
J
H
E
P
0
5
(
2
0
1
7
)
0
1
8

Published for SISSA by Springer

Received: January 10, 2017

Revised: April 12, 2017

Accepted: April 20, 2017

Published: May 3, 2017

Towards a new paradigm for quark-lepton unification

Christopher Smith

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3,
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1 Introduction

Unifying all the fundamental constituents of matter has long been a major goal of particle

physics. Yet, before the advent of the Standard Model (SM), the hadronic and leptonic

particles have lived in opposite corners of our theories. With strikingly distinct dynamics

and properties, it seemed the intimate nature of these particles were very different. This

is well illustrated by the elusive neutrinos, and the contentious conservation of lepton

number. At the same time, the much heavier protons and neutrons were still thought to

be elementary, and baryon number was, naturally, thought to be conserved.

This state of matter was of course mostly due to the strong interaction. Once its veil

is lifted, the quarks no longer seem so different from the leptons. Their share similar weak

and electromagnetic interactions, as well as the mysterious family replication. In this sense,
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the SM represents the first true milestone in their unification. As a kind of puzzling bonus,

the SM also hints at a higher level of unification. Indeed, its renormalizability, hence its

whole internal coherence, rests on the consistency between the strong and electromagnetic

charges of its fermionic constituents. In addition, baryon and lepton numbers are not

conserved in the SM, but instead the non-perturbative electroweak interactions can for

example transmute three leptons into nine antiquarks [1, 2].

Soon after the SM was formulated as a spontaneously broken gauge theory, the same

receipt was used to construct Grand Unified Theories based on larger gauge groups [3, 4].

There, not only the interactions but also all the matter content get embedded together in

some representations of the unified gauge group. Quarks and leptons become manifestations

of the same fundamental states, and GUT gauge interactions can transform one into the

other. These inspiring theories, however, suffer many defects yet to be explained, most

notably the stability of their scalar sector and their prediction that the proton should

decay at rates now excluded.

Whether GUT represents a true second milestone towards quark-lepton unification

is not so clear though. Indeed, embedding them in common representations only repro-

duces the coherence of their strong and electromagnetic charge we already had to impose

to ensure the SM renormalizability. This may be seen as an explanation, or as a kind

of unavoidable coincidence. Worse still, minimal GUT predicts simple relations between

quark and charged lepton masses, in gross disagreement with the observed values. The only

known way out of this conundrum is to somewhat relax their unification. Disappointingly,

additional Yukawa interactions have to be introduced for the sole purpose of lifting the

very prediction of unification.

The goal of this paper is to analyze the question of quark-lepton unification from a

flavored point of view. For that, in the next section, we first take a step back from GUT

and characterize in a model-independent setting the misalignment between the quark and

lepton Yukawa couplings Yu, Yd, and Ye. Our strategy is to start by assuming

Ye = f(Yd,Yu) , (1.1)

for some polynomial function f . Then, some requirements for a successful unification can

be deduced from the peculiarities of this function f , which is found to be severely fine-

tuned. In the following section, quite generic dynamical toy models are constructed to

alleviate this fine-tuning. Though limited, these toy models illustrate that it is in principle

possible to automatically and naturally relate the quark and lepton flavor structures. The

implications of such toy models for supersymmetry are discussed in section 4, and its

implementation within the minimal SU(5) model is described in section 5.

Finally, we stress that throughout this paper, neutrinos are taken as massless. This

means, in particular, that the lepton PMNS mixing is beyond our reach. The main reason,

as explained in the conclusion, is that neutrino mass models in general introduce lepton

number violating flavor structures, and those would render the analysis much more in-

volved. Our goal here is to study the possible relationship between Yu, Yd, and Ye in the

absence of any additional flavor structures, and could thus represent a first step towards a

full understanding of the quark-lepton unification.
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2 Flavor symmetric perspective on quark-lepton unification

The strategy of choice when discussing the flavor sector of any theory is to identify the

flavor symmetry and its explicit breaking terms. This permits to systematically work

out and characterize their impacts on observables. In section 2.1, we thus start by a brief

summary of this technique, along with the closely related Minimal Flavor Violation (MFV)

hypothesis. This sets the stage for section 2.2, where this hypothesis is reinterpreted and

adapted to the problem at hand, which is to relate the quark and lepton Yukawa couplings.

Then, in section 2.3, the peculiar fine-tuning of any relationship between Ye, Yd, and Yu

is identified, and some generic implications for the lepton mass spectrum are obtained.

This information will guide us in the design of specific models in section 3.

2.1 SM flavors and Minimal Flavor Violation

In the SM, the three generations of matter fields can be freely and independently re-

defined for each matter species without affecting the gauge sector, which thus has the

symmetry [5, 6]

GF ≡ U(3)5 = U (3)Q ⊗ U (3)U ⊗ U (3)D ⊗ U (3)L ⊗ U (3)E , (2.1)

where Q = (uL, dL), U = uR, D = dR, L = (νL, eL), and E = eR. This symmetry is

broken by the Yukawa couplings only, which generate fermion masses and mixing after

the electroweak symmetry breaking (EWSB). For the following, it will prove useful to

immediately generalize to a Two Higgs Doublet Model (THDM) of type II, i.e.,

LY = ŪYuQHu + D̄YdQHd + ĒYeLHd , (2.2)

because then the respective normalization of the up and down quark Yukawa couplings

are tuned by the ratio of vacuum expectation values (VEV) vu,d of the two neutral Higgs

components H0
u,d, conventionally denoted as tan β = vu/vd.

As is customary, to systematically investigate the impact of these symmetry breaking

terms on observables, we first promote them to spurions. The idea is to artificially re-

store the GF symmetry by assigning definite GF transformation properties to the Yukawa

couplings,

Yu → gUYug
†
Q, Yd → gDYdg

†
Q, Ye → gEYeg

†
L , (2.3)

where gX ∈ U(3)X , so that eq. (2.2) becomes invariant under X → gXX. At this stage, the

SM Lagrangian becomes invariant under GF . Even if this is purely artificial, the amplitude

for any possible process must also be expressible as manifestly GF -invariant, and crucially,

this may require inserting Yukawa spurions in a very specific way in the amplitude. The

GF symmetry thus offers a very simple tool to predict the flavor structure of observables.

In a second stage, the spurions are frozen back to their physical values to get quantita-

tive predictions. The Yukawa couplings admit the Singular Value Decompositions (SVD)

vuYu = ḡ†Umuḡ
u
Q, vdYd = ḡ†Dmdḡ

d
Q , vdYe = ḡ†EmdḡL , (2.4)
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for some (fixed) ḡX transformations. So, using the GF invariance, it is always possible to

freeze the Yukawa couplings at the values

vuYu = muV, vdYd = md, vdYe = me , (2.5)

with mu,d,e = diag(mu,d,e,mc,s,µ,mt,b,τ ) the diagonal mass matrices and V = ḡuQḡ
d†
Q the

CKM matrix. In this basis, the down quarks are all mass eigenstates, but not the left-

handed up quarks. Whenever convenient, the vuYu = mu and vdYd = mdV
† background

values can also be chosen; the final results will obviously not depend on this choice.

In the presence of New Physics (NP), assuming gauge interactions still exhibit the

GF symmetry, the same strategy as in the SM can be followed. In general, there will be

additional flavored couplings, which have thus to be also promoted to spurions to restore the

global GF symmetry. But because these new flavor couplings are a priori generic, they could

induce unacceptably large effects in flavor observables when the New Physics scale is around

the TeV [7]. On the contrary, this flavor puzzle disappears if the hierarchies of the NP

flavor couplings are similar to those observed for the quark and lepton masses and mixings.

This is where the Minimal Flavor Violation hypothesis comes into play [8]. It is a

tool designed to systematically export the numerical hierarchies of Yu,d,e to the NP flavor

sector, and proceeds in two steps [9, 10]:

• Minimality: the first step is to remove the NP couplings from the spurion list. Only

Yu,d,e are kept in order to induce the known fermion masses. This does not forbid the

NP couplings, but forces them to be expressed as polynomial expansions in Yu,d,e,

as dictated by the GF symmetry.

• Naturality: the second step requires all the free parameters to be natural, i.e., the

coefficients appearing in the spurion expansions have to be O(1). This ensures that

the numerical hierarchies of Yu,d,e are indeed passed on the NP couplings.

Provided these two conditions are met, the flavor observables are only marginally

affected by TeV NP, and the flavor puzzles are solved. We refer to ref. [7] for more

information.

2.2 Fundamental flavor structures: going beyond MFV

Naively, MFV seems to treat very differently the Yukawa couplings and the NP flavor

couplings since the latter are expressed in terms of the former. For the following, it is

crucial to understand that this asymmetrical treatment of a priori analogous Lagrangian

couplings is more a matter of convenience than a statement about their respective nature.

Indeed, MFV can be interpreted as a simple assumption about the mechanism at the origin

of all the flavor structures [11].

To illustrate this, imagine a low-energy theory with two elementary flavor couplings Y

and A, which can be thought of as the Yukawa and NP couplings. At the very high scale,

some flavor dynamics is active and introduces a single explicit breaking of GF , which we

call X. The two low-energy flavor couplings are induced by this elementary flavor breaking,
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so it must be possible to relate them. For example, if Y, A, and X all transform under

the same adjoint representation of some flavor SU(3) ⊂ GF ,{
Y = xY1 1 + xY2 X + xY3 X2 ,

A = xA1 1 + xA2 X + xA3 X2 .
(2.6)

If the flavor dynamics was known, these coefficients could be computed explicitly. Lacking

this, we simply assume they are natural. Also, for these expansions to make sense, powers

of X must not grow unchecked. A sufficient condition is for the trace 〈X〉 . 1, since then

all Xn>2 can be eliminated in terms of 1, X, and X2 without upsetting xi ∼ O(1) by using

Cayley-Hamilton identities. Under this condition, from eq. (2.6), we can get rid of the

unknown high-energy spurion X and derive the low-energy MFV expansions{
A = y11 + y2Y + y3Y

2 ,

Y = a11 + a2A + a3A
2 ,

(2.7)

for some yi, ai coefficients. Naturality is preserved since yi, ai ∼ O(1) when xi ∼ O(1)

and 〈X〉 . O(1). In practice, only the first identity expressing A in terms of Y is useful

since Y is known but A is not. So, in this interpretation, neither the Yukawa Y nor the

NP coupling A are fundamental, and the MFV expansions are understood as the only

low-energy observable consequences of their intrinsic redundancy.

In this paper, the basic hypothesis we wish to test is the redundancy of the SM Yukawa

couplings themselves. MFV usually assumes the minimal spurion content to be Yu,d,e, so

that all fermion masses can be induced. Here, we want to go beyond that and express

some Yukawa couplings as expansions in others, as would happen if there are less than

three fundamental flavor couplings.

