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1 Introduction

Renormalization group (RG) flow describes the change in the effective behaviour of a

quantum field theory as the distance or energy scale is changed. In the Wilsonian scheme

one starts from a bare theory in the ultraviolet (UV) and integrates out high energy degrees

of freedom. The effect of integrating out the high energy degrees of freedom is to redefine

or renormalize the bare coupling constants appearing in the Lagrangian of the UV theory.

This redefinition is mathematically described as a first order flow equation in the space of

coupling constants. Conformal field theories (CFT) appear as fixed points of this flow. Now

given a CFT (UV-CFT) one can perturb this by adding a relevant operator and flow to a

new CFT (IR-CFT) in the infrared (IR). For two dimensional unitary and Lorentz invariant

quantum field theories it has been shown in [1] that one can define a positive monotonically

decreasing function of the coupling constants along the flow whose values at the fixed points

coincide with the central charges of the respective two dimensional CFTs. This positive

monotonically decreasing function of the coupling constants is known as a c-function. c-

theorem was generalized and proved for higher dimensional field theories in [2–9, 15, 16].

RG flow can also be studied via AdS/CFT correspondence. In this set up one usually

starts with a bulk theory which has several pure AdS critical points. The bulk theory is

usually a classical theory of gravity coupled to matter fields. RG flow is represented by a

domain-wall like solution of the coupled gravity-matter system which interpolates between
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two AdS critical points [10–16].1 The holographic version of the c-theorem is proved by

showing the existence of a function which decreases monotonically from the UV-AdS to the

IR-AdS as a result of the field equations and gives the central charges when evaluated at

the end points of the flow. In all these constructions null energy condition on the matter

stress tensor plays an important role.

The story of the holographic c-theorem is more interesting when one considers higher

derivative corrections to Einstein gravity in the bulk. This was considered in great detail

in [15]. Higher derivative corrections are ubiquitous in low energy effective theories coming

from string theory and they are also interesting in their own right as toy models where

one can study various thorny issues related to black hole thermodynamics. In an arbitrary

theory of gravity described by a local covariant action there is in general be no clear

separation between gravity and matter sector. So matter stress tensor cannot be uniquely

defined and standard null energy condition has no clear role to play. This is one of the

main obstacles of proving holographic c-theorem in a general theory as was emphasized

in [15]. The other point is that even if there is a higher derivative theory of gravity coupled

to matter where null energy condition can be imposed unambiguously, sometimes it is

not enough to prove holographic c-theorem and validity of the c-theorem seems to require

additional constraints on the pure gravity sector of the theory [52]. This could be a genuine

physical constraint on the bulk theory like unitarity but its status is always not so clear [52].

So an important problem is to spell out the constraint which needs to be imposed on a

theory of gravity so that holographic c-theorem holds.

In [17], a different approach towards holographic RG flow and holographic c-theorem

was proposed. The basic observation of [17] was that causal horizons in pure Poincare AdS

are Killing horizons generated by the dilatation vector. Dilatation symmetry is broken

along the RG flow and as a result causal horizons in a RG flow geometry are no longer

globally Killing. They become Killing (stationary) in the asymptotic UV and IR region of

the RG flow geometry, where scaling is recovered. In [17] it was shown that the Bekenstein-

Hawking entropy (density) of the non-Killing causal horizon interpolating between the UV

and the IR of the RG flow geometry is a holographic c-function. The monotonicity of

the c-function followed from the second law of thermodynamics obeyed by causal horizons

in AdS [24]. Based on these observations it was proposed in [17] that the boundary RG

flow is dual to the thermodynamics of causal horizons in AdS and the gravity dual of the

c-theorem is the second law of causal horizon thermodynamics.

In this paper we verify this for higher derivative theories of gravity which admit pure

AdS as a solution. At first we test it for higher derivative theories for which an entropy

expression exists which satisfies at least the linearized version of the second law. It has

been shown recently [31–34]2 that a general curvature-squared theory of gravity satisfies

the linearized second law. We verify that in these cases the entropy (density) evaluated

on the spatial slices of the dynamical causal horizon is a holographic c-function and the

1There is a different approach to studying the holographic RG flow using the holographic entanglement

entropy [35–38]. We will refer to [39, 40] for further details on this.
2The entropy expression which obeys the linearized second law are derived from the holographic entan-

glement entropy functionals obtained in [44–49].
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gravity dual of the boundary c-theorem is the linearized second law. This restricts us to

RG flows where the difference between the UV and the IR central charges is small, but

there is no restriction on the magnitude of the higher-derivative coupling. In all these cases

the bulk gravity theory is minimally coupled to the matter sector which cause the RG-flow

and the matter stress tensor is restricted to satisfy the null-energy condition. We would

like to emphasize that this does not mean that we restrict to gravity-matter theories which

satisfy the null convergence condition3 which is generically violated in all higher-derivative

theories of gravity including the ones we are studying.

Our next example is F (R) gravity where R is the Ricci scalar. In this case the en-

tropy expression satisfying the second law to all orders is known [22] and we construct the

holographic c-function using this. This is an example of a theory which has fourth order

equation of motion, but the bulk theory is still unitary [53, 54].

We also study the effect of non-minimal coupling to the matter sector. As an example,

we treat the case of Einstein gravity plus scalar matter where in addition to the standard

minimal coupling there is also a curvature coupling of the form Rφ2, where R is the Ricci

scalar. In this case there is no clean separation between matter and gravity sector and as

a result standard null energy condition cannot be defined. In such a theory the second law

is known to hold, albeit with an expression which is not the area of a space-like slice of the

horizon [29]. Using this expression we prove holographic c-theorem in a situation where

the null-energy condition cannot be defined. As a generalization of this we show that a

sufficient condition to ensure holographic c-theorem in a theory of gravity described by a

local covariant action in AdS is that the second law of causal horizon thermodynamics be

satisfied by the theory.

