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1 Introduction

A longstanding goal of quantum gravity is to describe the physics near singularities such as

the big bang or inside black holes. Gauge/gravity duality provides a powerful tool to apply

to this problem since it allows us to describe singularities in toy model cosmologies that

are asymptotically anti-de Sitter (AdS) in terms of a dual quantum field theory living on

the conformal boundary. While these models are necessarily in AdS and therefore cannot

describe a singularity in the beginning of our universe, they contain a Friedman-Lemâıtre-

Robertson-Walker (FLRW) cosmology that evolves to a spacelike singularity. Thus, while
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not identical to our universe, one can hope that learning about these cosmological singu-

larities will also give some insight into conditions in the early universe.

The first examples of such ‘AdS cosmologies’ were constructed in [1, 2]. These are

solutions of N = 8, D = 4 supergravity involving only gravity and a single scalar field

with m2 = −2/R2
AdS. In these scenarios smooth, spherically symmetric, asymptotically

AdS initial data evolves into (or from) a singularity which extends all the way to infinity.

The Lorentzian evolution exhibits an enhanced O(3, 1) symmetry characteristic of open

FLRW cosmologies. The dynamics of the system are governed by the scalar, which rolls

down its (negative) potential, producing a big crunch singularity in finite time. Models

of this type were further explored in [3–6] and other models of cosmologies in AdS were

studied e.g., in [7–11].

For the AdS cosmologies in [1] it was shown that if one defines the dual ABJM the-

ory [12] on the global AdS boundary the field theory also becomes singular when the bulk

singularity reaches the boundary [2, 3]. To evolve the field theory beyond this point requires

an additional rule that specifies the transition of the field theory state across the singular-

ity. No convincing rule has been put forward, however, and there is some evidence that this

is in fact not possible. Specifically, detailed studies of the boundary evolution [2, 3, 13],

as well as more general arguments based on holography [14], indicate that there can be no

domain beyond the big crunch where the spacetime behaves classically again.

Thus, it is appropriate to adopt a boundary viewpoint in which the bulk singularities

lie in the infinite future (or past). Such a framework was put forward in [15, 16] where the

AdS cosmologies of [1, 2] were reinterpreted as being dual to a field theory on de Sitter

spacetime. In this setup the bulk singularity corresponds to the dual field theory state in the

asymptotic future (or past), leaving the boundary spacetime regular. Furthermore, the field

theory is globally well-defined: even though the bulk scalar field turns on a (homogeneous)

negative mass deformation in the dual, the conformal coupling to the de Sitter boundary

geometry ensures the deformed theory is stable for sufficiently small deformations.

The dual description on de Sitter therefore provides an appealing setup to explore the

quantum dynamics near cosmological singularities. At the same time it indicates there is an

instability for large negative deformations. In particular, there is a critical deformation for

which the negative mass deformation by a scalar operator, O, exactly cancels its positive

conformal coupling, resulting in new massless excitations. For larger negative deformations

the dual theory is unstable, just as one would expect for a tachyonic free theory. As we

will review, at the critical point in a free theory the expectation value of O diverges and

its two-point function develops a strong IR tail.

In this paper we identify the onset of this instability at strong coupling using

gauge/gravity duality. Moreover, we find that observables in the dual field theory near

criticality can exhibit clear and strong signatures of the bulk singularity. In particular, we

show that, similar to the free theory, the two-point function of large dimension operators

on the boundary at strong coupling is enhanced in the IR as one approaches the critical

point, and we trace this feature to the presence of the bulk singularity.

The starting point for our analysis is the construction of an effective potential for the

expectation value 〈O〉 at strong coupling. This effective potential is obtained using the

– 2 –



J
H
E
P
0
5
(
2
0
1
6
)
1
6
8

asymptotic behavior of the AdS cosmologies together with the bulk boundary conditions.

The effective potential shows that there is a critical deformation at which the boundary

theory at strong coupling becomes unstable.1

To probe and explore the dynamics near the singularity, we compute the two-point

function of boundary operators. In the large N limit, the leading contribution to the two-

point correlator of an operator, O∆, of high conformal dimension, ∆, is specified by the

(regulated) length of spacelike bulk geodesics anchored on the boundary2 [20, 21]. For

small deformations there is a unique bulk background. In this regime all bulk geodesics

with endpoints on the boundary stay well away from the high curvature region near the

singularity [22], and the resulting boundary two-point correlators do not appear to exhibit

strong signatures that can be associated with the singularity.

However, larger deformations near the critical point admit a second background. Both

backgrounds provide saddle point contributions to the boundary correlators in the geodesic

approximation. The second saddle point describes the evolution of initial data consisting of

a thin wall bubble with an interior region where the scalar field is large. As a consequence,

the singularity develops rapidly in this background. As we will discuss this implies that

there are bulk geodesics anchored on the boundary that come close to the singularity.

Moreover, their contribution turns out to dominate the large distance behavior of the

boundary two-point function, despite the fact that the saddle point is suppressed in the bulk

state under consideration, which is specified by Euclidean initial conditions. In particular,

the second saddle point amplifies correlations in the IR and leads to an IR divergence in the

limit of the critical deformation. This limit is probed by spacelike geodesics with endpoints

on the boundary that touch the singularity in the bulk. In fact, the IR correlator behaves

not unlike the long-distance two-point function of a massless field in de Sitter space, which

is precisely what one expects based on the free boundary theory where the critical point

corresponds to a massless limit.

2 Setup

Our starting point is the low energy limit of M-Theory compactified to AdS4 × S7. The

massless sector of the theory is N = 8 gauged supergravity in four dimensions, which

involves the graviton, 28 SO(8) gauge bosons, and 70 real scalars. We consider a particular

consistent truncation that includes only Einstein gravity coupled to a single scalar, φ, with

potential [23],

V (φ) = −2− cosh
(√

2φ
)
, (2.1)

1The construction of the effective potential is a generalization of the method introduced in [17] for duals

defined on the global AdS boundary, which used the asymptotic behavior of static scalar soliton solutions.

Static solitons are vacua of the theory for certain choices of boundary conditions on global AdS. The

highly symmetric cosmological backgrounds of [1, 2] are vacua of the theory for the asymptotic de Sitter

boundary conditions we consider here. This is also born out by the fact that they can be obtained by

analytic continuation of regular Euclidean instantons.
2See e.g., [18, 19] for attempts to probe the singularity inside AdS black holes using geodesics with

endpoints on the boundary.
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where we have chosen the gauge coupling so that the AdS4 solution at φ = 0 has radius one.

The potential (2.1) has a maximum at φ = 0 and is unbounded below, but the scalar is

within the Breitenlohner-Freedman bound [24] and with appropriate asymptotic boundary

conditions the AdS vacuum is non-perturbatively stable [25].

We define the dual field theory on three-dimensional de Sitter space. Therefore, it

is convenient to work in coordinates in which slices of AdS at constant radius, ρ, are

three-dimensional de Sitter spaces. In these coordinates the AdS metric is:

ds2 = dρ2 + sinh2(ρ)(−dτ2 + cosh2(τ)dΩ2
2) . (2.2)

The scalar field equation of motion on this background implies that the scalar decays at

large radius as

φ = 2αe−ρ + 4βe−2ρ + . . . , (2.3)

where α and β may depend on the boundary coordinates.

In order to specify the theory completely, one must fix boundary conditions. The scalar

boundary conditions introduced in [24], for which global AdS is stable, correspond to either

α = 0 or β = 0. These are a particular case of Dirichlet or Neumann boundary conditions

respectively. However, there are other possible boundary conditions for which the theory

is well-defined and some or all of the asymptotic AdS symmetries are preserved. Most

generally, a choice of boundary conditions amounts to specifying both a relation β(α)

for the asymptotic scalar profile, and a consistent set of falloff conditions on all metric

components for which the conserved charges are well-defined [1, 2, 26]. In what follows, we

adopt Neumann scalar boundary conditions where β is a nonzero constant together with

a set of consistent boundary conditions on the metric.

2.1 Big bang/big crunch cosmologies in AdS

We now review some aspects of the AdS cosmologies introduced in [1, 2]. Following [15],

we interpret these cosmologies as solutions with β = constant boundary conditions in the

coordinates (2.2). In this setup the dual field theory lives on three-dimensional de Sitter

space and is globally well-defined.

The AdS cosmologies are obtained from initial data given by the analytic continuation

of regular, O(4)-invariant, Euclidean instantons of the form

ds2
E = dρ2 +A2(ρ)(dθ2 + sin2(θ)dΩ2

2) . (2.4)

The instantons are fully specified by A(ρ) and φ(ρ), whose dynamics are governed by the

field equations derived from the Euclidean action:

SE =

∫
d4x
√
gE

(
−1

2
R+

1

2
(∇φ)2 + V (φ)

)
, (2.5)

with V given in (2.1) and units where 8πG = 1.