To achieve this, as a first step, we have to restrict GF to a smaller group G′F , identify

the reduced set of spurions, and fix their transformation properties under G′F . There is a

priori a great latitude in these various choices and we do not plan to study them exhaus-

tively. Instead, with GUT settings in mind, we consider only the continuous subgroups

obtained by forcing some of the U(3) transformations to be related. In other words, from

a generic transformation (gU , gD, gQ, gE , gL) ∈ GF , those of G′F are obtained by imposing

the equality (modulo transpositions and/or conjugations) of some of the gi’s.

To further restrict the possibilities, we require

1. Naturality. With their two indices, the Yukawa couplings could transform as 1, 3, 6,

or 8 under a given flavor SU(3) or as (3,3) under two different SU(3)s. But, given

the very hierarchical form of the Yukawa couplings, naturality forbids any MFV ex-

pansion from starting as Yi = a11 + . . ., ruling out scenarios where Yi ∼ 1 ⊕ 8 for

some i. Also, if there is only one Higgs doublets, or if tan β is not very large when

there are two doublets, then G′F must forbid Yu from contributing directly to Yd or

Ye. For example, if G′F allows Ye = a1Yu+ . . ., then a1 would have to be very small.

2. Predictivity. When the group G′F is too large compared to the number of spurions,

they can all be diagonalized and no flavor mixing would survive. Conversely, if G′F is

– 5 –



J
H
E
P
0
5
(
2
0
1
7
)
0
1
8

too small compared to the number of spurions, unknown mixing matrices render the

MFV expansions unpredictive. So G′F has to give just enough freedom to rotate all

the chosen spurions to their physical background values (as is the case in the usual

MFV, see eq. (2.5)). It is then possible to bring these spurions to their background

values wherever they appear within the MFV expansions since these are G′F invariant

by construction.

In view of these points, there remain not so many viable scenarios. We need to keep at

least two spurions, the symmetry group G′F has to be large enough to account for the CKM

mixing, and Ye,d must transform differently than Yu. The simplest choice is to associate

Yd and Ye. For instance, if we take

G′F = U(3)3 = U (3)Q=L ⊗ U (3)U ⊗ U (3)D=E ,

then Yd and Ye transform identically. Since only the misalignment between Yu and Yd

is known, and not that between quark and lepton Yukawa couplings, the two spurions are

chosen to be

Yu → gUYug
†
Q, Yd → gDYdg

†
Q , (2.8)

whose background values can be fixed as in eq. (2.5). This pattern is chosen also to allow

for a smooth extension to GUT settings [12], as will be discussed later on.1

2.3 Lepton masses from quark Yukawas

The next step is to express Ye as a G′F -symmetric expansion in Yu and Yd. From a

mathematical point of view, any coupling can be expressed in this way, since together with

their powers they form a complete basis for complex three-by-three matrices [14, 15]. What

matters is the size of the expansion coefficients. Generic matrices expanded in such a basis

require huge coefficients, while we are after O(1) ones for naturality reasons.

To illustrate this, consider the most general expansion, given the G′F properties,

Ye = c0Yd ·
(
1 + c1Y

†
uYu + c2Y

†
dYd + c3(Y†uYu)2 + c4(Y†dYd)

2 + c5{Y†uYu,Y
†
dYd}

+ ic6[Y†uYu,Y
†
dYd] + ic7[(Y†uYu)2,Y†dYd] + ic8[Y†uYu, (Y

†
dYd)

2]
)
. (2.9)

If we require that this equation holds exactly once Yu,d,e are replaced by their background

values eq. (2.5), then only terms involving Yd can contribute since Yu is not diagonal. The

equation can nevertheless be solved but huge coefficients are required

c0 = 0.2 , c2 = 7× 107 × r2
β , c4 = −3× 1011 × r4

β , ci 6=2,4 = 0 , (2.10)

where rβ = 50/ tanβ encodes a simplified tan β scaling, valid for tan β & 5. This is way

beyond natural, but sets the stage against which we can compare more realistic settings.

Also, it serves to illustrate how sensitive the coefficients are when trying to fit even slight

misalignments.

1A quite similar symmetry-based approach to relate quark and lepton Yukawa couplings was followed

in ref. [13], though the symmetry group was reduced differently and the resulting scenario does not match

smoothly with GUT settings.
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Of course, it makes no sense to require Ye to be diagonal in the basis in which vuYu =

muV and vdYd = md. Once the consequence of G′F are worked out, the leptons are

free to be rotated independently of the quarks. So, all that is required is for the three

singular values of vdYe to match the observed lepton masses. This means that there are

only three constraints to solve for the nine a priori complex coefficients, leaving a large

under-determination. To cure for this, we start by keeping only the three simplest terms

in the expansion and set

ci≥3 ≡ 0 . (2.11)

Restricting coefficients to real values, and using the fermion masses quoted in ref. [16] for

several scenarios, we find

Masses atMZ : c0 = 8.6 , c1 = −1.8 , c2 = 1.2× r2
β ,

SM atMGUT : c0 = 22 , c1 = 6 , c2 = −5× 104 ,

MSSM atMGUT : c0 = 20 , c1 = −7.9 , c2 = 5.3× r2
β ,

THDM atMGUT : c0 = 20 , c1 = −8.6 , c2 = 5.0× r2
β .

(2.12)

The sign of c0 is not fixed since it is irrelevant for the SVD values. Allowing for all the

terms of eq. (2.9) permits to reduce c1,2 a bit but does not change their order of magnitude.

It is truly remarkable that it is possible for at least some of the scenarios to obtain

natural values for the expansion coefficients. The most natural values arise at the EW

scale, when tan β is sufficiently large to make Y†dYd entries of comparable size to those of

Y†uYu. Beyond that scale, the RG evolution under the MSSM or THDM at moderate or

high tan β is strongly favored, while that of the SM departs from naturality essentially be-

cause tan β = 1, and also because the specific hierarchies of the Yukawa couplings becomes

less compatible.

2.3.1 On the anatomy of a fine-tuning

The size of the coefficients is not the only measure of naturalness. Despite their reasonable

appearance, these expansions are severely fined-tuned. The behavior of the singular values

when one of the expansion parameters is allowed to vary is shown in figure 1. Clearly, the

polynomial expansion with natural coefficients has a marginal effect and the singular values

stay very close to those of c0×Yd except for a peculiar point where they all suddenly dip.

If we denote the polynomial

X ≡ 1 + c1Y
†
uYu + c2Y

†
dYd , (2.13)

so that Ye = c0Yd ·X, what happens at that point is a near cancellation

1 ≈ X11 ≈ X22 � X33 ≈ 0 . (2.14)

For example, in the MSSM at tan β = 50,

|X| =

 1 0.0005 0.01

0.0005 1 0.06

0.01 0.06 0.004

 . (2.15)

The eigenvalues of this polynomial show an even more striking hierarchy, with v1 = 1.0017,

v2 = 1.0000, but v3 = 0.00026. It is this peculiar feature which permits to significantly

twist the singular values of Yd to reproduce those of Ye.
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Figure 1. Evolution of the singular values of Ye = c0Yd ·X, with X ≡ 1 + c1Y
†
uYu + c2Y

†
dYd,

as a function of the coefficient c1 or c2, holding the other parameters fixed. This evolution is very

smooth, except for the dip occurring when c1 or c2 is such that det X = 0. The green dashed lines

indicate the point at which the singular values of Ye coincide with the observed lepton Yukawa

couplings, which clearly sits deep inside the dip (these values correspond to the MSSM at the GUT

scale and tan β = 50, see eq. (2.12)).

To better understand why, in the basis eq. (2.5), the 33 entry seem to play a particular

role, let us take the determinant of eq. (2.9 ), setting ci≥3 ≡ 0. The unknown SVD matrices

are unitary and disappear, leaving

det(Ye) = c3
0 × det(Yd)× det

(
1 + c1Y

†
uYu + c2Y

†
dYd

)
. (2.16)

The dip shown in figure 1 corresponds to the point where det X vanishes. Using

Cayley-Hamilton identities and thanks to the large hierarchy of the Yukawa couplings,

(Y†iYi)
2 ≈ 〈Y†iYi〉Y†iYi, i = u, d,

det
(
1 + c1Y

†
uYu + c2Y

†
dYd

)
≈ 1 + c1〈Y†uYu〉+ c2〈Y†dYd〉 ≈ 0 . (2.17)

In the basis eq. (2.5), this immediately implies eq. (2.14) since the top and bottom Yukawa

couplings dominate, 〈Y†u,dYu,d〉 ≈ y2
t,b. The fact that natural coefficients are possible at all

can thus be traced to the large y2
t,b couplings. In this sense, it looks truly remarkable that

a solution where both c1 and c2 end up not larger than 〈Y†uYu〉−1 and 〈Y†dYd〉−1 exists.

Still, at this stage, we cannot make the economy of a mechanism able to automatically

ensure such a near cancellation of det(X).

As a side remark, it should be noted that solving eq. (2.9) for c0,1,2 given the singular

values of Ye is tricky. Indeed, singular value decompositions are highly non-linear, and the

equations for c0,1,2 cannot be solved exactly. Worse, once reverting to numerical methods,

algorithms are very unstable because the solutions we are after lie in the very narrow valley

where the required cancellation takes place.

2.3.2 The twisted persona of the leptons

Before turning to scenarios, there is another peculiar feature of the expansion worth dis-

cussing. The SVD of Ye is gEYeg
†
L, so let us look at the mixing matrices gE and g†L as one

approaches the dip of figure 1. We thus take the MSSM at tan β = 50 and vary c2 holding

– 8 –
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the other coefficients c0,1 fixed. Away from the dip, the two unitary matrices deviate only

slightly from identity

c2 = 2.5 : |gE | =

 1.000 0.00016 0.000054

0.00016 1.000 0.0048

0.000055 0.0048 1.000

 , |gL| =

 1.00 0.0050 0.038

0.0019 0.98 0.18

0.038 0.18 0.98

 .

(2.18)

Moving closer, the situation changes dramatically for gL

c2 = 4.8 : |gE | =

 1.000 0.0084 0.0012

0.0082 0.99 0.11

0.0020 0.11 0.99

 , |gL| =

 0.98 0.13 0.14

0.011 0.71 0.70

0.20 0.69 0.70

 . (2.19)

The reason for this large mixing in the left-handed lepton sector is the difference between

Y†eYe = c2
0 ×X ·Y†dYd ·X and YeY

†
e = c2

0 ×Yd ·X2 ·Y†d , (2.20)

diagonalized by the unitary matrix gL and gE , respectively. Because of eq. (2.14),

the entry (Y†eYe)
33 decreases approaching the dip, but this does not occur for YeY

†
e

whose diagonal entries always stay very hierarchical. The point c2 = 4.8 corresponds to

(Y†eYe)
33 ≈ (Y†eYe)

22, hence the large mixing present in gL.