2 RG flow and causal horizon thermodynamics

In this section we will briefly review the contents of [17] and discuss some notations. Let

us consider AdSd+1 written in Poincare coordinates,

ds2 =
L2

AdS

z2

(
−dt2 +

d−1∑
i=1

(dxi)2 + dz2

)
(2.1)

where LAdS is the AdS radius. It will be useful to introduce the spherical polar coordinates

such that,
d−1∑
i=1

(dxi)2 = dr2 + r2dΩ2
d−2 (2.2)

3Null convergence condition means that RABk
AkB ≥ 0 for any future directed null vector k, where

RAB is the Ricci tensor. If this condition is satisfied then Raychaudhuri equation applied to a hypersurface

orthogonal congruence of null geodesics implies that the expansion θD is monotonically decreasing along

the generators of the congruence. When Einstein gravity is minimally coupled to the matter field the null

convergence condition is guaranteed if the matter stress tensor satisfies the null energy condition. However

this is not the case if there are higher derivative couplings. Even if the matter field is minimally coupled

and the matter stress tensor satisfies the null energy condition, this does not guarantee the null convergence

condition due to the presence of the higher derivative terms. So focusing does not happen and the proof of

the second law cannot follow the same logic as in the Einstein gravity case.
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Figure 1. Causal horizon Σ of the boundary point p in pure AdS. This is just the bulk light-cone

of the point p. Poincare time runs vertically upward in the diagram.

where, dΩ2
d−2 is the metric of a unit (d− 2)-sphere. In these coordinates, AdS-metric is,

ds2 =
L2

AdS

z2
(−dt2 + dr2 + r2dΩ2

d−2 + dz2). (2.3)

This metric has a scaling isometry, (t, r, z)→ (λt, λr, λz), generated by the dilatation

vector,

D =
t

2

∂

∂t
+
r

2

∂

∂r
+
z

2

∂

∂z
(2.4)

D is null on the hypersurface Σ given by,

− t2 + r2 + z2 = 0 (2.5)

Σ is a null hypersurface which is left invariant by the flow of D and so Σ is a Killing

horizon generated by D. It is also easy to see that Σ is the boundary of the causal past

(future) of the point, t = xi = z = 0, in AdS. So Σ is a causal horizon and in pure AdS it

is a Killing horizon generated by the dilatation vector, D.

Let us now deform the boundary field theory by adding a relevant operator which is

dual to a scalar field of negative mass squared in AdS. This induces RG-flow. For simplicity

– 4 –
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we will take the backreacted geometry to be,

ds2 =
L2

AdS

z2

(
− dt2 + dr2 + r2dΩ2

d−2 +
dz2

f(z)

)
(2.6)

where f(z)→ 1 as z → 0 and f(z)→ L2
AdS

L2
IR

as z →∞. Here LIR is the radius of the locally

AdS region which develops near the Poincare horizon, z → ∞. This metric has no global

scaling isometry because dilatation is broken along the RG-flow. Scaling is recovered only

asymptotically as z → 0 or z →∞.

Let us now write the metric in the form,

ds2 =
L2

AdS

z2
(−dt2 + dr2 + r2dΩ2

2 + dz̄2) (2.7)

where we have defined,
z̄

z
=

1

z

∫ z

0

dz′√
f(z′)

=

∫ 1

0

dα√
f(αz)

(2.8)

In (2.7), z should be treated as a function of z̄ given implicitly by the relation (2.8).

Throughout the paper prime over z will denote differentiation with respect to z̄.

The causal horizon of the point, t = xi = z = 0, in the back-reacted geometry can now

be written as,

− t2 + r2 + z̄2 = 0 (2.9)

Let us denote this by Σ̄. Σ̄ is again a null-hypersurface and we can take as its null

generator the vector field D̄ given by, [17]

D̄ =
t

2

∂

∂t
+
r

2

∂

∂r
+
z̄

2

∂

∂z̄
(2.10)

D̄ is null on Σ̄. D̄ is not a Killing vector. It coincides with D only asymptotically

where scaling is recovered. As a result the backreacted causal horizon Σ̄ is no longer a

Killing horizon. It is dynamical in the sense that it has non-zero expansion and shear.

In [17] it was proposed that the boundary RG-flow is dual to the (thermo) dynamics of

causal horizons caused by the breaking of the scaling isometry in the bulk. In particular it

was shown in [17] that if the bulk theory is described by Einstein-Hilbert action minimally

coupled to a scalar field obeying the null-energy condition then the gravity dual of the

boundary c-theorem is the second law of thermodynamics obeyed by causal horizons [23–

26].4 The holographic c-function in this framework was given by the Bekenstein-Hawking

entropy density of the dynamical causal horizon (2.9). This directly relates the second law

for causal horizons in AdS5 to the unitarity of the boundary theory in the form of c-theorem.

4Please see [27, 28] for the proof of the linearised GSL for causal horizons.
5The proof of the second law of causal horizon thermodynamics crucially depends on the fact that causal

horizons are boundaries of the causal past or future of a point on the conformal infinity of the space-time.

