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1 Introduction

An important problem in the theory of quantum integrable systems is to find exact quan-

tization conditions determining the eigenvalues of their commuting Hamiltonians. In the

case of the Toda lattice, these conditions were obtained in [1–4], by finding appropriate

solutions of the one-dimensional quantum Baxter equation associated to the integrable sys-

tem. The Toda lattice has a relativistic generalization [5], and the techniques of separation

of variables lead to a Baxter equation involving difference operators [6, 7]. In the relativistic

case, the solution to the quantum Baxter equation is not known, even for the two-particle

lattice. Therefore, the standard techniques of quantum integrable systems have not yet

given an explicit solution for the spectrum of the relativistic Toda lattice.

A completely different route to the problem was proposed in [8], based on the con-

nection to supersymmetric Yang-Mills theories. As it is well-known, the Seiberg-Witten

curve of N = 2 Yang-Mills theory in four dimensions is the spectral curve of the Toda

lattice [9, 10]. A similar statement holds for supersymmetric Yang-Mills theory in five

dimensions, compactified on a circle; in this case, the spectral curve corresponds to the

relativistic Toda lattice [11]. The Bohr-Sommerfeld quantization conditions for the cor-

responding integrable systems are given by periods of the appropriate differential on the

spectral curve. These periods can be identified with the dual periods of the supersymmetric

theory, i.e. with derivatives of the Seiberg-Witten prepotential.

It was conjectured in [8] that the all-orders WKB quantization condition of the un-

derlying quantum integrable system can be obtained by considering the supersymmetric
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Yang-Mills theory on the so-called Ω-background, and then taking a special limit, known

as the Nekrasov-Shatashvili (NS) limit. In this limit, only one out of the two deformation

parameters of the Ω background survives, and it is identified with the Planck constant of

the integrable system. The resulting one-parameter deformation of the prepotential con-

tains all the quantum corrections to the Bohr-Sommerfeld quantization condition. This

has been explicitly verified in examples [12].

In principle, the conjecture of [8] provides a complete solution to the problem of finding

quantization conditions for the integrable systems associated to supersymmetric gauge

theories. However, one has to be careful, since quantization conditions often require non-

perturbative corrections, beyond the all-orders WKB solution. A well-known example is

the double-well potential in Quantum Mechanics, where the all-orders WKB quantization

condition requires instanton corrections (see for example [13]). A subtler example is the

pure quartic potential, in which one has to consider complex instantons [14, 15].

In the case of the Toda lattice, corresponding to the four-dimensional gauge theory,

this problem has an elegant solution, since one can resum the all-orders WKB expansion

by using the NS limit of the instanton partition function. This partition function can be

computed explicitly [16] as a convergent power series [17] in the inverse eigenvalues of the

commuting Hamiltonians, and each coefficient in this series is exact in ~. This power series

provides then exact quantization conditions for the Toda lattice. Alternatively, one can

write these quantization conditions in terms of integral equations of the TBA type [8].

These TBA equations are obtained by resumming the instanton expansion of the partition

function (see [18, 19] for a detailed derivation), and as shown in [20] they are equivalent to

the quantization conditions in [1–4].

However, in the case of the relativistic Toda lattice, things are more complicated.

When ~ is real, which is the conventional regime for the quantum integrable system, the

NS limit of the instanton partition function displays an infinitely dense set of poles. As a

consequence, the 5d analogue of the 4d quantization condition described above does not

make sense. The TBA equations of [8] are only valid, in the 5d case, if Im(~) 6= 0, and they

also display poles when ~ becomes real. This problem was noted in a similar context in [22]

(in fact, the model discussed in [22] can be regarded as a special case of the relativistic Toda

lattice with N = 2 particles). Inspired by the HMO mechanism in ABJM theory [23], it

was proposed in [22] that these poles should be cancelled by non-perturbative contributions

in ~. In the case of one-dimensional Hamiltonians associated to quantized mirror curves,

the precise form of these non-perturbative effects was conjectured in [22, 24–29].

In this paper, based on these works, we propose exact quantization conditions for the

relativistic Toda lattice. These conditions involve the NS free energy, which is obtained

from the NS limit of the instanton partition function and contains the all-orders informa-

tion about the WKB expansion. In addition, they require non-perturbative contributions

which cancel the poles of the NS free energy and are related to the perturbative all-orders

WKB result by an S-duality transformation. As in the cases analyzed in [14, 15, 22], these

non-perturbative effects have their origin in complex instantons appearing in the quantum-

mechanical problem. The resulting quantization conditions generalize the proposal of [27]

to the particular family of higher genus Calabi-Yau (CY) geometries relevant to the rela-
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tivistic Toda lattice. As already noted in [30], they can be also written down for general

spectral curves of arbitrary genus. As such, they are likely to solve as well the quantum

integrable systems associated to arbitrary toric CYs introduced in [31].

The organization of this paper is as follows. In section 2 we review some relevant facts

about the quantum, relativistic Toda lattice and its realization in terms of CY geometry,

and then we state our conjectural exact quantization conditions. Section 3 is devoted to a

detailed test of these conditions in the case N = 3. In section 4 we show in detail how the

exact quantization condition in five dimensions leads to the quantization condition of [8]

in the four-dimensional limit, i.e. for the standard Toda lattice. Finally, in section 4 we

present some conclusions and prospects for future work.

2 Quantization conditions for the relativistic Toda lattice

2.1 The relativistic Toda lattice

We now review some basic features of the relativistic Toda lattice. Our conventions are

similar to those in [7], with some small modifications. The relativistic Toda lattice de-

scribes N interacting particles living on a circle. The position and momentum of the n-th

particle lead to quantum Heisenberg operators qn, pn satisfying the standard commuta-

tion relations:

[qn, pm] = i~RTδnm, n,m = 1, · · · , N. (2.1)

The model depends on a real parameter R, and we will denote

~ = R~RT, q = ei~. (2.2)

The quantum theory is defined by the Hamiltonian

H(q1, p1; . . . ; qN , pN ) =
N∑
n=1

{
1 + q−1/2R2eqn−qn+1

}
eRpn , (2.3)

where the variables are periodically identified: qN+1 = q1. It turns out that this model

is integrable, and it has N − 1 commuting Hamiltonians. Their explicit expression can be

obtained by considering the Lax operator

Ln(z;R) =

(
z − z−1eRpn Re−qn

−Reqn+Rpn 0

)
. (2.4)

The corresponding monodromy matrix is

T(z;R) = LN (z;R) · · · L1(z;R), (2.5)

and it can be shown that

2t(z;R) = TrT(z;R) (2.6)

satisfies the commutation relation

[t(z;R), t(w;R)] = 0. (2.7)

This means that the coefficients Hk in the polynomial

2t(z;R) =

N∑
k=0

(−1)kzN−2kHk (q1, p1; . . . ; qN , pN ) (2.8)

– 3 –
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mutually commute. Note that H0 = 1 and H1 = H is the Hamiltonian. We also have that

HN−1 =
N∑
n=1

{
1 + q−1/2R2eqn−1−qn

}
e−Rpn , (2.9)

and

HN = exp

(
N∑
n=1

pn

)
. (2.10)

We can mod out the motion of the center of mass by fixing the total momentum to be

zero, so that HN = 1. In this way we have N − 1 non-trivial commuting Hamiltonians

H1, · · · ,HN−1.

The conventional Toda lattice is recovered in the limit R→ 0. One finds,

H(q1, p1; . . . ; qN , pN ) = N +R

N∑
n=1

pn +R2
N∑
n=1

(
p2
n

2
+ eqn−qn+1

)

+R3
N∑
n=1

(
p3
n

6
+ eqn−qn+1

(
pn −

i~
2

))
+O(R4),

HN−1(q1, p1; . . . ; qN , pN ) = N −R
N∑
n=1

pn +R2
N∑
n=1

(
p2
n

2
+ eqn−qn+1

)

−R3
N∑
n=1

(
p3
n

6
+ eqn−1−qn

(
pn +

i~
2

))
+O(R4).

(2.11)

At quadratic order in R we find the standard Hamiltonian of the Toda lattice, and higher

order terms in R lead to the higher Hamiltonians. Equivalently, we can set

z = eRµ/2, (2.12)

and consider the R→ 0 limit of the Lax matrix (2.4),

Ln(z;R) ≈ R

(
µ− pn e−qn

−eqn 0

)
= RLn(µ), (2.13)

where Ln(µ) is exactly the Lax operator of the non-relativistic Toda lattice (see for exam-

ple [4]).