Moving even closer to the dip, (Y†eYe)
33 becomes smaller than (Y†eYe)

22 and the

left-handed leptons get even more twisted:

c2 = 5.2 : |gE | =

 0.97 0.086 0.0023

0.083 0.98 0.20

0.020 0.20 0.98

 , |gL| =

 0.80 0.56 0.20

0.033 0.28 0.96

0.59 0.77 0.21

 . (2.21)

At the c2 value for which gEYeg
†
L = me/vd, the mixings settle at

c2 = 5.3 : |gE | =

 0.97 0.24 0.0023

0.24 0.95 0.22

0.055 0.21 0.98

 , |gL| =

 0.032 0.98 0.20

0.062 0.20 0.98

1.00 0.019 0.068

 . (2.22)

At this value, large mixing angles disappear and all mixings are CKM-like. Still, the

left-handed leptons are irremediably twisted since eL
µL
τL


phys

≈

 0 0 1

1 0 0

0 1 0

 ·
 eL
µL
τL


gauge

. (2.23)

Note that this reordering of the leptonic states does not depend on the basis chosen for the

quark Yukawa couplings in eq. (2.5), contrary to the mixing angles in gE and gL. In practice,

as long as neutrinos are massless and in the absence of lepton-number violating couplings,

neither these mixings nor the twist are observable. On the other hand, when studying

the neutrino sector, especially mass hierarchies, such a twist could have great implications

since the lightest left handed lepton would be essentially the third-generation gauge state.
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As a final remark, it should be noted that the results of this section do not change

if one identifies the flavor group as U (3)Q=E ⊗ U (3)U ⊗ U (3)D=L instead of U (3)Q=L ⊗
U (3)U ⊗ U (3)D=E , except for the interchange of gL and gE . Indeed, the SVD constraints

imposing Ye = c0Yd ·X or YT
e = c0Yd ·X are obviously identical, but for gL ↔ gE . The

right-handed leptons would then be twisted, with no visible consequence on the neutrinos.

Further, we will see in the next section that it is also possible to have double expansions

like Ye = c0X ·Yd ·X′ with both det X and det X′ close to zero, in which case right and

left leptons end up simultaneously twisted. This should be kept in mind, especially as the

SU(5) unification pattern corresponds [12] to U (3)Q=E=U ⊗ U (3)D=L, with Yu ∼ (6̄,1)

required to be symmetric, and Yd ∼ YT
e ∼ (3̄,3).

3 Scenario 1: light electrons from heavy tops

It is now time to devise a mechanism able to naturally tune the MFV expansion of Ye. In

the next subsection, this problem is tackled from a mathematical point of view, and in the

following, a corresponding physically plausible though quite generic scenario is presented.

3.1 The mathematics of infinite MFV expansions

Let us restate the problem at hand. We have seen that the expansion Ye = c0Yd · X
requires X33 ≈ 0. This means, dropping Y†dYd for simplicity, that with

X = 1 + cY†uYu , (3.1)

the coefficient must be tuned to

det X ≈ 0⇒ c ≈ − 1

〈Y†uYu〉
. (3.2)

Though the numerical value of c is natural thanks to the large top quark Yukawa coupling,

the fine-tuning between c and 〈Y†uYu〉 is unacceptable. Clearly, adding more terms to the

X expansion cannot improve the situation. For example, if we add a term c′(Y†uYu)2 to

X, then both c and c′ have to be fined-tuned so that det X ≈ 0. No finite polynomial in

Y†uYu and/or Y†dYd would ever permit to relax the fine-tuning.

The key to solve this problem is to consider infinite polynomials. Consider for instance

the geometric series

X = 1 + ηY†uYu + η2(Y†uYu)2 + η3(Y†uYu)3 + . . . (3.3)

Barring convergence issues to be discussed below, the sum is

X =
1

1− ηY†uYu

. (3.4)

This matrix has the desired property. In the diagonal basis, Y†uYu = diag(y2
u, y

2
c , y

2
t ) and

X11,22 =
1

1− ηy2
u,c

≈ 1 but X33 =
1

1− ηy2
t

≈ 0 , (3.5)
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whenever η is large enough that ηy2
t � 1 but still small enough that ηy2

u,c � 1. Specifically,

the large top quark mass translate into (Y†uYu)2 ≈ 〈Y†uYu〉Y†uYu, so that

X =
∞∑
n=0

ηn(Y†uYu)n ≈ 1 + ηY†uYu

∞∑
n=0

ηn〈Y†uYu〉n = 1 +
η

1− η〈Y†uYu〉
Y†uYu , (3.6)

which tends to

X
η�1
≈ 1− 1

〈Y†uYu〉
Y†uYu . (3.7)

This is precisely the result we were after, eqs. (3.1) and (3.2 ). Crucially, the value of η does

not need to have any precise relationship with 〈Y†uYu〉, it just needs to be large enough so

that η〈Y†uYu〉 � 1.

Evidently, the suppression of X33 requires summing the geometric series well outside its

radius of convergence. Even if one could argue that such series make sense through analytic

continuation, as is customary for perturbative series in Quantum Field Theory, the situation

is not very comfortable. One simple way out of possible convergence issues is to consider for

example eq. (3.4) as the true expression. In this way, even if the expanded form of the MFV

polynomial does not converge from a strict mathematical sense, it should not have been

trusted in the first place. We will see in the next section a practical realization of such a

scenario. One should note also a peculiar feature of the geometric series involving matrices.

Even if the infinite sum of powers does not converge, any inverse matrix can be expanded

in a finite polynomial. Denoting A ≡ ηY†uYu and using Cayley-Hamilton identities,

1

1 + A
=

1

det(1 + A)

[
1(1 + 〈A〉+

1

2
(〈A〉2 − 〈A2〉))−A (1 + 〈A〉) + A2

]
, (3.8)

whenever

det(1 + A) = 1 + 〈A〉+
1

2
〈A〉2 − 1

2
(1 + 〈A〉)〈A2〉+

1

3
〈A3〉+

1

6
〈A〉3 6= 0 . (3.9)

The result eq. (3.7) is immediately obtained in the third generation dominance A2 → 〈A〉A,

even though no resummation is implied.

All the discussions of this section can be extended to include both A ≡ ηY†uYu and

B ≡ η′Y†dYd. The analytical expressions are more cumbersome since in general [A,B] 6= 0.

For example,

X = (1+A+A2 + . . .)(1+B+B2 + . . .) =
1

1 + A

1

1 + B
≈
(

1− A

1+〈A〉

)(
1− B

1+〈B〉

)
,

(3.10)

where the last equality holds in the third-generation dominance approximation, or

X = 1 + A + B + (A + B)2 + . . . =
1

1 + A + B
≈ 1− A + B

1 + 〈A〉+ 〈B〉
. (3.11)

Both these series manifestly2 reproduces the previous result X11,X22 � X33 ≈ 0 thanks to

the large hierarchy in the Yu,d couplings, and require analytical continuation to be defined

outside of their radius of convergence.

2Care is needed though when simultaneously working in the third-generation dominance approximation

and performing the η →∞ limit, as the latter is not fully compatible with the former.
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3.2 Vector-like leptons and geometric Yukawas

To induce geometric-like MFV expansions, our strategy is to generate effective contribu-

tions to the Yukawa coupling Ye through the tree-level exchange of new states. As such,

it is a bit similar to the Froggatt-Nielsen mechanism [17], although the new fields will not

introduce any new breaking of the flavor symmetry. Such breaking would not be adequate

here since the goal is to generate the MFV series, not to explain the internal hierarchy of

the Yukawa couplings themselves.

Specifically, consider adding to the SM a flavor-triplet of vector leptons XL,R, having

the same gauge quantum numbers as the lepton doublet, and a singlet scalar boson Hs.

The new terms in the Lagrangian are, omitting flavor indices for simplicity

LXL,R
= X̄L(i /D)XL + X̄R(i /D)XR + X̄LMXXR + X̄RMXXL

+
(
X̄RNXXLHs + X̄RN̄XLHs + ĒYXXLHd + h.c.

)
, (3.12)

where MX , NX , N̄X and YX are all three-by-three matrices in flavor space. This model

contains many new flavor couplings and flavored particles, so our starting point is to impose

MFV. For that, we take the flavor symmetry

G′F = U (3)Q=L=XL,R
⊗ U (3)U ⊗ U (3)D=E , (3.13)

with thus XL,R transforming like L and Q, and allow only for Yu and Yd as spurions. The

various flavor couplings can then all be expressed in terms of Yu and Yd. We assume the

simple expansions 
MX = MX1 ,

Ye = YX = γYd ,

NX = N̄X = αY†uYu + βY†dYd ,

(3.14)

where Ye corresponds to the SM Yukawa interaction EYeLHd. A constant term in

NX = N̄X is omitted even if it is consistent with G′F for reasons that will be clear be-

low, so we assume that these couplings disappear in the absence of Yu,d.

When the vector leptons are heavy, they can be integrated out by solving their equa-

tions of motion

δLξ
δXL

= X̄R(MX + NXHs) + ĒYXHd = 0 , (3.15)

δLξ
δXR

= X̄L(MX + N†XHs) + L̄N̄†XHs = 0 . (3.16)

Plugging this back into the Lagrangian, we get a contribution to the leptonic Yukawa

interaction (see figure 2a)

Yeff
e = Ye−YX

1

MX+NXHs
N̄XHs = γYd ·

1

1+(vs/MX)
(
αY†uYu+βY†dYd

) , (3.17)

with vs the scalar singlet vacuum expectation value. Provided vs/MX � 1, this precisely

reproduces the geometric sum discussed in the previous section. Importantly, no resum-

mation was involved: the XL,R mass terms and their interactions with Hs were integrated
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(a) (b)

(c)

Figure 2. The effective contributions to the leptonic Yukawa couplings generated by the tree-level

exchanges of (a) a flavor-triplet, weak doublet of vector leptons XL,R or (b) a flavor-triplet, weak

singlet of vector leptons ZL,R. When both these states are present, the two contributions (a) and

(b) are accompanied by their simultaneous exchanges (c).

exactly. If these terms were treated perturbatively, one would recover a geometric MFV

series. So, in this case, the issue of the convergence of the MFV series is really similar to

that of the usual QFT perturbative series.

Numerically, we fix α and solve for the remaining parameters γ, β and v so that the

three singular values Yeff
e reproduce the observed lepton masses. For the MSSM at the

GUT scale3 with tan β = 10, we find

γ = 22 , α ≡ −1 , β = −1.2 ,
vs
MX

= 4× 104 . (3.18)

The expansion coefficients are very reasonable when the ratio vs/MX is large. Importantly,

the value of vs is totally decorrelated from that of Yu or Yd. As shown in figure 3, the

evolution of the singular values of Yeff
e as vs is varied is rather smooth over a large range

(keep in mind though that the scale of the plot is logarithmic). The same is true when

varying α or β, ensuring this solution is free of any fine-tuning.

The lepton mixing matrices at the best-fit point are

|gE | =

 0.96 0.26 0.0040

0.24 0.88 0.42

0.11 0.41 0.91

 , |gL| =

 0.0089 0.98 0.17

0.038 0.17 0.98

1.00 0.015 0.0036

 . (3.19)

Compared to the mixing matrices obtained using the polynomial expansion, eq. (2.22), the

same twist of the left leptons happens while the mixing angles are a bit larger (smaller) in

the right (left) sector.