The Euclidean construction of initial conditions is appealing because it provides some

information about the underlying state of the bulk which will be important when we

study the singularity with boundary probes. We note that although the solutions are
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Figure 1. The coefficients that characterize the asymptotic scalar field profile βi(α) (left) of the

one-parameter family of O(4)-invariant, regular instantons, and the relation βi(φ0) (right), where

φ0 is the value of the scalar at the origin. The fact that β tends to a finite value in the large α limit

depends on the detailed form of the scalar potential (2.1) in the consistent truncation we consider.

instantons, and the equations of motion are identical to those for Coleman-de Luccia in-

stantons [27], they should not be thought of as AdS vacuum decays. This is because the

boundary conditions of the vacuum, β = α = 0, are incompatible with our boundary

conditions β = constant.

The field equations determine the asymptotic, near-boundary behavior of the fields:3

A(ρ) = a1eρ + a−1e−ρ +O(e−2ρ) , (2.6)

φ(ρ) =
α

A(ρ)
+

β

A2(ρ)
+O(A−3)

=
α

a1
e−ρ +

β

a2
1

e−2ρ +O(e−3ρ) . (2.7)

Meanwhile, regularity at the origin requires A(0) = 0, A′(0) = 1, and φ′(0) = 0. Thus the

set of regular instanton solutions can be labeled by the value of φ at the origin, φ(0) ≡ φ0.

For each φ0, one can integrate the Einstein equations to find an instanton. Therefore, for

each φ0 one obtains a point in the (α, β) plane and a unique profile for the scale factor.

Hence a1 is determined by φ0 or equivalently α. Repeating for all φ0 yields a curve βi(α)

where the subscript indicates that this is associated with instanton solutions. We plot this

curve4 in figure 1.

The slice through the instanton at the equator of the S3 in (2.4) defines time symmetric

initial data for a Lorentzian solution. For any choice of boundary condition β(α), valid

initial data are given by the fields on the equatorial slice of the instanton that corresponds to

a point where the curve βi(α) intersects β(α). As can be seen from figure 1, for constant β

boundary conditions neither existence nor uniqueness of an instanton is guaranteed. There

is a minimal value β = βmin, below which there are no regular solutions. Furthermore,

below some critical value β = βc (the dashed line in figure 1) the solution is not unique;

3This definition of α and β is consistent with (2.3), where a1 = 1/2 for empty AdS. Note that a1 6= 1/2

is compatible with an asymptotic AdS structure with radius one.
4Since the potential, V (φ), is even, it suffices to consider positive φ0 which corresponds to positive α.
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Figure 2. Representation of a homogeneous and isotropic, open, asymptotically AdS cosmology

with Euclidean initial conditions. The solution develops a singularity in the interior of the lightcone

expanding from the origin. Outside the lightcone the solution is everywhere regular.

boundary conditions β ∈ (βmin, βc) admit two instantons. In this regime Euclidean initial

conditions specify a bulk state that is a superposition of two classical backgrounds. For

β → βc the second instanton becomes singular, with divergent φ0 and α.

The Lorentzian evolution is obtained by two analytic continuations [1, 2, 27, 28]: one

of which covers the interior of a lightcone emanating form the origin, and one of which

covers the exterior of this lightcone. The interior region inherits an SO(3, 1) symmetry

from the instanton and hence evolves as an open FLRW universe. In the exterior region,

spacetime is homogeneous on the radial de Sitter slices discussed above5 (see figure 2). We

write the Lorentzian metrics inside and outside the lightcone as:

ds2
in = −dt2 + ain(t)2(dχ2 + sinh2(χ)dΩ2

2) , (2.8)

ds2
out = dρ2 + aout(ρ)2(−dτ2 + cosh2(τ)dΩ2

2) . (2.9)

The scale factor and the scalar field in the exterior region of the Lorentzian solution do

not transform under the analytic continuation from the Euclidean, so A(ρ) = aout(ρ). In

particular, the scalar field remains everywhere bounded in this region, and the asymptotic

expansions (2.6) and (2.7) remain valid. Hence the Lorentzian evolution given by analytic

continuation obeys the constant β boundary conditions.

Since both patches are obtained from the analytic continuation of a regular Euclidean

geometry, one can use a single complex function to describe both regions. We define the

scale factor, a, and the scalar, φ, to be equal to their corresponding values on the inside

of the lightcone. The time coordinate t is complex, and its relation to the radial variable

5For an in-depth discussion of general geometries of this type, see [28].
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is ρ = it. In what follows, we often drop the “in/out” subscript and use the following

notation for the general complex functions:

a(t) = ain(t) = −iaout(it) ,

φ(t) = φin(t) = φout(it) .
(2.10)

The Einstein and Klein-Gordon equations using these conventions can be written:

1

2
φ′2 =

(
a′

a

)2

− 1

a2
− a′′

a
, (2.11)

−1

2
V (φ) =

1

a2
−
(
a′

a

)2

− a′′

2a
, (2.12)

0 = φ′′ +
3a′

a
φ′ +

dV

dφ
, (2.13)

where prime denotes the derivative with respect to t. The Euclidean regularity conditions

translate to regularity across the lightcone:

a(−t) = −a(t) , a′(0) = 1 , φ(−t) = φ(t) . (2.14)

While the scalar field outside the lightcone remains bounded, inside the lightcone φ

rolls down the negative potential. This causes the scale factor a(t) to vanish in finite time

tc, producing a big crunch singularity (cf. appendix A). The lightcone and the singularity

within it reach the boundary of AdS in a finite global time [1, 2]. The de Sitter slices how-

ever cover only the region outside the lightcone and thus are everywhere regular. This has

important implications for the stability of the dual boundary system as we discuss below.

In appendix A (cf. (A.1)) we show that the scale factor in the interior region is bounded

from above:

a(t) < R sin (t/R) < sin t where R =

√
3

|V (φ0)|
≤ 1 . (2.15)

Hence, its maximum, amax = a(tmax), is bounded by amax ≤ R with tmax ≤ Rπ/2. The

proper time between the a = amax surface and the singularity is given by tc − tmax. Using

steps identical to those leading to (2.15) in appendix A, it is straightforward to prove that

this is also bounded:

tc − tmax ≤
π

2
amax . (2.16)

Thus, as we increase φ0, the proper distance between the surface where the scale factor is

maximized and the singularity becomes exponentially small (see also figure 3 (left)). This

will be important below when we probe the singularity with geodesics, which do not extend

past the surface of maximal scale factor [22].

Finally, we point out a peculiar feature of the instanton solutions, which appears to

be a property of this particular truncation of the supergravity theory; namely, the scalar

field profiles, φ(ρ), for different φ0 intersect each other. In particular profiles starting at

a larger value of φ0 describe smaller bubbles that are more localized around the origin

(cf. figure 3 (right)). Other consistent truncations to a single scalar [23] do not exhibit this

behavior, which appears to be a prerequisite for βi(α) to asymptote to a finite value, as

seen in figure 1 (right).
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Figure 3. Left panel: scale factor solutions in the interior for increasing φ0. Right panel: scalar

field profiles in the outer region for several large φ0 showcasing the crossing of solutions.

3 Dual field theory

The bulk system described by the Lorentzian continuation of the action (2.5) has a holo-

graphically dual description in terms of a deformation of ABJM theory [12] defined on

three-dimensional de Sitter space [15]. The consistent truncation to a single bulk scalar

with m2 = −2 corresponds to a single operator in the dual theory of dimension ∆ satisfying

the standard relation m2 = ∆(∆− d).

The scalar boundary conditions in the bulk determine the deformation of the dual field

theory. Dirichlet boundary conditions keep the coefficient α in the expansion (2.7) fixed

and the resulting deformation has ∆ = 2, while Neumann boundary conditions keep β fixed

and deform the boundary theory by an operator with weight ∆ = 1. More general ‘mixed’

boundary conditions specified by a relation β(α) are also allowed [29, 30]. The deformation

of the dual corresponding to boundary conditions β = β(α) is given by [31–33]

Sβ = SABJM +

∫
d3xf(O1) , f ′(α) = β(α) , (3.1)

where α = 〈O1〉. Hence, with our choice of Neumann boundary conditions β = constant,

the boundary theory is simply a massive deformation of ABJM,

S = SABJM + β

∫
d3x
√
−γdSO1 , (3.2)

where γdS is the determinant of the metric on the boundary de Sitter space with unit radius.

In the next subsection we calculate the expectation value of the deformation operator,

〈O1〉 via holographic renormalization. We then move on to an analysis of ABJM in the

weakly coupled limit in which it reduces to a theory of free scalars on de Sitter space. A free

field theory should correspond to a Vasiliev-like, strongly coupled bulk geometry [34–36],

so we do not expect to find an exact correspondence with the dynamics in the bulk in

the supergravity regime. However, we find that the free theory captures several features

of the bulk dynamics in qualitative terms. It therefore provides a framework in which we

can interpret and understand some of the holographic signatures of the singularity in the

– 8 –
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strongly coupled regime that we compute in section 5, and hence a starting point to explore

the quantum dynamics of singularities.

