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1 Introduction

One century has elapsed since Einstein first presented his theory of general relativity (GR)

to the world [1]. Despite its overwhelming success, GR faces serious challenges at both the

very large (cosmological) length scales and the very small (quantum) length scales. While

in the former case the pressing issues of the nature of dark matter and dark energy may

be conceivably resolved by postulating the existence of additional fields, for the latter the

concern is the difficulty in combining GR with quantum mechanics and therefore obtain

a complete theory of quantum gravity. Among the several proposals, string theory is one

of the main contenders [2]. At any rate, any theory of quantum gravity certainly requires

going beyond general relativity.

Models of gravity coupled to scalar fields and Maxwell terms are the simplest extensions

of GR. Moreover, they arise naturally in supergravity theories that represent low-energy

effective descriptions of string theories [3–6]. If string theory really is the theory of quantum

gravity realised in nature, then classical physics operating in regions of weak gravity should

be addressed in the context of such effective theories. In particular, string effects on

the gravitational collapse and black hole (BH) formation should be studied within this

framework, at least for the sub-Planckian phase of the evolution. These processes are

fundamentally dynamic and exact, time-dependent solutions are typically hard to find.1

1See however ref. [7] for spherical collapse and black hole formation in Gauss-Bonnet gravity.
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In this paper we partially remedy this situation by presenting time-dependent black

hole solutions of Einstein-Maxwell-dilaton theory. For a certain value of the dilaton cou-

pling constant, this theory is obtained as the four-dimensional low-energy effective descrip-

tion of heterotic [E8 × E8 or SO(32)] string theory, upon truncation of some form fields.

However, several other values of the coupling are naturally generated by considering in-

tersecting branes in string theory. In the interest of generality, we obtain solutions for

arbitrary dilaton coupling. These novel spacetimes are the analogues of the well-known

Vaidya [8–10] and Bonnor-Vaidya [11] solutions in Einstein gravity and Einstein-Maxwell

theory, respectively.

Static, charged, spherically symmetric solutions of this theory have been known for

some time [12, 13]. They differ from Reissner-Nordström black holes — their Einstein-

Maxwell counterparts — in notable ways. For example, they possess only one horizon.

Also, in the extremal limit they become singular and (for certain values of the dilaton

coupling) their temperature becomes non-zero, or even infinite, though they are prevented

from radiating by an equally infinite potential barrier [14].

We will restrict our study to spherically symmetric solutions, which are of interest

for the simplest dynamical scenarios, namely spherical collapse. As we will see, the role

of the “radiation” is played by a charged null fluid component that permeates spacetime,

in full analogy with [11]. Clearly, if we were in vacuum, i.e., if the stress-energy tensor

vanished, there could be no gravitational or electromagnetic waves emitted since that would

correspond to monopolar radiation, which is absent for massless spin-2 and spin-1 fields.2

However, there can be scalar emission even when restricting to spherical symmetry, and

indeed this is what one expects from, say, a dynamical spherical thin shell that is charged

under the dilaton field [15].

The solutions we present have a time-dependent metric and Maxwell field, but — for

strictly positive dilaton couplings a 6= 1 — a time-independent dilaton.3 The value a = 1 is

therefore special, in the sense that it is the only coupling which allows for time dependence

in the scalar field, at least for the class of solutions we present. The other special value

of the coupling constant is a = 0, in which case the dilaton decouples and our solutions

reduce to the Bonnor-Vaidya expressions. Hence, for a 6= 1 these solutions cannot be used

to describe a radiating scalar-charged shell collapsing in empty space. They can, however,

be used to study the collapse of scalar-uncharged shells and thus serve as toy models for

evaporating black holes in Einstein-Maxwell-dilaton theory, along the lines of ref. [18].

As we will address in section 5, these solutions can be employed in simple tests of

the cosmic censorship conjecture (CCC), analogous to ref. [19] in Einstein-Maxwell theory.

For the general case a 6= 1 we prove that our black hole solutions cannot be overcharged

by bombarding them with a spherically symmetric stream of charged null dust, satisfying

standard energy conditions. Remarkably, for a = 1 we show that there exists a family

of solutions that describe initially regular states evolving into a final naked singularity.

These solutions obey the usual energy conditions and thus constitute a violation of cosmic

censorship within Einstein-Maxwell-dilaton theory.

2Correspondingly, in spherical symmetry Birkhoff’s theorem and Gauss’ law force the metric and the

Maxwell field to be static in vacuum.
3Note that the uniqueness theorems of refs. [16, 17] assume staticity, which is not the case in our study.
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We note that cosmic censorship in effective dilaton gravity was studied some years ago

by Maeda et al. [20], with a setup very similar to ours. However, there are two important

differences: they considered asymptotically de Sitter solutions — and, as those authors

showed, a non-vanishing cosmological constant does have a crucial effect on gravitational

collapse —, while we have a charged null fluid component which is absent in their setting.