This setting can be generalized in many ways. One interesting extension is to introduce

vector-like partners for both the lepton singlet and doublet. So, we add a flavor-triplet of

3The values of the Yukawa couplings at the GUT scale quoted in ref. [16] used here should only be

considered illustrative, since they do not take into account the presence of the vector leptons at some

intermediate scale.
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Figure 3. Evolution of the singular values of Yeff
e as given in eq. (3.17), i.e., induced by tree-level

exchanges of the vector leptons XL,R. The green dashed line indicates the point at which the

singular values of Yeff
e coincide with the observed lepton Yukawa couplings, and corresponds to the

values quoted in eq. (3.18). Compared to figure 1, it now sits at a perfectly regular point. The

singular values are not fine-tuned since they do not change much as the Yeff
e parameters vary.

vector leptons ZL,R transforming as the right-handed lepton singlet:

LXL,R,ZL,R
= LXL,R

+ Z̄L(i /D)ZL + Z̄R(i /D)ZR + Z̄LMZZR + Z̄RMZZL

+
(
Z̄RNZZLHs + ĒN̄ZZLHs + Z̄RYZLHd + h.c.

)
+
(
Z̄RYZXXLHd + X̄RYXZZLHd + h.c.

)
. (3.20)

Choosing now the flavor symmetry as

G′F = U (3)Q=L=XL,R
⊗ U (3)U ⊗ U (3)D=E=ZL,R

, (3.21)

the MFV assumptions become
MX,Z = MX,Z1 ,

Ye = YX = YZ = YXZ = YZX = γYd ,

NX = N̄X = αY†uYu + βY†dYd ,

NZ = N̄Z = εYdY
†
d .

(3.22)

The equations of motion for the four families of heavy leptons XL,R and ZL,R are cou-

pled because of the mixing term YXZ and YZX but can be solved to first order in Hd

(see figure 2):

Yeff
e = Ye −YX

1

MX + NXHs
N̄XHs −HsN̄Z

1

MZ + NZHs
YZ

+HsN̄Z
1

MZ + NZHs
YZX

1

MX + NXHs
N̄XHs

=
1

1 + (vs/MZ)(εYdY
†
d)
· γYd ·

1

1 + (vs/MX)
(
αY†uYu + βY†dYd

) . (3.23)
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Figure 4. Evolution of the singular values of Yeff
e as given in eq. (3.23), i.e., induced by tree-

level exchanges of both the vector leptons XL,R and ZL,R. The green dashed line indicates the

point at which the singular values of Yeff
e coincide with the observed lepton Yukawa couplings, and

corresponds to the values quoted in eq. (3.24). Compared to figure 1, it now sits at a perfectly

regular point, and compared to figure 3, even larger departures from that point have a negligible

impact on the two largest singular values. The evolution as the other parameters are varied is

similar as in figure 3.

By trial and error, we find for example for the MSSM at the GUT scale and tan β = 30,

γ = 81 , α ≡ 1 , β ≡ 1 , ε ≡ −1 ,
vs
MX

= 2.1× 103 ,
MX

MZ
≡ 7 , (3.24)

or

γ = 83 , α ≡ 1 , β ≡ 0 , ε ≡ −1 ,
vs
MX

= 1.1× 104 ,
MX

MZ
≡ 0.3 . (3.25)

Infinitely many other solutions exists, some may give slightly lower vs/MX,Z , but none

should decrease it dramatically. Concentrating on the first solution, we show in figure 4

the behavior as vs varies holding the other parameters fixed. It is evidently free of any fine-

tuning, and even more stable than before. Further, this solution has one very interesting

feature. Once the right-handed sector becomes tuned by a geometric expansion, both

species of leptons end up similarly twisted:

|gE | =

 0.015 1.00 0.0019

0.0032 0.0018 1.00

1.00 0.015 0.003

 , |gL| =

 0.0069 1.00 0.019

0.032 0.020 1.00

1.00 0.0075 0.031

 . (3.26)

The mixing angles are also greatly reduced. This means that in this scenario, the true

identity of the electron is completely altered: it is mostly the third-generation gauge state.

These constructions are not meant to be full-fledged models. Rather, they are designed

to illustrate the main mechanism by which the lepton and quark flavor structures could be

related in a natural way. The most salient features are

• The value for γ is often found a bit too large if one has in mind GUT settings where

the boundary conditions set e.g. YT
e = Yd. Still, the situation is different in GUT
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since both Ye and Yd have to be generated simultaneously out of other Yukawa

couplings. This will be discussed in section 5. Also, this value of γ depends quite

crucially on the value of vs, and on the MFV conditions eq. (3.14) or (3.22).

• The effective contribution to Ye decouples when either vs → 0 or MX,Z →∞, but is

non-decoupling in the vs > MX,Z region relevant for the geometric behavior.

• The scales vs and MX,Z are free since only their ratio plays a role. Further, any rescal-

ing of the expansion coefficients in NX,Z and N̄X,Z can be compensated by a change in

vs/MX,Z . In particular, one could imagine that in some more complete model, NX,Z

and N̄X,Z are radiatively induced. This would naturally explain the specific form of

their expansions in eq. (3.14) or (3.22), at the cost of further increasing vs/MX,Z .

• Such large vs/MX,Z ratios imply that vs � vu,d since MX,Z should be above the EW

scale for all the vector leptons to be integrated out. If not protected by some symme-

try, this large hierarchy could require delicate fine-tunings in the scalar sector, in case

Hs couples to Hu and/or Hd. Note though that in a supersymmetric setting, the only

allowed superpotential term would be HsHuHd, which breaks the Peccei-Quinn sym-

metry [18, 19] if the couplings in eq. (3.20) do not. Connection with invisible axion

models [20–26], where large hierarchies are also present between symmetry breaking

scales, could offer interesting perspectives, which we leave for future works.

• The MFV conditions eq. (3.14) or (3.22) could be thought of as boundary conditions,

in a way similar to the mSUGRA pattern for supersymmetry breaking terms. But, it

is clear that any deviations from these conditions would not permit to reach the simple

geometric expressions in eq. (3.17) or eq. (3.23). Though small deviations may not

spoil the geometric behavior of the MFV series, the situation is not very confortable.

Let us analyze this last point in a bit more detail. Indeed, it would not be very

convincing to trade the fine-tunings in the coefficients in eq. (2.12) for a fine-tuning in the

boundary conditions. Ultimately, the mechanism at the origin of these conditions should

be accompanied by a symmetry able to stabilize them, at least partially. Looking back at

eq. (3.20), we can already glean some hints of how this could arise. If we combine together

the nine weak doublet lepton fields into ΦT
L = (L,XL, XR) and the nine weak singlet lepton

fields into ΦT
R = (E,ZR, ZL), then

LXL,R,ZL,R,E,L = Φ̄L(i /D + PX)ΦL + Φ̄R(i /D + PZ)ΦR + (Φ̄RYΦLHd + h.c.) , (3.27)

actually exhibits a U(9)L ⊗U(9)R flavor symmetry broken only by the flavor structures:

PA =

 0 0 0

0 0 MA

0 MA 0

+

 0 0 N̄A

0 0 NA

N̄A NA 0

Hs, Y =

 Ye YX 0

YZ YZX 0

0 0 YXZ

 . (3.28)

Most vanishing entries are due to chirality, the rest to the gauge symmetries. Consider

then the MX,Z = 0 limit. The MFV conditions eq. (3.14) or (3.22) emerge as the only
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one invariant under (XL ↔ L) and (ZR ↔ E). Imagine thus that Hs first gets its VEV

at the scale vs, while this discrete symmetry is broken spontaneously at the much lower

scale MX,Z . The deviations with respect to the conditions eq. (3.14) or (3.22) would end

up tiny, at most of the order of MX,Z/vs, and would not completely alter the vs scaling of

Yeff
e . Actually, such corrections may even be welcome to reduce the numerical value of γ

or the ratio vs/MX,Z .

Such mechanisms, whose origin lies beyond MFV, would suffice to ensure all of the

boundary conditions eq. (3.14) or (3.22) to a sufficient precision to preserve the main

features of the expansions, except for one remaining issue. The peculiar spurion expansions

for the NX,Z couplings is crucial to get the required behavior. In other words, if we were

to start from a more general expansion like

NX = c01 + c1Y
†
uYu + c2Y

†
dYd + c3(Y†uYu)2 + c4(Y†dYd)

2 + c5{Y†uYu,Y
†
dYd} , (3.29)

and similarly for NZ , then all the coefficients would still be of the O(1) for an appropriate

choice of vs/MX,Z , except for c0 which would have to be tiny, of the order of MX,Z/vs. This

is because NX,Z must have a strong hierarchy in flavor space, so that when multiplied by

vs/MX,Z , two of its eigenvalues fall within the radius of convergence of the geometric series

but the third eigenvalue gets thrown out. To explain this peculiarity of the NX,Z couplings

requires again to go beyond MFV. As mentioned before, this could arise if these couplings

of the singlet scalar fields to fermionic matter fields are forbidden at leading order but arise

radiatively from those of the doublet Higgs fields. The overall suppression of the ci is of

no consequence since it can be compensated by a change in vs/MX,Z . Another approach

would be to replace the mass terms MX,Z by some couplings to yet another singlet scalar

field. Then, the specific hierarchy between the coefficients c0 and ci in eq. (3.29) could

result from the dynamics of the singlet scalar fields if it is such that MX,Z inherits the

flavor diagonal term while NX,Z keeps all the other terms.

4 Scenario 2: supersymmetry and light stops

Supersymmetry is one the most studied extension to the SM. Besides its intrinsic math-

ematical appeal, it is able to solve, or at least lessen, several puzzles of the SM, and most

notably the issue of the stability of the electroweak scale. At the same time, low-scale

supersymmetry is expected to influence various flavor physics observables, and its many

new states are within range of direct production at the LHC. The absence of any signal up

to now puts strong constraints on viable supersymmetric scenarios. Our goal in this section

is to analyze in which respect the relationship discovered between Ye and Yu,d could help.

4.1 Squark mass matrices with geometric expansions

Direct searches for supersymmetric particles at colliders are particularly sensitive to first-

generation squarks, simply because of the presence of many such quarks in the initial state.

The current bounds are typically well above 1 TeV, depending on the assumptions on the

masses of the other sparticles [27, 28]. On the contrary, for third generation squarks, the

bounds are still below the TeV. In this context, Natural SUSY-like scenarios [29–32] where
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third generation squarks are much lighter than the others offer interesting settings. What

we now want to show is that settings where all MFV expansions are geometric actually

generate such patterns.

Consider the following geometric MFV parametrization for the squark soft-breaking

terms

m2
Q,U,D = m2

0XQ,U,D , Au,d = A0XU,D ·Yu,d ·XQ , (4.1)

with

XQ =
1

1− ηq
(
αq1Y

†
uYu + αq2Y

†
dYd + . . .

) , (4.2a)

XU =
1

1− ηu
(
αu1YuY

†
u + αu2YuY

†
dYdY

†
u + . . .

) , (4.2b)

XD =
1

1− ηd
(
αd1YdY

†
d + αd2YdY

†
uYuY

†
d + . . .

