relations for a CFT (without

chemical potential) living in one dimension less. Further, unlike the case in Lovelock or

quasi-topological gravity, the generalized quasi-topological terms modify the thermody-

namic properties of the black branes. This result may have interesting consequences in

holographic studies.

This class of theories (which has now been constructed to cubic [29, 31] and quartic

order) provides interesting generalizations of Einstein gravity that are non-trivial in four

(and higher) dimensions. This contrasts with previous constructions of Lovelock and quasi-

topological gravity, which vanish on four dimensional (spherically symmetric) metrics. The

generalized quasi-topological terms can be thought of as the theories which have many of

the interesting properties observed for Einsteinian cubic gravity [31] in four dimensions [33,

51], but in higher dimensions and/or to higher orders in the curvature. These theories

necessarily [32] propagate only a massless, transverse graviton on a maximally symmetric

vacuum. Furthermore, they admit black hole solutions which are characterized only by

their mass. The thermodynamics of the black holes can be studied exactly despite the lack

of an exact, analytic solution to the field equations.

There remain many problems deserving further study. It would be worthwhile to

further study the properties of the four and higher dimensional black holes in these the-

ories, and work is currently in progress on this [52]. It would be useful to know if the

Birkhoff theorem holds for the generalzied quasi-topolgoical terms, similar to Lovelock and

quasitopological gravities [38, 39, 53]. More generally, the generalized quasi-topological

theories seem well suited for holographic study and may serve as useful toy models in this

context. A holographic study would also shed further light on stability and the permissible

values of coupling constants, and may reveal novel features in the case of black brane solu-

tions of the theory. An ambitious undertaking would be to elucidate the general structure of

the Lagrangians in this class of theories. This has been long known in the case of Lovelock

gravity [1], but remains an open problem in the (generalized) quasi-topological cases.
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A The constraints in general dimensions

The following constraints on c12, c17, c19, c20, c21, c22, c23, c24 and c25 ensure that condi-

tion (2.1) is met for the quartic action in dimensions larger than four.

c12 = − (19− 40d+ 38d2 − 15d3 + 2d4)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c1 −

(2− 69d+ 83d2 − 32d3 + 4d4)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c2

− (13− 2d− 4d2 + d3)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c3 −

4(d− 2)(−2 + 22d− 13d2 + 2d3)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c4

− 8(d− 2)(−2 + 22d− 13d2 + 2d3)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c5 −

8(d− 3)(−1 + 6d− 5d2 + d3)

3(3d− 1)(−22 + 26d− 9d2 + d3)
c6

− (d− 4)(d− 3)(d− 1)2

2(3d− 2)(−22 + 26d− 9d2 + d3)
c10 −

8(d− 3)(d− 2)2(2d− 1)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c7

− (d− 2)(1− 7d+ 2d2)

4(3d− 2)(−22 + 26d− 9d2 + d3)
c8 −

(5− 28d+ 27d2 − 9d3 + d4)

(3d− 2)(−22 + 26d− 9d2 + d3)
c9

− (16− 15d+ 3d2)

4(−22 + 26d− 9d2 + d3)
c11 (A.1)

c17 = −(−200 + 430d+ 566d2 − 2677d3 + 3194d4 − 1807d5 + 524d6 − 74d7 + 4d8)

2(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

− (272− 1572d+ 4104d2 − 5617d3 + 4420d4 − 2042d5 + 536d6 − 73d7 + 4d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

+
(336− 1418d+ 2520d2 − 2107d3 + 885d4 − 168d5 + 7d6 + d7)

2(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

− 4(148− 790d+ 1986d2 − 2683d3 + 2126d4 − 991d5 + 262d6 − 36d7 + 2d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

− 8(148− 790d+ 1986d2 − 2683d3 + 2126d4 − 991d5 + 262d6 − 36d7 + 2d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

− 2(136− 988d+ 3086d2 − 4784d3 + 4079d4 − 1975d5 + 531d6 − 73d7 + 4d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

− 8(20 + 58d− 134d2 + 74d3 − 15d4 + d5)

(d− 2)(3d− 2)(−22 + 26d− 9d2 + d3)
c7

+
(24 + 36d− 296d2 + 683d3 − 698d4 + 368d5 − 94d6 + 9d7)

4(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c8

− 3(40− 546d+ 2232d2 − 3935d3 + 3633d4 − 1870d5 + 538d6 − 81d7 + 5d8)

2(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

− (−240+184d+2538d2−7062d3+7893d4−4550d5+1418d6−228d7+15d8)

4(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c10

+
3(d−4)(d−3)(d−1)2(−1+3d)

2(d−2)2(2d−1)(−22+26d−9d2+d3)
c11−

(−4−13d+39d2−24d3+4d4)

4(d−2)2(d−1)(2d−1)
c13

− (d− 3)d2

4(d− 2)2(d− 1)
c14 −

(−2− 8d+ 23d2 − 13d3 + 2d4)

2(d− 2)2(d− 1)(2d− 1)
c15

− (2 + 7d− 9d2 + 2d3)

2(d− 2)2(2d− 1)
c16 −

(d− 4)(d− 1)(−1 + 3d)

2(d− 2)2(2d− 1)
c18 (A.2)
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c19 =
(−344 + 2086d− 4878d2 + 5109d3 − 2618d4 + 590d5 − 10d6 − 17d7 + 2d8)

4(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

+
(−1000 + 4684d− 7926d2 + 6691d3 − 2963d4 + 595d5 − d6 − 18d7 + 2d8)

2(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

+
(552− 2214d+ 2702d2 − 1489d3 + 358d4 − 14d5 − 8d6 + d7)

4(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

+
(−1096 + 5100d− 8504d2 + 7072d3 − 3046d4 + 579d5 + 8d6 − 19d7 + 2d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

+
2(−1096 + 5100d− 8504d2 + 7072d3 − 3046d4 + 579d5 + 8d6 − 19d7 + 2d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

+
2(−448 + 2150d− 3790d2 + 3299d3 − 1488d4 + 302d5 − d6 − 9d7 + d8)

(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

+
2(368− 580d+ 262d2 − 30d3 − 5d4 + d5)

(d− 2)(3d− 2)(−22 + 26d− 9d2 + d3)
c7

+
(360− 1388d+ 1568d2 − 593d3 − 124d4 + 146d5 − 36d6 + 3d7)