For choices of the dilaton coupling parameter for which the Einstein-Maxwell-dilaton

theory derives from a (consistent truncation of a) higher-dimensional string theory in the

low energy limit, it is of obvious interest to know whether there exist, within the parent

theory, natural sources capable of supporting our new solutions. I.e., are there objects

in string theory whose four-dimensional low-energy effective description coincides with a

charged null fluid? While some candidates present themselves, currently the answer is not

obvious and a full analysis of this problem is beyond the scope of this paper. Nevertheless,

we discuss this point at more length in the final section.

The rest of the paper is organised as follows. In the next section we display the field

equations for the Einstein-Maxwell-dilaton theory. In section 3 we briefly review the well

known static black hole solutions of the theory under consideration. The derivation of

the new time-dependent solutions is presented in section 4, together with their physical

interpretation. In section 5 we use these solutions to perform a simple test of the CCC in

the context of low-energy effective string theory. We close in section 6 with a discussion

of the results, their interpretation and a brief outlook. We provide some details on the

determination of energy conditions in the appendix.

2 Field equations

We consider the following Lagrangian for Einstein-Maxwell-dilaton theory (henceforth we

set G = c = 1),

L =

√
−g

16π

[
R− 2(∇φ)2 − e−2aφF 2 + 16πAµJ

µ
]

+ Lm , (2.1)

where g is the determinant of the metric gµν , Aµ is a Maxwell field with field strength

Fµν = ∂µAν − ∂νAµ, and φ is a scalar field (the dilaton), which is coupled to the field

strength. For the sake of generality, we have parametrized the dilaton coupling by a

constant a, with a = 1 in the case of heterotic string theory and a =
√

3 in a Kaluza-Klein

reduction from five dimensions [12]. Besides these, other values can also be obtained from

compactification (and truncation) of intersecting brane solutions [21, 22]. In the action

above we have also included the minimal coupling of the Maxwell field to a current Jµ and

an extra matter Lagrangian which will account for the fluid. The field equations arising

from eq. (2.1) read

∇µ
(
e−2aφFµν

)
= −4πJν , (2.2a)

∇2φ+
a

2
e−2aφFµνF

µν = 0 , (2.2b)

Gµν = 8πTµν ≡ 8π
(
T (dil)
µν + T (EM)

µν + T (fluid)
µν

)
, (2.2c)
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where Gµν := Rµν − 1
2Rgµν is the Einstein tensor. We split the total stress energy

tensor Tµν into three pieces according to their different origins: a contribution from

the dilaton, 8πT
(dil)
µν := 2∇µφ∇νφ − gµν(∇φ)2, a contribution from the electric field,

8πT
(EM)
µν := e−2aφ

(
2FµαF

α
ν − 1

2gµνF
2
)
, and the charged fluid energy-momentum tensor,

T (fluid)
µν = Tm

µν + gµνAσJ
σ − 2A(µJν) , (2.3)

where Tm
µν := − 2√

−g
∂Lm
∂gµν . We recover the Einstein-Maxwell theory by consistently setting

the dilaton and its coupling to zero, φ = 0 = a.

3 Static black hole solutions

Static solutions of the field equations (2.2) in the absence of the source terms Jµ and Tm
µν

were found in refs. [12, 13]. The electrically charged solution reads [13]

ds2 = −λdt2 + λ−1dr2 + r2BdΩ2 , (3.1)

F = −Q
r2
dt ∧ dr , (3.2)

e2φ(r) = e2φ0(1− r−/r)
2a

1+a2 , (3.3)

with

λ(r) = (1− r+/r)(1− r−/r)
1−a2
1+a2 , (3.4)

B(r) = (1− r−/r)
2a2

1+a2 , (3.5)

where the physical mass M , the electric charge Q, and the dilatonic charge D are related

to r± by

M =
r+

2
+

1− a2

1 + a2

r−
2
, Q2 = e2aφ0 r+r−

1 + a2
, D =

a

1 + a2
r− . (3.6)

For a = 0 we simply recover the Reissner-Nordström solution, supplemented by a constant

(decoupled) scalar field, with an event horizon at r = r+ and an inner Cauchy horizon at

r = r−. But for any nonvanishing a the surface r = r− is singular, since its area goes to

zero. The absence of a naked singularity thus imposes r+ > r−.

While the above solution (3.1)–(3.3) refers to electrically charged black holes, it is easy

to obtain magnetically charged solutions via electric-magnetic duality [13]. It turns out

that the metric remains unaltered while the dilaton field flips sign.

For any given choice of coupling constant a — which distinguishes between differ-

ent theories — these solutions are parametrized by two numbers, r±.4 Therefore, al-

though there are three conserved charges (M , Q, D) they are not all independent. Indeed,

they satisfy

a2e−2aφ0Q2 = 2aMD − (1− a2)D2 . (3.7)

4One may also count the asymptotic value of the dilaton, φ0, as a further parameter. However, this can

be trivially generated since the sourceless field equations (2.2) are invariant under a simultaneous shift of

the dilaton, φ→ φ+ φ0, and a rescaling of the Maxwell field, Aµ → eaφ0Aµ.
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In the following we will consider the generalization of these static solutions to time-

dependent ones. In particular we will search for spherically symmetric solutions of the

charged Vaidya type.