) , (4.2c)

where αq,u,di are O(1) parameters, m0, A0 the SUSY-breaking scale parameters, which we

set at m0 = 10 TeV, A0 = −1 TeV, and we assume XQ,U,D are the same when entering

squared squark masses or trilinear terms for simplicity, as allowing them to be different

does not qualitatively change the result as long as they all end up geometrical.

Though we will not attempt at constructing a fully dynamical model, it is tempting

to think of these XQ, XU , and XD factors as arising from the exchange of new states

whose propagators transform like SU(3)Q, SU(3)U or SU(3)D octets, respectively. The

corresponding coefficients ηq,u,d = vs/MXQ,U,D
, with MXQ,U,D

the mass of these octets and

vs the VEV of some singlet Higgs bosons, can in principle be large. These XQ,U,D factor

then match those studied in the previous section, with for example

XU ≈ 1− 1

〈Y†uYu〉
YuY

†
u . (4.3)

Note that it may make more sense to think of these new states as scalars, in which case

X2
Q,U,D propagator factors would appear in eq. (4.1). Numerically, this would not change

much the boundary conditions for the squark soft-breaking terms since the strict third-

generation dominance approximation (Y†iYi)
2 → 〈Y†iYi〉Y†iYi implies for example

X2
U ≈

(
1− 1

〈Y†uYu〉
YuY

†
u

)2

≈ 1− 1

〈Y†uYu〉
YuY

†
u . (4.4)

For simplicity, we thus stick to the linear expansions in eq. (4.1).

In the large ηq,u,d limit, this setting actually matches that studied in ref. [33] from

a purely phenomenological perspective. There, the large ηq,u,d limit of the expansions in

eq. (4.1) were imposed at the GUT scale and evolved down to the TeV scale. Let us

summarize the main results:
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• To end up with only the t̃L and b̃L as light states, one should set ηu,d = 0, ηq � 1.

However, the RG evolution necessarily drives the small m2
Q[MGUT]33 towards negative

values. This results in an unacceptable color-breaking minimum. To prevent this,

either one should impose eq. (4.1) at a much lower scale, or m2
U [MGUT]33 must also

be small. In this latter case, setting ηu = ηq � 1, the three squark states t̃L,R and b̃L
end up much lighter than the other squarks, whose masses remain very close to m0.

• Except at very large tan β, the impact of XD is always negligible and b̃R remains

quasi-degenerate with the first- and second-generation squarks.

• The RG evolution of the trilinear terms AU,D wipes out the effect of the XQ,U,D

factors. In other words, at the low scale, the trilinear terms obtained either from

AU,D[MGUT] = A0XU,D ·Yu,d ·XQ or simply from AU,D[MGUT] = A0Yu.d are very

similar, and so are the resulting squark mass spectra.

• Because 〈Y†uYu〉 and 〈Y†dYd〉 are at most O(1), these expansions satisfy the usual

MFV naturality requirement. As a result, supersymmetric contributions to flavor

transitions remain tuned by the CKM matrix, and the constraints from flavor ob-

servables are satisfied even with rather light sparticles.

4.2 Untwisted slepton mass matrices and µ → eγ

To express the lepton Yukawa coupling in terms of those of the quarks, the flavor symmetry

was reduced to G′F = U (3)Q=L⊗U (3)U ⊗U (3)D=E . In a supersymmetric setting, G′F also

allows for the slepton soft-breaking terms to be expressed in terms of Yu,d. Altogether,

the lepton and slepton flavor-breaking sector becomes

Ye = γXD ·Yd ·XQ , (4.5)

and

m2
L = m2

0XQ , m2
E = m2

0XD , Ae = γA0 XD ·Yd ·XQ . (4.6)

For simplicity, we assume universal expansions in each SU(3) sectors, i.e., all XQ factors

are identical, and so are all the XD. As in the quark sector, allowing them to be different

does not qualitatively change the result.

Once these conditions are set, the freedom to rotate the (s)lepton doublet and singlet

is recovered since the MSSM exhibit a GF symmetry in its gauge sector. Thus, Ye can be

diagonalized through

L→ gLL,E → gEE, Ye → (Ye)
phys = gEYeg

†
L , (4.7)

with (Ye)
phys = diag(ye, yµ, yτ ). This same rotation has to be performed on the slepton

partners, so that in the lepton physical basis,

(m2
L)phys = m2

0gLXQg
†
L , (m2

E)phys = m2
0gEXDg

†
E , (Ae)

phys = A0Ye . (4.8)

This action of the mixing matrices gL and gE has two particularities. First, neither (m2
L)phys

nor (m2
E)phys are diagonal in general, since the matrices gE and gL come from the SVD
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of Ye. Their off-diagonal entries are of the order of CKM entries, since they are generated

by the mismatch between Yu and Yd entering in XQ,D. Second, even if gL and/or gE can

twist the leptons, as in eq. (3.19) or eq. (3.26), this same twist is then enforced on their

supersymmetric partners. For example, if only XQ is present, (e−L )phys is essentially the

(τL)gauge state, then (ẽL)phys is essentially the (τ̃L) gauge state. Further, given that

1 ≈ (m2
L)11 ≈ (m2

L)22 � (m2
L)33 ≈ 0 , (4.9)

the (ẽL)phys and (ν̃eL)phys states are much lighter than the other sleptons.

Non-vanishing off-diagonal entries in (m2
L)phys together with rather light first-

generation sleptons immediately raise the question of lepton flavor violating (LFV) ob-

servables. A process like µ→ eγ can be induced by neutralino and chargino loops, with a

branching ratio scaling like [34]

B(µ→ eγ) ≈ 10−5M
4
W

M8
˜̀

tanβ
∣∣∣(m2

L)phys
12

∣∣∣2 FSUSY , (4.10)

where M˜̀ is the typical slepton mass, which we take as the geometric average of the involved

sleptons, M2
˜̀ = MẽMµ̃, and FSUSY is anO(1) function of the sparticle masses. The question

is then whether the current bound B(µ→ eγ)exp < 5.7× 10−13 [35] is satisfied.

To illustrate that this is indeed the case, let us consider a specific realization. We set the

boundary conditions at the GUT scale, and perform the evolution at NLO. For simplicity,

we introduce only XQ and not XD. The inputs at the GUT scale are slightly different than

for eq. (3.18), because of the specific MSSM parameters chosen here,4 and we take

γ = 19 , αq1 ≡ 1 , αq2 = 2.6 , ηq = 2.1× 104 . (4.11)

Once Ye = γYd ·XQ is fixed, gL and m2
L = m2

0XQ can be computed directly:

|gL| =

 0.0098 0.99 0.17

0.041 0.17 0.98

1.00 0.017 0.045

 , |m2
L[MGUT]| = m2

0

 0.99 0.045 0.0066

0.045 0.74 0.029

0.0066 0.029 0.0014

 , (4.12)

so

|(m2
L[MGUT])phys| = m2

0

 0.00049 0.018 0.0015

0.018 1.00 0.0029

0.0015 0.0029 0.74

 . (4.13)

Notice how acting with gL reorders the entries of m2
L. Evolving down, only the diagonal

entries are significantly affected since Ye is diagonal in the physical basis at all scale. For

example, with m0 = 10 TeV, we find at the low-scale,

|(m2
L[1 TeV])phys| = m2

0

 0.042 0.018 0.0015

0.018 1.04 0.0029

0.0015 0.0029 0.77

 . (4.14)

4The MSSM parameters are fixed assuming a CMSSM-like setting, with A0 = −1 TeV, m2
Hu

= m2
Hd

=

2 × 106 GeV2, M1/2 = 1.5 TeV and tan β = 10. The parameter m0, setting the scale of both squark and

slepton soft-terms, is allowed to vary. At the GUT scale, we set m2
Q,U,D,E = m2

01, Au,d,e = A0Yu,d,e and

m2
L as in eq. (4.6).
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Figure 5. Left slepton masses and B(µ→ eγ) as a function of the SUSY breaking scale m0, with

(m2
L[1 TeV])phys given in eq. (4.14).

This means that the current bound on B(µ → eγ) translate as a lower bound on m0.

Coincidentally, as plotted in figure 5, the current limit does not constrain m0 much yet,

but any improvement on B(µ → eγ)exp would start to push m0 well beyond 1 TeV. Note,

finally, that setting m2
L = m2

0X
2
Q instead of m2

L = m2
0XQ does not impact B(µ → eγ)

significantly, since it would mean setting

|(m2
L[MGUT])phys| = m2

0

 0.00035 0.018 0.0052

0.018 1.01 0.016

0.0052 0.016 2.44

 . (4.15)

In conclusion, the supersymmetric implications of the redundancy of Ye opens the way

for sizable LFV processes. Even in a simplified CMSSM-like setting, the current bounds on

these modes start to be competitive in setting constraints on the viable parameter space. A

full analysis, including non-universal squark mass terms, collider, flavor, and Higgs sector

constraints would be in order at this stage, but this is left for future studies.

4.3 Effectively holomorphic R-parity violation

Another path to understand the current absence of supersymmetric signals at the LHC

is to give up R parity. In that case, sparticles would decay, the lightest supersymmetric

particle (LSP) may not be neutral and colorless, and typical missing energy signatures

would disappear. Instead, supersymmetry would show up in hadronic channels, most

notably in the same-sign top quark pair production. Current bounds from these signatures

are below the TeV [36, 37].

4.3.1 The MFV alternative to R-parity

Once the ad-hoc R-parity is removed, the proton ceased to be stable but MFV has been

shown to suppress its rate down to acceptable levels [38, 39]. Indeed, the MSSM spurion

content, Yu,d,e, does not permit to construct lepton-number violating (∆L) couplings

W∆L =
1

2
λIJKL̃I L̃J ẼK + λ′IJKL̃IQ̃JD̃K + µ′IHuL̃

I , (4.16)
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but does allow for baryon number violating (∆B) couplings

W∆B =
1

2
λ′′IJKŨ ID̃JD̃K , (4.17)

where L̃, Q̃ are the superfields containing the left doublets L, Q and Ũ , D̃, Ẽ those

containing the left singlets U †, D†, E†. For example, we can write

λ′′IJK = λεLMNYIL
u YJM

d YKN
d . (4.18)

It is only once neutrino acquire a Majorana mass term, then included among the spurions,

that ∆L couplings are permitted but they end up sufficiently tiny to pass all the proton

decay bounds.

In the present work, we take as spurions only Yu,d, and reduce the symmetry group

to G′F = U (3)Q=L ⊗ U (3)U ⊗ U (3)D=E , which we now further reduce to

G′F = SU (3)Q=L ⊗ SU (3)U ⊗ SU (3)D=E , (4.19)

to allow for B and/or L violation. Interestingly, relating the quark and lepton flavor groups

does not open the way for ∆L couplings. It is still impossible to construct them out of the

Yu,d spurions in a G′F -symmetric way. Ultimately, the reason for this is the selection rules

imposed by MFV [40]. Because Yu,d transform according to fundamental representations,

and because ∆B 6= 0 or ∆L 6= 0 requires some contractions with the antisymmetric SU(3)

invariant tensor, L and B are broken in multiples of three elementary units. Each (s)quarks

has B = 1/3 and each (s)lepton has L = 1, so the selection rules are ∆B = 3n(1/3) = n

but ∆L = 3n for any integer n. This is not compatible with W∆L, which breaks L by only

one elementary unit.