In order to formulate the spectral problem for the quantum relativistic Toda lat-

tice, we eliminate the motion of the center of mass in favor of N − 1 coordinates

ζ1, · · · , ζN−1. Solving the spectral problem means then finding square integrable functions

ψH(ζ1, · · · , ζN−1) ∈ L2(RN−1), labelled by an (N − 1)-tuple of eigenvalues

H = (H1, · · · , HN−1), (2.14)

and such that

t(z;R)ψH(ζ1, · · · , ζN−1) = t(z;R)ψH(ζ1, · · · , ζN−1), (2.15)
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where

2t(z;R) =
N∑
k=0

(−1)kzN−2kHk. (2.16)

It is convenient to parametrize this polynomial as

2t(z;R) =

N∏
i=1

2 sinh

(
R
µ− µi

2

)
. (2.17)

The spectral curve for the relativistic Toda lattice is then given by

RN
(

eξ + e−ξ
)

+ 2t(z;R) = 0, (2.18)

and in the limit R→ 0 we recover the spectral curve of the standard Toda lattice,

eξ + e−ξ +
N∏
i=1

(µ− µi) = 0. (2.19)

The method of separation of variables, when applied to the relativistic Toda lattice,

implies that the eigenvalue problem (2.15) can be solved by considering the “quantum”

version of the spectral curve [6, 7, 21]. We impose the commutation relation

[µ, ξ] = i~RT. (2.20)

Then the variable ξ is expressed by a differential operator,

ξ → −i~RT
d

dµ
, (2.21)

so that its exponential becomes a functional difference operator acting on a “wavefunction”

ψ(µ). The resulting one-dimensional, quantum Baxter equation reads

RN (ψ(µ+ i~RT) + ψ(µ− i~RT)) + 2t
(

eRµ/2;R
)
ψ(µ) = 0. (2.22)

In principle, the eigenvalue problem (2.15) can be solved by solving this equation. However,

to do this, one has to specify very carefully the boundary conditions satisfied by ψ(µ), as it

happens for example in the simpler case of the standard Toda lattice. In this paper, instead

of solving this equation analytically, we will propose an exact quantization condition for

the eigenvalues H1, · · · , HN−1, based on insights from [8] and on the recent progress in the

quantization of mirror curves [22, 24, 25].

2.2 The Calabi-Yau geometry

The spectral curve of the relativistic Toda lattice (2.18) can be regarded as the mirror

curve for a special CY geometry XN−1 which is an AN−1 fibration over P1. There is

a well-known connection between topological string theory on this CY geometry, and the

relativistic Toda lattice. This connection goes as follows. According to [8], the perturbative

quantization condition for the relativistic Toda lattice with N particles is encoded in the
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instanton partition function for the 5d supersymmetric Yang-Mills theory with gauge group

SU(N). In addition, this theory can be engineered by using topological string theory on

the XN−1 geometry [32]. In fact, the instanton partition function obtained in [16] agrees

exactly with the topological string partition function [42, 47, 48], as computed by the

(refined) topological vertex [34, 35]. Therefore, we conclude that the WKB quantization

condition can be obtained from the refined topological string partition function on the

XN−1 geometry, in the NS limit.

As we will see, in order to find an exact quantization condition for the relativistic Toda

lattice, it is very convenient to use the topological string theory point of view. We will now

review some basic, general results on (refined) topological strings, and some more concrete

results on the XN−1 geometry which is relevant for our study.

The topological string free energy on a CY manifold X, when expanded around the

large radius point, is the sum of two pieces. The first, “perturbative” piece, involves

a cubic polynomial in the Kähler moduli Ti, i = 1, · · · , n, plus the so-called constant

map contribution. The second piece can be regarded as a generating functional of BPS

invariants of the CY [33, 35]. These invariants arise naturally when one considers M-theory

compactified on X. In this compactification, M2 branes wrapping a two-cycle of X with

degree d lead to BPS states in five dimensions, with spins (jL, jR) with respect to the

rotation group SU(2)L × SU(2)R. The index for such states, which we denote by Nd
jL,jR

,

is a topological invariant in the case of local CY manifolds. To write such an index, let us

introduce the SU(2) character,

χj(q) =
q2j+1 − q−2j−1

q − q−1
. (2.23)

Notice that, with our conventions, jL and jR are generically half-integers. The refined

topological string free energy is a function of the Kähler moduli and of two parameters

ε1,2, which “refine” the topological string coupling constant. We also introduce (see for

example [36, 37])

εL =
ε1 − ε2

2
, εR =

ε1 + ε2
2

, (2.24)

and

q = eiε1 , t = e−iε2 , qL,R = eiεL,R . (2.25)

(Since we will eventually identify ε1 = ~, the variable q appearing here is precisely the same

one introduced in (2.2)). Then, the BPS part of the refined topological string free energy

can be written as

FBPS(Q, ε1, ε2) = −
∑

jL,jR≥0

∑
w≥1

∑
d

1

w
Nd
jL,jR

χjL(qwL )χjR(qwR)(
qw/2 − q−w/2

) (
tw/2 − t−w/2

)Qwd. (2.26)

In this formula, we have denoted

Qi = e−Ti , i = 1, · · · , n, Qd =

n∏
i=1

Qdii . (2.27)

– 6 –
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It is also very useful to introduce another set of integer invariants ndgL,gR by the following

equality of generating functionals,∑
jL,jR≥0

Nd
jL,jR

χjL(qL)χjR(qR) =
∑

gL,gR≥0

ndgL,gR

(
q

1/2
L −q

−1/2
L

)2gL
(
q

1/2
R −q

−1/2
R

)2gR
. (2.28)

In terms of these invariants, the generating functional (2.26) reads,

FBPS(Q, ε1, ε2) = −
∑

gL,gR≥0

∑
w≥1

∑
d

1

w
ndgL,gR

(
q
w/2
L −q−w/2L

)2gL

qw/2−q−w/2

(
q
w/2
R −q−w/2R

)2gR

tw/2−t−w/2
Qwd.

(2.29)

The standard topological string is a particular case of the refined topological string,

corresponding to

ε1 = −ε2 = gs. (2.30)

In this limit, qR = 1, and the only invariants which survive in (2.29) have gR = 0 and

coincide with the Gopakumar-Vafa invariants [33], which we will denote by

ndg = ndg,0. (2.31)

The total free energy of the standard topological string has a genus expansion

F (Q, gs) =
∑
g≥0

Fg(Q)g2g−2
s . (2.32)

The leading term as gs → 0, F0(Q), is called the genus zero free energy or prepotential of

the CY X. It is given by

F0(Q) = F pert
0 (Q) + FBPS

0 (Q), (2.33)

where the first term in the r.h.s. is the perturbative part,

F pert
0 (Q) =

1

6

n∑
i,j,k=1

aijkTiTjTk, (2.34)

while the second one is a sum over worldsheet instantons and involves the genus zero

Gopakumar-Vafa invariants:

FBPS
0 (Q) =

∑
d

∑
w≥1

nd0
w3

Qwd. (2.35)

There is another special limit of the refined topological string, which was first identified

in [8] and will be the relevant one for our purposes. In this limit, one of the epsilon

parameters goes to zero while the other is kept finite,

ε1 = ~, ε2 → 0. (2.36)

– 7 –
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This is usually called the NS limit. The refined free energy (2.29) has a simple pole in this

limit, and in order to extract a finite piece we consider

FNS,BPS(Q, ~) = − lim
ε2→0

ε2F
BPS(Q, ε1, ε2)

=
∑
jL,jR

∑
w,d

Nd
jL,jR

sin ~w
2 (2jL + 1) sin ~w

2 (2jR + 1)

2w2 sin3 ~w
2

Qwd,
(2.37)

which we expressed in terms of the BPS invariants appearing in (2.26). We now define the

NS free energy as the sum

FNS(Q, ~) = FNS, pert(Q, ~) + FNS,BPS(Q, ~), (2.38)

where the first summand in the r.h.s. is the perturbative part,

FNS, pert(Q, ~) =
1

6~

n∑
i,j,k=1

aijkTiTjTk +
n∑
i=1

bNS
i

(
4π2

~
+ ~
)
Ti. (2.39)

The leading order term agrees with (2.34). The coefficients bNS
i can be determined by using

for example the refined holomorphic anomaly equations of [36, 39, 40]. The BPS part of the

NS free energy (2.37) can be also computed in terms of another set of integer invariants,

FNS,BPS(Q, ~) = i
∞∑
g=0

∑
w≥1

∑
d

1

w2
n̂dg

(
qw/4 − q−w/4

)2g
qw/2 − q−w/2

Qwd, (2.40)

where

n̂dg =
∑

gL+gR=g

ndgL,gR . (2.41)

By expanding the NS free energy around ~ = 0, one finds the following power series,

FNS(Q, ~) =
∑
n≥0

~2n−1FNS
n (Q). (2.42)

Note that the first term in this expansion is equal to the prepotential of the CY manifold

X, up to a linear term in Ti:

FNS
0 (Q) = F0(Q) + 4π2

n∑
i=1

bNS
i Ti. (2.43)

Let us now consider in more detail the toric CY geometry XN−1. It can be described as

a resolution of the cone over the Sasaki-Einstein manifold Y N,0 (see for example [41]), or as

the AN−1 fibration over P1 with Chern-Simons invariant m = 0 (see for example [42, 43]).