8(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c8

+
3(−776 + 3662d− 6388d2 + 5545d3 − 2543d4 + 576d5 − 38d6 − 7d7 + d8)

4(d− 2)2(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

+
(−1152+6104d−12474d2+12330d3−6321d4+1592d5−128d6−18d7+3d8)

8(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c10

+
3(d− 3)(16− 49d+ 41d2 − 11d3 + d4)

4(d− 2)2(2d− 1)(−22 + 26d− 9d2 + d3)
c11 +

(−11 + 25d− 14d2 + 2d3)

4(d− 2)2(d− 1)(2d− 1)
c13

+
(d− 3)d

4(d− 2)2(d− 1)
c14 +

(−7 + 16d− 8d2 + d3)

2(d− 2)2(d− 1)(2d− 1)
c15 +

(d− 4)(d− 1)

2(d− 2)2(2d− 1)
c16

− (−8 + 17d− 6d2 + d3)

4(d− 2)2(2d− 1)
c18 (A.3)

c20 = − 8(66− 106d− 27d2 + 99d3 − 52d4 + 8d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

− 8(−220 + 638d− 716d2 + 427d3 − 133d4 + 16d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

− 4(264− 634d+ 494d2 − 175d3 + 23d4)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

− 32(−132 + 362d− 384d2 + 227d3 − 69d4 + 8d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

− 64(−132 + 362d− 384d2 + 227d3 − 69d4 + 8d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

− 16(−132 + 422d− 548d2 + 373d3 − 127d4 + 16d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

− 256(d−3)(d−1)d

(3d−2)(−22+26d−9d2+d3)
c7−

4(44−80d+26d2+13d3−14d4+3d5)

(d−2)(2d−1)(3d−2)(−22+26d−9d2+d3)
c8
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− 12(−44 + 116d− 148d2 + 116d3 − 41d4 + 5d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

− 2(176− 416d+ 242d2 + 22d3 − 53d4 + 9d5)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c10

− 24(d− 3)(d− 1)2d

(d− 2)(2d− 1)(−22 + 26d− 9d2 + d3)
c11 +

2(−5 + 2d)

(d− 2)(2d− 1)
c13

+
4

d−2
c14−

8

(d−2)(2d−1)
c15+

4(−3+2d)

(d−2)(2d−1)
c16+

8(d−1)d

(d−2)(2d−1)
c18 (A.4)

c21 =
4(−96 + 509d− 1068d2 + 1031d3 − 516d4 + 141d5 − 23d6 + 2d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

+
4(−332 + 1560d− 2593d2 + 2194d3 − 1041d4 + 288d5 − 48d6 + 4d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

+
4(64− 253d+ 246d2 − 101d3 + 20d4 − 5d5 + d6)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

+
16(−180 + 850d− 1408d2 + 1191d3 − 559d4 + 153d5 − 25d6 + 2d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

+
32(−180 + 850d− 1408d2 + 1191d3 − 559d4 + 153d5 − 25d6 + 2d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

+
32(−80 + 381d− 657d2 + 566d3 − 268d4 + 73d5 − 12d6 + d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

+
32(d− 3)(−24 + 26d− 5d2 + d3)

(3d− 2)(−22 + 26d− 9d2 + d3)
c7

+
(116− 464d+ 557d2 − 326d3 + 115d4 − 36d5 + 6d6)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c8

+
12(−148 + 689d− 1170d2 + 989d3 − 452d4 + 115d5 − 16d6 + d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

+
2(−256 + 1284d− 2475d2 + 2301d3 − 1132d4 + 304d5 − 45d6 + 3d7)

(d− 2)(d− 1)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c10

+
3(−28 + 78d− 51d2 + 3d3 + 2d4)

(d− 2)(2d− 1)(−22 + 26d− 9d2 + d3)
c11 −

2(5− 10d+ 4d2)

(d− 2)(d− 1)(2d− 1)
c13

− 2d

(d− 2)(d− 1)
c14 −

4(3− 6d+ 2d2)

(d− 2)(d− 1)(2d− 1)
c15 −

8(d− 1)

(d− 2)(2d− 1)
c16

− 4(d− 1 + d2)

(d− 2)(2d− 1)
c18 (A.5)

c22 =
(−9504+28040d−26710d2+7806d3+2763d4−2722d5+1012d6−222d7+15d8+2d9)

12(d−2)(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c1

+
(11616−38016d+46080d2−27850d3+10107d4−3153d5+1051d6−235d7+14d8+2d9)

6(d−2)(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c2

+
(−15840+49168d−53582d2+25858d3−5241d4+356d5−62d6+14d7+d8)

12(d−2)(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c3

+
(14784−47304d+55236d2−31612d3+10792d4−3404d5+1165d6−248d7+13d8+2d9)

3(d−2)(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c4
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+
2(14784−47304d+55236d2−31612d3+10792d4−3404d5+1165d6−248d7+13d8+2d9)

3(d−2)(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c5

+
2(3168−10564d+13436d2−9026d3+4002d4−1539d5+537d6−118d7+7d8+d9)

3(d−2)(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c6

+
2(d−2)d(−264+102d−48d2+13d3+d4)

3(3d−2)(−22+26d−9d2+d3)
c7

+
(−1760+4280d−2348d2−960d3+1127d4−150d5−76d6+14d7+d8)

8(d−2)(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c8

+
(1408−1224d−3726d2+4544d3−245d4−1603d5+784d6−134d7+3d8+d9)

4(d−2)(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c9

+
(−10560+34480d−39088d2+17370d3+582d4−3803d5+1726d6−338d7+12d8+3d9)

24(d−2)(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c10

+
d(−220+309d−68d2−38d3+8d4+d5)

4(d−2)(2d−1)(−22+26d−9d2+d3)
c11

− (72−77d−d2+11d3+d4)

6(d−2)(d−1)(2d−1)
c13−

1

d−1
c14−

(60−47d−13d2+11d3+d4)

6(d−2)(d−1)(2d−1)
c15

− (d+7)(−12+5d+d2)

6(d−2)(2d−1)
c16−

d(d+7)(−12+5d+d2)

12(d−2)(2d−1)
c18−2(d−2)dc26 (A.6)

c23 = − (7104−35088d+67484d2−52018d3+8628d4+11187d5−7810d6+2236d7−288d8+3d9+2d10)

