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1 Introduction

Since its first formulation, Lovelock gravity [1] has been a fruitful and widely explored

subject [2–5]. The peculiarity of the theory is to be a higher curvature gravity theory

with second-order field equations for the metric. This characteristic not only allows to

avoid some of the shortcomings of generic higher-derivative theories (such as ghosts in

the linearized excitation spectrum and ill-posed Cauchy problem) but also enables us to
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derive exact black hole (and black brane) solutions of the theory. As a consequence, the

thermodynamics of Lovelock black holes is well known and has several interesting, nontrivial

features. One of these features is that the thermal entropy [6, 7] and the holographic

entanglement entropy [8] of a black hole depend on the higher-curvature gravitational

couplings. It is also well understood that there are in these theories new types of phase

transitions that also depend on the value of the gravitational couplings [9–12].

Lovelock gravity is interesting also from the holographic point of view. The higher

curvature terms in the action correspond, on the gauge theory side of the AdS/CFT cor-

respondence, to corrections due to finite N (rank of the gauge group) and finite t’Hooft

coupling λtH . Thus, Lovelock gravity allows to investigate finite N and λtH effects without

having some of the undesirable features of higher curvature gravity theories.

Among the Lovelock gravity theories, one of the most investigated cases, that will

also be the subject of this paper, is the five-dimensional (5d) Gauss-Bonnet (GB) theory.

Specifically, GB gravity is the 2nd-order Lovelock gravity, i.e., it includes only quadratic

curvature corrections in the Einstein-Hilbert action. The main reason to study 5d GB

in the AdS/CFT framework is that the dual QFT lives in four spacetime dimensions.

Hence, 5d GB gravity can be used to describe 1/N corrections to relativistic QFTs with

a gravitational dual. Particular attention has been devoted to the low-frequency hydro-

dynamic limit, ω, k � T , where ω is the frequency, k is the wavelength number and T

is the temperature of the dual thermal QFT. In this limit, the theory describes a sort

of “GB plasma” for which transport coefficients can be calculated using the rules of the

AdS/CFT correspondence.

A quantity, which plays a distinguished role in the hydrodynamic regime of thermal

QFTs with gravitational duals is the shear viscosity to entropy density ratio η/s. It has been

shown that η/s attains an universal value 1/4π for all gauge theories with Einstein gravity

duals [13–20]. This fact motivated the formulation of a fundamental bound η/s ≥ 1/4π,

known as Kovton, Son and Starinets (KSS) bound [21, 22], which also found support

from energy-time uncertainty principle arguments in the weakly coupled regime [22] and

known experimental data for quark-gluon plasma [22, 23]. However, it was soon realized

that higher curvature gravity theories may generically violate the bound [24]. This is, in

particular, true for GB gravity theories with a positive coupling constant.

Violation of the KSS bound of higher curvature gravity theories can be understood as

generated by finite-N , finite-λtH effects and traced back to the inequality of the two central

charges of the dual QFT [25, 26]. Nevertheless, this does not answer the question about

the possible existence of general bounds on η/s lower than the KSS one. The GB gravity,

owing to its features, is the most promising playground for trying to answer this question.

Progress in this direction has been achieved by imposing causality and positivity of energy

to the QFT dual to GB gravity [27–29]. These requirements imply some constraints on the

GB coupling parameter, which in turn translate into a bound on η/s lower than the KSS

bound [27–29]. However, the hydrodynamic transport coefficients of a theory are expected

to be determined by IR physics whereas causality requirements are in the domain of the

UV behavior of the dual QFT. The existence of a fundamental bound of the previous kind

for the GB plasma would, therefore, imply an interplay between IR and UV physics, whose

meaning is presently not clear.
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In a parallel, very recent, development it has been shown that generically the KSS

bound is violated if translation invariance is broken [30–33, 55, 56]. If translation symmetry

is preserved in the IR, η/s tends to a constant as T → 0, whereas it scales as a positive

power of T when translation symmetry is broken. Although the breaking of translation

symmetry prevents a purely hydrodynamic interpretation of η, this result strongly indicates

that bounds on η/s are completely determined by IR physics and insensitive to the UV

regime of the theory.