3.1 Holographic renormalization

To extract the one-point function of the dual operator O1, as well as the renormalized

value of the on-shell action, holographic renormalization must be carried out [37–39]. To

do so it is convenient to work in Euclidean signature, where the line element takes the

form (2.4), and the boundary is a three-sphere. The Euclidean action (2.5), including the

Gibbons-Hawking term, is given by

SE =

∫
d4x
√
gE

(
−1

2
R+

1

2
(∇φ)2 + V (φ)

)
−
∫
ρ=ρcut

d3x
√
γρK , (3.3)

where γρij denotes the induced metric on a slice of constant ρ, and K is the extrinsic

curvature (in the coordinates (2.4), K = 3A′/A). In order for the action to be finite we

introduce a cut-off, ρcut. Using the asymptotic expansions (2.6) and (2.7) for the scale

factor and scalar, one can extract the divergences of the on-shell action,

Sdiv = −2a3
1e

3ρcut +
a1

4
eρcut(α2 − 6) + finite terms . (3.4)

A covariant counterterm action removing the divergences reads

Sct =

∫
ρ=ρcut

d3x
√
γρ
(

2 +
1

2
R[γρ] +

1

2
φ2

)
, (3.5)

in agreement with [39].

In the standard quantization scheme, the source for the dual operator of dimension

∆ = 2 is identified with the leading term of the expansion of the scalar field, in this case

α. In order to analyze the deformation by an operator of dimension ∆ = 1, we perform a

Legendre transform by introducing the term [30, 40],

S− = −
∫
ρ=ρcut

d3x
√
γρ φπr , (3.6)

where πr denotes the renormalized canonical momentum:

πr =
1√
γρ
δ(SE + Sct)

δφ
= ∂ρφ+ φ . (3.7)

This leads to the one-point function

〈O1〉s =
1
√
γdS

lim
ρ→∞

δ(SE + Sct + S−)

δβ
= α . (3.8)

For future convenience, it is important to know the value of the renormalized on-shell

action, Sren, given by the sum of (3.3), (3.5), (3.6). Using the equations of motion and the

asymptotic expansions, one can simplify this to:

Sren = lim
ρcut→∞

[
−
∫

d4x
√
gEV (φ) +

∫
ρ=ρcut

d3x
√
γρ
(

2 +
1

2
R[γρ]−K − 1

2
φ2 − 1

2

d

dρ
φ2

)]
.

(3.9)

The value of the on-shell action can easily be calculated for empty AdS, for which

A(ρ) = sinh ρ and φ = 0. In this case one finds Sren = π2.
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3.2 Free theory on de Sitter space

We now return to Lorentzian signature and consider a conformally coupled massive scalar

field ϕ with the action

S = −
∫

d3x
√
−γdS

[
1

2
∂µϕ∂

µϕ+
1

2
ξRϕ2 + βϕ2

]
= −

∫
d3x
√
−γdS

[
1

2
∂µϕ∂

µϕ+

(
3

8
+ β

)
ϕ2

]
, (3.10)

where in the second line we use the fact that the Ricci scalar R = 6 and the conformal

coupling is given by ξ = 1/8. The bulk instanton geometries with fixed β correspond

to deforming the conformal case by adding a mass [15], β = m2/2. Since canonically

normalized scalars in 3 spacetime dimensions have dimension 1/2, the deformation operator

is: O1 = ϕ2.

A massive field on de Sitter space is a well-defined, local QFT for any β > −3/8.

Its two-point function G = G(Z) is a function only of the de Sitter invariant Z, which is

defined as an invariant element of the embedding space:

Z = ηµν∆Xµ∆Xν . (3.11)

The embedding coordinates Xµ, µ = 0, 1, . . . , d specify de Sitter space of unit radius by

the equation ηµνX
µXν = 1. The geodesic distance, D, is related to Z by

Z =

{
cosD for D ≤ π ,
− cosh(D − π) for D > π .

(3.12)

The two-point function is a solution to the equation of motion,

0 =

[
−�+

(
3

4
+ 2β

)]
G

= (Z2 − 1)G′′(Z) + 3ZG′(Z) +

(
3

4
+ 2β

)
G(Z) , (3.13)

with the correct (properly normalized) short-distance divergence. In three dimensions, the

solution can be written in terms of elementary functions,

Gβ(Z) =

sin

(√
1− 8β arcsin

√
1+Z

2

)
2π sin

(
π
2

√
1− 8β

)√
1− Z2

. (3.14)

Its behavior for a range of masses is illustrated in figure 4.

In the small distance limit, Z → 1−, the two-point function exhibits the correct singular

behavior

Gβ(Z → 1−) =
1

4π

√
2

1− Z
+O((1− Z)0) . (3.15)

In the case of a massless, conformally coupled scalar, β = 0, the two-point function trun-

cates to the single term written in (3.15).
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Figure 4. The two-point function for a free, massive, conformally coupled scalar field in de Sitter

space, as a function of the de Sitter invariant Z, for various values of the mass. As the mass-

squared approaches the critical value βfr
c = m2/2 = −3/8, where the scalar becomes massless, the

two-point function develops a strong IR tail. In particular, it tends to a constant which diverges in

the massless limit, with a subleading logarithmic decay.

The massless limit. The limit β → −3/8 corresponds to the minimally coupled massless

field as indicated by (3.10). This is a subtle case due to the fact that on the sphere, the

defining equation

−�xG(x, x′) =
√
g(x′)δ(x− x′) (3.16)

has no solutions as its left hand side integrates to zero, while the right hand side does

not. This problem manifests itself in various ways, such as the two-point function either

breaking de Sitter invariance, not satisfying the equations of motion, or having unphysical

divergences at finite separations, [41]. In particular, the naive limit limβ→−3/8Gβ is ill-

defined: one finds,

Gβ→−3/8(Z) =
1

2π2
(

3
8 + β

) +
1

4π2

−1 +
4Z arcsin

√
1+Z

2√
1− Z2

+O

(
3

8
+ β

)
. (3.17)

Various proposals to resolve this have been discussed in the literature. One suggestion

is that the vacuum is only invariant under a subgroup of the full de Sitter symmetry

group [41]. A related possibility is to remove the zero-mode, which violates unitarity and

is therefore considered unphysical [42, 43]. Additionally, one might restrict to considering

only derivatives of the field in which divergences are absent; these can be used to describe

all observable quantities. All of these amount to removing the divergent term in (3.17).

Finally, it has been pointed out that the absence of a de Sitter invariant vacuum is a

property of the free theory only, and is not an obstacle in interacting theories [44].

Long range behavior. We are particularly interested in the long range behavior of

the two-point function. To examine this limit we first consider −3/8 < β < 1/8 and
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expand (3.14) around Z → −∞,

Gβ(Z → −∞) =

(
−(−2Z)−

1
2(2+

√
1−8β) + (−2Z)−

1
2(2−

√
1−8β)

2π sin
(
π
2

√
1− 8β

) ) [
1 +O(Z−2)

]
. (3.18)

Eq. (3.18) shows that as β approaches the critical value, βfrc = −3/8, where the scalar

becomes massless, the two-point function develops a strong IR tail. Taking the naive limit

β → −3/8 using (3.17) we find

Gβ→−3/8(Z → −∞) =
1

2π2
(

3
8 + β

) − log(−Z) + 1 + 2 log 2

2π2
+O

(
3

8
+ β, Z−1

)
. (3.19)

The naive massless correlator therefore tends to a constant which diverges in the massless

limit, plus a slowly decaying logarithmic tail. We note that the constants in the second

term of the above expression depend on the order of limits, and are furthermore irrelevant

since one can always add an arbitrary constant to the fundamental solution of (3.16). On

the other hand, the divergent first term and the logarithmic term in (3.19) are physical

signatures of the two-point function approaching the massless limit.

One-point function. Since the bulk theory exhibits a non-trivial value of the one-point

function, α = 〈O1〉 6= 0, we would like to examine the one-point function of 〈ϕ2〉 in the

free theory as a function of β. One can compute this by taking the zero-separation limit

of the two-point function, 〈ϕ(x)ϕ(x′)〉. Since the two-point function is defined on the

sphere, where IR divergences are absent, a natural procedure is to subtract the universal

UV divergence (3.15). This leads to the following definition of ϕ2

ϕ2(x) = lim
x′→x

[
ϕ(x)ϕ(x′)− 〈ϕ(x)ϕ(x′)〉0 × 1

]
, (3.20)

where 〈ϕϕ〉0 denotes the conformally coupled two-point function with β = 0. This sub-

traction amounts to taking the constant part of the expansion (3.15), given by:

α = 〈ϕ2〉 = −
√

1− 8β

4π
cot
(π

2

√
1− 8β

)
. (3.21)

Notice that despite being a free theory, the one-point function is non-vanishing. This

is because the subtraction scheme (3.20) is β independent. In this way, the universal

UV divergence is subtracted without modifying the IR. The resulting non-zero one-point

function is equal to that obtained from the generating functional for a free theory on the

sphere [45, 46]. As β approaches the critical deformation, β → −3/8, the one-point function

diverges. This behavior as a function of β is illustrated in figure 5 and closely resembles

the behavior found at strong coupling using holography (cf. figure 1 (left)).