4 Derivation of new time-dependent solutions

We now adapt the procedure of refs. [11, 23] to the Einstein-Maxwell-dilaton theory we are

considering.

Let us take the above static solution written in retarded/advanced Eddington-

Finkelstein coordinate u := t−εr∗ (with dr/dr∗ = λ and ε = ±1 for retarded and advanced

coordinate, respectively), and promote the mass and electric charge to functions of u, so

that r+ = r+(u) and r− = r−(u) in the equations above. In practice, our ansatz is

ds2 = −λ(u, r)du2 − 2εdudr + r2B(u, r)dΩ2 , (4.1)

F = −Q(u)

r2
du ∧ dr , (4.2)

where λ(u, r), B(u, r), Q(u) [and similarly φ(u, r)] are obtained from the expressions in

eqs. (3.3)–(3.6) by promoting r+ and r− to functions of u. Following the static case, our

solutions will only be parametrized by two functions of u. Nevertheless, one might expect

that the most general such solution is parametrized by three functions.

With the ansatz above, Maxwell’s equations impose

Jν = −e
−2aφ(u,r)

4πr2
Q′(u)δνr , (4.3)

where the prime denotes a derivative with respect to u. Thus, as long as the electric charge

is not constant we will get a non vanishing radial current, which is nevertheless divergence-

free, ∇νJν = 0. The electromagnetic field is Coulombian and the electric current decays

as r−2 at large r.

On the other hand, the dilaton field equation (2.2b) imposes

a
(
1− a2

)
r′−(u) = 0 . (4.4)

Therefore, if a = ±1 or a = 0 the dilaton equation is automatically satisfied for any choice

of r−(u), whereas for a2 6= 0, 1 it enforces r−(u) = constant.5 Leaving aside the Einstein-

Maxwell limit a = 0, which was analyzed in ref. [11], the case of heterotic string theory,

a = 1, is therefore special and will be treated separately.

Now we turn our attention to the Einstein field equations (2.2c). It is useful to intro-

duce the following (future-pointing in contravariant form) null vectors:

`µ = −∂µu = −δuµ , nµ =
1

2
guuδ

u
µ − εδrµ , (4.5)

5Henceforth we restrict to a ≥ 0. This condition can be enforced without loss of generality through the

symmetry φ→ −φ, a→ −a of the Lagrangian (2.1).
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which satisfy `µ`
µ = 0, nµn

µ = 0 and `µn
µ = −1. We seek a solution of the Einstein

equations with an additional source term (i.e., besides the stress-energy tensor due to the

dilaton and the Maxwell field) of the form of a null fluid (cf. e.g. [23]):

8πT (fluid)
µν = µ`µ`ν + (ρ+ P )(`µnν + `νnµ) + Pgµν , (4.6)

where µ receives contributions from both the matter Lagrangian, Lm, and from the current

terms, A(µJν), in eq. (2.3). Note that, for our solutions, the term AσJ
σ in eq. (2.3) vanishes

and the term A(µJν) only has a uu-component, which contributes to the energy density µ

but not to P and ρ.

The above form (4.6) of the stress-energy tensor is a generalization of a null dust —

which would have P = ρ = 0 and thus describes a pressureless fluid with energy density

µ moving with four-velocity `µ. Nevertheless, this stress-energy tensor supports an energy

flux only along the null vector n, namely

T (fluid)
µν `µ`ν = 0 , 8πT (fluid)

µν nµnν = µ . (4.7)

The energy conditions for such a stress-energy tensor have been discussed in

refs. [23, 24]. If µ 6= 0 the stress-energy tensor is of type II according to the standard

terminology of refs. [25, 26]. In this case the dominant energy condition imposes µ > 0

and ρ ≥ P ≥ 0, whereas the weak and strong energy conditions both impose µ > 0,

ρ ≥ 0 and P ≥ 0.

4.1 Solving the Einstein field equations with a null fluid

From eq. (2.2c), it turns out that the total stress-energy tensor sourcing the Einstein

equations,

Tµν = T (dil)
µν + T (EM)

µν + T (fluid)
µν , (4.8)

cannot be written in the form (4.6) unless a = 0, in which case the dilaton component of the

stress-energy tensor vanishes and we recover the Bonnor-Vaidya solutions [11]. In this case

the total stress-energy tensor can actually be written in the form (4.6), as shown in [23].

For generic coupling a, both the electromagnetic component T
(EM)
µν and the fluid com-

ponent T
(fluid)
µν are of the form (4.6). The stress-energy tensor derived from the Maxwell field

has µ(EM) = 0 and P (EM) = ρ(EM), whereas the fluid component has vanishing pressure and

µa=1 =
ε
[
(r+(u)r−(u))′ − 2rr′+(u)

]
+ 2r2r′′−(u)

2r2[r − r−(u)]
, (4.9)

µa=0 = −ε
r′+(u)(r − r−(u)) + r′−(u)(r − r+(u))

r3
, (4.10)

µa 6=1,0 = −ε
[
(1 + a2)r − r−

]
(1 + a2)r

3+a2

1+a2 [r − r−]
2a2

1+a2

r′+(u) , (4.11)

ρa=1 = −ε 1

r[r − r−(u)]
r′−(u) , (4.12)

ρa 6=1 = 0 . (4.13)

When the dilaton coupling vanishes the equations above reproduce the Bonnor-Vaidya

expressions, as expected.
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For this type of stress-energy tensor all energy conditions reduce to µ ≥ 0 and ρ ≥ 0.