A promising way to tackling this kind of problems is to consider gravitational back-

grounds in which η/s flows as a function of the temperature and for which an IR fixed point

exists at T = 0. Following this indication, in this paper, we will focus on the charged 5d

GB black brane solutions (BB) for which it is known that the ratio η/s flows as a function

of the temperature [34].

We will start by investigating the general Lovelock BB solution as a thermodynamic

system. We will show that, when expressed in terms of effective physical parameters, the

thermodynamic behavior of charged Lovelock BB is completely indistinguishable from that

of charged Einstein BB. We then proceed by focusing on the 5d GB case and investigating

in detail the geometrical properties of the charged GB black brane. We show that the

theory allows for two branches of solutions continuously connected trough a branch-point

singularity. Holographically they represent flows between two different CFTs through a

singularity. Moreover, we show that at extremality, in the near horizon regime, the charged

GB black brane has exactly the same AdS2 × R3 geometry of the Einstein charged black

brane. In fact, in the near horizon regime the contributions of the higher-curvature terms

to the field equations vanish and the AdS2×R3 solution of Einstein-Maxwell gravity in 5d

is also the exact solution of GB gravity in 5d.

In terms of the dual QFT description this means that, although in the UV the associ-

ated dual QFTs for Einstein and GB gravity are different, in the IR they flow to the same

fixed point. We then calculate the shear viscosity to entropy ratio η/s for the extremal and

non-extremal case, using the simple method recently proposed in refs. [30, 31, 35]. Whereas

in the non-extremal case we find a non-universal, monotonically increasing (for negative

GB coupling parameter) or decreasing (for positive GB coupling parameter) temperature-

dependent expression for η/s, in the extremal case we find the universal value 1/4π. Thus,

charged Gauss-Bonnet gives an example of a higher curvature gravity theory in which the

IR behaviour of the dual theory respects the universal bound for η/s and is completely

independent from the UV regime.

The structure of the paper is as follows. In section 2 we briefly review some relevant

features of black brane solutions of Lovelock-Maxwell gravity and show the universality of

their thermodynamic behaviour. In section 3 we review the Reissner-Nordström (RN) BB

solutions of 5d Einstein-Maxwell, including its extremal limit and its AdS2×R3, extremal,

near horizon geometry. In section 4 we discuss the charged black brane solution of GB

gravity, paying particular attention to the geometry of the solution and the extremal,

near horizon regime. In section 5 we discuss the charged GB black brane thermodynamics,

and we consider in detail the thermodynamic behaviour at small and large temperature. In

section 6 we discuss the shear viscosity to entropy ratio for the GB plasma and compute the
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value both for T 6= 0 and T = 0. We also present a discussion about the large T and small

T behaviour. Finally, in section 7 we draw our conclusions. In the appendix A we briefly

discuss the black hole solutions of the GB theory, i.e., the solution with spherical horizons.

2 Black brane solutions of Lovelock gravity

Let us consider black branes that are solutions of Lovelock higher curvature gravity in

d-dimensional spacetime. To describe the static, electrically charged, radially symmetric

AdS Lovelock BB, we use the following line element and electromagnetic (EM) field

ds2 = −f (r)N2dt2 + f (r)−1 dr2 +
r2

L2
dΣ2

d−2 , F =
Q

rd−2
dt ∧ dr , (2.1)

where dΣ2
d−2 denotes the (d− 2)-dimensional space with zero curvature and planar topol-

ogy, whereas L is related to the cosmological constant α̂(0) by L−2 = α̂(0)/(d− 1)(d− 2).