Two-point function. In section 5 we study the strongly coupled ABJM theory by cal-

culating the two-point functions of operators with ∆ � 1 via the geodesic approximation.

As a point of comparison, we can model a two-point function of an operator O∆ of large

dimension, ∆, in the free massive theory by considering ON/2 =:ϕN :. As is the case for

the flat space theory, Wick’s theorem is applicable and the two-point function reads

〈ON/2(x)ON/2(x′)〉 = N !GN (Z) , (3.22)

where G is the propagator given by (3.14).
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Figure 5. The one-point function, 〈ϕ2〉 = α, as a function of the source, β. The one-point function

diverges at a critical value, βfr
c = −3/8, shown by the dashed line.

4 Phase transition at strong coupling

The free boundary theory is unstable for large negative deformations β < βfrc = −3/8,

for which the boundary scalar ϕ has a negative effective mass. The divergence of the one-

point function, α, at the critical deformation β → βfrc is a clear sign of the onset of this

instability (cf. figure 5). In this section we identify and explore this phase transition at

strong coupling in the boundary theory using holography.

We first construct an effective potential for the expectation value 〈O1〉 in the dual

field theory from the asymptotic behavior of the instantons encapsulated in the curve

βi(α), together with our choice of bulk boundary conditions. The construction of the

effective potential for a dual field theory on de Sitter space is a generalization of the results

of [17], where effective potentials for dual theories defined on the global AdS boundary

were calculated using the asymptotic behavior of static scalar soliton solutions. Static

solitons can be vacua of the theory for mixed boundary conditions, β(α), in global AdS [17];

similarly the instantons discussed in section 2 can be vacua for the theory with non-trivial

boundary conditions on the de Sitter boundary.

Specifically, we consider the following function of α = 〈O1〉,

Veff(α) = −
∫ α

0
βi(α)dα+

∫ α

0
β(α)dα, (4.1)

where βi(α) is shown in figure 1 (left) for strong coupling, and figure 5 for the free theory. In

the second term of (4.1) β(α) refers to the boundary conditions on the de Sitter boundary

and with our choice of Neumann boundary conditions β(α) = β.

We now argue that the function (4.1) is equal to the standard effective potential. In

a QFT the quantum effective action solves the quantum equation of motion, which in our

notation reads
δΓ0

δα(x)
=
√
−γdSβ(x) , (4.2)
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Figure 6. Left panel: effective potential for the source α = 〈ϕ2〉 calculated for the ABJM boundary

theory dual to a crunching cosmology. Right panel: the analogous effective potential for 〈ϕ2〉 in

the theory of a conformally coupled massive scalar on de Sitter, where m2 is the deformation.

where Γ0 is the quantum effective action of the undeformed theory, and α is the vacuum

one-point function in the presence of the source β. The quantum effective action of the

deformed theory, Γβ , is then given by

Γβ(α) = Γ0(α)−
∫
d3x
√
−γdS

∫ α(x)

0
β(α)dα . (4.3)

The relation between the quantum effective action and the effective potential in the case

of constant α is Γβ = −V oldSVeff . Using (4.1) implies Γ0 = −V oldS

∫
βidα, and we see

that (4.2) is satisfied for the stationary solutions, β = βi. Therefore (4.1) plays the role

of an effective potential for α. In particular, its extrema are in one-to-one correspondence

with the regular instantons that obey the boundary conditions β(α).

The effective potential (4.1) is shown for strong coupling in figure 6 (left). For small

deformations Veff has a stable minimum which indicates that the strongly coupled boundary

theory remains stable just like the free theory. By contrast, for large negative deformations

β < βmin we see Veff has no extrema at all, and the boundary theory is clearly unstable.

Finally there is an interval βmin < β ≤ βc in which our analysis of the effective potential

indicates the theory is metastable. In this regime Veff has two extrema which correspond

to two different instanton solutions.6 The ‘second’ instanton, with the larger value of α,

corresponds to a maximum of the effective potential and is presumably unstable. The first

instanton describes a perturbatively stable vacuum state.

A genuine effective potential in a stable QFT is convex. Clearly this is not the case

for β ≤ βc in figure 6 (left). The reason is that we consider a state where the one-point

function, 〈O1〉, is defined to be position-independent in a regime where the vacuum is at

best metastable. In this regime one expects there to be a spatially varying state in the QFT

with a lower value of the effective potential. For βmin < β < βc such states correspond to

instanton solutions in the dual field theory that tunnel away from the perturbatively stable

minimum. Hence our interpretation of (4.1) as a genuine effective potential for 〈O1〉 allows

us to conclude that for βmin < β < βc the field theory becomes non-perturbatively unstable.

6This can also be seen in figure 1 (left).
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Figure 6 (right) shows the effective potential for the operator 〈ϕ2〉 in the theory of a

free, massive, conformally coupled scalar in de Sitter space discussed in section 3.2. This

effective potential is constructed by inverting (3.21), substituting it in (4.1) for βi(α),

and integrating. The mass deformation away from the conformal point is given by the

deformation parameter β = m2/2. A comparison between both panels of figure 6 shows

that the transition to the unstable regime for large (negative) deformations occurs in a

qualitatively similar manner. On the other hand, the critical value of βc at which the

instability sets in is more negative at strong coupling. Also, strong coupling allows for a

narrow metastable regime which is absent in the free theory.

The most important feature of this analysis, which we will use below, is that both

regimes exhibit a critical deformation, βc, at which the theory becomes unstable. In the

free theory this transition corresponds to the case of a massless, minimally coupled scalar

in de Sitter. In the next section we show that the near critical regime allows us to probe

the high curvature region near the singularity with boundary observables.

5 Holographic signatures of the singularity

In the large N limit of the field theory, the leading contribution to the two-point correlator

of an operator O of high conformal dimension ∆ in the dual strongly coupled ABJM

theory on the de Sitter boundary is given in terms of the length of spacelike bulk geodesics

connecting the two points: [20]

〈ψ|O∆(x)O∆(x′)|ψ〉 =
∑
i

wie
−∆Lireg(x,x′) , (5.1)

where |ψ〉 is the state of the boundary theory, Lreg(x, x′) is the regulated length of the

geodesics connecting boundary points x and x′, and wi are the relative weights of the

contributions of different saddle point geometries. We work in a state where the weights,

wi, are related to the Euclidean on-shell action evaluated on the bulk backgrounds.

The calculation of the geodesics and their lengths is presented in full detail in

appendices B and C, here we summarise the key points and discuss the resulting cor-

relator. Geodesics in AdS cosmologies of this kind have also been recently studied in [6],

and many of the results in the appendices have overlap with this work.

5.1 Bulk geodesics

The de Sitter symmetry of the boundary implies the correlator can only depend on the de

Sitter invariant distance between x and x′, given in eqs. (3.11) and (3.12). We therefore

restrict attention to geodesics connecting boundary points at equal times, τB. For sub-

horizon boundary separations, equal time geodesics are symmetric around a turning point

that is located outside the lightcone emanating from the origin at τ = 0 (cf. figure 2). Such

geodesics do not probe the recollapsing FLRW patch of the bulk. The antipodal geodesic

with τB = 0 has a boundary separation equal to the de Sitter horizon. The time-symmetry

of the initial data implies this geodesic passes through the tip of the lightcone bounding the

interior region. Larger, super-horizon boundary separations can be covered by considering

– 15 –



J
H
E
P
0
5
(
2
0
1
6
)
1
6
8

antipodal bulk geodesics with increasing τB. These are symmetric around a turning point,

tturn, at the center (χ = 0) of a spatial slice inside the lightcone.

This one-parameter set of highly symmetric geodesics covering all boundary separations

depends on a single integration constant E, which is defined in eq. (B.10) and related to

the scale factor at the turning point in the bulk as follows,

a(tturn) =

√
1

E
. (5.2)

Geodesics connecting sub-horizon boundary separations turn around outside the interior

FLRW patch at a value ρturn = −itturn and hence correspond to negative values of E. The

E → 0− limit corresponds to the short distance limit in which the geodesics only probe

the asymptotic AdS geometry, while the E → −∞ limit corresponds to the antipodal

geodesic that passes through the tip of the lightcone emanating from the origin. Geodesics

connecting super-horizon boundary separations have positive E > Em > 1, where the

E → Em limit corresponds to the limit in which the turning point tturn → tmax. Recall

that tmax is the time at which the FLRW scale factor is maximized. This is the limit

in which the geodesics come closest to the singularity in the interior cosmological patch.