In the standard toric descriptions, it is given by the set of N charge vectors in CN+3,

e1 = (0, 0, 1,−2, 1, 0, 0, · · · , 0, 0, 0, 0),

e2 = (0, 0, 0, 1,−2, 1, 0, · · · , 0, 0, 0, 0),

...
...

eN−1 = (0, 0, 0, 0, 0, 0, 0, · · · , 0, 1,−2, 1),

eN = (1, 1,−1, 0, 0, 0, 0, · · · , 0, 0, 0,−1).

(2.44)
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The corresponding fan is

v1 = (0, 1, 1),

v2 = (N,−1, 1),

vi+3 = (N − i, 0, 1), i = 0, · · · , N.
(2.45)

A graphic representation of this fan in the case N = 4 can be seen in figure 1. This

determines the mirror curve Σ to be

b1ep + b2eNx−p +

N∑
i=0

bi+3e(N−i)x = 0. (2.46)

This curve has genus gΣ = N − 1. The corresponding Batyrev coordinates for the moduli

space are

zi =
bi+2bi+4

b2i+3

, i = 1, · · · , N − 1,

zN =
b1b2
b3bN+3

.

(2.47)

It turns out that z1, · · · , zN−1 are true moduli of the mirror curve, while zN is a mass pa-

rameter, in the terminology of [44, 45]. Mirror symmetry determines the Kähler parameters

Ti to be given by the mirror map,

−Ti = log(zi) +O(zi), i = 1, · · · , N − 1,

−TN = log(zN ).
(2.48)

Note that the mirror map for the mass parameter is algebraic. The perturbative part of

the NS free energy can be computed by various methods, e.g. the 5d instanton partition

function in [46], and one finds

~FNS(T , ~) =
1

6

∑
1≤l≤n≤N−1

(Tl + Tl+1 + · · ·+ Tn)3 +
TN
2N

∑
1≤l≤n≤N−1

(Tl + Tl+1 + · · ·+ Tn)2

− (N − 1)

(
π2

3
+

~2

12

)N−1∑
l=1

Tl + · · · , (2.49)

where the . . . indicate the BPS generating function (2.37). This function can be also derived

by many different methods [36, 37, 39, 40], but for our purposes it is more convenient to use

the (refined) topological vertex [42, 47, 48], or, equivalently, Nekrasov’s five dimensional

instanton partition function [16, 46]. We will spell out some details of such a calculation

in the case N = 3, in the next section. Note that

bNS
i = −N − 1

12
, i = 1, · · · , N − 1. (2.50)

Another important ingredient in our calculation is the quantum mirror map, which was

introduced in [49]. This promotes the non-trivial Kähler parameters Ti, i = 1, · · · , N − 1,

to functions of the zi, i = 1, · · · , N , and of ~. We will denote the resulting functions by

– 9 –
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v1v1

v2v2

v3v3vN+3vN+3

Figure 1. A height one slice of the toric fan (2.45).

Ti(z1, · · · , zN ; ~) or simply by Ti(~). As explained in [49], the quantum mirror map can be

computed as follows. Let us denote the equation for the mirror curve (2.46) by H(x, p) = 0.

Upon quantization, the momentum p becomes a differential operator,

p→ −i~ d

dx
(2.51)

and the equation H(x, p) = 0 becomes a functional difference equation

H

(
x,−i~ d

dx

)
ψ(x) = 0, (2.52)

which can be solved for ψ(x) as a power series in the moduli. The quantum mirror map

is then obtained by computing periods of log ψ(x). In section 3 we will perform a detailed

calculation of the quantum mirror map in the case N = 3.

2.3 Exact quantization conditions

A first approach to the quantization conditions in an integrable system is to use the WKB

method, i.e. the Bohr-Sommerfeld approximation and its all-orders generalization (in the

context of higher dimensional integrable system, the Bohr-Sommerfeld approximation is

sometimes known as the Einstein-Brillouin-Keller, or EBK, method.) This approximation

is based on the action variables for the classical motion. By analogy with the standard

Toda lattice (see for example the excellent presentation in [50]), we define the intervals of

instability as those intervals Ik ⊂ R, k = 1, · · · , N − 1, where

|t(z;R)|
RN

≥ 1. (2.53)

An example for the N = 3 relativistic Toda lattice can be found in figure 2. The action

variables are then given by

Ik = 2

∫
Ik

cosh−1

∣∣∣∣ t(z;R)

RN

∣∣∣∣ dµ, k = 1, · · · , N − 1, (2.54)

and the Bohr-Sommerfeld quantization condition reads

1

2π~RT
Ik = nk +

1

2
, k = 1, · · · , N − 1. (2.55)
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5

Figure 2. The intervals of instability for the relativistic Toda lattice with N = 3 particles, for

H1 = H2 = 8 and R = 1. In this case, there exist two finite intervals I1 and I2.

The action integrals are B-periods of the appropriate meromorphic differential on the mirror

curve, and there should be given by linear combinations of the periods of the CY geometry.

We find that,

RIk =
N−1∑
j=1

Ckj

(
∂F̂0

∂Tj
+ 4π2bNS

j

)
. (2.56)

In this equation, Ckj is the Cartan matrix of SU(N), and the hatted prepotential is de-

fined as

F̂0(Q) = F pert
0 (Q) + FBPS

0 (Q1, · · · , QN−1, (−1)NQN ). (2.57)

The Kähler parameters Ti are related to the moduli zi by the mirror map (2.48), while the

moduli are related to the parameter R and Hamiltonians by

zi =
Hi−1Hi+1

H2
i

, i = 1, · · · , N − 1,

zN = R2N .

(2.58)

Remember that H0 = HN = 1. The relationship (2.58) can be obtained by comparing the

spectral curve (2.18) with the mirror curve (2.46). This comparison also shows that there

should be a sign (−1)N in QN = zN in (2.57).

The Bohr-Sommerfeld approximation can be improved by considering the all-orders

WKB result. In appendix A, we explain how to compute the perturbative quantum cor-

rections to the classical periods by using Baxter’s difference equation (2.22). According

to [8], these corrections are captured by the expansion of the NS free energy around ~ = 0.

We then find an all-orders WKB quantization condition,

N−1∑
j=1

Ckj
∂

∂Tj
F̂NS

(
T̂ (~), ~

)
= 2π

(
nk +

1

2

)
, k = 1, · · · , N − 1, (2.59)

where nk = 0, 1, 2, · · · are non-negative integers. Here, F̂NS(Q, ~) is defined by an equation

similar to (2.57),

F̂NS(Q, ~) = FNS, pert(Q, ~) + FNS,BPS(Q1, · · · , QN−1, (−1)NQN , ~). (2.60)
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Note that the ~ parameter appearing in the NS free energy is identified with R~RT, as

in (2.2). The Kähler parameters Ti, i = 1, · · · , N − 1 are related to the moduli z1, · · · , zN
(therefore to the radius R and the Hamiltonians) through the quantum mirror map Ti(~),

but after changing zN → (−1)NzN , as we noted above. The resulting quantum mirror map

has been denoted by

T̂i(z1, · · · , zN−1, zN ; ~) = Ti(z1, · · · , zN−1, (−1)NzN ; ~), i = 1, · · · , N − 1,

T̂N = TN = log zN .
(2.61)

Equation (2.59) is essentially the quantization condition stated in [8]. However, in order

to turn it into an exact statement, one has to be more precise about the structure of FNS.

If we consider the NS free energy to be given by its expansion (2.42) in powers of ~, then the

l.h.s. is an asymptotic series. In this case, unless further information is given, (2.59) is only

an approximate quantization condition. One can try to improve the situation by considering

a trans-series encoding non-perturbative information, and by giving a Borel resummation

prescription for the full trans-series. We will not explore this route in this paper.

Another possibility is to use the BPS structure of the NS free energy (2.37). This

effectively resums the ~ expansion and provides a series in powers of the Qi, or equivalently

in inverse powers of the eigenvalues Hi, i = 1, · · · , N − 1. Unfortunately, the coefficients

of the series (2.37) have a dense set of poles on the real ~ axis. These occur at values of

the form

~ = 2π
r

s
, (2.62)

where r, s are coprime integers.1 This fact was first pointed out in a closely related context

in [22], based on insights from [23]. These poles are not physical, and they should be

cancelled by non-perturbative contributions. In order to find these contributions, we will

use recent results on the quantization of mirror curves from [22, 24, 25]. It turns out that

the quantum Baxter equation (2.22) in the case N = 2 is identical to the quantization of

the mirror curve of local P1 × P1. A conjectural, analytic solution to the corresponding

eigenvalue problem was presented in [22] for the so-called “maximally supersymmetric case”

~ = 2π, and then extended to arbitrary ~ in [25]. This solution involves the resummation

of the all-orders WKB result, but it incorporates in addition explicit non-perturbative

contributions that cancel the poles. In [27] an alternative, conjecturally equivalent form

for this quantization condition was found. As pointed out in [30], the formulation of [27]

has a natural extension to the higher genus case, which corresponds to N ≥ 3 in the

relativistic Toda lattice. In the formulation of [27], the non-perturbative contribution is

given by an S-duality transformation of the all-orders WKB result.