Notice that the metric in eq. (2.1) differs from that in the usual Schwarzschild gauge

by a (constant) rescaling t→ Nt of the time coordinate t. As we will see later in this paper

this rescaling is necessary in order to have a unit speed of light in the dual CFT. Using

the rescaled Lovelock coupling constants

L−2 = α0 =
α̂(0)

(d− 1) (d− 2)
, α1 = α̂(1) , αk = α̂(k)

2k∏
n=3

(d− n) for k ≥ 2 , (2.2)

the field equations read

kmax∑
k=0

α̂(k)G
(k)
ab = 8πGN

(
FacFb

c − 1

4
gabFcdF

cd

)
, (2.3)

where GN is the d-dimensional Newton’s constant and each of the Einstein-like tensors

G(k) a
b defined by

G(k) a
b = − 1

2(k+1)
δa c1d1...ckdkb e1f1...ekfk

R e1f1
c1d1

. . . R ekfk
ckdk

, (2.4)

independently satisfies a conservation law ∇aG(k) a
b = 0. The higher-curvature terms con-

tribute to the equations of motion only for d > 2k. For d = 2k the higher-curvature correc-

tions are topological, and they vanish identically in lower dimensions. Setting α̂(k) = 0 for

k ≥ 2, one can recover the standard form of general relativity. In the notation (2.2), the

field equations (2.3) reduce to the requirement that f (r) solves the following polynomial

equation of degree kmax =
[
d−1

2

]
(see e.g., [2–5, 36–38])

P (f) =

kmax∑
k=0

αk

(
κ− f
r2

)k
=
ωdMADM

Nrd−1
− 8πGNQ

2

(d− 2)(d− 3)

1

r2d−4
. (2.5)

Here MADM is the ADM mass of the black brane and ωd is

ωd =
16πGN
(d− 2)

Ld−2

V d−2
(2.6)
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where V d−2 is the volume of the (d − 2)-dimensional space with curvature κ = 0. The

electric charge Q of the brane is

Q =
Ld−2

2Vd−2

∫
∗F . (2.7)

2.1 Universality of black brane thermodynamics in Lovelock gravity

Interestingly, even without knowing f = f(r) in eq. (2.5) explicitly, it is possible to find

the thermodynamic quantities characterizing the Lovelock black brane solution [2, 39, 40].

Let r+ denotes the radius of the event horizon, determined as the largest root of f (r) = 0.

Introducing the effective mass M and temperature T related to the usual ADM mass MADM

and Hawking temperature TH by the relations

M =
MADM

N
, T =

TH
N
, (2.8)

the black brane mass M , the temperature T , the entropy S, and the gauge potential Φ are

given by [2, 41]

M =
1

ωdL2
rd−1

+ +
Vd−2

2(d− 3)Ld−2

Q2

rd−3
+

, (2.9)

T =
1

2πN

1
√
grr

d
√
−gtt
dr

∣∣∣
r=r+

=
1

4πr+

[
(d− 1)

(r+

L

)2
− 8πGNQ

2

(d− 2)r
2(d−3)
+

]
, (2.10)

S =
V d−2

4GN

(r+

L

)d−2
, Φ =

Vd−2

(d− 3)Ld−2

Q

rd−3
+

. (2.11)

The rescaling of the physical parameters (2.8) of the Lovelock BB having the dimensions

of energy is essentially due to the presence of the constant N2 in the metric. The two

time coordinates t and Nt correspond to using two different units to measure the energy.

However, when we deal with Einstein-Hilbert branes the rescaling of the time coordinate

is not necessary and we will simply set M = MADM and T = TH . Notice that the area-law

for the entropy S always hold for the generic Lovelock black brane.

A striking feature of these thermodynamic expressions is that they do not depend on the

Lovelock coupling constants αk for k ≥ 2 but only on α0 and α1, i.e., they depend only on

the cosmological constant and on Newton constant. This means that the thermodynamic

behaviour of the BB in Lovelock theory is universal, in the sense that it does not depend on

the higher order curvature terms but only on the Einstein-Hilbert term, the cosmological

constant and the matter fields content (in our case the EM field). This implies, in turn,

that as thermodynamic system the charged BBs of Lovelock gravity are indistinguishable

from the Reissner-Nordström BBs of Einstein-Hilbert gravity. Notice that this feature

is not shared by the black hole solutions of the theory, i.e., solutions with spherical or

hyperbolic horizons. In fact, in the Lovelock thermodynamic expressions (see refs. [2, 41])

the dependence on the Lovelock coupling constants αk≥2 is introduced by the dependence

on the curvature κ of the (d − 2)-dimensional spatial sections. This dependence drops

out when κ = 0.
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We remark, however, that the universal thermodynamic behaviour of charged Lovelock

black branes is strictly true only when we choose N = 1 in the metric (2.1). As we will

see later in this paper, the parameter N has to be fixed in terms of the Lovelock coupling

constants αk≥2. Hence, the ADM mass and the Hawking temperature of the Lovelock BB

will depend on αk≥2. The universality of the Lovelock BB thermodynamics is recovered

simply by rescaling the units we use to measure the energy, i.e., by using in eqs. (2.9)

and (2.10) the effective parameters M and T instead of MADM and TH .