24(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c1

− (13824−65760d+107232d2−80268d3+21812d4+7485d5−7491d6+2305d7−295d8+2d9+2d10)

12(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c2

− (−6144+28032d−37964d2+27334d3−11888d4+2799d5−64d6−98d7+8d8+d9)

24(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c3

− (15168−73200d+120720d2−92556d3+26636d4+7372d5−8018d6+2449d7−302d8+d9+2d10)

6(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c4

− (15168−73200d+120720d2−92556d3+26636d4+7372d5−8018d6+2449d7−302d8+d9+2d10)

3(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c5

− (6624−31560d+52724d2−39676d3+10258d4+4194d5−3873d6+1167d7−148d8+d9+d10)

3(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c6

− (−5856+7872d−1872d2−1008d3+630d4−128d5+5d6+d7)

3(d−2)(3d−2)(−22+26d−9d2+d3)
c7

− (−1856+8016d−10784d2+6260d3−618d4−1205d5+722d6−160d7+8d8+d9)

16(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c8

− (12096−55344d+88108d2−60318d3+9758d4+10317d5−6659d6+1620d7−152d8−3d9+d10)

8(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c9

− (20352−98400d+177616d2−139276d3+34518d4+16968d5−14063d6+3850d7−410d8−6d9+3d10)

48(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c10

− (672−2232d+2438d2−1299d3+448d4−86d5+2d6+d7)

8(d−2)2(2d−1)(−22+26d−9d2+d3)
c11

+
(−96+168d−29d2−31d3+5d4+d5)

12(d−2)2(d−1)(2d−1)
c13

+
(d−4)d

2(d−2)2(d−1)
c14+

(−120+222d−41d2−31d3+5d4+d5)

12(d−2)2(d−1)(2d−1)
c15

+
(72−42d−25d2+6d3+d4)

12(d−2)2(2d−1)
c16 +

(96−168d+66d2−49d3+6d4+d5)

24(d−2)2(2d−1)
c18

+ (12−6d+d2)c26 (A.7)
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c24 = −(1768− 5050d+ 5912d2 − 3707d3 + 1391d4 − 285d5 + 17d6 + 2d7)

3(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c1

− 2(−560− 376d+ 2678d2 − 2965d3 + 1408d4 − 299d5 + 16d6 + 2d7)

3(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c2

− (1696− 3274d+ 2116d2 − 371d3 − 63d4 + 15d5 + d6)

3(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c3

− 4(−920 + 196d+ 2624d2 − 3272d3 + 1548d4 − 313d5 + 15d6 + 2d7)

3(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c4

− 8(−920 + 196d+ 2624d2 − 3272d3 + 1548d4 − 313d5 + 15d6 + 2d7)

3(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c5

− 8(36− 888d+ 1898d2 − 1668d3 + 727d4 − 150d5 + 8d6 + d7)

3(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c6

− 8(d− 2)(−168 + 190d− 88d2 + 13d3 + d4)

3(3d− 2)(−22 + 26d− 9d2 + d3)
c7

− (120 + 44d− 416d2 + 417d3 − 149d4 + 15d5 + d6)

2(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c8

− (632− 3322d+ 5142d2 − 3529d3 + 1162d4 − 170d5 + 4d6 + d7)

(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c9

− (2544− 8320d+ 10510d2 − 6760d3 + 2395d4 − 419d5 + 15d6 + 3d7)

6(d− 2)(2d− 1)(3d− 2)(−22 + 26d− 9d2 + d3)
c10

− (d− 1)(−4 + 55d− 43d2 + 5d3 + d4)

(d− 2)(2d− 1)(−22 + 26d− 9d2 + d3)
c11

+
2(−15 + 8d+ d2)

3(d− 2)(2d− 1)
c13 +

2(−15 + 8d+ d2)

3(d− 2)(2d− 1)
c15

+
2(−15 + 8d+ d2)

3(d− 2)(2d− 1)
c16 +

d(−15 + 8d+ d2)

3(d− 2)(2d− 1)
c18 + 8(d− 2)c26 (A.8)

c25 = +
(3600−16408d+31034d2−30162d3+16863d4−5794d5+1228d6−114d7−9d8+2d9)

12(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c1

+
(912−7080d+15960d2−18454d3+12579d4−5229d5+1243d6−115d7−10d8+2d9)

6(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c2

+
(1824−6056d+9634d2−7274d3+2439d4−184d5−50d6+2d7+d8)

12(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c3

+
(480−5880d+14820d2−18556d3+13312d4−5672d5+1333d6−116d7−11d8+2d9)

3(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c4

+
2(480−5880d+14820d2−18556d3+13312d4−5672d5+1333d6−116d7−11d8+2d9)

3(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c5

+
2(888−5176d+10700d2−11444d3+7212d4−2805d5+639d6−58d7−5d8+d9)

3(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c6

+
2(−1248+1968d−1116d2+366d3−62d4−d5+d6)

3(d−2)(3d−2)(−22+26d−9d2+d3)
c7

+
(−32+600d−1476d2+1936d3−1469d4+614d5−112d6+2d7+d8)

8(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c8
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+
(2448−12968d+25506d2−25744d3+14727d4−4859d5+840d6−38d7−9d8+d9)

4(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c9

+
(6432−30800d+58832d2−57438d3+31686d4−10223d5+1810d6−86d7−24d8+3d9)

24(d−2)2(d−1)(2d−1)(3d−2)(−22+26d−9d2+d3)
c10

+
(d−3)(−16+12d+37d2−29d3−d4+d5)

4(d−2)2(2d−1)(−22+26d−9d2+d3)
c11

− (−33+61d−25d2−d3+d4)

6(d−2)2(d−1)(2d−1)
c13

+
d

2(d− 2)2(d− 1)
c14 −

(−36 + 67d− 25d2 − d3 + d4)

6(d− 2)2(d− 1)(2d− 1)
c15 −

(30− 25d+ d3)

6(d− 2)2(2d− 1)
c16

− (d− 1)d(−36 + d+ d2)

12(d− 2)2(2d− 1)
c18 − 2dc26 (A.9)

B Quasi-topological Lagrangian densities

In this appendix we provide a list of the explicit forms of the quasi-topological Lagrangian

densities.