In order to see how this works, and to open the way for generalizations, let us consider a

general, toric CY manifold X and let us introduce, as in [25, 29, 51], a B-field B satisfying

the following requirement: for all d, jL and jR such that the BPS invariant Nd
jL,jR

is

1The 5d instanton partition function of [16] provides a resummation of the series (2.37) in the “fiber”

parameters Qi, i = 1, · · · , N − 1, but this does not remove the poles at (2.62), which are independent of

the Kähler moduli.
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non-vanishing, we must have

(−1)2jL+2jR+1 = (−1)B·d. (2.63)

For local del Pezzo CY threefolds, the existence of such a vector was established in [51].

Let us now consider the combination

∂

∂Tk
FNS,BPS (T + πiB, ~) +

~
2π

∂

∂Tk
FNS,BPS

(
2π

~
T + πiB,

4π2

~

)
, k = 1, · · · , n.

(2.64)

Let us call the first term the WKB contribution, and the second term the non-perturbative

contribution. The WKB contribution is a power series in the Qi, i = 1, · · · , n, and its

coefficients have poles when ~ is of the form (2.62). The non-perturbative contribution

is a power series in the Q
2π/~
i , i = 1, · · · , n, and its coefficients have poles at the same

set of values of ~. We will now verify that, if the B-field satisfies (2.63), the poles in the

WKB contribution cancel against the poles in the non-perturbative contribution. Indeed,

the poles at ~ = 2πr/s in the WKB contribution occur when the multicovering index w

in (2.37) takes the value w = `s, ` = 1, 2, · · · . These poles are simple and they appear in

the coefficient of e−s`d·T in the power series. For a given spin content jL, jR and degree d,

the pole in this coefficient has residue

− 2dk
s2`2

(−1)(2jL+2jR+1)r`+s`d·BNd
jL,jR

(2jL + 1)(2jR + 1). (2.65)

In the non-perturbative contribution, the poles at ~ = 2πr/s occur when the multicovering

takes the values w = `r, ` = 1, 2, · · · , and they appear in the coefficient of the same term

e−s`d·T . The corresponding residue is

2dk
s2`2

(−1)(2jL+2jR+1)s`+r`d·BNd
jL,jR

(2jL + 1)(2jR + 1). (2.66)

Therefore, the condition (2.63) guarantees the cancellation of the poles. In particular, the

sum of the two terms in (2.64) makes sense as a formal power series in Qi and Q
2π/~
i .

It turns out that, for the geometry XN−1, the B-field

B =

{
(0, 0, · · · , 0, 0), N even,

(0, 0, · · · , 0, 1), N odd,
(2.67)

satisfies the constraint (2.63) and leads precisely to the insertion of a (−1)N sign in the last

component of Q, as in (2.60). We are now ready to state our conjectural, exact quantization

condition for the relativistic Toda lattice. It is given by,

N−1∑
j=1

Ckj

{
∂

∂Tj
F̂NS

(
T̂ (~), ~

)
+

~
2π

∂

∂Tj
FNS,BPS

(
2π

~
T̂ (~) + πiB,

4π2

~

)}
= 2π

(
nk +

1

2

)
,

(2.68)

for k = 1, · · · , N − 1. The condition (2.68) has the following properties:

1. The quantization condition for given a set of integers (n1, . . . , nN−1) determines

the values (T1, . . . , TN−1) uniquely. Once they are known, one can easily compute

the original eigenvalues (H1, . . . , HN−1) by the inverse of the quantum mirror map

(see (3.35) in the case of N = 3, for instance).
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2. The second term in the brackets is purely non-perturbative in ~, so if we expand the

l.h.s. in a power series around ~ = 0, only the first term contributes, and we recover

the all-orders WKB quantization condition (2.59).

3. Poles cancel, so the l.h.s. is a well-defined power series in Qi and Q
2π/~
i . The resulting

series seems to be convergent in a neighborhood of the large radius limit Ti → +∞,

which corresponds to large Hamiltonians.

4. In the case N = 2, (2.68) reduces to the exact quantization condition for local P1×P1,

in the form proposed in [27]. This quantization condition has been successfully tested

in [22, 24, 25, 28].

In view of these properties, (2.68) is a very natural proposal for an exact quantization

condition in the relativistic Toda lattice. However, the proof of the pudding is in the eating,

and we will perform a detailed test of (2.68) in the next section.

There are some further remarks we can do about our exact quantization condition.

First of all, as emphasized in [30] in the case N = 2, the condition (2.68) is invariant under

the exchange

~↔ 4π2

~
, T ↔ 2π

~
T . (2.69)

This leads to a symmetry in the spectrum under the S-duality transformation of ~. How-

ever, the symmetry is not manifest when the spectrum is parametrized in terms of the

eigenvalues Hi, i = 1, · · · , N − 1; one has to use the quantum mirror map and relate them

to the Kähler parameters T . This hidden symmetry is probably a manifestation of the fact

that the relativistic Toda lattice has a “modular double,” which is related to the original

one by the S-duality transformation in the Planck constant [7].

The self-dual point ~ = 2π is very special. In the quantization of mirror curves, this

point has been called the “maximally supersymmetric case” [25], by analogy with the

situation in ABJM theory [52]. For this value of ~, the spectral theory of quantum mirror

curves simplifies considerably. The same phenomenon occurs here. It is easy to check that,

when ~ = 2π, the combination (2.64) becomes

− ∂FBPS
0

∂Tk
+

n∑
l=1

Tl
∂2FBPS

0

∂Tk∂Tl
, (2.70)

i.e. it involves just the genus zero free energy of the CY manifold. Note that this term is

entirely due to the non-perturbative term in (2.68). It is easy to see that, in the quantum

mirror map for T1, · · · , TN−1, setting ~ = 2π is equivalent to setting ~ = 0 and changing

zN → (−1)NzN . Therefore, at the self-dual point ~ = 2π, T̂ (~) reduces to the conventional

mirror map. In addition, the B-field in (2.68) is cancelled by the sign coming from the

residue (2.66). At the end of the day, the condition (2.68) becomes,

N−1∑
j=1

Ckj

{
−∂F0

∂Tj
+

N∑
l=1

Tl
∂2F0

∂Tj∂Tl
+ 8π2bNS

j

}
= 4π2

(
nk +

1

2

)
, k = 1, · · · , N − 1.

(2.71)
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This simplified quantization condition at the self-dual point involves essentially the infor-

mation appearing in the Bohr-Sommerfeld approximation (the only information coming

from the next-to-leading order appears in the coefficients bNS
i ). In this case, our quantiza-

tion condition is clearly given by a convergent series expansion, since the quantities in the

l.h.s. of (2.71) are governed by a Picard-Fuchs equation and they are known to converge

in a neighborhood of the large radius point T → ∞. As we will see in an example in the

next section, the actual eigenvalues seem to be all in this domain of convergence.

3 Testing the conjecture

3.1 N = 2

Let us now present some detailed tests of the conjecture (2.68). We first note that, in the

case N = 2, the Hamiltonian of the relativistic Toda lattice is nothing but the operator

OF0 considered in [25]. To see this in some detail, we use canonically conjugate Jacobi

coordinates for the relative motion

q =
1√
2

(q1 − q2), p =
1√
2

(p1 − p2), (3.1)

and we decouple the motion of the center of mass. After doing this, the classical Hamilto-

nian of the N = 2 relativistic Toda lattice reads

H1 = eRp/
√

2 + e−Rp/
√

2 +R2
(

e
√

2q+Rp/
√

2 + e−
√

2q−Rp/
√

2
)
. (3.2)

After the linear canonical transformation

ξ =
√

2q +Rp/
√

2, µ = −p/
√

2, (3.3)

we put the Hamiltonian in the form

H1 = R2
(

eξ + e−ξ
)

+ eRµ + e−Rµ, (3.4)

which is nothing but the quantization of the spectral curve (2.18) in the case N = 2 (since

we have decoupled the center of mass motion, we have to set µ1 + µ2 = 0.) In this case,

as expected, the quantum Baxter equation is just the original eigenvalue problem for the

Hamiltonian, once the center of mass motion has been decoupled. Finally, by a further

linear transformation,

x = ξ + 2 logR, y = −Rµ , (3.5)

we can write the Hamiltonian as

H1 = ex +mF0e−x + ey + e−y, (3.6)

with

mF0 = R4. (3.7)

Note that x, y are Heisenberg operators satisfying

[x, y] = i~, ~ = R~RT. (3.8)
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The Hamiltonian H1, written in terms of x, y, is nothing but the operator OF0 . A solution

for the spectral problem of this operator was proposed in [25], and later reformulated in [27]

in the form (2.68). Therefore, in the case N = 2, our proposal for the exact quantization

condition of the relativistic Toda lattice is backed by the extensive evidence for the proposal

of [25].