Larger positive values of E correspond to geodesics turning around at smaller values of the

scale factor a and stay further away from the singularity. There are no geodesics anchored

on the boundary that enter the region inside the cosmological patch beyond amax [22].

The relation between E and the boundary separation Z is given by (cf. section C.1),

Z = cosh

(
2

∫ tturn(E)

i∞

dx

a(x)
√

1− Ea2(x)

)
. (5.3)

Since we want to probe the region of the bulk near the singularity, we are particularly

interested in the tturn → tmax limit. Expanding (5.3) around tmax − tturn we get, in terms

of the de Sitter invariant distance D,

D =
−1√

−amaxa′′max

log(tmax − tturn)2 +O
(
(tmax − tturn)0

)
, (5.4)

where a′′max ≡ a′′(t)|t=tmax . This shows that as we increase D the geodesics ‘pile up’ near the

surface a(t) = amax. We therefore expect the clearest signals of the singularity in the large

distance limit of the boundary correlator, in line with the usual UV/IR correspondence of

AdS/CFT. The length of the geodesics is given by (cf. (C.3)):

L = 2

∫ tturn

ρcut

√
Ea(t)dt√

1− Ea2(t)
, (5.5)

where we have introduced a cut-off, ρcut = itcut, which we specify in more detail below.

Expanding (5.5) in the near boundary regime leads to (C.16):

L(Z → 1−) = −2 log ε+ log (2(1− Z))− α2

12
(1− Z) +O(1− Z)2 , (5.6)
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Figure 7. The regulated length of geodesics as a function of the de Sitter invariant Z (left) and as

a function of the de Sitter invariant distance D (right), for several backgrounds.

where α is given by the asymptotic expansion of the scalar field (2.7), and the cut-off

1/ε ≡ aout(ρcut). As usual we regulate the length by introducing a cut-off at a fixed large

value of the conformal factor, and subtracting the universal contribution. This yields:

Lreg = lim
ε→0

(L+ 2 log ε)

= lim
ρcut→∞

(L − 2ρcut)− log(a2
1) ,

(5.7)

where we use the expansion of the scale factor (2.6) in the second line. Using this scheme,

the correlators (5.1) exhibit the correct, universal short distance behavior:7

〈O∆(x)O∆(x′)〉 ∝
(

2

1− Z

)∆

+ subleading terms , (5.8)

in agreement with the weak field behavior (3.15).

The regulated length as a function of the boundary separation is shown in figure 7 in

three different backgrounds. One sees that Lreg increases more slowly with the boundary

separation in backgrounds with larger φ0, the value of the scalar field on the lightcone

emanating from the origin. This is because the singularity tends more and more to a light-

like singularity as φ0 increases. This has the effect that for large values of φ0 the bulk

geodesics in the interior region also become more light-like, so their length grows more

slowly. Since our regularization scheme (5.7) is universal, this leads to a smaller regulated

length Lreg in the large distance regime for increasing φ0.

5.2 Holographic two-point functions

We now use our results for Lreg(D) to evaluate the boundary two-point function (5.1).

We have seen that for a given boundary separation there is a unique geodesic in each bulk

background that connects the two boundary points. But there may be more than one back-

ground that contributes to the boundary correlator! Each instanton background provides

a saddle point contribution in the holographic calculation of the boundary correlator (5.1).

7The normalization constant can be chosen independently.
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Figure 8. The Euclidean action of the instantons as a function of φ0. Matching symbols mark

pairs with the same value of β.

The bulk boundary conditions, β, determine the dual theory and therefore all instantons

with a given β contribute to the correlator. This is in contrast to previous geodesic probes

of singularities (e.g., [10, 18]), where multiple geodesics in a single background contribute

to the correlator.

Figure 1 shows that for β > βc there is only one background, so the relative weighting

factor in (5.1) is irrelevant in this regime. However, boundary conditions βmin ≤ β ≤ βc
admit two regular backgrounds and the question arises what are their relative weights in

the gravitational path integral that leads to (5.1). This is where our Euclidean initial

conditions enter; they correspond to starting the bulk in the vacuum state for β 6= 0

boundary conditions, and provide a natural relative weighing given by wi ∝ exp(−SE),

where SE are the renormalized Euclidean actions of the instantons (3.9). To summarize,

we adopt the following relative weighting,

wi =

{
1 for β > βc ,

e−SE i∑
j e
−SE j for βmin ≤ β ≤ βc , (5.9)

where the sum runs over backgrounds with βi(α) = β.

We plot the renormalized Euclidean actions (3.9) of the instantons in figure 8, as a

function of φ0. This shows that for boundary conditions that admit two instantons, the

saddle point with the largest value of φ0 is always sub-dominant relative to the small φ0

saddle point.

Substituting the weights (5.9) along with our results for the regulated lengths, sum-

marised in figure 7, into (5.1) yields the two point correlation function for boundary op-

erators with ∆ � 1. The results are shown in figure 9 for an operator with ∆ = 5 for a

range of different deformations β.

We are especially interested in the IR behavior of the correlator. This can be obtained

analytically by expanding (5.3) and (5.5) for large boundary separation and applying our
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Figure 9. The boundary two-point function for a large dimension operator computed holographi-

cally for a range of different deformations β. A phase transition occurs as β → βc ∼ −2.12 where

the two-point function develops a strong IR tail due to the contribution from a second saddle point

geometry in which the spacelike geodesics probe the high curvature region near the singularity.

Therefore we interpret this a signature of the singularity. We find a qualitatively similar enhance-

ment of IR correlations near the critical point in the free theory, although there the transition is

smooth. To be specific we take ∆ = 5 in this figure. Also, the overall normalization is chosen so that

the short-distance behavior given in (5.8) is universal with the same constant of proportionality.

regularization scheme (5.7). This yields, in the limit Z → −∞ (see also appendix C):

Lreg = amax(β) log (−2Z) +O(Z0) . (5.10)

Substituting (5.10) in (5.1), with wi given by (5.9), then gives:

〈O∆(x)O∆(x′)〉 =
∑
i

wi

(
C(β)(−2Z)−a

i
max(β)

)∆
+ subleading terms for Z → −∞ ,

(5.11)

where C(β) represents the constant terms in (5.10). We derive an approximate analytic

expression for C(β) in (C.23).8 Substituting this in (5.11) yields for the large distance

correlator,

〈O∆(x)O∆(x′)〉 ≈
∑
i

wi

(
(ai1)2eπa

i
max(−2Z)−a

i
max

)∆
. (5.12)

Thus, in the near critical regime where two saddle points contribute to the boundary

correlator, the large α instanton, which has the smallest amplitude, nevertheless dominates

the correlator in the IR. By contrast, it follows from (5.8) and the relative weighting (5.9)

that the large α instanton provides a sub-dominant contribution to the short distance corre-

lator. Its contribution at large distances leads to a strong enhancement of the correlations,

8Note that this approximation becomes better with increasing φ0.
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a feature which we interpret as a clear signature of the singularity. Evidence for this inter-

pretation comes form the fact that the geodesics come very close to the singularity in the

large α backgrounds (cf. (2.16)). In fact, in the limit β → βc the large α instantons become

singular, with φ0 →∞ and hence amax → 0, corresponding in the Lorentzian to a light-like

singularity emanating from the origin. In the next section we explore the large distance

behavior of the two-point function in the β ∼ βc regime in more detail and in particular

compare this with the two-point function in the free theory computed in section 3.

6 Comparison of weak and strong coupling

We now compare the two-point function in the mass deformed ABJM theory computed

holographically at strong coupling, with the two-point function of a high dimension operator

in the theory of a free, massive scalar in de Sitter space. Both theories have a critical

deformation, βc, at which the theory undergoes a phase transition and becomes unstable.

Moreover in both cases the expectation value of the deformation operator, 〈O1〉 diverges at

the critical deformation. It is therefore interesting to compare the behavior of the two-point

functions in the neighbourhood of βc. Since this is a comparison between very different

regimes of the theory, we only expect a qualitatively similar behavior at best.

We concentrate on the physically interesting IR regime. The large distance correlator

at strong coupling is shown in figure 9 and given in (5.12). The leading behavior at large

distance in the free theory is given by the leading (second) term of (3.18), raised to the

power 2∆ according to (3.22):

〈O∆(x)O∆(x′)〉free = (2∆)!
(−2Z)−∆(2−

√
1−8β)(

2π sin
(
π
2

√
1− 8β

))2∆
+ subleading terms for Z → −∞ .