Z(1)
d = 16(d− 2)(244− 451d+ 306d2 − 91d3 + 10d4)Ra

cRabRb
dRcd

− 64(d− 2)(7− 5d+ d2)(14− 14d+ 3d2)Ra
cRabRbcR

+ 8(−388 + 931d− 856d2 + 379d3 − 82d4 + 7d5)RabR
abR2

+ (−980 + 1683d− 1060d2 + 302d3 − 36d4 + d5)R4

− 32(d− 4)2(d− 2)2(14− 14d+ 3d2)RabRcdRRacbd

+ 2(2764− 6289d+ 5788d2 − 2776d3 + 736d4 − 103d5 + 6d6)R2RabcdR
abcd

+ 64(d− 3)(d− 2)2(−58 + 75d− 30d2 + 4d3)Ra
cRabRdeRbdce

− 48(d− 3)(d− 2)(4− 31d+ 37d2 − 15d3 + 2d4)RabRcdRac
efRbdef

+ 16(d− 2)3(274− 389d+ 183d2 − 34d3 + 2d4)RabRcdRa
e
b
fRcedf

− 4(d− 4)(118− 596d+ 876d2 − 581d3 + 195d4 − 32d5 + 2d6)RabR
abRcdefR

cdef

+ 16(d− 4)(d− 3)(d− 2)(d− 1)(14− 14d+ 3d2)RabRa
cdeRbc

fhRdefh

− (d− 2)(1108− 2723d+ 2639d2 − 1224d3

+ 235d4 + 10d5 − 10d6 + d7)Rab
efRabcdRcd

hiRefhi + 8(d− 2)(860− 2113d

+ 1959d2 − 810d3 + 102d4 + 30d5 − 11d6 + d7)Ra
e
c
fRabcdRb

h
d
iRehfi

+ (−1292 + 2929d− 2741d2 + 1527d3 − 684d4 + 276d5 − 82d6

+ 14d7 − d8)RabcdRabcdRefhiRefhi (B.1)

Z(2)
d =

1

(d− 4)(d− 2)3(3d− 4)(11− 6d+ d2)(−4 + 14d− 7d2 + d3)(−22 + 26d− 9d2 + d3)
×

×
[
(d− 4)(d3 − 9d2 + 26d− 22)(d− 1)(2d8 − 36d7 + 264d6 − 969d5 + 1486d4 + 1289

×d3 − 8530d2 + 11948d− 5632)RabRabR
cdRcd − (d− 2)(−22 + 26d− 9d2 + d3)(3840

−9872d+ 13772d2 − 12446d3 + 6133d4 − 795d5 − 639d6 + 327d7 − 60d8 + 4d9)Ra
cRab

×Rb
dRcd + (d− 1)(d− 4)(−22 + 26d− 9d2 + d3)(−5632 + 11948d− 8530d2 + 1289d3
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+1486d4 − 969d5 + 264d6 − 36d7 + 2d8)Ra
cRabRb

dRcd +
4

3
(d− 2)(92672− 459640d

+851460d2 − 741570d3 + 245584d4 + 91339d5 − 122856d6 + 51524d7 − 10130d8 + 451

×d9 + 192d10 − 36d11 + 2d12)Ra
cRabRbcR− (−19968 + 129856d− 351080d2 + 486664

×d3 − 350864d4 + 91452d5 + 48784d6 − 50566d7 + 18113d8 − 2536d9 − 243d10 + 143d11

−20d12 + d13)RabR
abR2 +

1

24
(385024− 1950016d+ 3753760d2 − 3555864d3 + 1582172

×d4 − 4394d5 − 370858d6 + 206017d7 − 59436d8 + 10909d9 − 1522d10 + 195d11 − 20d12

+d13)R4 + 4(d− 2)2(−36480 + 97652d− 90614d2 + 16524d3 + 30278d4 − 24508d5

+6916d6 + 152d7 − 625d8 + 173d9 − 21d10 + d11)RRabRcdRacbd +
1

4
(d− 2)(−328704

+1158096d− 1701488d2 + 1286084d3 − 430702d4 − 82374d5 + 157229d6 − 79874d7

+23397d8 − 4346d9 + 507d10 − 34d11 + d12)R2RabcdR
abcd − 2(d− 2)3(−28032 + 87822d

−112640d2 + 71315d3 − 16827d4 − 6654d5 + 6558d6 − 2329d7 + 447d8 − 46d9 + 2d10)Rab

×RRa
cdeRbcde − 8(d− 2)2(−22 + 26d− 9d2 + d3)(−64 + 1592d− 2909d2 + 1743d3 − 58d4

−371d5 + 167d6 − 30d7 + 2d8)Ra
cRabRdeRbdce + (d− 2)3(−22 + 26d− 9d2 + d3)(1024

−3308d+ 2725d2 + 210d3 − 1190d4 + 570d5 − 111d6 + 8d7)RabRcdRac
efRbdef +

1

3
(d− 2)3

×(1792− 3743d+ 2678d2 − 531d3 − 247d4 + 150d5 − 29d6 + 2d7)(−4 + 14d− 7d2 + d3)

×RRab
efRabcdRcdef +

1

2
(d− 2)(−22 + 26d− 9d2 + d3)(9216− 31760d+ 41152d2 − 22702

×d3 + 914d4 + 5611d5 − 3201d6 + 839d7 − 111d8 + 6d9)RabR
abRcdefR

cdef

]
−2(−8− 23d+ 39d2 − 16d3 + 2d4)

(d− 4)(3d− 4)(11− 6d+ d2)
RabRa

cdeRbc
fhRdefh +Ra

e
c
fRabcdRb

h
e
jRdhfj (B.2)