The sign of the cosmological constant does not play any major role except that it determines the nature of

conformal infinity. Proof of the second law has been described in [23–25]. At this point we would like to em-

phasize that we have not used the abstract proof of the second law of causal horizon thermodynamics neither

in this paper nor in the previous one [17]. Since the geometry and the causal horizon are known explicitly

in this case one can easily check that the Bekenstein-Hawking entropy density satisfies the second law.
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Figure 2. Deformed causal horizon Σ̄ of the boundary point p in deformed AdS. This is just the

deformed bulk light-cone of the point p. Poincare time runs vertically upward in the diagram.

We would like to emphasise that our use of null geodesics to construct the holographic

c-function does not mean that in the domain-wall geometry the RG-flow is null or time-like.

For example, the radial variable z is actually an affine parameter along the null geodesic

generators of the causal horizon in the domain-wall geometry. So there is no violation of

the scale-radius duality or the fact that in domain-wall geometry RG-flow is space-like.

As z increases the null geodesic generators of the causal horizon interpolate between the

UV-AdS and the IR-AdS.

3 Holographic c-function in higher derivative gravity

3.1 Gauss-Bonnet gravity

We first consider the Einstein-Gauss-Bonnet theory in AdS5 given by the action,

IGB = − 1

2`3p

∫
d5x
√
g

(
R+

12

L2
+
λL2

2
(RαβγδR

αβγδ − 4RαβR
αβ +R2)

)
. (3.1)

If we minimally couple it to scalar matter which induces the RG-flow, then the equation

of motion for this theory is given by,

Rαβ −
1

2
Rgαβ −

6

L2
gαβ −

λL2

2
Hαβ = Tαβ (3.2)
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where,

Hαβ = 4RδαRδβ − 4RδσRδαβσ − 2RRαβ − 2RαδσµRβ
δσµ

+
1

2
gαβ(RαβγδR

αβγδ − 4RαβR
αβ +R2).

(3.3)

and Tαβ is the matter stress tensor. We have assumed that the matter stress-tensor obeys

the null-energy condition. So if we contract this with the null vector D̄ we will get,

RαβD̄
αD̄β − λL2

2
HαβD̄

αD̄β ≥ 0. (3.4)

Evaluating (3.4) on (2.7) we get the following condition,

3z̄2f ′(z)(1− 2f∞λf(z))

8 z
≥ 0. (3.5)

where f∞ = L2

L2
AdS

. We will analyze this condition later.

Let us now turn our attention to the entropy functional which is the Jacobson-Myers

(JM) one in this case [22, 44–46, 50, 51]

SJM =
2π

`3p

∫
d3x
√
h
(

1 + λL2R
)
. (3.6)

The integral is taken along a space-like slice of the horizon (2.9) and R is the intrinsic

Ricci scalar of the space-like slice. JM entropy functional satisfies the linearized second

law. To evaluate this, it is useful to parametrize the causal horizon (2.9) as,

t = z̄ cosh η , r = z̄ sinh η, z̄ = z̄ (3.7)

This parametrization corresponds to a particular space-like slicing of the causal horizon.

With this parametrization the induced metric on the space-like slices of (2.9) becomes,6

ds2
ind = L2

AdS

(
z̄

z

)2(
dη2 + sinh2 η dΩ2

2

)
= L2

AdS

(
z̄

z

)2

ds2
H3 (3.8)

where ds2
H3 is the metric on a unit hyperboloid.

So,

R = − 6

LAdS
2

(
z

z̄

)2

(3.9)

Now following [17] we take the null generators of the causal horizon as integral curves

of D̄ defined as,
dt

dσ
= t,

dr

dσ
= r,

dz̄

dσ
= z̄, (3.10)

where σ is not necessarily an affine parameter. The triple (t(σ), r(σ), z̄(σ)) satisfies the

condition,

− t(σ)2 + r(σ)2 + z̄(σ)2 = 0 (3.11)

6This is also the induced metric on the null hypersurface Σ̄.
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It follows from (3.7) and (3.10) that η is a comoving coordinate, i.e η remains constant

along the integral curves satisfying (3.10) and (3.11) and so all the coordinates parametriz-

ing the unit hyperbolic space are comoving.

Let us now define the density of JM entropy of the causal horizon as,

dSJM =
2π

`3p
d3x
√
h
(

1 + λL2R
)

= 2π
L3

AdS

`3p

(
z̄

z

)3(
1− 6λ

L2

L2
AdS

(
z

z̄

)2)
dVH3 (3.12)

Since the volume of the unit hyperboloid is independent of the parameter σ of the

null generator, second law becomes a statement about the evolution of the finite coefficient

along the null generator. We denote the finite coefficient by a(σ),

a(σ) = 2π
L3

AdS

`3p

(
z̄

z

)3(
1− 6λ

L2

L2
AdS

(
z

z̄

)2)
= 2π

L3
AdS

`3p

(
z̄

z

)3(
1− 6λf∞

(
z

z̄

)2)
(3.13)

This gives the correct a-central charge at the UV (σ → −∞ ) and IR (σ →∞)7 fixed

points. To see this more quantitatively [17], we note that as σ → −∞, z → 0 and z̄
z → 1.

Similarly as σ →∞, z →∞ and z̄
z →

LIR
LAdS

. Substituting this we get the correct values of

the UV and the IR central charges, respectively.8

The monotonicity follows from the linearized second law satisfied by the JM entropy

function, but we will check this by explicit calculation. Since the JM entropy satisfies the

linearized second law, the c-function (3.13) constructed out of the JM entropy function is

monotonic if we confine ourselves to linearized metric fluctuations. By linearized we mean

that the metric fluctuations around the UV-AdS is of the same order of magnitude as the

matter stress tensor causing the RG flow. This condition allows us to probe holographic

RG flows where the difference between the UV and the IR central charges is small. This

does not mean that Gauss-Bonnet coupling constant λ is small.