The latter condition is automatically satisfied when a 6= 1, whereas when a = 1 it imposes

εr′−(u) ≤ 0 for a = 1 , (4.14)

since the denominator in eq. (4.12) is necessarily positive for the metric to be regular.

Likewise, when a 6= 1 eq. (4.11) imposes

εr′+(u) ≤ 0 for a 6= 1 , (4.15)

i.e., the (past) apparent horizon must increase (decrease) in time for absorbing (radiat-

ing) solutions, for which ε = −1 (ε = +1), as expected. For a = 1 we obtain instead,

from eq. (4.9),

2r2r′′− + ε
[
(r+r−)′ − 2rr′+

]
≥ 0 for a = 1 . (4.16)

The relations between r± and (M,D) allow us to express eq. (4.9) alternatively as

µa=1 =
2

r2 (r − 2D)
µ̄ , (4.17)

where we defined

µ̄ := r2D′′ + εMD′ − ε(r −D)M ′ . (4.18)

Therefore, in the special case a = 1, the energy conditions can be reduced to

εD′ ≤ 0 , µ̄ ≥ 0 . (4.19)

We remark, in passing, that for a = 1 the existence of radiating (ε = +1) solutions for

which the mass grows in time is allowed in principle — at least momentarily — as long as

the second derivative of the dilaton charge is sufficiently large (and positive). This curious

observation is similar to the Einstein-Maxwell case, where the Schwarzschild mass can also

increase if the black hole ionizes at a faster rate [11].

In the analysis above we took a practical approach, considering the functions r±(u) are

known a priori and deriving from them the stress-energy tensor components. Conversely,

given a choice of matter content (µ and ρ) and the parameters of an initially static BH

(r±) one can integrate eq. (4.12), for a = 1, to obtain the function r−(u). Upon inserting

the result into eq. (4.9), one can integrate to determine r+(u) and therefore the entire

evolution of the system. Likewise, for a 6= 1 and a 6= 0, eq. (4.11) can be integrated for

any given µ to determine r+(u) (note that r− = const in this case). We remark that this

discussion does not apply to the case a = 0.

4.2 The constant-D solution

As previously discussed, the case a = 1 is special since it is the only non-trivial coupling

which allows for time dependence of the scalar charge D(u) = r−(u)/2. However, also in

this case a particularly simple solution is obtained when D = const, i.e. r′−(u) = 0. For such

a choice the dilaton field (3.3) becomes time-independent and the sole time dependence is

in the metric and in the Maxwell field.

– 7 –
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In this situation the a = 1 and a 6= 1 cases can be treated simultaneously and eq. (4.11)

and (4.13) are valid for any a. In particular, ρ = P = 0 for any a and so the fluid

stress-energy tensor is actually of the form of null dust, just like in the Vaidya [8, 9] and

Bonnor-Vaidya [11] solutions.

The condition (4.14) is trivially satisfied and the second condition (4.15) only imposes

that the (past) apparent horizon shrinks in time for the radiating (ε = 1) solution and

increases in time for the absorbing (ε = −1) solution.

It is illustrative to show the constant-D solution for a = 1 explicitly, to which we

restrict for the rest of this subsection. In such case M(u) = r+(u)/2, Q2(u)/M(u) =

2e2φ0D = const,6 and

ds2 = −
(

1− 2M(u)

r

)
du2 − 2εdudr + r2

(
1− 2D

r

)
dΩ2 , (4.20)

F = −Q(u)

r2
du ∧ dr , e2φ = e2φ0

(
1− 2D

r

)
, (4.21)

µ(u, r) = −ε 2

r2

(r −D)

r − 2D
M ′(u) , (4.22)

with ρ = P = 0 and Jµ given by eq. (4.3) with a = 1. Finally, the condition µ ≥ 0 reduces

to εM ′(u) ≤ 0, i.e. for ε = 1 (respectively, ε = −1) the mass decreases (respectively,

increases) in time, as one would expect for a radiating (respectively, absorbing) solution.

In the previous subsection we discussed the energy conditions on the fluid’s stress-

energy tensor. However, if the solution as a whole is to make physical sense then the

total stress-energy tensor — including contributions from the charged null dust, from the

Maxwell field and from the dilaton — should satisfy the usual energy conditions. Comfort-

ingly, this is guaranteed if the energy conditions on the null dust component are obeyed.

It is well known that the electromagnetic field complies with the dominant and the weak

energy conditions — although they can be easily violated by scalar fields [25, 27] — and

it can be checked explicitly that the weak, strong and dominant energy conditions on

the total stress-energy tensor are satisfied. We refer to the appendix for details on the

energy conditions.