Z(3)
d =

1

12(−4+d)(−2+d)3(−4+3d)(11−6d+d2)(−22+26d−9d2+d3)(−4+14d−7d2+d3)
×

×
[
− 24(−2 + d)(−22 + 26d− 9d2 + d3)(−3408 + 9452d− 13070d2 + 12869d3

− 9751d4 + 5409d5 − 2053d6 + 496d7 − 68d8 + 4d9)Ra
cRabRb

dRcd

+ 24(−4 + d)(−3 + d)(−22 + 26d− 9d2 + d3)(1716− 5894d+ 8839d2 − 7538d3

+ 4008d4 − 1364d5 + 291d6 − 36d7 + 2d8)RabR
abRcdR

cd + 32(−2 + d)(−71704

+ 400996d− 956122d2 + 1301340d3 − 1128581d4 + 652069d5 − 251257d6

+ 60923d7 − 7184d8 − 444d9 + 290d10 − 40d11 + 2d12)Ra
cRabRbcR− 24(15680

− 106664d+ 323592d2 − 568168d3 + 638164d4 − 479674d5 + 243364d6 − 80096d7

+ 14246d8 + 229d9 − 800d10 + 196d11 − 22d12 + d13)RabR
abR2 + (−302144

+ 1720608d− 4189176d2 + 5863660d3 − 5304058d4 + 3284002d5 − 1431861d6

+ 445160d7 − 99552d8 + 16457d9 − 2171d10 + 248d11 − 22d12 + d13)R4

+ 48(−2 + d)2(70472− 240892d+ 359520d2 − 299804d3 + 143976d4 − 30793d5

− 6594d6 + 7094d7 − 2428d8 + 453d9 − 46d10 + 2d11)RabRcdRRacbd
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+ 6(−2 + d)(316048− 1340112d+ 2613908d2 − 3095774d3 + 2474698d4

− 1403521d5 + 577724d6 − 173518d7 + 37673d8 − 5759d9 + 588d10

− 36d11 + d12)R2RabcdR
abcd − 48(−2 + d)3(25270− 92828d+ 156501d2

− 158736d3 + 107067d4 − 50145d5 + 16490d6 − 3749d7 + 562d8 − 50d9

+ 2d10)RabRRa
cdeRbcde − 192(−2 + d)2(−22 + 26d− 9d2 + d3)(−40− 1069d

+ 3085d2 − 3689d3 + 2463d4 − 1001d5 + 247d6 − 34d7 + 2d8)Ra
cRabRdeRbdce

+ 24(−2 + d)3(−1 + d)(−22 + 26d− 9d2 + d3)(988− 3197d+ 3661d2 − 2141d3

+ 689d4 − 116d5 + 8d6)RabRcdRac
efRbdef + 4(−2 + d)3(−4 + 14d

− 7d2 + d3)(−1654 + 4528d− 5595d2 + 4003d3 − 1751d4 + 459d5 − 66d6

+ 4d7)RRab
efRabcdRcdef + 12(−2 + d)(−22 + 26d− 9d2 + d3)(−8144 + 33248d

− 60534d2 + 64054d3 − 43371d4 + 19504d5 − 5824d6 + 1112d7

− 123d8 + 6d9)RabR
abRcdefR

cdef − 24(−2 + d)3(−22 + 26d− 9d2 + d3)(−4

+ 14d− 7d2 + d3)(122− 207d+ 130d2 − 37d3 + 4d4)RabRa
cdeRbc

fhRdefh

]
+Ra

e
c
fRabcdRb

h
d
jRehfj (B.3)

Z(4)
d =

1

12(−2+d)2(−4+3d)(11−6d+d2)(−22+26d−9d2+d3)(−4+14d−7d2+d3)
×

×
[
− 48(−2 + d)(−22 + 26d− 9d2 + d3)(136− 230d+ 271d2 − 248d3

+ 119d4 − 26d5 + 2d6)Ra
cRabRb

dRcd + 48(−1 + d)(−22 + 26d− 9d2 + d3)(968

− 2030d+ 1645d2 − 689d3 + 161d4 − 20d5 + d6)RabR
abRcdR

cd

+ 16(−2 + d)(16144− 75888d+ 132572d2 − 115700d3 + 54596d4 − 13179d5

+ 902d6 + 277d7 − 64d8 + 4d9)Ra
cRabRbcR− 24(−1520 + 9492d− 24910d2

+ 33458d3 − 24719d4 + 9944d5 − 1768d6 − 118d7 + 110d8 − 18d9 + d10)RabR
abR2

+ (33280− 158960d+ 285656d2 − 263172d3 + 139206d4 − 44518d5 + 8963d6

− 1272d7 + 162d8 − 18d9 + d10)R4 + 96(−2 + d)2(−3112 + 7497d− 6676d2

+ 2251d3 + 265d4 − 441d5 + 138d6 − 19d7 + d8)RabRcdRRacbd

+ 6(−2 + d)(−28000 + 90828d− 127196d2 + 100724d3 − 49778d4 + 15961d5

− 3326d6 + 434d7 − 32d8 + d9)R2RabcdR
abcd − 24(−2 + d)2(9280− 30290d

+ 42690d2 − 33711d3 + 16264d4 − 4901d5 + 900d6 − 92d7 + 4d8)RabRRa
cdeRbcde

− 48(−2 + d)2(−22 + 26d− 9d2 + d3)(−24 + 538d− 817d2 + 444d3 − 101d4

+ 8d5)Ra
cRabRdeRbdce + 12(−2 + d)2(−22 + 26d− 9d2 + d3)(−384 + 1396d

− 1615d2 + 781d3 − 167d4 + 13d5)RabRcdRac
efRbdef + 4(−2 + d)2(−4 + 14d

− 7d2 + d3)(−496 + 1049d− 844d2 + 321d3 − 58d4 + 4d5)RRab
efRabcdRcdef

+ 12(−4 + d)(−2 + d)(−1 + d)(−22 + 26d− 9d2 + d3)(194− 370d+ 237d2

− 63d3 + 6d4)RabR
abRcdefR

cdef − 12(−4 + d)(−2 + d)2(−7 + 5d)(−22 + 26d

− 9d2+d3)(−4+14d−7d2+d3)RabRa
cdeRbc

fhRdefh
]
+Rab

efRabcdRc
h
e
jRdhfj (B.4)
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Z(5)
d =