4.3.2 Holomorphy beats geometric MFV

The MFV parametrization in eq. (4.18) has the interesting property to be holomorphic in

the spurions [41]. This means that if these become true dynamical fields at some scale,

this term would be the only one allowed. Further, this property renders the RG evolution

of this coupling particularly simple, and effectively it acts as a powerful IR attractor [42].

This reasoning is a bit orthogonal to the philosophy followed here. Since Yu,d are

not considered as the true elementary flavor-breaking structures, there is no reason for

the superpotential to be holomorphic in them. In particular, in view of the expansions in

eq. (4.1), one may consider the extended parametrization

λ′′IJK = λ× εLMN (XU · γYu ·XQ)IL(XD · γYD ·XQ)JM (XD · γYD ·XQ)KN , (4.20)

where λ and γ are numerical factors. In the spirit of the previous section, one could think

such a term would arise if ∆B occurs only in the (holomorphic) couplings between some

new states. It is then communicated to (s)quarks through their tree-level exchanges.

Phenomenologically, this parametrization collapses to the one in eq. (4.18). First, the

contraction of the three XQ can be simplified using εLMNAILAJMAKN = εIJK detA as

λ′′IJK = λ× γ3 det(XQ)× εLMN (XU ·Yu)IL(XD ·YD)JM (XD ·YD)KN . (4.21)
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Then, if this structure arise at the high-scale, it will run down towards eq. (4.18) thanks

to its attractor property [42]. For example, if one starts with the factor

XU = 1 + cY†uYu , c[MGUT] = − 1

〈Y†uYu〉
∼ O(1) , (4.22)

one ends up with c[1TeV ] ∼ O(10−2). The geometric suppression of (XU,D)33 is wiped out

by the RG evolution, and one effectively remains with only the holomorphic term eq. (4.18).

The only issue is thus the overall size of the λ′′ coupling, which has to be sufficient to

prevent LSP squarks or gluinos to be long-lived. The whole RG evolution [42] from the

GUT to the TeV scale amount to reducing λ by about a factor 5. So, the factor γ3 det(XQ)

should be of O(1), which requires γ to be O(10) to compensate for the strong suppression

of det(XQ) when ηq becomes large, see eq. (4.2). This value of γ is, coincidentally, very

close to that found in eq. (4.11) when imposing Ye = γYd ·XQ.

In conclusion, the R-parity violating sector is not affected significantly by geometric

MFV expansions, and thus retains all its capabilities at hiding low-scale supersymmetry.

5 Scenario 3: minimal SU(5) with true quark-lepton unification

When discussing unification of quarks and leptons, GUTs immediately jump to mind, so it

is now time to analyze how the strategy developed in the previous sections translate in such

settings. In section 5.1, we first recall how the flavor sector of the minimal SU(5) model

is constructed (see e.g. ref. [43] for a review), along with the standard strategies aimed at

correcting its prediction YT
e = Yd. Then, in section 5.2, we show how geometric MFV

expansions can help resolve the quark-lepton unification puzzle of SU(5) in a minimal and

natural way.

5.1 Flavor disunification in minimal unification models

In the minimal SU(5) unification model, the quarks and leptons are embedded into the 5

and 10 representations, denoted ψ5̄ = D̄⊕L and χ10 = Q⊕Ū⊕Ē. Their SU(5)-symmetric

Yukawa couplings are

LYukawa = −1

4
χ̄C

10Y10χ10h
u
5 +
√

2ψ̄C
5̄ Y5χ10h

d
5̄ + h.c. , (5.1)

where C stands for charge conjugation. After the spontaneous breaking of SU(5) down to

SU(3)C ⊗ SU(2)L ⊗ U(1)Y through the adjoint Higgs field H24, these couplings split into

the usual quark and lepton Yukawa couplings of the THDM of type II, with the matching

conditions at the GUT scale 
Yu = Y10 , [Y10 = YT

10]

Yd = Y5 ,

Ye = YT
5 .

(5.2)

Charged lepton and down-type quark masses are thus equal at the unification scale,

me = md, mµ = ms, and mτ = mb. At the EW scale, the neutral components of the
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hu5 and hd
5̄

fields break SU(3)C ⊗ SU(2)L ⊗U(1)Y down to SU(3)C ⊗U(1)em, and account-

ing for the rather fast QCD evolution of the quark masses, one gets

mb ≈ 3mτ ,
md

ms
≈ me

mµ
. (5.3)

The first relation is rather well satisfied but the second is badly violated, 1/20 6≈ 1/200.

There are two well-known ways to improve the mass ratios. The first is to introduce

a set of scalar fields transforming in the 45 representation [44]. The additional Yukawa

couplings have the explicit form

L45
Yukawa =

√
3/8χ̄C

10Y′10χ10h
u
45 −

√
12ψ̄C

5̄ Y′5χ10h
d
45

+ h.c. . (5.4)

After the SU(5) and EW symmetry breaking, now induced by the four scalar fields hu5,45

and hd
5̄,45

, the matching with the low-scale Yukawa couplings become
Yu = Y10 sinαu + Y′10 cosαu , [Y10 = YT

10, Y′10 = −Y′T10]

Yd = Y5 sinαd + Y′5 cosαd ,

Ye = YT
5 sinαd − 3Y′T5 cosαd ,

(5.5)

where tanαi = vi5/v
i
45 and vir the VEV of the neutral hir components. The second path to

cure the mass ratios is to keep the scalar content minimal but allow for higher-dimensional

Yukawa couplings. The possible dimension-five couplings are:

Ldim−5
Yukawa =

√
2

Λ
ψ̄C

5̄ Y′5(H24χ10)hd5̄ −
2

Λ
χ̄C

10Y′10(χ10H24)hu5

− 1

Λ
ψ̄C

5̄ Y′′5χ10(hd5̄H24) +
1

Λ
χ̄C

10Y′′10χ10(hu5H24) . (5.6)

Writing SU(5) indices explicitly, (hd
5̄
H24) = (hd

5̄
)B(H24)BA and (hu5H24) = (hu5)B(H24)AB

transform as 5̄ and 5, respectively, so the Y′′5 and Y′′10 couplings can be absorbed into Y5

and Y10 of eq. (5.1). For the other two couplings, (hd
5̄
)A(H24)BC and (hu5)A(H24)BC contain

in addition a piece transforming like 45 and 45, respectively, which thus acts like the extra

scalar fields of eq. (5.4). Explicitly, the low-scale Yukawa couplings become
Yu = Y10 + λ(4Y′T10 −Y′10) , [Y10 = YT

10]

Yd = Y5 + λY′5 ,

Ye = YT
5 − 3

2λY′T5 ,

(5.7)

where λ = v24/Λ.

Even if correct mass ratios are trivially obtained, these strategies are not satisfactory

from a flavor point of view. First, they both fail to truly unify quarks and leptons since

additional flavor structures have to be introduced. Second, in a supersymmetric context,

FCNC are not necessarily under control. To understand this last point, remark first that

the flavor group is GF = U(3)χ10 ⊗ U(3)ψ5̄
at the GUT level. If only Y10 and Y5 are

spurions, this is sufficient to bring them to their background values

Y10 → D10 , Y5 → D5U
† , (5.8)
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where the real diagonal matrices D10 and D5 are defined from the decompositions

V ∗5 Y5V
′†

10 = D5 , V ∗10Y10V
†

10 = D10 , (5.9)

and with U ≡ V10V
′†

10. In the absence of any other spurion, D10 = diag(yu, yc, yt),

D5 = diag(ye = yd, yµ = ys, yτ = yb), and U is equal to the CKM matrix up to two

Majorana phases.

Adding spurions like Y′5 or Y′10 to this list, the flavor group is no longer large enough

to bring all of them to their background values, and unknown mixing matrices remain [12].

Specifically, the unitary rotations of the fermion fields is defined from the SVD of the Yu,

Yd, and Ye couplings, with those now given by the combinations in eq. (5.5) or (5.7). This

permits to reach the basis in eq. (2.5). The same unitary rotations have to be performed

on the sfermion partners. But, consider the sfermion soft-terms

Lsoft 3 −(m2
10)〈χ̃†10χ̃10〉 − (m2

5)ψ̃†
5̄
ψ̃5̄ , (5.10)

which take the generic form

m2
10 = c01 + c1Y

†
10Y10 + c2Y

†
5Y5 + c3Y

†
10Y

′
10 + c4Y

†
5Y
′
5 + . . . , (5.11)

m2
5 = c01 + c1Y

∗
5YT

5 + c2Y
∗
5Y′T5 + c3Y

∗
5YT

10Y
∗
10Y

T
5 + c4Y

∗
5YT

10Y
′∗
10Y

T
5 + . . . , (5.12)

for some ci coefficients. Rotating the sfermions does not permit in general to reach a

form where m2
10 and m2

5 are entirely given out of the fermion masses and CKM matrix,

because the action of the SVD unitary matrices is only known for the specific combinations

in eq. (5.5) or (5.7), and not individually on Y5, Y′5, Y10, and Y′10. Unknown unitary

matrices remain, the sfermion soft-terms are a priori far from their MFV form, and when

run down, generate potentially devastating contributions to FCNC.

5.2 Towards dynamical flavor unification

We know from the previous sections that Ye can be expressed in terms of Yu and Yd,

so the same must be true in the context of SU(5). It must be possible to express the

flavor structures Y′5 and Y′10 coming from either eq. (5.4) or (5.6) as expansions in Y5 and

Y10, and still get correct mass ratios at the GUT scale. The whole flavor structure of the

model, even in a supersymmetric context, would then be fixed entirely in terms of only two

spurions, themselves fixed from the known fermion masses and CKM mixing.

Of course, since a finite polynomial relationship between Ye and Yu,d is necessarily

fine-tuned, so are a priori those relating Y′5 and Y′10 to Y5 and Y10. Infinite series are again

compulsory. To illustrate this in a realistic setting, let us construct a model inspired from

that in section 3.2. We introduce flavor triplets of vector-like fermions, here transforming

as XL,R
10 ∼ 10, XL,R

5̄
∼ 5̄. To the SU(5) Yukawa couplings

LChiral
Yukawa = −1

4
χ̄C

10Y10χ10h
u
5 +
√

2ψ̄C
5̄ Y5χ10h

d
5̄ + h.c. , (5.13)

we add

LVector
Yukawa = X̄L

5̄ (M5 + N5H24)XR
5̄ + X̄L

10(M10 + N10H24)XR
10

− 1

4
X̄L,C

10 YL
10X

L
10h

u
5 −

1

4
X̄R,C

10 YR
10X

R
10h

u
5

+
√

2X̄L,C
5̄

YL
5X

L
10h

d
5̄ +
√

2X̄R,C
5̄

YR
5 X

R
10h

d
5̄ + h.c. , (5.14)
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where flavor indices are suppressed, as well as mixed Yukawa interactions

LMixed
Yukawa =

1

2
χ̄C

10Ȳ10X
L
10h

u
5 +
√

2ψ̄C
5̄ Ȳ5X

L
10h

d
5̄ +
√

2X̄L,C
5̄

Ȳ5χ10h
d
5̄

+ X̄R
10N̄10H24χ10 + X̄R

5̄ N̄5H24ψ5̄ + h.c. , (5.15)

where we have identified the ψ̄C
5̄

Ȳ5X
L
10h

d
5̄

and
√

2X̄L,C
5̄

Ȳ5χ10h
d
5̄

couplings for simplicity.