4.3 Physical interpretation of the constant-D solution

It turns out that the three contributions to the stress-energy tensor (4.8) are not individ-

ually conserved:

8πχ∇µT (dil)
µν =

{
0,

2r−r+(u)

r(r − r−)
, 0, 0

}
, (4.23a)

8πχ∇µT (EM)
µν = −

{
1 + a2

a2
r′+(u),

2r−r+(u)

r(r − r−)
, 0, 0

}
, (4.23b)

8πχ∇µT (fluid)
µν =

{
1 + a2

a2
r′+(u), 0, 0, 0

}
, (4.23c)

where χ := (1− r−/r)
2a2

a2+1 [
(
1 + a2

)2
r4]/(a2r−). However, their sum is conserved, of

course, by virtue to the contracted Bianchi identity.

6For generic a 6= 1 the constant-D condition can be equivalently written as M(u) −√
M(u)2 − (1− a2)e−2aφ0Q(u)2 = const.

– 8 –
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Recall this solution is supported by null dust with energy density µ propagating with

four-velocity `µ. Therefore, the total flux F of energy across a sphere of constant r is

given by

F = vol(S2) (−T ru(fluid)) = 4πr2B(r)ε
µ(u, r)

8π

= −(1 + a2)r − r−
2(1 + a2)r

r′+(u) = − d

du

[
M − Q2e−2aφ0

2r

]
, (4.24)

where in the last step we used the relations (3.6) between (M,Q) and (r+, r−) and the

fact that r− = const for the constant-D solution. Note there is no contribution to the flux

of energy from the Maxwell field, T ru
(EM) = 0. There is also no contribution from the

dilaton, since it is static. Therefore, this is really the total energy flux.

The expression on the right hand side of eq. (4.24) is none other than the variation of the

energy contained inside the sphere of radius r. From the total energy in the spacetime, M ,

one must subtract the electric energy stored outside the sphere. To support our assertion,

we then have to compute the energy density in the electromagnetic field, which is given by

8πT (EM)
µν ξµξν = ρ(EM) = e−2aφ(r)

(
∂Au
∂r

)2

, (4.25)

where ξµ = (−guu)−1/2 δµu is the normalized four-vector of an observer sitting at constant r

coordinate, in addition to constant angular coordinates. The electric energy stored in the

space outside a sphere of radius r is obtained by integration over the volume,

E
(EM)
>r = 4π

∫ ∞
r

T (EM)
µν ξµξν r̄2B(r̄)dr̄ =

e−2aφ0Q2

2r
, (4.26)

which precisely matches the second term inside the brackets in eq. (4.24).

The energy stored inside a sphere of a given radius r is a coordinate-dependent quan-

tity, whereas the total energy in the spacetime — which is obtained by taking the r →∞
limit — has a clear invariant meaning. The latter agrees with the result obtained by

using any standard pseudotensor method [28]. However, we note that when considering

strictly finite regions of spacetime (even for asymptotically flat spacetimes) different pseu-

dotensor methods typically yield different order O(r−1) terms for the energy and power

radiated [29, 30] and generally they will not agree with the subleading term in eq. (4.24).

We can also establish a parallel with the physical interpretation given in [19], applied

to the absorbing (ε = −1) constant-D solution. The second term inside the brackets in the

right-hand side of eq. (4.24) is related to the work, dW , done on the charge dQ (assumed

to have the same sign of Q so that Q2 increases) by the electrostatic repulsive force, as the

spherical distribution of charges move from∞ to a radius r. To see this, one first computes

the Lorentz force:

fα(el) = gαµFµνJ
ν = −Ju

∂Au
∂r

δαr =
r−

8π(1 + a2)r4

(
1− r−

r

)−2a2

1+a2 r′+(u)δαr , (4.27)

where we note that in this case u is an advanced time coordinate. Then, by integrating

over the whole sphere, the work done against the electrostatic force reads

W =

∫ r

∞
f r(el)4πr̄

2B(r̄)dr̄ = − r−
2(1 + a2)r

r′+(u) = − d

du

(
e−2aφ0Q2(u)

2r

)
, (4.28)
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where again in the last step we used the relations (3.6) between (M,Q) and (r+, r−) in

the particular case of the constant-D solution. This result matches the contribution of

the electric field to the power radiated computed in eq. (4.24), which explains why the

charged dust particles are not decelerated by the electric field and actually move along

null geodesics.

Finally, let us compute the flux of charge across a sphere with radius r:

J = vol(S2) Jr = −4πr2
(

1− r−
r

) 2a2

1+a2 e
−2aφQ′

4πr2
= −e−2aφ0Q′ , (4.29)

where eq. (3.3) was used in the last step. This is independent of r, which is a consequence

of charge conservation.

To summarize, this solution is very similar to the Bonnor-Vaidya solution. As in the

latter case, there is a null dust that carries away energy from the central body and a null

electric current which removes charge (for radiating solutions, ε = +1). The dilaton does

not play any role because it is time-independent — and the mass and charge are linked

through constraint (3.7). Therefore, when M decreases, Q2 must also decrease.