In the following, we provide a detailed calculation for the case kmax = 2, i.e., GB gravity

in five spacetime dimensions, which is the most interesting case from the AdS/CFT point

of view. However, we expect that most of our considerations can be easily generalized to

every charged BB solution of Lovelock gravity in generic dimensions.

3 5d Reissner-Nordström black brane solution

Let us preliminary review some known facts about the RN BB solutions of Einstein-Maxwell

gravity. Setting αk = 0 for k ≥ 2 and d = 5 in Eq (2.4), we have standard GR equations

sourced by an electromagnetic field. For this choice of the parameters, eq. (2.5) is a linear

equation in f that gives the following solution:

f = α0r
2 − ω5M

r2
+

4π

3

GNQ
2

r4
, (3.1)

where ω5 is given by eq. (2.6) andGN is the five dimensional Newton’s constant. Performing

the asymptotic limit r →∞, the function (3.1) reduces to f = r2/L2, i.e., AdS5 with AdS

length L2 = α−1
0 . The ratio L3/GN is proportional to the central charge c of the dual CFT.

The central charge c can be defined as the coefficient of the large temperature expansion

of the free energy (see section 5.1). The condition for the validity of classical AdS gravity

in the bulk is c� 1. In most of the established examples of the AdS/CFT correspondence

c ∝ N , where the limit c� 1 is referred to as the large N limit.

Setting r2 = Y in eq. (3.1), the RN BB horizons are determined by the cubic equation

Y 3 − ω5ML2Y +
4π

3
GNL

2Q2 = 0. (3.2)

This equation has two positive roots for

M3 ≥ 12π2G
2
NQ

4

ω3
5L

2
, (3.3)

which gives the extremal (BPS [42, 43]) bound for the RN black brane in 5d. In general,

we will have an inner and outer horizon, when the bound is saturated the two horizons

merge at r0 and the RN BB becomes extremal. In the extremal case, eq. (3.2) has a double

root at Y0 =
√
ω5ML2/3 and f (r) can be factorized in the following way

f(r) =
1

L2r4

(
r2 + r2

0

)
(r − r0)2 (r + r0)2 , r0 =

(
ω5ML2

3

)1/4

. (3.4)
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The extremal near-horizon geometry can be determined expanding the metric near r0 and

keeping only the leading term in the metric

f(r) =
12

L2
(r − r0)2, (3.5)

a simple translation of the radial coordinate r → r + r0 gives the AdS2 × R3 extremal

near-horizon geometry with AdS2 lenght l

ds2 = −
(r
l

)2
dt2 +

(
l

r

)2

dr2 +
(r0

L

)2
dΣ2

3, l
2 =

L2

12
. (3.6)

The extremal solution given in eq. (3.4) is a soliton interpolating between the asymptotic

AdS5 geometry in the UV and the AdS2 ×R3 geometry (3.6) in the IR.

4 Gauss-Bonnet solution

We use the form (2.1) with coupling constant (2.2). Moreover, from now on we set α1 = 1

in order to recover the usual Newtonian limit. For k = 2 and generic curvature κ, eq. (2.5)

reduces to a quadratic equation

α2
(κ− f)2

r4
+

(κ− f)

r2
+ α0 −

ωdM

rd−1
+

8πGNQ
2

(d− 2)(d− 3)r2d−4
= 0 , (4.1)

from which one obtains two possible solutions, f±. In the following, we will refer to the

solution f− as the ‘Einstein branch’ because it approaches the Einstein case when the

Gauss-Bonnet coupling α2 goes to zero and to f+ as the ‘Gauss-Bonnet branch ’ [10]. The

quadratic eq. (4.1) gives the following necessary condition requirement for the existence of

f± for large r:

1− 4α0α2 ≥ 0 . (4.2)

When this inequality is violated, the space becomes compact because of the strong nonlinear

curvature [10]. Therefore, there is no asymptotic ‘AdS region’ and consequently no proper

black hole with standard asymptotics.