Now,

da(σ)

dσ
= 3

( z̄
z

)(
1−

∫ 1

0

dα
√
f(z)√

f(αz)

)((∫ 1

0

dα√
f(αz)

)2

− 2f∞λ

)
. (3.14)

We want to show that,
da(σ)

dσ
≤ 0 (3.15)

One can check that this condition cannot be proved in complete generality without

imposing an extra condition that f ′(z) ≥ 0. But this does not follow from the null energy

condition,
3z̄2f ′(z)(1− 2f∞λf(z))

8 z
≥ 0. (3.16)

7It follows from (3.10) that as σ → −∞, z̄ → 0 and as σ → ∞, z̄ → ∞. It follows from a simple

argument of [17] that z → 0 as z̄ → 0 and z → ∞ as z̄ → ∞. So as σ runs from −∞ to +∞, the null

generator of the causal horizon runs from the UV to the IR.
8In the context of dS/CFT in presence of Gauss-Bonnet correction it will be interesting to investigate

the c function following the references of [59, 60] where the expression for the entropy and the central charge

have been worked out.
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Since z̄2

z is positive this condition is equivalent to,

f ′(z)(1− 2f∞λf(z)) ≥ 0. (3.17)

The fact that we cannot prove (3.15) in complete generality using the condition (3.17)

is just the reflection of the fact that the JM entropy functional satisfies only the linearized

second law. So let us do a linearized calculation. Let us assume that the matter stress

tensor is of order ε. Since in the fixed point geometry f(z) is a constant, the leading term

of f ′(z) is of order ε and linearized calculation means we keep only order ε terms in our

calculation. So in this approximation, the null-energy condition becomes,

f ′(z)(1− 2f∞λ) ≥ 0. (3.18)

Applying the linearization to (3.14) we get,

da(σ)

dσ
= 3

(
1−

∫ 1

0

dα
√
f(z)√

f(αz)

)
(1− 2f∞λ) . (3.19)

Now we can write,

1−
∫ 1

0

dα
√
f(z)√

f(αz)
= −1

2

∫ 1

0

dα√
f(αz)

∫ z

αz

dβ√
f(β)

f ′(β) (3.20)

Using this we can write,

da(σ)

dσ
= −3

2

∫ 1

0

dα√
f(αz)

∫ z

αz

dβ√
f(β)

f ′(β) (1− 2f∞λ) . (3.21)

The expression on the r.h.s. of (3.21) is manifestly negative once we apply the linearized

null-energy condition (3.18). So,
da(σ)

dσ
≤ 0 (3.22)

to linearized order. So the c-function constructed from JM entropy functional decreases

monotonically as a consequence of the linearized second law for causal horizons. This is

the best we can hope from the JM entropy functional.

3.2 General curvature squared gravity

We now consider the general curvature squared theory in AdS5 given by the action,

IR2 = − 1

2`3p

∫
d5x
√
g

(
R+

12

L2
+
L2

2

(
λ1RαβγδR

αβγδ + λ2RαβR
αβ + λ3R

2

))
. (3.23)

We minimally couple it to scalar matter which induces the RG-flow. An entropy

functional which satisfies the second law to all orders in this theory is not known. However,

an entropy functional which satisfies the linearized second law has been written down

recently in [44–49].
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In order to write it down we define another auxiliary vector la such that D̄al
a = −1 and

lal
a = 0 on the horizon (2.9). Also la is orthogonal to the spacelike slice of the horizon. So,

l =
z2

z̄2

(
t
∂

∂t
+ r

∂

∂r
− z̄ ∂

∂z̄

)
(3.24)

With this the entropy functional for this theory can be written as [44–49],

S =
2π

`3p

∫
d3x
√
h

(
1+L2

(
λ3R−4λ2RαβD̄

αlβ +λ1RαβγδD̄
αlβD̄γlδ +

1

6
(4λ1 +3λ2)θD̄θl

))
.

(3.25)

where θD̄ and θl are respectively the two expansion along D̄ and l given by,

θD̄ =
3

2
− 3z̄z′

2z
(3.26)

and

θl =
3z (z̄z′ + z)

z̄2L2
AdS

. (3.27)

In general the shear term also enter in the entropy functional, but in our case it

vanishes.

We get the c-function after evaluating (3.25) on (3.8),

a(σ) = 2π
L3

AdS

`3p

(
z̄

z

)3(2f∞z̄
2za1z

′′ + z̄2
(
4− 5f∞a1z

′2)+ 3f∞(4λ1 + 3λ2)z2

4z̄2

)
. (3.28)

where f∞ = L2

L2
AdS

and a1 = (4λ1 + 5λ2 + 16λ3). It gives correct central charges at the fixed

points.

a = 2π
L3

AdS

`3p

(
1− 2f∞(λ1 + 2(λ2 + 5λ3))

)
. (3.29)

It has been shown in [32–34] that (3.25) obeys linearized second law and as a consequence

it follows that a(σ) is monotonic.

4 c function for F (R) gravity

In this section we will consider the example of F (R) gravity which is an example of higher

curvature theory for which the entropy expression satisfying the second law to all orders is

known [22]. This is also a theory whose the equation of motion is fourth order, but it still

gives rise to a unitary bulk theory [53–56]. We will construct the corresponding c function

in this section.