4.4 The non-constant-D solution

As previously discussed, the non-constant-D solutions require a = 1. The full solution reads

ds2 = −
(

1− 2M(u)

r

)
du2 + 2dudr + r2

(
1− 2D(u)

r

)
dΩ2 , (4.30a)

F =
Q(u)

r2
du ∧ dr , Q2(u) = 2D(u)M(u)e2φ0 , (4.30b)

e2φ = e2φ0

(
1− 2D(u)

r

)
, (4.30c)

Jµ = − [D(u)M(u)]′

4πr[r − 2D(u)]Q(u)
δµr , (4.30d)

µ =
2
{
r2D′′(u) + εM(u)D′(u)− ε[r −D(u)]M ′(u)

}
r2[r − 2D(u)]

, (4.30e)

ρ =
−2εD′(u)

r[r − 2D(u)]
, (4.30f)

and the fluid has vanishing pressure, P = 0. The energy conditions for the fluid component

of the stress-energy tensor impose that expressions (4.30e) and (4.30f) be non-negative.

In the appendix we show that the energy conditions for the total stress-energy ten-

sor are satisfied throughout the entire spacetime provided the fluid satisfies the energy

conditions. In other words, µ ≥ 0 and ρ ≥ 0 in eqs. (4.30e) and (4.30f) are also sufficient

conditions for the regularity of the total matter content of the non-constant-D solutions. It

is worth pointing out that the dilaton component does violate energy conditions sufficiently

close to the apparent horizon, as demonstrated in the appendix. This is somewhat remi-

niscent of the situation for dilaton black holes in higher curvature gravity [31], although in

that case it is the total effective stress-energy tensor that violates energy conditions close

to the horizon due to contributions of higher derivative terms.
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5 Violation of the cosmic censorship conjecture

The absorbing solutions obtained in section 4, with ε = −1, describe electrically charged

BHs in Einstein-Maxwell-dilaton gravity that are bombarded with a spherically symmetric

stream of charged null fluid.

These solutions are useful to perform tests of the CCC which, roughly speaking, asserts

that curvature singularities developing during the evolution of regular initial data should

be covered by event horizons in any physically realistic spacetime with sensible matter con-

tent [32]. In principle, if a black hole solution admits an extremal configuration, one can

imagine an experiment in which the black hole is made to exceed extremality, e.g., by over-

charging or overspinning it [33]. With our exact solutions, one may attempt to violate the

condition r+(u) > r−(u) by investigating how the black hole reacts to the stream of charged

null fluid (cf. e.g. [19] for a similar gedankenexperiment in Einstein-Maxwell theory).

Let us start by considering the simplest case: the absorbing constant-D solution for

dilaton coupling a = 1, which was presented explicitly in eqs. (4.20)–(4.22), with ε = −1.

In this case the charged null fluid sourcing the solution reduces to charged null dust.

As previously discussed, all energy conditions impose µ > 0 in an open domain that

contains the apparent horizon, r+ = 2M(u). Because D is constant, if we start with a

regular solution at u = 0, i.e., M(0) > D, then µ(0, r ≥ r+) > 0 and eq. (4.22) implies

M ′(0) > 0. This, in turn, imposes M(u > 0) > D in the future. This simple argument

shows that in this case the energy conditions enforce cosmic censorship.

It is also easy to generalize this argument to any value of a. In the generic case the

energy conditions only impose eq. (4.15) which, for ε = −1, implies r′+(u) ≥ 0. Since

r− = const, if we start with a regular solution, r+ > r−, the energy conditions again

prevent the formation of a naked singularity in the future.

Now we move on to the analysis of the non-constant-D solutions discussed in

section 4.4. This case is less trivial and — as we will see — much more interesting, as

it allows the formation of a naked singularity from a regular initial BH geometry.

Consider a solution with constant mass M > 0, with non-decreasing scalar charge,

D′(u) ≥ 0, and obeying

4D′′(u) ≥MD′(u)/D(u)2 . (5.1)

One may take D(u < 0) = const, so that the fluid is absent before u = 0 and the spacetime

is static at early advanced times u < 0. We also require that M > D(u < 0) for the

curvature singularity at r = 2D(u) to be covered by the horizon at r = 2M . The energy

condition arising from eq. (4.30f) is automatically satisfied. Moreover, the energy condition

stemming from eq. (4.30e), µ ≥ 0, is also satisfied in the entire spacetime7 by virtue of

inequality (5.1). An example is provided by the following explicit solution,

M = const , D(u) =

{
M
2 for u < 0 ,(
1 + u2

u2s

)
M
2 for 0 ≤ u ≤ us ,

(5.2)

which starts out as a regular black hole for u < 0. The above solution satisfies eq. (5.1)

for any M ≥ 3
√

3us/16. For 0 ≤ u < us the body accretes scalar charge (without in-

creasing mass) supplied by an infalling charged null fluid satisfying all standard energy

7Recall the radial coordinate is bounded from below by 2D(u), where spacetime ends.
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conditions. Finally, at u = us the extremal value is attained, D(us) = M , and thus a

naked singularity is formed.