4.1 5d GB black brane

In this subsection, we discuss the special case of 5d GB BB (κ = 0). It is easy to check

that that for d = 5 and κ = 0, then eq. (4.1) reduces to the following equation

α2
f2

r4
− f

r2
+ α0 −

ω5M

r4
+

4πQ2

3r6
= 0 (4.3)

and the two branches are respectively

f± =
r2

2α2

[
1±
√

1− 4α0α2

√
1 +

4Mα2ω5

(1− 4α0α2)

1

r4
− 16πGN

3

Q2α2

1− 4α0α2

1

r6

]
. (4.4)

In case of positive GB coupling α2 > 0 that satisfy the condition (4.2), the two branches

describe two asymptotically AdS5 spacetimes, however, from eq. (4.4) one can see that f+

has no zeroes, hence the f+ branch does not describe a BB but a solution with no event

horizon. Thus, only the f− branch describes a BB solution.

– 7 –
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Let us now study the asymptotic geometry of the GB BB. At leading order for r →∞
the metric coefficient gtt = N2f (r) in eq. (2.1) becomes

gtt → N2 r2

2α2

(
1±
√

1− 4α0α2

)
. (4.5)

In order to have the boundary of the asymptotic AdSd conformal to (d− 1)-Minkowski

space with speed of light equal to 1, ds2 ≈ α0r
2(−dt2 + dΣ2

3), the constant N2 has to be

chosen as

N2 =
1

2

(
1∓
√

1− 4α0α2

)
, (4.6)

where we have the + sign for the f− branch, the BB solution, while the − sign has to be

used when we consider the f+ branch.

In the AdS/CFT correspondence, the central charge c of the dual CFT is determined by

the AdS length. Thus, the CFTs dual to GB gravity in both branches have central charge

different from the RN case. Only in the α2 → 0 limit the central charge of the f− branch

coincides with that of the CFT dual to the RN theory. However, naive computation of

the central charge in terms of the AdS length does not work in this case because of the

rescaling of the time coordinate. We will compute c in section 5 using the scaling law of

the mass and entropy as a function of the temperature.

For α2 < 0, only the f− branch is asymptotically AdS. Conversely, the f+ branch

describes a spacetime which is asymptotically de Sitter (dS) and can be therefore relevant

as a cosmological solution.

4.2 Singularities

To determine the position of the singularities of the spacetime we calculate the scalar

curvature for both the f± branches:

R(±) = ∓1

2

βr2(20r10 + 30σr6 − 31ρr4 + 6σ2r2 − 9ρσ)± 20r3(r6 + r2σ − ρ)3/2 + 2βρ2

α2r3(r6 + σr2 − ρ)3/2
,

(4.7)

where the ± sign refers respectively to the f± branches. To simplify expressions we used

(here and after) the following notation

β =
√

1− 4α0α2, σ =
4α2ω5M

β2
, ρ =

16πGNα2Q
2

3β2
, e =

1

β2
− 1 =

4α0α2

β2
, Y = r2.

(4.8)

There are curvature singularities at r = 0 and at the zeroes of the argument of the square

root in eq. (4.7) (branch-point singularities). The position of the physical singularities of

the spacetime is therefore determined by the pattern of zeroes of the function g(Y ), with

g(Y ) = Y 3 + σY − ρ. (4.9)

The singularity will be located at the biggest positive zero Y1 of g(Y ) or at r = 0 when

g(Y ) has no zeroes for positive Y . The singularity at Y = Y1 is a branch point singularity.

The pattern of zeroes of g(Y ) is determined by the signs of the coefficients ρ, σ and the

discriminant ∆ =
(ρ

2

)2
+
(
σ
3

)3
.

– 8 –
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• For σ > 0, the function g(Y ) is a monotonic increasing function of Y with a single

zero which, depending on the sign of ρ, will be positive Y = Y1 (ρ > 0) or negative

(ρ < 0). The physical spacetime singularity will be therefore located at r =
√
Y1 for

ρ, σ > 0 and at r = 0 for ρ < 0, σ > 0.