(6.1)

We now compare this to the strongly coupled results first for small β — the ‘near AdS’

limit — and then in the β ∼ βc regime near the onset of the instability.

The AdS limit. In the limit φ0 � 1 the bulk system can be solved perturbatively in β,

a1 =
1

2
+

2β2

9
+O(β3) , amax = 1− 4β2

3
+O(β3) . (6.2)

Plugging these expressions into (5.12) and expanding in small β gives

〈O∆(x)O∆(x′)〉s.c. =

(
eπ

4

)∆ [
(−2Z)−∆ +

∆

12
(−2Z)−∆ (log(−2Z) + π − 2/3)β2

]
+O(β3) + subleading terms for Z → −∞ ,

(6.3)

where the subscript ‘s.c.’ refers to the strong coupling regime of the ABJM theory. On the

other hand a small β expansion of the free correlator (6.1) yields:

〈O∆(x)O∆(x′)〉free =
(2∆)!

(2π)2∆

[
(−2Z)−∆ − 4∆(−2Z)−∆ log(−2Z)β

]
+O(β2)

+ subleading terms for Z → −∞ .

(6.4)
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The leading term in both cases is that of a conformally coupled field, as it should be in

the near AdS limit. The first order in β corrections have the same Z dependence, but they

enter at different orders in β for weak versus strong coupling.

The β → βc limit. The critical deformation in the free theory is given by βfrc = −3/8.

At this value the free scalar becomes massless and the two-point function develops a strong

IR tail. In particular, (3.19) raised to the 2∆ gives:

〈O∆(x)O∆(x′)〉free ∝
1

(βfrc − β)2∆

[
1 + 2∆(βfrc − β) log(−2Z) +O(βfrc − β)2

]
+ subleading terms for Z → −∞ .

(6.5)

In the strongly coupled theory, the critical deformation occurs at β = βc ≈ −2.12. We

have seen that the two-point function changes discontinuously when β → β+
c , due to the

sudden appearance of a second saddle point. However we can also approach the transition

point from below. In this way the transition is smooth and we can meaningfully expand

the correlator in the small parameter (βc − β) > 0 and see how the IR tail emerges.

In the absence of an analytic approach to calculate the dependence of the various

constants in (5.12) on β, we turn to numerical fits. We fit a1 and amax in the regime

φ0 � 1 corresponding to |β − βc| � 1, which is the asymptotic tail of the functions in

figure 1. We find:

a1 ≈
A√
βc − β

log(amax) ≈ B1 −
B2

βc − β
, (6.6)

with A = 0.36, B1 = 0.61, and B2 = 0.26. These expressions can be used in (5.11) to find

the IR expansion around β − βc,

〈O∆(x)O∆(x′)〉s.c. ∝
1

(βc − β)∆

[
1−∆eB1e

− B2
βc−β log(−2Z) +O

(
e
− 2B2
βc−β

)]
+ subleading terms for Z → −∞ ,

(6.7)

where the sub-dominant saddle point, with the larger value of amax, contributes only in

the subleading terms. This reveals again a remarkable qualitatively similar behavior to

the free field correlator (6.5) near the critical deformation. Note that the difference in the

∆ dependence of (6.5) and (6.7) is not surprising, as under RG flow the dimensions of

operators typically vary.

It is furthermore interesting to notice that the expansion in exp (−1/(βc − β)) in (6.7)

is reminiscent of an instanton expansion around the massless theory. This is especially

suggestive when taken with the observation of section 4 that the boundary theory at strong

coupling is non-perturbatively unstable in the regime β . βc. It would be interesting to

explore this in more detail.
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7 Conclusions

We have applied gauge/gravity duality to study the dynamics near cosmological singulari-

ties produced in scalar field driven cosmologies with asymptotic AdS4 boundary conditions.

The dual description of these AdS cosmologies consists of a mass deformation of ABJM

theory defined on de Sitter space. This dual theory is well-defined and stable for sufficiently

small deformations.

We have identified a critical deformation where the theory becomes unstable. It is

exactly in this near critical regime that the bulk singularity can be probed by boundary

observables. Specifically, close to the critical point, spacelike geodesics with endpoints

anchored at large boundary separation explore the high curvature region near the singu-

larity. We have seen this strongly enhances IR correlations in the two-point function of a

high dimension operator at strong coupling. At the critical point itself, spacelike geodesics

with endpoints far apart on the boundary nearly touch the singularity in the bulk, leading

to an IR divergence of the boundary correlator. This lends further support to the gen-

eral picture that holographic signatures of bulk singularities appear to be encoded in the

long-wavelength features of boundary observables.

This IR behavior of the two-point function at strong coupling has a natural interpre-

tation in the dual, where in the free theory, the deformation operator at the critical point

casuses a boundary scalar to become massless. The strong IR tail of the two-point function

of a massless field in de Sitter is very similar to what we find at strong coupling. It would

be very interesting to study whether and how the regulation of the correlator of a massless

field in de Sitter is connected to the boundary conditions at the bulk singularity.

For deformations somewhat larger than the critical deformation there is a second bulk

background that contributes to the boundary two-point function in the geodesic approxima-

tion. This is reminiscent of the situation for black holes in AdS [47]. There and elsewhere

it has been argued that in AdS/CFT one should sum over bulk geometries in the Euclidean

theory and include the thermal AdS saddle point e.g., to restore unitarity. Since we view

the Euclidean path integral as defining our initial wave function, we are naturally led to

sum over both saddle points, which then implies we must include both contributions in our

Lorentzian computation of the correlator. As in the case of black holes, the contribution

of the sub-dominant saddle point becomes relevant only in the large distance regime of

the correlator. This is a fascinating first step towards a holographic understanding of the

quantum nature of bulk singularity in terms of a superposition of two classical geometries.
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A Quantifying the crunch

This appendix contains a few brief results which elucidate some features of our bulk so-

lutions producing a big crunch. The crunch refers to the fact that, in the interior of the

lightcone emanating from the origin, at a finite time tc, the scale factor vanishes, a(tc) = 0

(figure 2). This does not automatically imply that the spacetime becomes singular, e.g.,

in empty AdS, a(t) = sin t, the vanishing of the scale factor at tc = π is merely a coor-

dinate singularity. We will show that for any non-trivial scalar profile (φ(ρ) 6= const.),

there is a true singularity at finite tc, i.e., only the empty AdS example avoids the presence

of a singularity.

The regularity conditions (2.14) imply that the scale factor grows for some range

0 < t < tmax, attaining its maximum amax at some time tmax. However there is an upper

bound on the scale factor given by the AdS solution,

a(t) < R sin (t/R) < sin t , where R =

√
3

|V (φ0)|
, (A.1)

where φ(ρ = 0) ≡ φ0, which in turn implies

tmax ≤ Rπ/2 < π/2 , amax ≤ R < 1 . (A.2)

To find the bound (A.1) we first subtract twice (2.12) from (2.11):

a′2 − 1

a2
=

1

3

(
1

2
φ′2 + V (φ)

)
, (A.3)

When t < tmax we have, by definition, a′(t) > 0 and (2.13) implies:

φ′(φ′′ + V ′(φ)) = −3
a′

a
φ′2 < 0. (A.4)

Therefore:
d

dt

(
a′2 − 1

a2

)
=

1

3
φ′
(
φ′′ + V ′(φ)

)
< 0. (A.5)

Thus, the left hand side of (A.3) decreases monotonically with t for t < tmax, and is

therefore bounded by its value at t = 0,

a′2 − 1

a2
<

1

3
V (φ0) < −1, (A.6)

where we have used the fact that φ′(t = 0) = 0 (2.14). The expression (A.6) integrates

to (A.1) for t < tmax.

Similarly, one can show that the value of the scalar field must grow monotonically

inside the lightcone. Indeed, if φ has a maximum at some t0 > 0, then φ′(t0) = 0 and

φ′′(t0) ≤ 0. The Klein-Gordon equation (2.13) then implies V ′(φ(t0)) ≥ 0, which for our

potential (2.1) can only be satisfied by saturation at φ(t0) = 0.

Finally, we argue that if the singularity at tc is a coordinate singularity, then the

only regular background geometry is empty AdS. Note that if φ′(tc) remains finite, then

equation (2.11) implies that a′(tc) = −1. From (A.1), we see that this cannot be satisfied for

non trivial scalar profiles (i.e., it is only satisfied by pure AdS). Hence the only non-trivial

solution requires φ′(tc) =∞, which indicates a singularity.
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B Geodesics in homogeneous isotropic AdS cosmologies

In this appendix we present the full computation of geodesics in crunching AdS spacetimes.

As mentioned in section 5 the geodesic lengths only depend on the de Sitter invariant

boundary separation. Thus, we break the calculation of geodesics into two sections: first,

in section B.1 we compute the geodesics with sub-horizon boundary separation which never

enter the lightcone containing the crunching FLRW cosmology. Then, in section B.2 we

compute antipodal geodesics which cover all super-horizon boundary separations.