3.2 N = 3

Let us then consider the case N = 3. To verify our proposal (2.68) in this case, we simply

calculate numerically the spectrum of the relativistic Toda lattice, and we compare the

results with the predictions obtained from (2.68).

We first note that the bound states of this system can be labelled by the two quantum

numbers (n1, n2) appearing in the Bohr-Sommerfeld quantization condition (2.55) and its

exact counterpart (2.68). There is also a symmetry in the spectrum, since the exchange of

quantum numbers

(n1, n2)↔ (n2, n1) (3.9)

corresponds to the exchange of the two eigenvalues

(H1, H2)↔ (H2, H1). (3.10)

In order to compute the spectrum, the most direct route is to adapt the numerical

methods developed in [53–55] for the standard Toda lattice. To do this, we first write the

Hamiltonians in Jacobi coordinates, so that one can decouple the center of mass motion.

These coordinates are given by

ζ1 =
1√
2

(q1 − q2),

ζ2 =
1√
2

(q1 + q2 − 2q3),

ζ0 =
1

3
(q1 + q2 + q3).

(3.11)

For the momenta, we have

p1 =
1√
2
pζ1 +

1√
6
pζ2 +

1

3
pζ0 ,

p2 = − 1√
2
pζ1 +

1√
6
pζ2 +

1

3
pζ0 ,

p3 = − 2√
6
pζ2 +

1

3
pζ0 .

(3.12)

In order to remove the center of mass movement, we simply set pζ0 = ζ0 = 0. In this way,

we re-express the Hamiltonians H1,2 in terms of two sets of positions and momenta. An

appropriate basis for the Hilbert space is then given by

〈ζ1, ζ2|m1,m2〉 = φm1(ζ1)φm2(ζ2), m1,m2 = 0, 1, 2, · · · , (3.13)
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where φm(ζ) are the eigenfunctions for a quantum one-dimensional harmonic oscillator.

One then considers the matrix

〈`1, `2|H1|m1,m2〉, (3.14)

which can be diagonalized after truncating the basis to a finite set of M elements. The

eigenvalues of this matrix provide an approximation to the eigenvalues of H1, which con-

verge to the exact values as we increase M . The approximate eigenvalues of H2 can be

obtained by calculating its vacuum expectation values in the approximate eigenfunctions

obtained in the diagonalization of H1. The frequency of the harmonic oscillator providing

the basis (3.13) can be chosen so as to improve the convergence (we normalize its mass to

be one). A useful formula to compute the matrix elements is the following,

〈m|eaxebp|`〉 = 2
m+`
2

√
m!`! e|z|

2+i~ab/2zmz`
min(m,`)∑
k=0

1

k!(m− k)!(`− k)!

1

(2|z|2)k
, (3.15)

where |m〉 is the m-th energy eigenstate of the harmonic oscillator, ω is its frequency, and

z =
1

2

(
~
ω

)1/2

(a+ iωb) . (3.16)

It turns out that this method of computing the eigenvalues is computationally expen-

sive, specially if one wants good numerical precision. One can obtain much more precise

answers by looking at the quantum Baxter equation, which in the N = 3 case can be

obtained by a direct quantization of the spectral curve

R3
(

eξ + e−ξ
)

+ e3Rµ/2 − e−3Rµ/2 −H1eRµ/2 +H2e−Rµ/2 = 0. (3.17)

After promoting ξ to a differential operator, as in (2.21), we obtain the operator equation{
R3
(

eξ−Rµ/2 + e−ξ−Rµ/2
)

+ eRµ − e−2Rµ +H2e−Rµ
}
|ψ〉 = H1|ψ〉. (3.18)

It turns out that, if we require ψ(µ) to be in L2(R), this equation only has a solution if the

values of H1, H2 are simultaneously quantized. In practice, this means that the numerical

diagonalization process leading to an eigenvalue H2 will only converge if H1 takes special

values. We can also exploit the symmetry (3.10) to search for pairs of eigenvalues which

lead to an admissible solution to (3.18). For example, the ground state, with quantum

numbers n1 = n2 = 0, has H1 = H2, so one looks for admissible solutions of (3.18) in

which H1 is equal to H2. Since this is a one-dimensional problem, we can obtain much

more precision for the spectrum than with the direct diagonalization of the two-dimensional

problem. We have verified that both methods lead to the same results, taking into account

numerical precision. For example, for ~ = π and R = 1, a time-consuming calculation of

the eigenvalues of (3.14) gives, for the ground state,

H1 = H2 = 15.8137841 . . . (3.19)

while the quantum Baxter equation gives an improved precision without much time

H1 = H2 = 15.8137841054 . . . (3.20)
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Figure 3. (Left) The eigenvalue distribution in the N = 3 relativistic Toda lattice for ~ = π

and R = 1. (Right) The coupling dependence of logH1 with the quantum numbers (n1, n2) =

(0, 0), (1, 0), (0, 1), (2, 0), (3, 0) and R = 1. In the purely classical limit ~ → 0, all the eigenvalues

degenerate to H1 = H2 = 6.

In this way, we can calculate the eigenvalues numerically. In the left of figure 3, we show

some of the allowed eigenvalues of (H1, H2) for ~ = π and R = 1. The distribution is

symmetric with respect to the line H1 = H2, as expected from (3.10). In the right of

figure 3, the dependence of logH1 on ~ is shown for several low quantum numbers.

Let us now address the conjectural, exact quantization condition (2.68). In order to

implement it, we have to calculate the NS free energy for the CY geometry X2. First of

all, we note that the prepotential, which is the leading term in the NS free energy, can be

computed with local mirror symmetry. In this case, the charge vectors are given by

e1 = (0, 0, 1,−2, 1, 0),

e2 = (0, 0, 0, 1,−2, 1),

e3 = (1, 1,−1, 0, 0,−1),

(3.21)

and the Batyrev coordinates read,

z1 =
H2

H2
1

, z2 =
H1

H2
2

, z3 = R6. (3.22)

The periods of the above CY can be calculated by using standard technology (see for

example [38]). The fundamental period is given by

ω0(ρ) =
∑

l,m,n≥0

c(l,m, n;ρ)zl+ρ11 zm+ρ2
2 zn+ρ3

3 , (3.23)

where

c(l,m, n;ρ) =
1

Γ(n+ ρ3 + 1)2Γ(−n+ l + ρ1 − ρ3 + 1)Γ(−n+m+ ρ2 − ρ3 + 1)

× 1

Γ(l − 2m+ ρ1 − 2ρ2 + 1)Γ(−2l +m− 2ρ1 + ρ2 + 1)
.

(3.24)
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From here we can form the building blocks for the periods. We define, as usual,

ωi =
∂ω0

∂ρi

∣∣∣∣
ρ=0

, ωij =
∂2ω0

∂ρi∂ρj

∣∣∣∣
ρ=0

. (3.25)

The first derivative defines the mirror map,

− Ti = ωi, i = 1, 2, 3. (3.26)

We have, explicitly,

−T1(z1, z2, z3) = log(z1) + 2z1 − z2 + 3z2
1 −

3z2
2

2
+

20z3
1

3
− 2z2

1z2 + z1z
2
2 −

10z3
2

3
+ · · ·

T2(z1, z2, z3) = T1(z2, z1, z3)

−T3(z3) = log(z3).

(3.27)

As expected, z3 is a parameter and its mirror map is algebraic. The genus zero free energy

is defined by the equations,

∂F0

∂T1
= ω11 + ω12 +

1

2
ω22 +

2

3
ω13 +

1

3
ω23 +

2π2

3
,

∂F0

∂T2
=

1

2
ω11 + ω12 + ω22 +

1

3
ω13 +

2

3
ω23 +

2π2

3
,

(3.28)

and one finds

F0(Q) = F pert
0 (Q)− 2 (Li3(Q1) + Li3(Q2) + Li3(Q1Q2))

+QB + 3(Q1 +Q2)QB + (5Q2
1 + 4Q1Q2 + 5Q2

2)QB + · · · ,
(3.29)

where

Qi = e−Ti , i = 1, 2, 3, QB = Q1Q2Q3, (3.30)

and

F pert
0 (Q) =

T 3
1

3
+
T 3

2

3
+

1

2

(
T 2

1 T2 + T1T
2
2

)
+

1

3
(T 2

1 + T 2
2 )T3 +

1

3
T1T2T3. (3.31)

With this information, we can already test our exact quantization condition in the self-dual

case ~ = 2π, given in (2.71). To do this, we compute successive approximations to the l.h.s.

of (2.71): we consider the large radius expansion of the prepotential and we truncate it

to higher and higher total degrees. We then solve numerically the quantization condition

by using the truncated prepotential. We present some of the results in tables 1 and 2.