1

6(−4+d)(−2+d)3(−4+3d)(11−6d+d2)(−22+26d−9d2+d3)(−4+14d−7d2+d3)
×

×
[
− 48(−2 + d)(−22 + 26d− 9d2 + d3)(−144 + 188d− 1374d2 + 4021d3

− 5045d4 + 3387d5 − 1325d6 + 304d7 − 38d8 + 2d9)Ra
cRabRb

dRcd

+ 48(−4 + d)(−22 + 26d− 9d2 + d3)(−1804 + 9398d− 18611d2 + 19639d3

− 12568d4 + 5162d5 − 1380d6 + 234d7 − 23d8 + d9)RabR
abRcdR

cd

+ 64(−2 + d)(−39608 + 263092d− 689234d2 + 982248d3 − 860735d4

+ 487978d5 − 179717d6 + 40454d7 − 4102d8 − 390d9 + 179d10

− 22d11 + d12)Ra
cRabRbcR− 24(4736− 58896d+ 273136d2 − 618416d3

+ 804696d4 − 652724d5 + 339308d6 − 109530d7 + 18000d8 + 735d9 − 1064d10

+ 234d11 − 24d12 + d13)RabR
abR2 + (−318080 + 2132288d− 5677552d2

+ 8307160d3 − 7598852d4 + 4634276d5 − 1950058d6 + 577374d7 − 122648d8

+ 19523d9 − 2542d10 + 286d11 − 24d12 + d13)R4 + 96(−2 + d)2(17960− 85612d

+ 156176d2 − 144780d3 + 69622d4 − 10116d5 − 7511d6 + 5207d7 − 1574d8

+ 268d9 − 25d10 + d11)RabRcdRRacbd + 6(−2 + d)(178336− 1018016d+ 2405768d2

− 3225004d3 + 2781796d4 − 1644450d5 + 687962d6 − 206196d7 + 44081d8

− 6568d9 + 648d10 − 38d11 + d12)R2RabcdR
abcd − 96(−2 + d)3(7550− 39268d

+ 81391d2 − 93331d3 + 67198d4 − 32176d5 + 10461d6 − 2292d7 + 325d8

− 27d9 + d10)RabRRa
cdeRbcde − 384(−2 + d)2(−1 + d)(−22 + 26d− 9d2

+ d3)(−152 + 929d− 1562d2 + 1239d3 − 542d4 + 135d5 − 18d6 + d7)Ra
cRabRdeRbdce

+ 48(−2 + d)3(−22 + 26d− 9d2 + d3)(−716 + 3557d− 5760d2 + 4566d3 − 2022d4

+ 513d5 − 70d6 + 4d7)RabRcdRac
efRbdef + 8(−2 + d)3(−4 + 14d− 7d2 + d3)(−878

+ 3064d− 4182d2 + 2976d3 − 1215d4 + 288d5 − 37d6 + 2d7)RRab
efRabcdRcdef

+ 24(−2 + d)(−22 + 26d− 9d2 + d3)(−2704 + 14944d− 32382d2 + 37746d3

− 26667d4 + 12018d5 − 3491d6 + 635d7 − 66d8 + 3d9)RabR
abRcdefR

cdef

− 48(−2 + d)3(−22 + 26d− 9d2 + d3)(−4 + 14d− 7d2 + d3)(82− 139d+ 82d2

− 21d3 + 2d4)RabRa
cdeRbc

fhRdefh
]

+Rab
efRabcdRce

hjRdfhj (B.5)

Z(6)
d =

1

3(−4+d)(−2+d)3(−4+3d)(11−6d+d2)(−22+26d−9d2+d3)(−4+14d−7d2+d3)
×

×
[
− 48(−2 + d)(−22 + 26d− 9d2 + d3)(−144 + 188d− 1374d2 + 4021d3 − 5045d4

+ 3387d5 − 1325d6 + 304d7 − 38d8 + 2d9)Ra
cRabRb

dRcd + 48(−4 + d)(−22

+ 26d− 9d2 + d3)(−1804 + 9398d− 18611d2 + 19639d3 − 12568d4 + 5162d5

− 1380d6 + 234d7 − 23d8 + d9)RabR
abRcdR

cd + 64(−2 + d)(−39608 + 263092d

− 689234d2 + 982248d3 − 860735d4 + 487978d5 − 179717d6 + 40454d7 − 4102d8

− 390d9 + 179d10 − 22d11 + d12)Ra
cRabRbcR− 24(4736− 58896d+ 273136d2

− 618416d3 + 804696d4 − 652724d5 + 339308d6 − 109530d7 + 18000d8 + 735d9
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− 1064d10 + 234d11 − 24d12 + d13)RabR
abR2 + (−318080 + 2132288d− 5677552d2

+ 8307160d3−7598852d4+4634276d5−1950058d6+577374d7−122648d8+19523d9

− 2542d10 + 286d11 − 24d12 + d13)R4 + 96(−2 + d)2(17960− 85612d+ 156176d2

− 144780d3 + 69622d4 − 10116d5 − 7511d6 + 5207d7 − 1574d8 + 268d9

− 25d10 + d11)RabRcdRRacbd + 6(−2 + d)(178336− 1018016d+ 2405768d2

− 3225004d3 + 2781796d4 − 1644450d5 + 687962d6 − 206196d7 + 44081d8

− 6568d9 + 648d10 − 38d11 + d12)R2RabcdR
abcd − 96(−2 + d)3(7550− 39268d

+ 81391d2 − 93331d3 + 67198d4 − 32176d5 + 10461d6 − 2292d7 + 325d8

− 27d9 + d10)RabRRa
cdeRbcde − 384(−2 + d)2(−1 + d)(−22 + 26d− 9d2

+ d3)(−152 + 929d− 1562d2 + 1239d3 − 542d4 + 135d5 − 18d6 + d7)Ra
cRabRdeRbdce

+ 48(−2 + d)3(−22 + 26d− 9d2 + d3)(−716 + 3557d− 5760d2 + 4566d3 − 2022d4

+ 513d5 − 70d6 + 4d7)RabRcdRac
efRbdef + 8(−2 + d)3(−4 + 14d− 7d2

+ d3)(−878+3064d−4182d2+2976d3−1215d4+288d5−37d6+2d7)RRab
efRabcdRcdef

+ 24(−2+d)(−22+26d−9d2+d3)(−2704 + 14944d− 32382d2 + 37746d3 − 26667d4

+ 12018d5 − 3491d6 + 635d7 − 66d8 + 3d9)RabR
abRcdefR

cdef

− 48(−2 + d)3(−22 + 26d− 9d2 + d3)(−4 + 14d− 7d2 + d3)(82− 139d+ 82d2

− 21d3 + 2d4)RabRa
cdeRbc

fhRdefh
]

+Rab
efRabcdRcd

hjRefhj (B.6)

C Generalized quasi-topological Lagrangian densities

Here we present the explicit forms of the quartet of generalized quasi-topological theories.