B.1 Sub-horizon boundary separation

Without loss of generality we can take the boundary separation to be purely in the θ

direction and set ϕ = ϕ̇ = ϕ̈ = 0. Then, the non-trivial geodesic equations outside the

lightcone are:

ρ̈ = aout(ρ)a′out(ρ)
(

cosh2 τ θ̇2 − τ̇2
)

τ̈ = − cosh(τ) sinh(τ)θ̇2 − 2
a′out(ρ)

aout(ρ)
ρ̇τ̇

θ̈ = −2θ̇

(
a′out(ρ)

aout(ρ)
ρ̇+ tanh(τ)τ̇

)
,

(B.1)

where dot denotes derivative with respect to an affine parameter. First, looking at the θ

and τ equations and using the chain rule, θ̈ = τ̈ ∂τθ + τ̇2∂2
τ θ, we can write the differential

equation for θ(τ):

d2θ

dτ2
= cosh τ sinh τ

(
dθ

dτ

)3

− 2 tanh τ
dθ

dτ
. (B.2)

This part of the geodesic motion is universal for any spacetime that can be written with

de Sitter radial slices. The solution is:

θ(τ) = arctan

 sinh(τ)√
1 +K cosh2(τ)

− arctan

 sinh(τB)√
1 +K cosh2(τB)

 , (B.3)

where we have fixed one integration constant by making the arbitrary choice of initial

conditions: the geodesic begins on the boundary at τ = τB when θ = 0.

When K < 0, geodesics turn back toward the boundary before reaching the lightcone.

In this case, the parametrization (B.3) only covers the geodesic up to the turning point,

because τ is not monotonic. The turning point, τturn, is given by the value of τ at which

the parametrization fails:

τturn = arccosh

√
− 1

K
. (B.4)

Plugging this back into (B.3), we see that the half-way point in the geodesic occurs at:

θturn =
π

2
− arctan

(
sinh τB√

1 +K cosh2 τB

)
. (B.5)
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The radial equation contains all information about the potential through its depen-

dence on aout(ρ). We write the differential equation for ρ(τ), and use (B.3) to get:

0 =
d2ρ

dτ2
− 2

(
dρ

dτ

)2 a′out(ρ)

aout(ρ)
− dρ

dτ

tanh τ

1 +K cosh2 τ
+
aout(ρ)a′out(ρ) cosh2 τ

K−1 + cosh2 τ
. (B.6)

To solve this equation we define a new function ζ = ζ(ρ) and a new variable τ = τ(σ)

according to

ζ(ρ) =

∫ ρ

ρ0

dr

a2
out(r)

, (B.7)

σ(τ) = arctanh

 √
K sinh(τ)√

1 +K cosh2(τ)

 . (B.8)

After these substitutions, the equation (B.6) simplifies to

2
d2ζ

dσ2
=

d

dζ

1

a2
out(ζ)

. (B.9)

The solution is:

σ(ζ) = ±
∫ ζ

ζ0

dz√
E + a−2

out(z)
, (B.10)

where ζ0 and E are integration constants. By utilizing (B.7) we may express σ in terms of

the original radial variable, ρ, as

σ(ρ) = ±
∫ ρ

ρ0

dr

a(r)
√

1 + Ea2
out(r)

, (B.11)

where ρ0 = ρ(ζ0) is the physical integration constant.

Due to the time reversal symmetry τ 7→ −τ , we may assume τB > 0, which fixes the

sign in the above equation. Since the integral in (B.11) converges at r =∞, one can trade

integration limit for an additive constant and rewrite

σ(ρ) = σB +

∫ ∞
ρ

dr

aout(r)
√

1 + Ea2
out(r)

. (B.12)

The value of the integration constant is now fixed by enforcing

lim
ρ→∞

τ(σ(ρ)) = τB . (B.13)

As explained in section 5.1, it is sufficient to consider only the symmetric geodesics

which reach the boundary at equal boundary time. To select this class of geodesics we

require that the position of the turning point in the ρ-direction occur at τturn (B.4). The

turning point in the ρ-direction is determined by the condition ρ̇|ρturn = 0. Assuming that

θ̇ 6= 0, for non-antipodal geodesics, we find the condition:

0 =

(
dρ

dθ

)2
∣∣∣∣∣
ρturn

=

(
dσ

dρ

)−2(dσ

dτ

)2(dθ

dτ

)−2
∣∣∣∣∣
ρturn

= a2
out(ρturn)

(
Ea2

out(ρturn) + 1
)
K cosh4 τ . (B.14)
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Therefore, the turning point is given by:

aout(ρturn) =

√
− 1

E
. (B.15)

We see that if E > 0 there is no turning point and the geodesics reaches the light cone.

For finite E < 0 the geodesics turn outside the light cone.

Symmetric geodesics with equal boundary times satisfy the condition

σ(τturn) = σ(ρturn). Using (B.8) and (B.12) and the turning points in the ρ and τ

directions, (B.15) and (B.4), we find the following relation between K, τB and E,

iπ

2
− arctanh

( √
K sinh τB√

1 +K cosh2 τB

)
=

∫ ∞
ρturn(E)

dr

aout(r)
√

1 + Ea2
out(r)

. (B.16)

B.2 Super-horizon boundary separation

To find the regulated length as a function of boundary distance for super-horizon separa-

tions, we only need to consider antipodal geodesics. In the limit E → ±∞ the geodesic

becomes the antipodal geodesic at the throat of de Sitter space with constant τ = τB = 0.

This geodesic never enters the lightcone and has a boundary separation equal to the de

Sitter horizon, D = π from (3.12). As we increase τB from 0, antipodal geodesics cover all

super-horizon boundary separations.

From equation (B.3) it follows that geodesics entering the light cone necessarily have

K > 0. For antipodal geodesics we can set θ = 0, and the geodesic equations simplify

considerably. The requirement that θ(τ) = 0 for all τ , combined with equation (B.3),

implies K = ∞. Now the relation (B.8) simplifies to σ = τ and hence solutions to the

geodesic equations outside the lightcone are given by:

τ(ρ) = τB +

∫ ∞
ρ

dx

aout(x)
√

1 + Eouta2
out(x)

, (B.17)

and on the inside are given by:

χ(t) =

∫ tturn

t

dx

ain(x)
√

1 + Eina2
in(x)

. (B.18)

Here, Eout and Ein are a prori unrelated integration constants. We have fixed one integra-

tion constant in (B.17) by enforcing τ(ρ = ∞) = τB. For the inner solution, (B.18), the

limits of integration were chosen in such a way that χ(tturn) = 0; since we are considering

antipodal geodesics, this selects only symmetric (equal boundary time) geodesics.

The turning time, tturn is given by:

0 =
dt

dχ

∣∣∣∣
tturn

= ain(tturn)
√

1 + Eina2
in(tturn) , (B.19)

so tturn is a solution of

ain(tturn) =

√
− 1

Ein
. (B.20)
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At this point we must connect the solutions (B.17) and (B.18) by matching across

the lightcone. To this end, we first use the analytic properties of the geodesic equations

to generalize these expressions. The geodesic equations, and their solutions on the inside

and outside of the lightcone, are related by analytic continuation [28]. Since the geodesic

equations are analytic, their solutions are analytic wherever defined, i.e., one can extend a

and φ to the complex t or ρ plane. As in (2.10), we choose to use complex t, so that for

real t we have a(t) = ain(t) and a(it) = iaout(t).

First, we define the function

FE,z0(z) =

∫ z

z0

dx

a(x)
√

1− Ea2(x)
, (B.21)

where z0 ∈ C is a fixed point. Equations (B.17) and (B.18) can be rewritten as

τ(ρ) = τB + FEout,z0(i∞)− FEout,z0(iρ)

χ(t) = −F−Ein,z0(t) + F−Ein,z0(tturn(Ein)) .
(B.22)

Next, to match the geodesic across the lightcone we can zoom in on the patch around

ρ, t = 0, where the space is locally flat, map our geodesics into Cartesian coordinates that

cover both sides of the lightcone, and ensure that the geodesic is continuous and smooth.

The mapping to Cartesian coordiantes is done using the Rindler/Milne coordiatnes:

Xout = ρ cosh τ(ρ) Xin = t sinhχ(t)

Tout = ρ sinh τ(ρ) Tin = t coshχ(t) .
(B.23)

To expand (B.22) around the lightcone we use the fact that for any non-singular z0, the

function F is regular and its expansion around z = 0 is

FE,z0(z) = log z + f0 +
1

4
z2(E − 2a0,3) +O(z4) , (B.24)

where a0,3 is the coefficient of z3 in the series expansion9 of a(z) and f0 is a finite, z0-

dependent constant. Then we find:

Xout =
−iA

2
+ ρ2

(
−iA

8
(−2a0,3 + Eout) +

iA−1

2

)
+O(ρ4)

Tout =
−iA

2
+ ρ2

(
−iA

8
(−2a0,3 + Eout)−

iA−1

2

)
+O(ρ4) ,

(B.25)

and

Xin =
1

2
B + t2

(
−B
8

(−2a0,3 − Ein)− B−1

2

)
+O(t4)

Tin =
1

2
B + t2

(
−B
8

(−2a0,3 − Ein) +
B−1

2

)
+O(t4) ,

(B.26)

where

A = eFEout,z0
(i∞)+τB−f0 , and B = eF−Ein,z0

(tturn)−f0 .