Compared to the vector-like fermion model in section 3.2, there is no need to introduce a

singlet Higgs field. The adjoint Higgs boson H24 with its very large VEV v24 can perfectly

take its place.

When the heavy fermions are integrated out, an infinite tower of effective Yukawa

couplings for χ10 and ψ5̄ are generated, starting with the five-dimensional operators of

eq. (5.6). Upon enforcing MFV under the flavor group

GF = U(3)
χ10=XL,R

10
⊗U(3)

ψ5̄=XL,R
5

, (5.16)

on the new couplings in LVector
Yukawa and LMixed

Yukawa, for instance as
M5 = M51 ,

Y5 = YL
5 = YR

5 = Ȳ5 ,

N5 = N̄5 = α1Y
∗
5YT

5 + α2Y
∗
5YT

10Y
∗
10Y

T
5 + α3Y

∗
5YT

5 Y∗5YT
5 + . . . ,

(5.17a)


M10 = M101 ,

Y10 = YL
10 = YR

10 = Ȳ10 ,

N10 = N̄10 = β1Y
†
10Y10 + β2Y

†
5Y5 + β3Y

†
10Y10Y

†
10Y10 + . . . ,

(5.17b)

these higher-dimensional effective interactions will automatically be expressed in terms

of Y5 and Y10. Note that these MFV conditions can be understood in the same way

as in eq. (3.27). Arranging the fields transforming identically under the gauge group

into Ψ10 = (XL
10, χ10, X

R
10) and Ψ5 = (XL

5̄
, ψ5̄, X

R
5̄

), the structure of the model matches

eq. (3.28), up to obvious substitutions.

The set of coupled equations of motion can be solved iteratively, though it is quite

cumbersome and moved to the appendix. Only the leading order in hu5 and hd
5̄

needs to be

kept since vu,d5 /v24 � 1, in which case this iterative procedure quickly terminates. After

the SU(5) breaking, the effective Yukawa couplings are found to be
Yu = Y10 − Ȳ10 · F−1/4,T

10 − F1
10 · Ȳ10 + F1

10 ·YL
10 · F

−1/4,T
10 ,

Yd = Y5 − F1
5 · Ȳ5 − Ȳ5 · F−1/4,T

10 + F1
5 ·YL

5 · F
−1/4,T
10 ,

YT
e = Y5 − F

−3/2
5 · Ȳ5 − Ȳ5 · F−3/2,T

10 + F
−3/2
5 ·YL

5 · F
−3/2,T
10 ,

(5.18)

with Fα
R = αv24N

M
R ·(MR +αv24NR)−1. Upon enforcing the MFV conditions in eq. (5.17),

this becomes 
Yu

MFV
= (1− F1

10) ·Y10 ·
(

1− F
−1/4,T
10

)
,

Yd
MFV
= (1− F1

5) ·Y5 ·
(

1− F
−1/4,T
10

)
,

YT
e

MFV
= (1− F

−3/2
5 ) ·Y5 ·

(
1− F

−3/2,T
10

)
,

(5.19)
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while

1− Fα
R

MFV
=

1

1 + α v24
MR

NR
. (5.20)

We thus recover geometric series, but now for all three Yukawa couplings simultaneously.

Despite their rather simple appearance, these equations are difficult to solve. First,

one should realize that even if Y10 and Y5 are the only spurions, their background values

are unknown. Using the G′F symmetry, these two spurions can be rotated to Y10 → D10

and Y5 → D5U
†, but D10 and D5 are not simply given in terms of the observed quark

masses, and U is not equal the CKM matrix. This leaves the six diagonal entries and the

six parameters entering U as free parameters. To this, we should add the free parameters

entering Fα
R, which are the two vector fermion masses, and the expansion parameters in

NR. All these free parameters must be fixed so that the SVD of Yu, Yd, and Ye reproduce

eq. (2.5), that is, the nine singular values have to match the quark and lepton masses, and

the mismatch between the left SVD unitary matrices for Yu and Yd has to reproduce

precisely the CKM matrix. To add to the difficulty, these equations are highly non-linear,

so there will be many solutions, but we are after those making most sense physically. That

is, we want the coefficients in NR to be O(1), and the solution to be rather stable against

small variations in these coefficients, Y10 and Y5 entries, or v24/MR.

Solving these equations in the general case represents a formidable task which we leave

for future works. Rather, let us go back to the issue of the relative normalization between

Yd and Ye, which had to be tuned by a free parameter in section 3.2, see eq. (3.14)

or (3.22 ), but is now imposed by the SU(5) symmetry. To this end, we solve the system

of equations under the approximation that Y10 and Y5 are simultaneously diagonal, and

consider separately the exchange of either XL,R
5 or XL,R

10 . For the former case, we find for

the MSSM at tan β = 50,

Y10 = diag(yu, yc, yt) , Y5 =

 0.0073 0 0

0 0.00016 0

0 0 0.39

 ,

v24

M5
= 1.5× 107 , α1 ≡ −1 , α2 = 4.8 , α3 = 6.7 , (5.21)

producing Yd = diag(ys, yd, yb) and Ye = diag(yµ, ye, yτ ). If we instead keep only the six

XL,R
10 fields,

Y10 =

−0.000003 0 0

0 0.0015 0

0 0 −1.58

 , Y5 =

 0.00039 0 0

0 0.0042 0

0 0 −0.17

 ,

v24

M10
= 1.2× 107 , β1 ≡ −1 , β2 = −7.6 , β3 = −3.0 , (5.22)

then producing Yu = diag(yu, yc, yt), Yd = diag(yd, ys, yb), and Ye = diag(ye, yτ , yµ).

These solutions share a number of characteristics:

• Both generate acceptable coefficients, with the vector-fermion scale coincidentally

close to the usual neutrino seesaw scale at around 109 GeV.
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• The hierarchies of Y5 and Y10 end up aligned, though that of Yu, Yd, and Ye

depends on the solution. Mathematically, the system of equations in the diagonal

approximation can be solved whatever the chosen hierarchy for Yu, Yd, and Ye,

and we here present only two examples. In this respect, the first solution twists the

down quarks and not the up quarks, so it may seem in obvious contradiction with

the known CKM matrix. This is an artifact of the diagonal approximation. Once

U 6= 1, only the right-handed down quarks and left-handed leptons are mixed since

the geometric series induced by XL,R
5̄

acts on ψ5̄ = D̄ ⊕ L. The hierarchy of the

left-handed down quarks is maintained aligned with that of the up quarks.

• These solutions exhibit again some serious fine-tuning. The N5 or N10 terms have

rather suppressed 3-3 entries, and are quite analogous to that in eq. (2.13) and (2.14).

This last point is particularly undesirable, but is the price to pay for the diagonal

approximation. We know from eq. (2.10) that such diagonal settings can lead to such

situations. To give another example, consider solving Ye = γYd · XQ with XQ = (1 +

η(Y†uYu + βY†dYd))
−1 in the diagonal approximation. Setting VCKM = 1, we find the

solution γ = 7, β = −1.7, η = 107, not so different from eq. (3.18), but here extremely

fine-tuned. Changing β by as little as 5% reduces the electron Yukawa coupling by more

than an order of magnitude. This sensitivity of the expansions to the slight misalignment

between Yu and Yd can be understood from the structure of Y†uYu. Even its diagonal

entries are seriously affected, with for example,

(Y†uYu)11 = |Vus|2m2
u + |Vcd|2m2

c + |Vtd|2m2
t , (5.23)

being entirely dominated by |Vtd|2m2
t . Setting VCKM = 1 suppresses (Y†uYu)11 by no

less than seven orders of magnitude, and completely alters the behavior of the solutions.

Still, compared to eq. (2.10), the fact that it is here possible to find acceptable values for

the coefficients and vector-fermion scale even in this extreme diagonal case is an excellent

indication that eq. (5.19) do admit acceptable solutions in the general case.

In conclusion, let us stress that the simple vector-fermion model presented here is cer-

tainly not the final word. It must be seen as a generic strategy to unify quarks and leptons

without introducing non-minimal flavor structures. The MFV conditions in eq. (5.17) could

be altered, models where N5 and/or N10 are themselves already geometric series in Y5 and

Y10 could be constructed, or the effective Yukawa interactions could be generated through

the exchange of states with different quantum numbers, maybe even at the loop level.

6 Conclusion and perspectives

In this paper, the unification of the quark and lepton flavor structures was thoroughly

revisited. Model-independently, we proved that it is possible to express the lepton Yukawa

coupling directly as a polynomial expansion in those of the quarks, but that naturality is

not automatic. It requires infinite polynomial expansions, with a geometric-like behavior.

We then constructed several toy models in which such polynomial series are generated
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dynamically, from the tree-level exchanges of heavy vector-like fermions. Let us stress

though that for all these models, some dynamical assumptions beyond MFV need to be

made, especially concerning their flavor structures. So, getting rid of one of the three

fundamental flavor structures of the SM comes at a price.

In more details, the main results of this analysis can be summarized as follows:

• Quite generically, the physical electron states ephys
L and/or ephys

R end up identified as

the τgauge
L and/or τgauge

R state, respectively. Indeed, the large top mass generates,

through a geometric series, a suppression of the mass of its third generation leptonic

partner. The bottom quark mass can play a similar role in a Two Higgs Doublet

Model at moderate or large tan β. Phenomenologically, such a twist of the left and/or

right lepton state is not directly observable at the level of the SM, but could have

implications for lepton number violating processes or neutrino mass models.

• In a supersymmetric context, there are two main consequences. First, the scalar

partners of the top quark see their masses suppressed by the geometric resummation,

in a way completely similar to the electron. This renders the third generation squarks

τ̃L,R as well as b̃L much lighter than the others. Interestingly, such natural SUSY-like

mass patterns are the most compatible with the absence of supersymmetric signal at

colliders. A second consequence is the presence of lepton flavor violation, even if no

new flavor structures were introduced at any stage. Indeed, when Ye is a function

of Yd,u, so are the slepton soft-breaking terms. They thus have non-diagonal entries

tuned by the CKM matrix, even in the basis in which Ye is diagonal. With in addition

rather light third generation sleptons, identified as the physical ẽL and/or ẽR states,

µ→ eγ could end up quite close to its current bound.

• In a GUT context, the same mechanism could in principle be applied. It is thus

possible for example within the SU(5) model to have correct unified mass ratios

without introducing any additional flavor structure. Phenomenologically, this is most

welcome in a supersymmetric setting since it ensures the absence of unknown mixing

matrices and their potentially large impact on FCNC. Technically, however, it must

be said that inverting the geometric-like expansions of Ye, Yd, and Yu expressed in

terms of Y5, Y10 is particularly tricky, and future work is needed there.