S(1)d =
1

6(d− 3)2(d− 2)2(d− 1)d(11− 6d+ d2)(19− 18d+ 3d2)(−22 + 26d− 9d2 + d3)

×
[
− 2(d− 2)2(675840− 1895902d+ 2220384d2 − 1342691d3 + 370480d4

+ 36380d5 − 68962d6 + 27252d7 − 6100d8 + 862d9 − 74d10 + 3d11)Ra
cRabRb

dRcd

− 2(1332480− 3880512d+ 4484792d2 − 2299414d3 + 114412d4 + 452234d5

− 195096d6 − 509d7 + 26111d8 − 9952d9 + 1830d10 − 175d11 + 7d12)RabR
abRcdR

cd

+ 8(d− 2)2(d− 1)(8160− 19934d+ 18411d2 − 6271d3 − 1872d4 + 2790d5

− 1261d6 + 301d7 − 38d8 + 2d9)Ra
cRabRbcR+ 2(374400− 1072928d

+ 1257694d2 − 724744d3 + 156052d4 + 53793d5 − 49657d6 + 17344d7

− 3698d8 + 525d9 − 47d10 + 2d11)RabR
abR2 + 24(d− 2)(−128640 + 368958d

− 429005d2 + 239408d3 − 43691d4 − 22101d5 + 15982d6 − 4406d7 + 625d8

− 43d9 + d10)RabRcdRRacbd − 3(361600− 1116656d+ 1410902d2

− 875630d3 + 208502d4 + 51581d5 − 38382d6 − 577d7 + 6668d8 − 2637d9

+ 500d10 − 49d11 + 2d12)R2RabcdR
abcd − 24(d− 2)(d− 1)(−119680

+ 338440d− 401078d2 + 240034d3 − 58237d4 − 13906d5 + 14831d6

− 4890d7 + 849d8 − 78d9 + 3d10)Ra
cRabRdeRbdce
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+ 6(d− 2)2(d− 1)(28160− 110076d+ 172418d2 − 146251d3

+ 75674d4 − 25778d5 + 6287d6 − 1211d7 + 188d8 − 20d9 + d10)RabRcdRac
efRbdef

+ 2(d− 3)(d− 2)2(d− 1)(−2400 + 9201d− 9929d2 + 2690d3 + 1954d4

− 1667d5 + 507d6 − 72d7 + 4d8)RRab
efRabcdRcdef + 3(−113920

+ 801792d− 1837992d2 + 2067094d3 − 1242116d4 + 346968d5 + 4985d6

− 18628d7 − 8905d8 + 9138d9 − 3089d10 + 546d11 − 51d12 + 2d13)RabR
abRcdefR

cdef

− 6(d− 3)(d− 2)2(d− 1)(−22 + 26d− 9d2 + d3)(320− 709d+ 588d2

− 292d3 + 106d4 − 23d5 + 2d6)RabRa
cdeRbc

fhRdefh
]

+Ra
e
c
fRabcdRb

h
e
jRdhfj (C.1)

S(2)d =
1

3(d− 3)2(d− 2)2(d− 1)d(11− 6d+ d2)(19− 18d+ 3d2)(−22 + 26d− 9d2 + d3)
×

×
[
− 2(d− 2)2(−578688 + 2025158d− 3185710d2 + 2977426d3 − 1839784d4

+ 791721d5 − 244086d6 + 54763d7 − 8972d8 + 1049d9 − 80d10 + 3d11)Ra
cRabRb

dRcd

+ (2281872− 8031408d+ 12067376d2 − 9693872d3 + 3903996d4 + 22113d5

− 946024d6+572163d7−189362d8+39599d9−5244d10+405d11−14d12)RabR
abRcdR

cd

+ 8(d− 2)2(d− 1)(−6987 + 21346d− 29861d2 + 26093d3 − 15931d4 + 6882d5

− 2031d6 + 385d7 − 42d8 + 2d9)Ra
cRabRbcR+ 2(−320580 + 1132666d

− 1781245d2 + 1646682d3 − 998922d4 + 421855d5 − 128958d6 + 29348d7

− 5024d8 + 627d9 − 51d10 + 2d11)RabR
abR2 − 12(d− 2)(−220296

+ 774954d− 1199885d2 + 1070366d3 − 604828d4 + 223750d5 − 53844d6

+ 7998d7 − 628d8 + 12d9 + d10)RabRcdRRacbd − 3(−309620 + 1149158d

− 1856955d2 + 1675917d3 − 875073d4 + 209908d5 + 40520d6 − 53295d7

+ 21313d8 − 4912d9 + 693d10 − 56d11 + 2d12)R2RabcdR
abcd

− 24(d− 2)(d− 1)(102476− 371148d+ 606224d2 − 585295d3 + 368632d4

− 157824d5 + 46423d6 − 9251d7 + 1194d8 − 90d9 + 3d10)Ra
cRabRdeRbdce

+ 6(d− 2)2(d− 1)(−24112 + 104237d− 184591d2 + 177665d3 − 102275d4

+ 35933d5 − 7258d6 + 601d7 + 55d8 − 16d9 + d10)RabRcdRac
efRbdef

+ (d− 3)(d− 2)2(d− 1)(4110− 23613d+ 44912d2 − 42687d3 + 23334d4

− 7715d5 + 1532d6 − 169d7 + 8d8)RRab
efRabcdRcdef + 3(97544− 765604d

+ 2080704d2 − 2942717d3 + 2459345d4 − 1222083d5 + 288468d6 + 44796d7

− 62477d8 + 24383d9 − 5446d10 + 743d11 − 58d12 + 2d13)RabR
abRcdefR

cdef

− 6(d− 3)(d− 2)2(d− 1)(−22 + 26d− 9d2 + d3)(−274 + 409d− 67d2

− 161d3 + 103d4 − 24d5 + 2d6)RabRa
cdeRbc

fhRdefh
]