• For σ < 0, the function g(Y ) is an oscillating function with a maximum at negative

Y and a minimum at positive Y , it may therefore have one, two or three zeros. For

σ < 0, ρ > 0, g(Y ) has at least a positive zero. For σ < 0, ρ < 0 we have a positive

zero for ∆ ≤ 0 and no positive zeros for ∆ > 0. For ∆ = 0 we have a double zero

of g(Y ) so that Y1 is not anymore a branch point singularity. In this latter case the

singularity is at r = 0.

Summarising, the physical singularity is always located at r =
√
Y1 unless σ > 0, ρ < 0 or

σ < 0, ρ < 0,∆ ≥ 0 in which case the singularity is at r = 0.

4.3 f− branch

In this subsection, we study in detail the horizons of the f− branch, solution of eq. (4.4),

describing the GB black brane. In general the BB will have an inner (r = r−) and outer

(r = r+) event horizon. The BB becomes extremal when r+ = r−. Using the nota-

tion (4.8), (4.9), one finds that the necessary condition for the existence of the BB is the

positivity of the argument in the square root in eq. (4.4), i.e., g(Y ) ≥ 0. The position of

the event horizon(s) is determined by the positive roots of the cubic equation

h(Y ) = eY 3 − σY + ρ = 0. (4.10)

We will first consider the case α2 > 0, which corresponds to σ, ρ, e > 0 (since also α0 > 0).

The condition for the existence of real roots of the function h(Y ) can be easily found: the

function h(Y ) has a maximum (minimum) for, respectively

Y = YM,m = ±
√
σ

3e
= ±

√
ω5ML2

3
(4.11)

also, h(Y = 0) = ρ > 0, hence the cubic equation (4.10) always has a negative root. The

existence of other roots is determined by the sign of h(Ym). We will have two (one) positive

roots hence a BB with two (one) event horizons for h(Ym) ≤ 0, i.e., for

ρ ≤ 2

3
σ

√
σ

3e
. (4.12)

Using eq. (4.8), the previous inequality can be written in terms of the charge Q and the

effective mass M and gives the same Bogomol’nyi-Prasad-Sommerfield (BPS) bound (3.3)

found in the RN case. However, the BPS bound is modified when we instead express it in

terms of the ADM mass:

M3
ADM ≥ 12N3π2G

2
NQ

4

ω3
5L

2
. (4.13)
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Figure 1. Behaviour of the metric functions f± for α2,M > 0 and selected values of the other

parameters. The dashed (solid) lines describe the f+ branch (f− branch). The red, green, brown

and blue solid lines describe respectively a naked singularity, an extremal, two-horizon and vanishing

charge BB geometry. The corresponding dashed lines describe spacetimes with a naked singularity.

When the bound is saturated, the inner and outer horizon merge at r− = r+, the

BB becomes extremal, and the solution describes a soliton. The striking feature of the

BPS bound (4.12) is that the BPS bound of 5d Gauss-Bonnet BB does not depend on the

Lovelock coupling constant, and it is exactly the same one gets for GR (α2 = 0), i.e., for the

5d Reissner-Nordström BB. When M does not satisfy the inequality (4.12), the spacetime

describes a naked singularity. For α2 > 0, the condition M > 0 implies σ, ρ > 0 and the

function g(Y ) is a monotonic increasing function which cuts the Y -axis at the point Y1,

and, in view of the previous discussion, it also gives the position of the singularity. Since,

the position of the event horizon Yh is determined by the equation

β
√
g(Yh) = Y

√
Yh , (4.14)

from which follow that g(Yh) > 0 hence Yh > Y1, this checks that in the region where

the bound (4.12) holds the condition g(Y ) > 0 is always satisfied and that the physical

singularity is always shielded by two (one in the extremal case) event horizons.