The agreement is excellent. We have tested the agreement for other values of R and/or

other values of the integers, and we found again full agreement, at the level of numerical

precision that we achieved.

In order to test the full conjecture (2.68), for arbitrary values of ~, we need the quantum

mirror map and the NS free energy. As we mentioned in the previous section, the quantum

mirror map can be computed by quantization of the mirror curve, by using (2.52). Different
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Order H1

1 39.1104429532554969

5 39.1678325080157194

15 39.1678190762795935

23 39.1678190762768699

Numerical value 39.1678190762768699

Table 1. The eigenvalue of the Hamiltonians H1 = H2 for the quantum numbers (n1, n2) = (0, 0)

in the N = 3 relativistic Toda lattice with R = 1 and ~ = 2π, as obtained from the quantization

condition (2.71). The order denotes the total degree in the moduli zi. As we keep more and

more terms in the series in the l.h.s. of (2.71), we quickly approach the eigenvalue obtained by

numerical methods.

Order H1 H2

1 61.7259698869968 152.405034932001

6 61.9664326975787 152.359676263718

12 61.9664190066106 152.359672000995

18 61.9664190064911 152.359672001068

Numerical value 61.9664190064911 152.359672001068

Table 2. The eigenvalues of H1 and H2 for the quantum numbers (n1, n2) = (1, 0) in the N = 3

relativistic Toda lattice with R = 1 and ~ = 2π, as obtained from the quantization condition (2.71).

The last line displays the eigenvalue obtained by numerical methods.

representations of the curve, related by canonical transformations, lead to the different,

independent mirror maps. One finds, by quantizing (2.46),

V (X) +
z1z

2
2z3q

3/2X3

V (qX)
+ z1z

2
2X

3 + z2X
2 +X + 1 = 0, (3.32)

where

V (x) =
ψ(x− i~)

ψ(x)
, X = ex. (3.33)

In this way we obtain

−Π(z1, z2, z3; ~) =
1

3
log(z1) +

2

3
log(z2) + ResX=∞

(
log(V (X))

X

)
=

1

3
log(z1) +

2

3
log(z2) + z2 +

3z2
2

2
− z1z

2
2 +

10z3
2

3
− 4z1z

3
2

−
(
q1/2 +

1

q1/2

)
z1z

2
2z3 +

35z4
2

4
+ · · ·

(3.34)

The quantum period T1(~) is then given by

T1(~) = −Π(z1, z2, z3; ~) + 2Π(z2, z1, z3; ~), (3.35)

and T2(~) is obtained by exchanging z1 ↔ z2. In addition, T3(~) = T3. As noted in the last

section, setting ~ = 2π is equivalent to setting ~ = 0 and changing the sign z3 → −z3. This
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implies that, in the self-dual case, the quantum mirror map T̂ (~) becomes the classical

mirror map.

In order to compute the NS free energy, we compute the full, refined free energy of the

geometry X2 and then take the NS limit. Expressions for the refined free energy can be

found in [35, 48]. In order to write it explicitly, we need some ingredients. The first one is

given by

Zµ(t, q) =
∏

(i,j)∈µ

(
1− tµ

t
j−i+1qµi−j

)−1
, (3.36)

where µ is a partition or Young tableau, and the parameters q, t were introduced in (2.25).

The second one depends on two partitions µ, ν, and an extra parameter Q. It is given by

Rµν(Q) =

∞∏
i,j=1

1−Qtj−1/2qi−1/2

1−Qtj−1/2−µiqi−1/2−νj
. (3.37)

It is easy to see that the product gets truncated and only a finite number of factors get

involved. We also introduce, for a given partition µ, the quantities

|µ| =
∑
i

µi,

‖µ‖2 =
∑
i

µ2
i ,

κµ =
∑
i

µi(µi − 2i+ 1),

(3.38)

and the refined framing factor

fµ = (−1)|µ|
(
t

q

)‖µt‖2/2
q−κµ/2, (3.39)

where µt denotes the transposed partition in which one exchange rows and columns of the

corresponding Young diagram. The building block of the partition function is

Zµ1,µ2,µ3 = q
∑3
i=1 ‖µi‖2/2t

∑3
i=1 ‖µi,t‖2/2

3∏
i=1

Zµi(t, q)Zµi,t(q, t)Rµ1,t,µ2

(√
t

q
Q1

)
×Rµ1,t,µ2

(√
q

t
Q1

)
Rµ1,t,µ3

(√
t

q
Q1Q2

)
Rµ1,t,µ3

(√
q

t
Q1Q2

)
×Rµ2,t,µ3

(√
t

q
Q2

)
Rµ2,t,µ3

(√
q

t
Q2

)
.

(3.40)

Then, the total partition function of an A2 fibration over P1 with Chern-Simons invariant

m (see [42]) is given by

Zm (Q; q, t) = Zp(Q1, Q2; q, t)
∑
µi

f−m−2
µ1

f−m
µ2

f−m+2
µ3

Zµ1,µ2,µ3

· (−QB)
∑3
i=1 |µi|Q

(m+1)|µ1|
1 Q

(m−1)(1−δm,0)(|µ1|+|µ2|)+δm,0|µ3|
2 ,

(3.41)
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Order ~ = π ~ = 3π

1 15.7049125387 93.5756026639

5 15.8136736201 93.5700657722

10 15.8137840616 93.5700660274

15 15.8137841054 93.5700660274

Numerical value 15.8137841054 93.5700660274

Table 3. The eigenvalue of H1 = H2 for the quantum numbers (n1, n2) = (0, 0) in the N = 3 rela-

tivistic Toda lattice with R = 1 and ~ = π, 3π, as obtained from the quantization condition (2.71).

The last line displays the eigenvalue obtained by numerical methods.

where

Zp(Q1, Q2; q, t) = exp

∑
w≥1

1

w

(q/t)w/2+(t/q)w/2(
qw/2−q−w/2

) (
tw/2−t−w/2

) (Qw1 +Qw2 +Qw1 Q
w
2 )

 . (3.42)

In the case q = t, which corresponds to the standard topological string, this expression

agrees with the result obtained in [42]. QB is defined in (3.30). From now on we will focus

on the geometry with m = 0, which is the relevant one for our purposes, and we will denote

its partition function simply by Z(Q; q, t). One finds, explicitly,

iFNS,BPS(Q, ~) =
∑
w≥1

1

w2

qw + 1

qw − 1
(Qw1 +Qw2 +Qw1 Q

w
2 )−

∑
w≥1

1

w2

QwB
qw/2 − q−w/2

− q + q−1 + 1

q1/2 − q−1/2
(Q1 +Q2)QB −

q + q−1 + 2

q1/2 − q−1/2
Q1Q2QB + · · · ,

(3.43)

where some of the poles at (2.62) are manifest.

With these explicit results, we can already test the conjecture for some other values

of ~. In table 3 we show some results for the ground state energy eigenvalues. Precise

computations for general ~ are more demanding, but we find again a remarkable agreement

between the predictions of (2.68) and the numerical diagonalization.

One could think that the non-perturbative correction in (2.68) is only required when ~
is of the form (2.62). However, this set of poles is dense in the positive real axis. Therefore,

it is difficult to make sense of (2.37) for any positive, real ~, even as a formal power series,

since there will be infinitely many coefficients in the series where ~ will be arbitrarily close

to a pole. If we ignore this issue, and insist on using the quantization condition (2.59)

and the expression (2.37) for values of ~ which are not of the form (2.62), we simply get

incorrect results for the spectrum. For example, when R = 1 and ~ = 3, 10, (2.59) gives

H1 = 15.203 . . ., and H1 = 108.475 . . ., respectively. These values seem to be stable, at

least when working up to degree 12 in the expansion of (2.37). However, they do not agree

with a numerical calculation of the ground state energy. The values obtained with the

corrected quantization condition (2.68) are shown in table 4. They are in agreement with

the numerical result.
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Order ~ = 3 ~ = 10

1 15.0088290209 109.495054032

5 15.1620665172 109.443122441

10 15.1622789237 109.442994726

15 15.1622789846 109.442994727

Numerical value 15.1622789846 109.442994727

Table 4. The eigenvalue of H1 = H2 for the quantum numbers (n1, n2) = (0, 0) in the N = 3 rela-

tivistic Toda lattice with R = 1 and ~ = 3, 10, as obtained from the quantization condition (2.71).

The last line displays the eigenvalue obtained by numerical methods.

4 The four-dimensional limit

In this section we will consider the four-dimensional limit R→ 0. As mentioned before, in

this limit the relativistic Toda lattice reduces to the standard Toda lattice. What happens

if one takes the limit R → 0 in our exact quantization conditions (2.68)? First of all, one

has to specify a scaling regime for the Kähler parameters. From previous studies of this

limit [42, 47, 56], it is known that

Ti = Rai,i+1, i = 1, · · · , N, (4.1)

where

ai,i+1 = ai − ai+1 (4.2)

and the ai are parameters for the Coulomb branch of the 4d supersymmetric gauge theory.