+Ra
e
c
fRabcdRb

h
d
jRehfj (C.2)
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S(3)d =
1

3(d− 3)2(d− 2)(d− 1)d(11− 6d+ d2)(19− 18d+ 3d2)(−22 + 26d− 9d2 + d3)
×

×
[
− 4(d− 2)(−718080 + 2405582d− 3666144d2 + 3359133d3 − 2057938d4

+ 887142d5 − 276120d6 + 62662d7 − 10296d8 + 1182d9 − 86d10 + 3d11)Ra
cRabRb

dRcd

− 4(707880− 2115012d+ 2700668d2 − 1809780d3 + 561468d4 + 61133d5 − 134394d6

+ 60426d7 − 15005d8 + 2238d9 − 189d10 + 7d11)RabR
abRcdR

cd

+ 16(d− 2)(d− 1)(−8670 + 30262d− 47247d2 + 43299d3 − 25747d4 + 10271d5

− 2734d6 + 466d7 − 46d8 + 2d9)Ra
cRabRbcR+ 4(198900− 592178d+ 790224d2

− 617415d3+313537d4−109500d5+27237d6−4900d7+624d8−51d9+2d10)RabR
abR2

+ 48(d− 2)(−68340 + 203532d− 268574d2 + 203038d3 − 95967d4 + 29190d5

− 5665d6 + 667d7 − 42d8 + d9)RabRcdRRacbd − 6(192100− 603774d+ 820554d2

− 605255d3 + 237492d4 − 22951d5 − 24843d6 + 14329d7 − 3890d8 + 609d9 − 53d10

+ 2d11)R2RabcdR
abcd − 48(d− 2)(d− 1)(−63580 + 183572d− 244118d2

+ 192444d3 − 97734d4 + 32893d5 − 7308d6 + 1032d7 − 84d8 + 3d9)Ra
cRabRdeRbdce

+ 12(d− 2)(d− 1)(−29920 + 120000d− 196892d2 + 175930d3 − 93864d4

+ 30115d5 − 5212d6 + 193d7 + 99d8 − 18d9 + d10)RabRcdRac
efRbdef

+ 4(d− 3)(d− 2)(d− 1)(2550− 15414d+ 28633d2 − 26167d3 + 13715d4

− 4351d5 + 830d6 − 88d7 + 4d8)RRab
efRabcdRcdef + 6(−60520 + 414664d

− 945458d2 + 1097752d3 − 719367d4 + 242784d5 − 3125d6 − 36155d7 + 17569d8

− 4430d9 + 659d10 − 55d11 + 2d12)RabR
abRcdefR

cdef

− 12(d− 3)(d− 2)(d− 1)(−22 + 26d− 9d2 + d3)(−340 + 494d− 70d2 − 185d3

+ 112d4 − 25d5 + 2d6)RabRa
cdeRbc

fhRdefh
]

+Rab
efRabcdRce

hjRdfhj (C.3)

S(4)d =
1

3(d− 3)2(d− 2)(d− 1)d(11− 6d+ d2)(19− 18d+ 3d2)(−22 + 26d− 9d2 + d3)
×

×
[
− 8(d− 2)(−718080 + 2405582d− 3666144d2 + 3359133d3 − 2057938d4

+ 887142d5 − 276120d6 + 62662d7 − 10296d8 + 1182d9 − 86d10 + 3d11)Ra
cRabRb

dRcd

− 8(707880− 2115012d+ 2700668d2 − 1809780d3 + 561468d4 + 61133d5

− 134394d6 + 60426d7 − 15005d8 + 2238d9 − 189d10 + 7d11)RabR
abRcdR

cd

+ 32(d− 2)(d− 1)(−8670 + 30262d− 47247d2 + 43299d3 − 25747d4 + 10271d5

− 2734d6 + 466d7 − 46d8 + 2d9)Ra
cRabRbcR+ 8(198900− 592178d+ 790224d2

− 617415d3+313537d4−109500d5+27237d6−4900d7+624d8−51d9+2d10)RabR
abR2

+ 96(d− 2)(−68340 + 203532d− 268574d2 + 203038d3 − 95967d4 + 29190d5

− 5665d6 + 667d7 − 42d8 + d9)RabRcdRRacbd − 12(192100− 603774d+ 820554d2

− 605255d3 + 237492d4 − 22951d5 − 24843d6 + 14329d7 − 3890d8 + 609d9 − 53d10

+ 2d11)R2RabcdR
abcd − 96(d− 2)(d− 1)(−63580 + 183572d− 244118d2
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+ 192444d3 − 97734d4 + 32893d5 − 7308d6 + 1032d7 − 84d8 + 3d9)Ra
cRabRdeRbdce

+ 24(d− 2)(d− 1)(−29920 + 120000d− 196892d2 + 175930d3 − 93864d4

+ 30115d5 − 5212d6 + 193d7 + 99d8 − 18d9 + d10)RabRcdRac
efRbdef

+ 8(d− 3)(d− 2)(d− 1)(2550− 15414d+ 28633d2 − 26167d3 + 13715d4

− 4351d5 + 830d6 − 88d7 + 4d8)RRab
efRabcdRcdef + 12(−60520 + 414664d

− 945458d2 + 1097752d3 − 719367d4 + 242784d5 − 3125d6 − 36155d7 + 17569d8

− 4430d9 + 659d10 − 55d11 + 2d12)RabR
abRcdefR

cdef

− 24(d− 3)(d− 2)(d− 1)(−22 + 26d− 9d2 + d3)(−340 + 494d− 70d2

− 185d3 + 112d4 − 25d5 + 2d6)RabRa
cdeRbc

fhRdefh
]

+Rab
efRabcdRcd

hjRefhj (C.4)

The following two Lagrangian densities are relevant only for the four dimensional

theory.

S(5)4 = −14

5
RabR

abRcdR
cd − 20

3
Ra

bRb
cRc

dRd
a − 8

5
RacRbdRRabcd

+
104

5
RabRe

dRecRacbd +RefR
efRabcdR

abcd +
1

5
R2RabcdR

abcd

− 56

15
RabRcd

h
aR

cdefRefhb +Rabc
eRabcdRfhjdR

fhj
e (C.5)

S(6)4 = −308

15
RabR

abRcdR
cd− 64

3
Ra

bRb
cRc

dRd
a+

64

15
RacRbdRRabcd+

1088

15
RabRe

dRecRacbd

+
28

3
RefR

efRabcdR
abcd − 8

15
R2RabcdR

abcd − 224

15
RabRcd

h
aR

cdefRefhb

+RabcdR
abcdRfhjeR

fhje (C.6)
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