The action in 5 dimensions is,

I = − 1

2`3p

∫
d5x
√
g
[
R+ F (R)

]
. (4.1)

where R is the Ricci scalar.
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This action is minimally coupled to scalar field whose energy-momentum tensor satisfies

the null energy condition and this induces the holographic RG flow. The corresponding

entropy functional which satisfies the second law is given by [22],

S =
2π

`3p

∫
d3x
√
h
[
1 + F ′(R)

]
(4.2)

where the prime denotes derivative with respect to the Ricci scalar R. The integral is over

the space like slice (3.7) of the causal horizon (2.9). Since the Ricci scalar for the domain

wall geometry (2.6) depends only on z (or z̄), we can repeat the same arguments as in the

previous sections and immediately write down the expression of the c-function as,

a(σ) =
2π L3

AdS

`3p

(
z̄

z

)3(
1 + F ′(R(σ))

)
. (4.3)

where

R(σ) =
4
(
z(σ)f ′(z(σ))− 5f(z(σ))

)
L2

AdS

(4.4)

and f ′ = df
dz . In this expression z(σ) is given implicitly by the equation following from (2.8),

z̄(σ)

z(σ)
=

∫ 1

0

dα√
f(αz(σ))

(4.5)

and z̄(σ) satisfies (3.10). So R(σ) is the Ricci scalar of the domain wall geometry evaluated

on the null generator of the causal horizon. The monotonicity (c′(σ) ≤ 0) of this c function

now follows from the proof of the second law in [22].

Let us now make a few comments on the formula (4.3). The proof of the second law

in [22] in case of F (R) gravity relied on the crucial assumption, 1 +F ′(R) > 0, besides null

energy condition on matter stress tensor. We can see that in the context of holographic

RG flow this positivity condition gets translated into the unitarity of the dual boundary

theory. If the positivity condition is violated then the c-function (4.3) can be negative

which signals non-unitarity. In our case it is the entropy density of the dynamical causal

horizon (2.9) which plays the role of holographic c-function and so the positivity is essential

for its interpretation as the number of degrees of freedom of the dual field theory along the

RG flow. So we can see that in the case of causal horizons in AdS proof of the second law

and unitarity are very closely related.

We would also like to make a comparison between our formula for the c-function (4.3)

and the one proposed in [52]. The authors of [52] proposed a formula for the c-function

in F (R) gravity whose monotonicity relied on the extra assumption which in our notation

becomes F ′′′(R) ≥ 0. Here prime denotes derivative with respect to R. This is a condition

on the gravitational sector of the theory. In our case this extra assumption does not play

any role. The monotonicity of the c-function (4.3) follows directly from the second law

and the second law holds under the assumption of the null energy condition of the matter

stress tensor and 1 +F ′(R) > 0. So in this sense our c-function is more universal than that

proposed in [52].
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5 Holographic c-theorem in the absence of null energy condition

Let us consider the following action in 5 dimensions,

I = − 1

2`3p

∫
d5x
√
g

[
(1 + ζφ2)R+

12

L2
V (φ)− 1

2
gµν∂µφ∂νφ

]
. (5.1)

where φ is a scalar field which triggers the RG flow. The importance of more general

coupling between gravity and matter was emphasized in [15]. We assume that this action

yields several critical points with constant values of the scalar field and the bulk geometry

being pure AdS5. We have a non-trivial curvature coupling, ζRφ2, in this action. The

equation of motion of this theory is given by,

(1 + ζ φ2)Gµν = ∇µφ∇νφ− gµν
(

1

2
(∇φ)2 − 12

L2
V (φ)

)
+ ζ
(
gµν�φ

2 −∇µ∇νφ2
)

1
√
g
∂µ(
√
ggµα∂αφ) +

12

L2

∂V (φ)

∂φ
+ ζ φR = 0

(5.2)

where Gµν is the Einstein tensor. We can see from the equation of motion and also from

the action that there is no clear separation between matter and gravity. In particular there

is no unique way of defining matter stress tensor. For example one could define an effective

matter stress tensor by solving for the Einstein tensor and defining,

[Tµν ]eff = Gµν =
1

1 + ζφ2

[
∇µφ∇νφ− gµν

(
1

2
(∇φ)2 − 12

L2
V (φ)

)
+ ζ
(
gµν�φ

2 −∇µ∇νφ2
)]

(5.3)

This effective matter stress tensor violates null energy condition for any non-zero value

of the coupling parameter ζ [30]. In our framework this is not a problem as long as we

have an entropy function for the gravity-matter system, described by (5.1), which satisfies

the second law. The validity of the second law does not depend on our ability to define a

cleanly separated matter sector.

Such an entropy function indeed exists for this theory which satisfies the second law

to all orders. It is given by [29],

S =
2π

`3p

∫
d3x
√
h
(

1 + ζφ2
)

(5.4)

where the integral is over a space-like slice of the dynamical horizon.9,10

9Our convention for the gravity-matter action (5.1) is not the same as the convention of [29]. So our

entropy expression is apparently different from the expression in [29] - we do not have the factor of −8π

(We would like to thank the referee for pointing out a typo in the previous version of the paper.). In [29],

the coefficient of the Ricci scalar, R, in the action is, (1 − 8πζφ2). We have instead, (1 + ζφ2). This is a

difference in convention and has no physical significance. The entropy expression which satisfies the second

law in this case is the Wald entropy derived from the action. In general wald entropy form does not satisfy

the second law but in this case it does.
10We would like to thank the anonymous referee for pointing out a typo in the previous version of the

paper.
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The form of the entropy function (5.4) is valid for any form of the scalar self-interaction

V (φ). Let us now assume that in the domain wall geometry the scalar field φ depends only

on the coordinate z(or z̄). Using this and the same steps as in the previous sections we

arrive at the expression of the c function to be,

a(σ) =
2π L3

AdS

`3p

(
z̄

z

)3(
1 + ζφ2(z(σ))

)
(5.5)

It gives the correct central charge at the fixed point. In the above formula the scalar field

φ is evaluated along the null generator of the causal horizon and so it is a function of the

parameter σ. The monotonicity of the c-function (5.5) follows from the second law [29].