In particular, we have that

Tl + Tl+1 + · · ·+ Tn = R (al − an) = Ral,n. (4.3)

It turns out that there are four different terms to consider on the l.h.s. of the exact

quantization condition (2.68), with different limits as R → 0. The first piece comes from

the perturbative part of the NS free energy, (2.49). Each pair 1 ≤ l ≤ n ≤ N leads to a

divergent term

− π2

3~RTR
− 2

~RT
log(R)al,n. (4.4)

The second piece comes from the part of the BPS free energy (2.37) which depends on QN .

This piece goes straightforwardly into the instanton part of the 4d quantization condition,

as it can be checked with the techniques of [42, 47]. The third piece comes from the

part of the S-transformed BPS free energy which depends on QN . This piece vanishes as

R→ 0, since

Q
2π/~
N = R4πN/~RTR. (4.5)

Finally, the fourth piece involves the part of the BPS free energy which does not depend

on QN , plus its S-transform. It is a sum of terms of the form f(Ql,n, ~), where

Ql,n = e−Tl−···−Tn = e−Ral,n , (4.6)
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and the function f is given by

f(Q, ~) =

∞∑
w=1

1

w
cot

(
~w
2

)
Qw +

∞∑
w=1

1

w
cot

(
~Dw

2

)
QwD. (4.7)

In this equation, we have denoted

QD = Q2π/~, ~D =
4π2

~
. (4.8)

This function can be also expressed in terms of Faddeev’s quantum dilogarithm Φb(x),

as follows

if(Q, ~) = log Φb

(
− T

2πb
− cb

)
+ log Φb

(
− T

2πb
+ cb

)
, (4.9)

where

Q = e−T , cb =
i

2

(
b + b−1

)
, (4.10)

and b is related to ~ by

b2 =
~

2π
. (4.11)

Our conventions for Faddeev’s quantum dilogarithm are e.g. as in [57]. By manipulations

similar to those used in [58], one can find a useful integral expression for f(Q, ~):

f(Q, ~) =
2

~
Li2(Q) +

2

π
Re

[∫ ∞e±i0

0
dx

~Q(cosh ~x−Q)

(1−Qe~x)(1−Qe−~x)
log(1− e−2πx)

]
. (4.12)

In the integral on the r.h.s., the integrand has poles at x = ±T/~. If both T and ~ are real,

one of these poles is located on the positive real axis. We can avoid this pole by deforming

the contour above or below the real axis, and the two choices correspond to the integration

limits ∞e±i0 in (4.12). We keep just the real part of the resulting integral (equivalently,

we use a principal part prescription). The value of the real part does not depend on the

choice of the deformation.

We can now study the limit R→ 0 of the function, after setting T = Ra. The integrand

in (4.12) has the limit

~Q(cosh ~x−Q)

(1−Qe~x)(1−Qe−~x)
log(1− e−2πx) = − z

x2 − z2
log(1− e−2πx) +O(R), (4.13)

where

z =
a

~RT
. (4.14)

Let us define the integral

I(z) = − 1

π
Re

[∫ ∞e±i0

0
dx

1

x2 − z2
log(1− e−2πx)

]
, (4.15)

where we use again a deformation of the contour around the pole. Using an integral

representation of the logarithm of the gamma function:

log Γ(z) = 2

∫ ∞
0

dx
tan−1(x/z)

e2πx − 1
+

log 2π

2
+

(
z − 1

2

)
log z − z, Re z > 0, (4.16)
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it turns out that the integral (4.15) can be evaluated as2

I(z) = 1− log z − π

4z
− i

2z
log

Γ(1 + iz)

Γ(1− iz)
. (4.17)

This result can be understood as a Borel resummation of the following asymptotic expan-

sion around ~RT = 0 (recall that z = a/~RT):

I(z) ∼
∞∑
n=1

(−1)n
B2n

2n(2n− 1)

1

z2n
, z →∞. (4.18)

This is closely related to the asymptotic expansion of the function γi~(x) which is used

in [46] to define the perturbative part of the instanton partition function. When ~ is real,

as we are assuming here, the asymptotic series above is not Borel summable and there is a

non-perturbative ambiguity. Therefore, one needs to fix it by using additional information.

In our case, this information comes from our starting point, (4.7) or (4.9), and leads to

the integral representation (4.15), which can be regarded as a particular choice of Borel

resummation.

Now, it is easy to see that the limit as R→ 0 of f(Q, ~) is given by

f(Q, ~) =
π2

3~RTR
+

2

~RT
a logR+

2

~RT
a (log a− 1) +

2a

~RT
I
(

a

~RT

)
+O(R). (4.19)

The divergent terms appearing in this expression as R→ 0 cancel exactly against the diver-

gent terms (4.4) coming from the perturbative part. We then find that the 4d quantization

condition has an instanton piece, and a “perturbative” piece involving an appropriate sum

of terms of the form
2

~RT
γ4d (al,n, ~RT) , (4.20)

where

γ4d (a, ~RT) = a (log a− 1) + aI
(

a

~RT

)
. (4.21)

As a consequence, we conclude that our exact quantization conditions in the limit R → 0

are exactly equivalent to the ones proposed in [8], and the four-dimensional Planck con-

stant is ~RT. The fact that the quantization conditions in [8] give the exact spectra in

the non-relativistic Toda chain was also confirmed in [20] from the perspective of inte-

grable systems. Note, however, that in the four-dimensional calculation we have to use

the function (4.21) as the building block for the “perturbative” piece, and the prescrip-

tion to deal with this function is inherited from the 5d function (4.9), which does include

non-perturbative corrections in ~.

We can check this conclusion quantitatively. Let us start with the non-relativistic Toda

Hamiltonian

HToda(q1, p1; . . . ; qN , pN ) =

N∑
n=1

(
p2
n

2
+ eqn−qn+1

)
. (4.22)

2In order to go from (4.17) to (4.15), we need to replace z → iz in (4.16). Strictly, this does not satisfy

the condition in (4.16) for z ∈ R. This corresponds to the fact that the integrand of (4.15) has poles at

x = ±z, and one has to deform the contour. However, one can check numerically that the equality of (4.15)

and (4.17) indeed holds in the end.

– 25 –



J
H
E
P
0
5
(
2
0
1
6
)
1
3
3

For simplicity, we here focus on the case of N = 2. As in the relativistic case, after modding

out the motion of the center of mass, we obtain the Hamiltonian,

HN=2
Toda = p2 + 2 cosh q, [q, p] = i~, (4.23)

where

q = q1 − q2, p =
p1 − p2

2
. (4.24)

(4.23) is well-known as the Schrödinger operator of the modified Mathieu potential. We

want to solve the quantum eigenvalue problem of the modified Mathieu equation for real ~,(
−~2 d2

dq2
+ 2 cosh q

)
ψ(q) = Eψ(q). (4.25)

We here confirm that this problem is indeed solved by the quantization condition in [8].

The quantization condition proposed in [8] takes the form

∂FNS

∂a
= 2π~

(
n+

1

2

)
, n = 0, 1, 2, . . . . (4.26)

The NS free energy FNS consists of two pieces

FNS(a; ~) = Fpert
NS (a; ~) + F inst

NS (a; ~). (4.27)

In the current case, this free energy is computed by the Nekrasov partition function in the

4d pure SU(2) super Yang-Mills theory. The perturbative part can be expressed in terms

of the function (4.21), as discussed above,

∂Fpert
NS

∂a
= −4a log

(
Λ2
)

+ 4γ4d(2a, ~)

= −4a log

(
Λ2

~2

)
− 2i~ log

Γ(1 + 2ia
~ )

Γ(1− 2ia
~ )
− π~,

(4.28)

and we have simply reinstated the dependence on the scale Λ. The instanton expansion is

given by,

F inst
NS (a; ~) =

∞∑
n=1

Λ4nF (n)
NS (a; ~), (4.29)

where the explicit forms up to n = 3 are given by

F (1)
NS (a; ~) = − 2

4a2 + ~2
,

F (2)
NS (a; ~) = − 20a2 − 7~2

4 (a2 + ~2) (4a2 + ~2)3 ,

F (3)
NS (a; ~) = −

4
(
144a4 − 232a2~2 + 29~4

)
3 (a2 + ~2) (4a2 + ~2)5 (4a2 + 9~2)

.

(4.30)

These are understood as the all-order ~-resummation in the instanton expansion. An

important observation is that the series (4.29) is convergent, as pointed out in [17]. It is
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also important to notice that the energy E and the modulus a are related by the quantum

mirror map. In particular, its inverse relation is known as the Matone relation [59]:

E = −Λ

4

∂FNS

∂Λ
= a2 − Λ

4

∂F inst
NS

∂Λ
. (4.31)

Therefore, if the discrete spectrum for a is known from (4.26), then one can recover the

energy eigenvalues E.