We therefore reach the remarkable conclusion that cosmic censorship can be violated

in Einstein-Maxwell-dilaton theory, for the particular dilaton coupling a = 1 (which is

arguably the most interesting case from a phenomenological point of view). The coun-

terexamples to the CCC we discussed above require spacetimes with non-constant dilaton

charge D, which do not appear in our class of solutions if a 6= 1. We stress that the energy

conditions for the total stress-energy tensor are satisfied throughout the entire spacetime,

whereas the dilaton component of Tµν violates energy conditions sufficiently close to the

apparent horizon (cf. the appendix).

In the case in which we do find CCC violation, the singularity — initially hidden

inside the black hole — is “pushed outwards” by virtue of the charged matter accreted,

until it reaches the apparent horizon and becomes visible. Thus, the nature of the naked

singularity obtained is distinct from that of shell-crossing singularities [34, 35]. We also

point out that this outcome does not require any fine tuning of parameters. However, we

have only considered spherically symmetric solutions and in this sense the violation is not

guaranteed to be generic.

This situation may be compared with other tests of the CCC that use test bodies to

attempt to overcharge or overspin black holes [33, 36–38]. The main difference is that our

analysis employs exact solutions of the field equations, whereas the latter studies adopt

the test particle approximation, and therefore neglect finite-size and backreaction effects.

Other non-perturbative tests of the CCC have been performed using thin shells [36, 39, 40]

and taking static spacetimes to describe both the interior and exterior regions. Such

approaches therefore assume no radiation is present.

Of course, even if cosmic censorship is violated in the low-energy effective Einstein-

Maxwell-dilaton theory, this does not imply a violation of the CCC in string theory, be-

cause near the hypothetical naked singularity both curvature and string coupling become

large [41]. Therefore, α′ (stringy) corrections and loop (quantum) corrections must be

taken into account and might completely modify the outcome of gravitational collapse.

6 Discussion

We have presented a family of time-dependent black hole solutions to a class of Einstein-

Maxwell-dilaton theories with arbitrary dilaton coupling. The solutions are spherically

symmetric and asymptotically flat. They can be either radiating or absorbing (depending

on the choice of ε = ±1) and are determined by two free functions of the retarded/advanced

time coordinate, r±(u). Alternatively, they are characterised by the total mass M(u) and

dilatonic charge D(u).

The constant-D solution is a physically sensible solution to the Einstein-Maxwell-

dilaton field equations, which is also time-dependent, although the dilaton only has

r-dependence — the dilaton charge is, therefore, constant. For ε = +1, it becomes a

radiating solution (M ′(u) ≤ 0), with the energy (and charge) loss being accounted for by

a null dust component in the stress-energy tensor.
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For the particular case of coupling constant a = 1 — and only in that case — the

dilaton may be time-dependent. For example, we can have outgoing (ε = +1) null fluid

solutions with constant electric charge, Q = const. However, for these spacetimes the

energy conditions impose M ′(u) ≥ 0 so their interpretation as radiating solutions may

not be appropriate. More interestingly, we have shown that a subset of our absorbing

solutions (with ε = −1) describe an initially regular black hole that evolves into a naked

singularity upon the accretion of a charged null fluid. The matter content supporting these

solutions can be made to obey the standard energy conditions. Therefore, this constitutes

a counterexample to the CCC in the context of Einstein-Maxwell-dilaton theory.

The question of whether the charged null dust sourcing the time-dependence of our

solutions can be embedded in low-energy effective string theory after dimensional reduc-

tion remains open. A gas of 6-branes in heterotic string theory wrapped on a six-torus

would, at first, appear to be a natural candidate but these objects are known not to be

supersymmetric [42] and therefore they would not behave as dust. Moreover, D-branes

typically have non vanishing tension and are therefore not light-like objects.8 But at least

null D-branes arise in string theory in the strong coupling limit [43, 44].

Another reasonable possibility would be for the higher-dimensional Yang-Mills field

to act as a source for our solutions. The Einstein-Maxwell-dilaton theory (for a = 1) is

obtained as the four-dimensional low-energy effective description of heterotic string theory,

where the Maxwell field arises from a U(1) subgroup of the (consistently truncated) non-

abelian gauge group. If the remaining ten-dimensional gauge fields are not truncated they

will naturally source the Maxwell field.9 This clearly deserves further study.

Finally, we observe that charged null dust radiation can emerge in certain Kaluza-Klein

reductions of higher-dimensional purely gravitational theories [45], although this particular

origin seems somewhat unnatural since the fundamental theory is Gauss-Bonnet gravity

in six (or more) dimensions and several conditions must be imposed on the dimensional

reduction scheme: for example, the compactification manifold should be a space of constant

negative curvature satisfying a so-called Einstein-space condition, and the Gauss-Bonnet

coupling constant can only take a specific value.

The constant-D solution might also be useful to study the dynamics of a spherical thin

shell around a static black hole in Einstein-Maxwell dilaton theory. Indeed, one may use

such a solution to match with the static black hole interior as to allow a spherical collapsing

shell to radiate. As discussed in the introduction, this would not be the expected description

of a collapsing shell, charged under the dilaton field, since in that situation there would

be scalar radiation and no gravitational or electromagnetic waves. Nevertheless, this can

serve as a toy model to further address cosmic censorship in the vein of string theory. This

problem is currently under study and will be reported elsewhere.