So the condition that a gravity-matter system satisfies the second law of causal horizon

thermodynamics in AdS is more fundamental, because it is enough to prove the holographic

c-theorem even in cases where null energy condition on matter stress tensor cannot be

defined. Hence: the condition, which replaces the null energy condition on matter stress

tensor, is that the second law of causal horizon thermodynamics [24] be satisfied by the

gravity-matter system in AdS. This also includes theories with higher derivative couplings.

This condition has the virtue that this does not require a separation between the

gravity and the matter sector because the validity of the second law does not require any

such separation. We will now argue that this condition is sufficient for proving holographic

c-theorem in an arbitrary gravity theory described by a local covariant action.

5.1 Proof of the sufficiency condition

In order to do that we consider an arbitrary local and diffeomorphism invariant theory in

the bulk described by the action,

I =

∫
dd+1x

√
−g L(gab, Rabcd,∇eRabcd, ..........,matter) (5.6)

where various quantities have standard meaning. An action of this form will not in gen-

eral allow a clean separation between matter and gravity sector and standard null-energy

condition has no role to play.

Let us now assume that this theory admits several AdS critical points with constant

values of the matter field which we assume to be scalar for simplicity. We consider a

domain wall geometry of the form (2.6) which interpolates between a UV-AdS (z → 0) and

an IR-AdS (z →∞). This interpolating geometry represents the holographic RG flow [12].

Now to prove the holographic c-theorem we consider causal horizons in this domain-wall

geometry, following [17].

Let us assume that the theory of gravity described by (5.6) satisfies the second law of

causal horizon thermodynamics. This means that there exists an entropy expression which

satisfies the second law of thermodynamics for causal horizons and reduces to the Wald

Entropy when the causal horizon is Killing. Wald entropy for the theory (5.6) is given

by [18, 20],

SW = −2π

∫
dd−1y

√
γ

δL
δRabcd

εabεcd (5.7)
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where the integral is done over a codimension two space-like slice of the Killing horizon

and γ is the induced metric. εab is the binormal to the horizon slice. We would like to

emphasize that this is not the same entropy expression which satisfies the second law. We

will use this formula later.

To proceed let us further assume that the dynamical entropy is again given by the

integral of a local geometric expression on space-like slices of the dynamical (non-Killing)

horizon. Schematically,

Sdyn(σ) = −2π

∫
[σ]
dd−1y

√
γ s (5.8)

where σ is a real parameter, not necessarily affine, along the null generators of the horizon

and [σ] denotes the σ = constant space-like slice. According to our assumption s reduces

to the Wald expression (5.7) when evaluated on a stationary horizon. Since we are con-

sidering a dynamical horizon Sdyn(σ) is a non-constant function of σ and the statement of

the (local) second law is,
d

dσ

(
− 2π

√
γs
)
≤ 0 (5.9)

We are getting a monotonic decrease rather than increase because we are looking at a past

horizon.

Let us now apply it to our case. We follow the same strategy as in [17] and in the

previous sections, except that we are now doing it for an arbitrary theory (5.6) obeying

the second law. We take the entropy expression (5.9) and evaluate it on the space-like

cross-section (3.7) of the non-Killing causal horizon (2.9). σ is the non-affine parameter,

parametrizing the null generators (3.10) along which the space-like slice [σ] is evolving.

The induced metric γ on [σ] is given by (3.8). Now in the domain wall geometry all the

geometric quantities and the matter fields depend only on the z (or z̄) coordinate and so is

constant on [σ]. As a result s is also constant on [σ] although it has non-trivial dependence

on σ through its dependence on z (or z̄).

Now for the induced metric γ we get from (3.8),

√
γ dd−1y = Ld−1

AdS

(
z̄

z

)d−1

dVHd−1 (5.10)

where dVHd−1 is the volume element of a unit hyperbolic space space. Since the intrinsic co-

ordinates parameterizing the hyperbolic space (or [σ]) are comoving, dVHd−1 is independent

of σ. So the second law (5.9) can be written as,

d

dσ

(
− 2πLd−1

AdS

(
z̄

z

)d−1

s

)
≤ 0 (5.11)

So we define our c-function to be,

a(σ) = −2πLd−1
AdS

(
z̄

z

)d−1

s(σ) (5.12)

The monotonicity of the c-function, a′(σ) ≤ 0, follows from (5.11). Now we show that

at the UV (σ → −∞) and the IR (σ → ∞) fixed points the c-function (5.12) gives the
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correct central charges.11 Near the UV and the IR fixed points the causal horizon (2.9)

again becomes Killing (stationary) because scaling is recovered. So to evaluate the central

charge at the UV and the IR fixed points we can use the Wald entropy formula, i.e,

a(σ → −∞) = −2πLd−1
AdS

(
z̄

z

)d−1

s(σ)
∣∣∣
σ→−∞

= −2πLd−1
AdS sWald

∣∣∣
UV−AdS

(5.13)

and

a(σ →∞) = −2πLd−1
AdS

(
z̄

z

)d−1

s(σ)
∣∣∣
σ→∞

= −2πLd−1
AdS

(
LIR
LAdS

)d−1

sWald

∣∣∣
IR−AdS

(5.14)