9Here we have used the fact that a(z) must be odd around the origin [28].
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Continuity requires that Xin(t = 0) = Xout(ρ = 0) and implies that −iA = B, or

equivalently

FEout,z0(i∞) + τB − i
π

2
= F−Ein,z0(tturn) . (B.27)

To enforce smoothness across the lightcone we additionally reiqure:

dXout

dTout

∣∣∣∣
ρ=0

=
dXin

dTin

∣∣∣∣
t=0

, (B.28)

which implies Eout = −Ein. By making the convenient choice z0 = i∞, and defining

E = Eout, the geodesic solutions can be now written as

τ(ρ) = τB − F (iρ)

χ(t) = F (t)− F (tturn(E)),

F (z) = FE,i∞(z) =

∫ z

i∞

dx

a(x)
√

1− Ea2(x)
.

(B.29)

The matching condition simplifies considerably to

τB = F (tturn) +
iπ

2
, and a (tturn) =

√
1

E
. (B.30)

C Geodesic lengths

In this section we calculate the regulated lengths of the geodesic solutions found in ap-

pendix B. Our goal is to use the lengths in the relation (5.1) in order to gain some insight

into the boundary QFT. We start by simply writing the lengths of geodesics for both the

case of sub- and super-horizon separation treated in section B. For geodesics that never

enter the light cone containing the crunching FLRW cosmology we have:

L = 2

∫ ρcut

ρturn

√
Eoutaout(ρ)dρ√
1 + Eouta2

out(ρ)
, (C.1)

and for antipodal geodesics we have:

Lreg = 2

∫ ρcut

0

√
Eoutaout(ρ)dρ√
1 + Eouta2

out(ρ)
+

∫ tturn

0

√
−Einain(t)dt√
1 + Eina2

in(t)

 , (C.2)

where ρcut is a near-boundary cut-off.

These two cases can be unified using the information (2.10), and the conventions

defined in section B.2: E = Eout = −Ein, a(t) = ain(t), and −a(t) = iaout(it). Upon

substitution we find:

L = 2

∫ tturn

tcut

√
Ea(t)dt√

1− Ea2(t)
, (C.3)

where the t cut-off is related to the one above by tcut = iρcut. Here, as always, tturn is

given by:

a(tturn) =

√
1

E
. (C.4)
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For E > 1 the turning point occurs inside of the lightcone and tturn matches (B.20). For

E < 0 the solution to (C.4) becomes purely imaginary and in such a case the turning occurs

outside of the lightcone at positive ρturn = ±itturn, in agreement with (B.15).

C.1 The de Sitter invariant distance

The reader may be concerned with the fact that we have thus far only obtained expressions

for the length in terms of an integration constant, E, whereas we know that the length is

a function of the de Sitter invariant distance between boundary points.

For 3-dimensional de Sitter space in the following coordinates,

ds2 = −dτ2 + cosh2 τ(dθ2 + sin2 θdϕ2) , (C.5)

the invariant Z (3.11) is:

Z = − sinh(τ1) sinh(τ2) + cosh(τ1) cosh(τ2) cos(∆θ) (C.6)

where we assume ∆ϕ = 0, and have set the de Sitter radius to 1.

A relation between the integration constant, E, and the de Sitter distance D or Z

(related by (3.12)) can be obtained. Substituting the angular distance on the boundary,

given by equation (B.5), into (C.6) and choosing equal boundary times, yields

Z = −1 +K cosh(2τB)

1 +K
. (C.7)

Using the relation between integration constants, (B.16), obtained by selecting only sym-

metric geodesics, we substitute K(τb, E) into (C.7). The result is especially simple in terms

of the geodesic distance D:

iD

2
=

∫ ∞
ρturn(E)

dr

aout(r)
√

1 + Ea2
out(r)

. (C.8)

The dependence on τB cancels, and we find that boundary separation is a function of E

alone for symmetric geodesics.

In case of antipodal geodesics the formulae simplify even more. With K = ∞ equa-

tion (C.7) reads

Z = − cosh(2τB) . (C.9)

Together with equation (B.30) and (3.12) we immediately obtain

D

2
= F (tturn(E)) +

1

2
(1 + i)π . (C.10)

Both equations (C.8) and (C.10) can be expressed in terms of complex function F

defined in (B.29) and complexified scale factor a(z) = ain(z). In terms of Z a single

equation can be written down,

Z = cosh [2F (tturn)] . (C.11)

This equation can be now used to relate the boundary separation D or Z to the integration

constant E via:

a2(tturn) =
1

E
. (C.12)

In this sense one could treat tturn as an integration constant and eliminate E entirely.
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C.2 Limiting behavior

While the precise form of the dependence of the geodesic length, L, on the boundary

separation, D or Z, is model-dependent, the behavior is universal in certain limits. In

particular, for very small boundary separations D → 0 or Z → 1−, geodesics only probe

the near-boundary geometry, ρturn � 1, and hence their length should approach the length

of geodesics in pure AdS.

As explained in section 5.1, the divergent geodesic lengths are regulated with re-

spect to a cut-off in the conformal factor to the boundary metric, aout(ρ). As the turn-

ing point, ρturn, approaches infinity, the value of the scale factor at the turning point,

aturn = aout(ρturn) diverges. In the near boundary limit, we expand (C.8) in aturn:

D =
√

2(1− Z) +O(1− Z)3/2

=
2

aturn

(
1− 2 + α2

6 a2
turn

)
+O(a−5

turn) .
(C.13)

This is accomplished via a change of variables which puts (C.8) in terms of the scale factor,

using the equations of motion daout/dρ =
√
a2

out(φ
′2/6− V/3) + 1, and the asymptotic

expansion of φ (2.7).

Similarly, we can write the length (C.1) in terms of the scale factor; in the near

boundary expansion the relation between the length of geodesics and the scale factor at

the turning point is

L = 2(log(acut)− log(aturn)) + log 4− 1 + α2/2

a2
turn

+O(a−3
turn) . (C.14)

Solving (C.13) for aturn and inserting it in (C.14) one obtains

L = 2 log(acut) + log
(
D2
)

+
2 + α2

24
D2 +O(D4) (C.15)

= 2 log(acut) + log (2(1− Z))− α2

12
(1− Z) +O(1− Z)2 . (C.16)

From this expression we arrive at the subtraction scheme (5.7):

Lreg = lim
acut→∞

(Lreg − 2 log(acut))

= lim
ρcut→∞

(Lreg − 2ρcut)− log(a2
1) .

(C.17)

Another interesting limit occurs for large boundary separations: D →∞, Z → −∞. In

this limit geodesics turn on the inside of the lightcone and the turning point tturn approaches

the time tmax where the scale factor reaches its maximum value, amax = a(tmax). At this

point a′(tmax) = 0 and a′′max ≡ a′′(tmax) < 0. Expanding the integral in (C.10) around

t = tmax, one can find the leading term in a relation between D and tturn at large D,

D = log (−2Z)+O(Z0) =
−1√

−amaxa′′max

log(tmax−tturn)2+O
(
(tmax−tturn)0

)
. (C.18)

– 30 –
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Similarly for the length (C.3) becomes:

Lreg = −
√

amax

−a′′max

log(tmax − tturn)2 +O
(
(tmax − tturn)0

)
, (C.19)

which leads to

Lreg = amaxD +O(D0) (C.20)

= amax log (−2Z) +O(Z0). (C.21)

In this case, finite terms depend on the specific dynamics and cannot be extracted

exactly. However, we are able to estimate the constant contribution to (C.21). First, we

note that there is a universal behavior of the length for the antipodal geodesic with horizon

separation: as noted in section B.2 the antipodal geodesic at τB = 0 corresponds to the

limit E → −∞. In this limit the length integral (C.1) simplifies to:

L = 2

∫ ρcut

ρturn

dρ = 2ρcut , (C.22)

because ρturn(E →∞) = 0. Thus, after the subtraction (C.17), we see that the regulated

length at the horizon is given by − log(a2
1).

We then approximate the constant term in (C.21) by approximating the super-horizon

dependence to be purely linear in D with a slope given by amax:

Lreg ≈ (D − π)amax − log(a2
1) . (C.23)

Numerics show this approximation is accurate at the sub-percent level for φ0 & 10.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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