The solutions we presented are electrically charged. The magnetically charged version

can be obtained by starting with the static magnetic black holes and will require the

presence of (magnetically) charged null dust.

8We thank R. Emparan for pointing this out.
9We thank D. Mateos for suggesting this possibility.
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Another interesting application is to extend our results to asymptotically anti-de Sitter

spacetimes. In the context of the AdS/CFT correspondence, Vaidya-like solutions have

been investigated recently to study thermalization and entanglement in strongly coupled

field theories (see refs. [46–51] for an illustrative sample). Some of these models naturally

contain a dilaton with a nontrivial self-potential and possible couplings to gauge fields,

thus resembling closely the setup studied in the present work.

It would also be desirable to go beyond our solutions and obtain radiating/absorbing

spacetimes with dynamics also in the dilaton field for a 6= 1. More generically, are there

dynamical solutions not constrained by eq. (3.7)? Can the CCC be violated also in these

cases? These are challenging questions that will probably require a numerical integration

of the field equations.
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A Energy conditions on the total stress-energy tensor

Here we present some details concerning the energy conditions on the total stress-energy

tensor (4.8), for the most interesting value of the dilaton coupling, a = 1. For completeness,

we also include results for the dilaton component of the stress-energy tensor in the end.

The following analysis is not restricted to the constant dilaton case.

In general relativity the various energy conditions (weak, strong or dominant) can be

expressed in terms of the eigenvectors and eigenvalues of the stress-energy tensor [25, 26].

This can be conveniently done by projecting onto an orthonormal basis. In our specific

case there is one timelike eigenvector E(0) and three spacelike eigenvectors E(1), E(2) and

E(3), which identifies the stress-energy tensor as being type I. Explicitly, the eigenvectors

are given by

E(0)
µ =

r−
√
r

Θ1/4

[
r2
−(r − r+) +

√
Θ

2ε r r2
−

δuµ + δrµ

]
, (A.1)

E(1)
µ =

r−
√
r

Θ1/4

[
r2
−(r − r+)−

√
Θ

2ε r r2
−

δuµ + δrµ

]
, (A.2)

E(2)
µ =

√
r(r − r−)δθµ , (A.3)

E(3)
µ = sin(θ)

√
r(r − r−)δϕµ , (A.4)
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where we have defined

Θ = r2
−

[(
2ε r2r′− + r−(r − r+)

)2
+ 4r2(r − r−)

(
2r2r′′− − 2ε r r′+ + ε(r+r−)′

)]
. (A.5)

From eq. (4.9), we note that the function Θ(u) is guaranteed to be non-negative if the fluid

component is required to satisfy energy conditions, µ ≥ 0, ρ ≥ 0.

Written in the basis {E(i), i = 0, . . . , 3} the total stress-energy tensor is diagonal and

the associated eigenvalues λi are

λ0 = −
2r−r+(r − r−)− 4εr2(r − r−)r′− +

√
Θ

4r3(r − r−)2
, (A.6)

λ1 = −
2r−r+(r − r−)− 4εr2(r − r−)r′− −

√
Θ

4r3(r − r−)2
, (A.7)

λ2 = λ3 = −
r−
[
2r(εrr′− − r+) + r−(r + r+)

]
4r3(r − r−)2

. (A.8)

For such a type I tensor, −λ0 corresponds to the proper energy density of the spacetime,

while the λi with i = 1, 2, 3 yield the principal stresses.

We can now formulate the energy conditions for the total stress-energy tensor Tµν . The

weak energy condition requires −λ0 ≥ 0 and λi ≥ λ0 for i = 1, 2, 3. These inequalities are

automatically satisfied by virtue of eq. (4.14) if we require the fluid component to satisfy

the corresponding energy conditions.

In addition, the dominant energy condition imposes −λ0 ≥ λi for i = 1, 2, 3. The

strong energy condition requires instead
∑3

i=1 λi ≥ λ0. With a little effort it can be shown

that all these inequalities are once again obeyed if eq. (4.14) is assumed to hold.

We conclude that the fulfilment of the energy conditions by the fluid stress-energy

tensor are sufficient to guarantee that the total stress-energy tensor obeys them as well, at

least for the Einstein-Maxwell-dilaton theory with coupling a = 1.

A.1 Energy conditions for the dilaton component of the stress-energy tensor

Turning to the stress-energy tensor derived from the dilaton alone, T
(dil)
µν , one finds that it

is also of type I. Proceeding as above we find find that its eigenvalues are given by

λ
(dil)
0 = −λ(dil)

1 = λ
(dil)
2 = λ

(dil)
3 = −

r−
(
2ε r2r′− + r−(r − r+)

)
4r3(r − r−)2

. (A.9)

Therefore, the weak, dominant and strong energy conditions are satisfied provided

2ε r2r′− + r− (r − r+) ≥ 0 . (A.10)

However, these conditions are manifestly violated sufficiently close to the apparent horizon

r = r+ if inequality (4.14) is imposed, i.e., if the energy conditions for the null dust

component are satisfied.
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