where,

sWald =
δL

δRabcd
εabεcd (5.15)

and we have used the fact that z̄
z → 1 as σ → −∞ and z̄

z →
LIR
LAdS

as σ →∞. The swald has

to be evaluated on the UV-AdS and the IR-AdS. This was evaluated in [15] for a general

bulk gravity theory described by the action (5.6). Their result is,

δL
δRabcd

∣∣∣
AdS

= − L̃
2

4d
(gacgbd − gadgbc) L

∣∣∣
AdS

(5.16)

where L̃ is the AdS radius and everything is evaluated on pure AdS. Using this and the

fact that εabε
ab = −2, we get,

sWald

∣∣∣
AdS

=
δL

δRabcd
εabεcd

∣∣∣
AdS

=
L̃2

d
L
∣∣∣
AdS

(5.17)

Therefore,

a(σ → −∞) = −2πLd−1
AdS sWald

∣∣∣
UV−AdS

= −2π
Ld+1

AdS

d
L
∣∣∣
UV−AdS

(5.18)

and

a(σ →∞) = −2πLd−1
AdS

(
LIR
LAdS

)d−1

sWald

∣∣∣
IR−AdS

= −2π
Ld+1
IR

d
L
∣∣∣
IR−AdS

(5.19)

Due to maximal symmetry of pure AdS the Lagrangian density L evaluated on pure AdS

is just a constant number.

Now for even d the coefficient of the Euler density12 in the trace-anomaly is given

by [15, 57, 58],

A(d) = − π
d
2

Γ(d2)

L̃d+1

d
L
∣∣∣
AdS

(5.20)

11It follows from (3.10) that as σ → −∞, z̄ → 0 and as σ → ∞, z̄ → ∞. It follows from a simple

argument of [17] that z → 0 as z̄ → 0 and z → ∞ as z̄ → ∞. So as σ runs from −∞ to +∞, the null

generator of the causal horizon runs from the UV to the IR.
12We are following the notation and conventions of [15].
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So we can see that in even d,

a(σ → −∞) = 2π
Γ(d2)

π
d
2

A
(d)
UV (5.21)

and

a(σ →∞) = 2π
Γ(d2)

π
d
2

A
(d)
IR (5.22)

So these two equations together with the monotonicity condition (5.11) a′(σ) ≤ 0 following

from the second law, proves the holographic c-theorem for even d.

For odd d there is no trace-anomaly. However, as shown in [15, 16], for odd d, the

number A(d) can be interpreted in terms of the entanglement entropy of the dual conformal

field theory. We refer to these references for further details.

6 Higher derivative theories and second law for causal horizons in AdS

The calculations in [17] and in the previous sections show that whenever the second law

of causal horizon thermodynamics holds in a theory of gravity coupled to matter in AdS,

the entropy density evaluated on the deformed (non-Killing) causal horizon (2.9) is a holo-

graphic c-function. This is consistent with the proposal of [17] which says that the boundary

RG flow is dual to the thermodynamics of causal horizons, i.e, the validity of the second

law is both a necessary and a sufficient condition for holographic c-theorem to hold. We

have proved the sufficiency condition in the last section for a general theory of gravity in

the bulk. This raises an interesting puzzle. If the dual of the boundary c-theorem is the

second law of thermodynamics satisfied by causal horizons in AdS, then what happens to

bulk theories which violate the second law ? If the bulk theory is non-unitary then this is

not a problem, because the dual boundary theory is also non-unitary and c-theorem does

not necessarily hold. But if the bulk theory is unitary then the dual field theory is unitary

and c-theorem must hold. So: if the duality between c-theorem and the second law [17]

is correct, then this implies that every unitary bulk theory of gravity coupled to matter,

including those with higher-derivative couplings, satisfies the second law of causal horizon

thermodynamics in AdS. If this is not true then c-theorem will be violated in a unitary

Lorentz invariant field theory.13

In any case, we hope to have convinced the reader that there is a deep connection

between second law of causal horizon thermodynamics and unitarity and Lorentz invariance

of the holographic dual field theory. This needs to be fleshed out.

Moreover our proof of the sufficiency condition in (5.1) shows that for a unitary bulk

theory the density of the dynamical entropy as defined in (5.8) must be positive, i.e,

−s ≥ 0. If this condition is violated at any point of the dynamical causal horizon then the

holographic c-function as defined in (5.12) will be negative. This negativity is a signature of

non-unitarity. The monotonicity of the c-function also requires the positivity of the entropy

production at every point of the causal horizon. This is usually satisfied in all known cases

13The first law for AdS-Rindler horizon follows from the positivity of the Relative entropy in the dual

field theory as shown in [41–43].
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All bulk theories which obey the second law 

Space of all unitary theories

Space of all theories in AdS

CBA

Figure 3. Square A = Space of all theories in AdS; A ⊇ B = Space of all theories which obey the

second law of causal horizon thermodynamics in AdS; B ⊇ C = Space of all unitary theories in AdS.

but this could be a non-trivial constraint on a general theory of gravity in the bulk. Hence

unitarity and Lorentz invariance of the holographic dual field theory requires a positive

entropy density which is non-decreasing at every point of the dynamical causal horizon.

Non-unitary theories can also satisfy the second law, but it is not a necessary conse-

quence of the duality between c-theorem and the second law. Let us now say a few words

about the implication of this for higher-derivative theories of gravity in AdS.