These results represent a significant improvement in several respects, but there are still

many questions to be resolved. In particular, among the aspects worth studying further,

we can mention

• We have alluded several time at the implications for neutrino models, and these should

be studied. The twist identified in the lepton states is certainly a significant new piece

of information. At the same time, the situation is quite complicated for neutrinos.

If their mass is of the Dirac type, expressing Yν in terms of Yd,u is mathematically

possible but would not be natural since Yν � Yd,u. A seesaw mechanism is required

to enhance Yν by several orders of magnitude. This necessarily introduce a ∆L = 2

breaking of the flavor symmetry, whose transformation properties are incompatible
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with those of Yd,u [40]. In other words, this breaking term must be part of the spurion

content. But doing this then completely decouples the neutrino flavor structure from

those of the quarks and charged leptons. For example, in a type II seesaw, it is always

possible to choose the Yukawa coupling inducing the Weinberg operator so as to

reproduce the observed neutrino masses and mixings, whatever is the mixing matrix

coming from charged leptons. Similarly, in a type-I seesaw, the right-handed neutrino

Majorana mass matrix can always be chosen so as to reproduce the observed neutrino

masses and mixings, whatever the assumptions about Ye and Yν . To proceed, it is

thus compulsory to deal with the flavor structure of the ∆L = 2 couplings. As its

origin may well have nothing to do with that behind MFV or the Yukawa couplings,

there is no clear strategy to follow, and this whole program appears to be beyond the

reach of the approach presented here.

• The dynamical models based on flavor triplets of vector leptons are not final theories

and could be improved or modified in many ways. First, the MFV conditions on

the vector fermion couplings (see eq. (3.14), (3.22), or (5.17)) is not derived from

first principles, since the origin of the flavor symmetry and its elementary breaking

terms are left to be elucidated. This leaves many alternative boundary conditions

to explore. Second, the extended Yukawa sector and the extra scalar state have an

impact on how the Peccei-Quinn symmetry is realized and broken, opening the way

to fruitful connections with axion models. Third, throughout this work, whenever

RG evolution to the GUT scale was performed, the impact of the new states was

neglected. This is adequate here since the numerical hierarchies of the flavor couplings

would not change much (RGE respect MFV by construction). Still, for the purpose

of constructing full models, this approximation should be lifted, especially as vector

fermions are known to impact the RGE in a positive way [48]. Fourth, the mass scale

of these vector leptons is free, and could actually be quite low, within reach of the

LHC. The experimental signatures of such states should be studied further [45–47]

because they could offer a direct window into the relationship between quark and

lepton mass hierarchies.

• More generally, vector fermions are not compulsory for our program. Other more

complicated settings could be devised, with new states carrying different representa-

tions of the gauge group, and contributing at the loop level. Even if the functional

dependences between the SM Yukawa couplings would not be as simple as here, the

geometric-like behavior needed to naturally relate quark and lepton flavor structures

will be reproduced whenever the effective contributions of the new states to the

Yukawa couplings decouple when their masses increase.

In conclusion, the initial somewhat technical and numerically fine-tuned relationship

between the quark and lepton Yukawa couplings lead us towards a new generic mechanism,

and its accompanying broad range of dynamical implementations. It opens the way for

many applications and extensions, and truly represents a new paradigm in our quest for

quark-lepton unification.
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A Integrating out SU(5) vector fermions

First, it is useful to write all the SU(5) indices explicitly. The three pieces of the flavor

Lagrangian LYukawa = LChiral
Yukawa + LVector

Yukawa + LMixed
Yukawa are

LChiral
Yukawa = −1

4
εABCDE(χ̄C

10)ABY10(χ10)CD(hu5)E +
√

2(ψ̄C
5̄ )AY5(χ10)AB(hd5̄)B + h.c. ,

(A.1)

for the chiral fermions,

LVector
Yukawa

= (X̄L
5̄ )A(M5δ

B
A + N5(H24)BA)(XR

5̄ )B + (X̄L
10)AB(M10δ

B
C + N10(H24)BC)(XR

10)AC

− 1

4
εABCDE(X̄L,C

10 )ABYL
10(XL

10)CD(hu5)E − 1

4
εABCDE(X̄R,C

10 )ABYR
10(XR

10)CD(hu5)E

+
√

2(X̄L,C
5̄

)AYL
5 (XL

10)AB(hd5̄)B +
√

2(X̄R,C
5̄

)AYR
5 (XR

10)AB(hd5̄)B + h.c. , (A.2)

for the vector fermions, and

LMixed
Yukawa = −1

2
εABCDE(χ̄C

10)ABȲ10(XL
10)CD(hu5)E

+
√

2(ψ̄C
5̄ )AȲ5(XL

10)AB(hd5̄)B +
√

2(X̄L,C
5̄

)AȲ5(χ10)AB(hd5̄)B

+ (X̄R
10)ABN̄10(χ10)AC(H24)BC + (X̄R

5̄ )BN̄5(ψ5̄)C(H24)CB + h.c. , (A.3)

for the mixed terms, where flavor indices are suppressed.

To extract and solve the equations of motion for the XL,R
10 field accounting for their

antisymmetry, it is best to first define

(M̄10)CDAB = M10δ
CD
AB + N10(H24)CDAB , (A.4)

with

2δCDAB ≡ δCAδDB − δDA δCB , 4(H24)CDAB ≡ δCA(H24)DB − δCB(H24)DA − δDA (H24)CB + δDB (H24)CA ,

(A.5)

so that the couplings take explicitly antisymmetric forms, for example:

(X̄R
10)CD(M̄10)CDAB (XL

10)AB = (X̄R
10)AB(M10δ

B
C + N10(H24)BC)(XL

10)AC , (A.6a)

(χ̄10)CDN̄10(XR
10)AB(H24)CDAB = (χ̄10)ABN̄10(XR

10)AC(H24)BC , (A.6b)

(ψ̄C
5̄ )CȲ5δ

CD
AB (XL

10)AB(hd5̄)D = (ψ̄C
5̄ )AȲ5(XL

10)AB(hd5̄)B . (A.6c)

With this, the equations of motion are

δLYukawa

δ(XL
10)AB

= (X̄R
10)CD(M̄10)CDAB −

1

2
εABCDE [(X̄L,C

10 )CDYL
10 + (χ̄C

10)CDȲ10](hu5)E

+
√

2[(X̄L,C
5̄

)CYL
5 + (ψ̄C

5̄ )CȲ5](hd5̄)Dδ
CD
AB , (A.7)

δLYukawa

δ(XR
10)AB

= (X̄L
10)CD(M̄10)CDAB + (χ̄10)CDN̄10(H24)CDAB

− 1

2
εABCDE(X̄R,C

10 )CD(hu5)EYR
10 +

√
2(X̄R,C

5̄
)C(hd5̄)Dδ

CD
ABYR

5 . (A.8)
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Those for the XL,R
5̄

fermions are straightforward to obtain,

δLYukawa

δ(XL
5̄

)A
= (X̄R

5̄ )B(M̄5)AB +
√

2[(X̄L,C
10 )ABYL,T

5 + (χ̄C
10)ABȲT

5 ](hd5̄)B , (A.9)

δLYukawa

δ(XR
5̄

)A
= (X̄L

5̄ )B(M̄5)AB +
√

2(X̄R,C
10 )ABYR,T

5 (hd5̄)B + (ψ̄5̄)BN̄5(H24)AB , (A.10)

where (M̄5)AB = M5δ
A
B + N5(H24)AB.

This set of coupled equations of motion can be solved iteratively. Only the leading

order in hu5 and hd
5̄

needs to be kept since vu,d5 � v24, and it consists of only five terms

Leff
Yukawa =

√
2
(
ψ̄5̄

)G
(H24)EGN̄5(M̄−1

5 )DE (hd†
5̄

)CYL∗
5 (M̄−1T

10 )ABCDN̄T
10(H24)FB(χC

10)AF

+
√

2
(
ψ̄5̄

)D
(hd†

5̄
)CȲ∗5(M̄−1T

10 )ABCDN̄T
10(H24)EB(χC

10)AE

−
√

2
(
ψ̄5̄

)C
(H24)BCN̄5(M̄−1

5 )AB(hd†
5̄

)DȲ∗5(χC
10)AD

− 1

4
(H24)DK(χ̄C

10)CKN̄T
10(M̄−1T

10 )ABCDεABEFJ(hu5)JYL
10(M̄−1

10 )EFGHN̄10(H24)HL (χ10)GL

+
1

2
(χ̄C

10)EF εABEFG(hu5)GȲ10(M̄−1
10 )ABCDN̄10(H24)DH(χ10)CH + h.c. . (A.11)

Note that YR
5,10 do not contribute at all. If Mi � v24Ni, the inverse mass terms can be

expanded as

M5 ·
1

M5δAB+N5(H24)AB
= δAB1+N5

(H24)AB
M5

+N5
(H24)AC

M5
N5

(H24)CB
M5

+. . . , (A.12)

M10 ·
1

M10δCDAB +N10(H24)CDAB
= δABCD1+N10

(H24)ABCD
M10

+N10
(H24)EFCD

M10
N10

(H24)ABEF
M10

+ . . . .

(A.13)

To leading order in M−1
i , the effective interactions become:

Leff
Yukawa = −

√
2(H24)AB

(
ψ̄5̄

)B [1

2
Ȳ∗5

1

M10
N̄T

10 + N̄5
1

M5
Ȳ∗5

]
(χC

10)AD(hd†
5̄

)D

−
√

2
(
ψ̄5̄

)A [1

2
Ȳ∗5

1

M10
N̄T

10

]
(χC

10)AB(H24h
d†
5̄

)B

+
1

2
εABCDE(χ̄C

10)AB
[
Ȳ10

1

M10
N̄10

]
(χ10)CF (H24)DF (hu5)E + h.c. . (A.14)

The XL,R
5 fermions induce only the 45-type interactions (which includes some left-over

5-type as hD5 (H24)AB is not traceless), while the XL,R
10 fermions generate all types of effec-

tive interactions but for those of the form εABCDE(χ̄C
10)AB(χ10)CD(H24h5)E , because the

H24 indices are all used to contract those of the χ10 and never ends up coupled to that

of hu5 or hd
5̄
.
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The general expression does not permit to easily extract the contributions to the

fermion Yukawa couplings after the SSB. To this end, we set [no summation on A,B]

M5δ
A
B + N5(H24)AB → (M5 + N5v

A
24)× δAB , (A.15)

M10δ
CD
AB + N10(H24)CDAB → (M10 + N10(vA24 + vB24)/2)× δCDAB . (A.16)

Plugging this in the general expression, setting v24 = (1, 1, 1,−3/2,−3/2), and denoting

Fα
R = αv24N

M
R · (MR +αv24NR)−1, we find the effective Yukawa interactions of eq. (5.18).

Open Access. This article is distributed under the terms of the Creative Commons
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