Another interesting aspect is the relation to a TBA-like system. As proposed in [8],

the instanton part of the NS free energy is completely determined by TBA-type integral

equations. In the non-relativistic Toda lattice, the TBA equation is

ϕ(x) = −
∫ ∞
−∞

dy

2π
K(x− y) log(1 + Λ4Q(y)e−ϕ(y)), (4.32)

where

K(x) =
2~

x2 + ~2
, Q(x) =

N∏
`=1

1

(x− a` − i~/2)(x− a` + i~/2)
. (4.33)

The TBA equation uniquely fixes the unknown function ϕ(x). For the solution, the NS

free energy is given as the so-called Yang-Yang potential

F inst
NS = − ~

2π

∫ ∞
−∞

dx

[
−1

2
ϕ(x) log(1 + Λ4Q(x)e−ϕ(x)) + Li2(−Λ4Q(x)e−ϕ(x))

]
. (4.34)

One can check that the small Λ expansion for N = 2 reproduces the instanton expan-

sion (4.29) and (4.30). The same integral equation was derived from the Baxter equation

in the Toda lattice [20].

Now, we compare the spectrum obtained by the NS quantization condition (4.26)

with the true one when N = 2. We do so in two ways. One is to use the instanton

expansion (4.29). The other is to directly solve the TBA equation (4.32) numerically. This

is done by the standard iterative method. To solve the quantization condition by iteration,

we need ∂FNS/∂a rather than the free energy itself. There is an integral expression of

the derivative
∂F inst

NS

∂a
=

~
2π

∫ ∞
−∞

dx K̃(x) log(1 + Λ4Q(x)e−ϕ(x)), (4.35)

where

K̃(x) =
d

dx
log

(x+ a+ i~/2)(x+ a− i~/2)

(x− a+ i~/2)(x− a− i~/2)
. (4.36)

Similarly, in the Matone relation, we can use an expression

Λ

4

∂F inst
NS

∂Λ
= − ~

2π

∫ ∞
−∞

dx log(1 + Λ4Q(x)e−ϕ(x)). (4.37)

We have checked that all these expressions correctly reproduce the instanton expansion

for N = 2.

We can now compare the eigenvalues obtained by these two methods3 with the ones

obtained from the numerical diagonalization of the matrix elements of the Hamiltonian in

3For the comparison, we have to set Λ = 1.

– 27 –



J
H
E
P
0
5
(
2
0
1
6
)
1
3
3

Instanton number E0 E1 E2

1 2.52218475780746 3.57619131917582 4.68971463368055

3 2.51526712500729 3.57430507351366 4.68897621326843

5 2.51517625626294 3.57429715573030 4.68897500437660

7 2.51517714074798 3.57429713692399 4.68897500244591

TBA 2.51517709658632 3.57429713682553 4.68897500244662

Numerical value 2.51517709658632 3.57429713682553 4.68897500244662

Table 5. The first three eigenvalues of the modified Mathieu equation for ~ = 1/2.

Instanton number E0 E1 E2

1 3.0607381543889871 5.2854554447955830 7.7146870404010845

3 3.0591725919787237 5.2851260103262340 7.7145795817132912

5 3.0591745826455158 5.2851259670908562 7.7145795729908965

7 3.0591745968723330 5.2851259671795903 7.7145795729920344

TBA 3.0591745969015250 5.2851259671795203 7.7145795729920337

Numerical value 3.0591745969015250 5.2851259671795203 7.7145795729920337

Table 6. The first three eigenvalues of the modified Mathieu equation for ~ = 1.

a harmonic oscillator basis. This is completely in parallel with the computation that was

done in the relativistic case. We show the results for ~ = 1/2 and ~ = 1 in tables 5 and 6,

respectively. It is clear that the spectra obtained from the condition (4.26), where FNS is

given by the instanton partition function, go to the true eigenvalues when more and more

instanton corrections are included. The numerical evaluation of the TBA equation, which

includes all the instanton corrections, shows a remarkable agreement, as expected from the

argument in [20]. We have also tested in detail both methods in the case of the standard

Toda lattice with N = 3, with similar agreement.

Note that, in this four-dimensional case, the resummation of the WKB expansion

provided by the NS free energy solves the spectral problem of the standard Toda lattice

in terms of convergent series. As pointed out in [60], if we first expand in ~, as in (2.42),

we recover the standard, asymptotic WKB expansion. In order to handle the quantization

condition in this context, one needs to take into account possible non-perturbative effects,

trans-series and their Borel resummation. However, the four-dimensional NS free energy

provides a powerful treatment of the spectrum in terms of convergent series, and the

machinery of resurgent trans-series is not really needed.4

As we have tried to emphasize in this paper, the 5d story is different, due to the

poles in the NS free energy. Starting from the all-orders WKB result, one can definitely

follow the route of trans-series. However, in order to find a convergent series for the exact

quantization condition, as in the 4d case, the resummation provided by the instanton

partition function is not enough, and one needs the explicit non-perturbative contributions

written down in (2.68).

4The case of the Mathieu equation appears to be more complicated, see the discussion in [60–62].
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5 Conclusions and outlook

In this paper we have proposed exact quantization conditions for the relativistic Toda

lattice. This has been a long-standing open problem, since solving the corresponding

quantum Baxter equation has proved to be difficult. The insight of [8] is that one can use

instead results from supersymmetric gauge theories and topological string theory. Inspired

by the recent progress on non-perturbative aspects of quantum spectral curves [22, 25, 27,

30], we have proposed a manifestly well-defined answer involving a convergent series. Our

proposal reproduces the spectrum computed with numerical methods, at least in the cases

N = 2 and N = 3.

Clearly, it would be important to provide more evidence for our conjecture, and even-

tually to find a more rigorous justification for the simple ansatz (2.68) presented in this

paper. Physically, the non-perturbative corrections that we are adding seem to be due to

complex instantons, as in the simpler setting of [22]. It would be interesting to compute

them from first principles in order to understand their origin and their S-duality structure

in some detail.

There are clearly many avenues open for further research, since the relativistic Toda

lattice admits many generalizations. One obvious extension of our conjecture should be the

Ruijsenaars-Schneider integrable system, which can be also engineered in topological string

theory [63]. As explicitly shown in [64] (see also [65, 66]), the relativistic Toda lattice is

a particular example of the Goncharov-Kenyon construction, which associates a quantum

integrable system to any toric CY manifold. It is natural to conjecture that (2.68) provides

an explicit, exact quantization condition for the Goncharov-Kenyon integrable system (in

this more general setting, the matrix C appearing in these equations should be replaced by

the intersection matrix of the CY geometry considered in e.g. [29, 67]).5 Another interesting

problem is the relation between the g quantization conditions obtained for the relativistic

Toda lattice (and also, presumably, for the Goncharov-Kenyon integrable system) and the

approach based on quantizing the mirror curve presented in [29], which involves a single

quantization condition encoded in the vanishing of a (quantum) theta function.

We hope to address some of these problems in the near future.
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A WKB analysis

In this appendix, we review how to compute the quantum corrections to the classical

periods (2.54) by using the Baxter equation (2.22) [3, 12]. We consider the WKB ansatz

of the wave function ψ(µ),

ψ(µ) = exp

[
i

~

∫ µ

dµ′ P (µ′; ~RT)

]
,

P (µ; ~RT) =

∞∑
n=0

~nRTPn(µ).

(A.1)

The Baxter equation (2.22) is of the same form as the difference equation studied in [22].

Plugging the WKB ansatz into the Baxter equation, we find the leading order solution

P0(µ) = 2 cosh−1

∣∣∣∣∣ t(eRµ/2;R)

RN

∣∣∣∣∣ . (A.2)

The quantum corrections can be fixed order by order. Up to n = 2, we find

P1(µ) =

[
i

2
log sinhP0

]′
,

P2(µ) =
3

8

cothP0

sinh2 P0

(P ′0)2 − 1

12

(
1 +

3

sinh2 P0

)
P ′′0 .

(A.3)

The quantum corrected action variables are then given by the period integrals

IWKB
k =

∫
Ik

dµP (µ; ~RT). (A.4)

It turns out that the odd order parts P2m+1(µ) are always written as a total derivative

w.r.t. µ, and they do not contribute to the periods (A.4). Therefore the quantum action

variables have the following WKB expansion,

IWKB
k =

∞∑
n=0

~2n
RTI

(2n)
k . (A.5)

Of course, we have I
(0)
k = Ik in (2.54). In this way, one can compute the quantum cor-

rections I
(2n)
k systematically. However the integrands of the period integrals become very

complicated, and it is hard to see their analytic properties. As explained in the main text,

the large Hi expansion (or small zi expansion) can be resummed in all orders of ~. Each

coefficient can be computed by the NS free energy.
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