In higher derivative theories the entropy of a (bifurcate Killing horizon) stationary

black holes is given by the Wald entropy [18–21] which by construction satisfies the first

law of thermodynamics. The story of the second law is different. It is known that the Wald

entropy does not in general satisfy the second law. There are some cases [22, 31–33] where

an entropy function exists which satisfies the second law and reduces to the Wald entropy

in the stationary situation, but no general expression exists. In fact it is an open question

if every higher derivative theory of gravity satisfies the second law or not. We have argued

that for causal horizons in AdS the second law must be satisfied by every unitary higher-

derivative theory of gravity as a consequence of the duality between c-theorem and the

second law. This is an indirect holographic argument and uses unitarity crucially. Figure-3

summarizes our claim.

An interesting question is whether A = B or B is a proper subset of A. That is whether

every classical gravity theory satisfies the second law of causal horizon thermodynamics or

not ? By every classical gravity theory we mean every covariant unitary or non-unitary

gravity plus matter theory in AdS described by an action of the form (5.6). We do not

know if this is true or not, but our results show that if this is true, then: every unitary or
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non-unitary field theory with a classical gravity dual satisfies the c-theorem. In other words,

in the large-N but finite λ limit, c-theorem becomes insensitive to the unitarity property of

field theory. Here λ is the ’t Hooft coupling of the dual field theory.

7 Discussion

Before we conclude we would like to discuss some possible extension of our work. One

such thing is to study the c-function in a thermal state which is dual to a black hole

geometry [61]. Another potential application is to the study RG flows in the attractor

geometry [62–64]. Another important problem is to understand the proper field theory

interpretation of the results of [17] and those presented in this paper. In short, our results

show that at least in the large-N limit RG flow and c-theorem has an emergent thermo-

dynamics interpretation where the c-function plays the role of the entropy density. In fact

the c-function at the fixed point has a similar interpretation found in [15, 16, 37]. Our

results show that such an interpretation must exist even away from the fixed point.14 It

will also be interesting to see how boundary RG flow [65–67] fits into this framework. We

hope to return to them in near future.
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A Monotonicity of c function for the general curvature squared theory

In this section we will demonstrate the monotonicity of (3.28) for a certain restricted class of

curvature squared theories following [15]. The constraint can be imposed by setting a1 = 0.

We first write down the equation of motion for this theory.

Rαβ −
1

2
Rgαβ −

6

L2
gαβ −

L2

2
Hαβ = Tαβ (A.1)

14SB would like to thank Kristan Jensen for useful discussion on this.
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where,

Hαβ = λ3

(
2∇α∇βR− 2RRαβ +

1

2
gαβ(R2 − 4∇γ∇γR)

)
+ (A.2)

+ λ2

(
∇α∇βR+ 2RγαβδR

γδ −∇2Rαβ +
1

2
gαβ(RγδR

γδ −∇2R)

)
+

+ λ3

(
2RαγδζR

γδζ
β+2∇α∇βR+4RαγR

γ
β−4RαγβδR

γδ−4∇2Rαβ+
1

2
gαβRγδζηR

γδζη

)
ν.

and Tαβ is the matter stress tensor. We have assumed that the matter stress-tensor obeys

the null-energy condition. So if we contract this with the null vector D̄ we get,

RαβD̄
αD̄β − L2

2
HαβD̄

αD̄β ≥ 0. (A.3)

Evaluating (A.3) on (2.7) we get the following condition after evaluating on the horiozn

−t2 + r2 + z̄2 = 0,(
z′′z̄2

(
6 + f∞(4λ1 + 2λ2 − 8λ3 + a1)z′2

)
8z

+
1

8
z(3)f∞z̄

2z′a1

− 1

8
z(4)f∞z̄

2za1 +
7

8
z′′2f∞z̄

2a1

)
≥ 0.

(A.4)

where, a1 = (4λ1+5λ2+16λ3). When a1 = 0 the radial equation of motion simplifies and all

the terms containing more than two derivatives of z cancel [15]. So setting a1 = 0 we get,

6z′′z̄2
(
1− 1

2f∞(λ2 + 8λ3)z′2
)

8z
≥ 0. (A.5)

Then applying the lineariztion to (A.5) we get,

f ′(z)(1− 1

2
f∞(λ2 + 8λ3)f(z)) ≥ 0. (A.6)

Next we evaluate,

da(σ)

dσ
=

3z̄ (z − z̄z′)
(
z̄2
(
4− 5f∞a1z

′2)+ f∞(4λ1 + 3λ2)z2
)

4z4

+
z′′a1

(
f∞z̄

3 (3z − 7z̄z′)
)

2z3
+
z(3)(z̄)f∞z̄

4a1

2z2

(A.7)

Again setting a1 = 0 we get,

da(σ)

dσ
= 3

z̄3

z3

(
1− z̄

z
z′
)(

1− 1

2
f∞(λ2 + 8λ3)

(z
z̄

)2
)

(A.8)

Linearization gives,

da(σ)

dσ
= 3

(
1−

∫ 1

0

√
f(z)√
f(αz)

dα

)(
1− 1

2
f∞(λ2 + 8λ3)

)
(A.9)
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Now we can write,

1−
∫ 1

0

dα
√
f(z)√

f(αz)
= −1

2

∫ 1

0

dα√
f(αz)

∫ z

αz

dβ√
f(β)

f ′(β) (A.10)

Using this we can write,

da(σ)

dσ
= −3

2

∫ 1

0

dα√
f(αz)

∫ z

αz

dβ√
f(β)

f ′(β)

(
1− 1

2
f∞(λ2 + 8λ3)

)
. (A.11)

So,
da(σ)

dσ
≤ 0 (A.12)

upto the linear order.
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