The behaviour of the metric function f− for α2,M > 0 and selected values of the other

parameters is shown in figure 1. The solid red, green and brown lines describe respectively

a naked singularity, extremal and two-horizon BB geometry. The solid blue line represents

a zero-charge, BB solution with single horizon.
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f± (σ = -1, ρ = -2)

f± BPS (ρ = -2)

f± (σ = -3.6, ρ = -2)

f± (σ = -3.6, ρ = 0)

Parameters: {α2=-0.1,β=1.5}
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Figure 2. Behaviour of the metric functions f± for α2 < 0,M > 0 and selected values of the pa-

rameters. The dashed (solid) lines describe the f+ branch (f− branch). The red, green, brown, blue

solid lines describe respectively a naked singularity, an extremal, single-horizon, vanishing charge

BB geometry. The corresponding dashed lines describe cosmological solutions with a singularity

which approach asymptotically to the dS spacetime.

The case α2 < 0,M > 0 gives exactly the same BPS bound. Now, we have σ, ρ, e < 0.

The function h(Y ) in eq. (4.10) always has a negative root and a minimum (maximum) for

Y = Ym,M = ±
√
σ

3e
= ±

√
ω5ML2

3
. (4.15)

The conditions for the existence of two positive roots become |ρ| ≤ 2
3 |σ|

√
σ
3e leading to

the same BPS bound (4.12). However, there is a crucial difference from the α2 > 0 case.

When α2 < 0, the condition M > 0 implies σ, ρ < 0. Taking into account that |e| < 1

owing to (4.2), we see that the condition ∆ < 0 implies the BPS bound (4.12). This means

that the two horizons are separated by a region in which the solution does not exist. The

spacetime breaks into two disconnected parts. The physical part, having an asymptotic AdS

region, describes a BB with singularity shielded by a single event horizon. The behaviour

of the metric function f− for α2 < 0 and selected values of the other parameters is shown

in figure 2. The solid red, green and brown lines describe respectively a naked singularity,

extremal and single-horizon BB geometry. The solid blue line represents a zero-charge, BB

solution with horizon.
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4.3.1 Near horizon extremal solution

When the bound (4.12) is saturated, the BB becomes extremal and the metric function (4.4)

has a double zero at

Yh = Ym =

√
σ

3e
=

√
ω5ML2

3
, (4.16)

thus, the solution f− can be factorized as

f
(ex)
− (Y ) =

eβ2

2α2

(Y + 2Ym)(Y − Ym)2

Y 2 + β
√
Y 4 + σY 2 − ρY

. (4.17)

This solution represents the extremal GB soliton.

Let us now consider the near-horizon geometry. In this regime, the solution (4.17) can

be expanded around r = r0 =
(
σ
3e

)1/4
. At the leading order the Einstein branch reads

f
(ex)
− (r) = 12α0(r − r0)2. (4.18)

Translating the radial coordinate r → r+ r0 and rescaling the time coordinate as t→ t/N

we get the extremal, near-horizon geometry:

ds2 = −
(r
l

)2
dt2 +

(
l

r

)2

dr2 +
(r0

L

)2
dΣ2

3, l2 =
1

12α0
, (4.19)

i.e., AdS2×R3 with the AdS2 length l being determined uniquely by α0. Thus, the extremal

near-horizon geometry does not depend on α2 and fully coincides with the extremal near-

horizon geometry (3.6) one gets in the RN case.

4.4 Near horizon metric as exact solution of equations of motion

In this section, we will show that the near-horizon solution given in eq. (4.19) is an exact

solution of the equations of motion (EOM). For the GB case, eqs. (2.3) read

Rab −
1

2
Rgab =

6

L2
gab + 8πGN

(
FacFb

c − 1

4
gabFcdF

cd

)
+
α2

2
gab

(
RcdefR

cdef − 4RcdR
cd +R2

)
+ α2

(
−2RRab + 4RacR

c
b + 4RcdR

c d
a b − 2RacdeR

cde
b

)
.

(4.20)

We note that, since the eq. (4.19) describes a spacetime with AdS2 × R3 geometry, the

contribution to the curvature tensors coming from the planar geometry R3 vanishes. Thus,

the EOM includes only the contribution of the AdS2 part of the metric which is a two

dimensional maximally symmetric space.

For a generic n-dimensional maximally symmetric space with R = Λ the two terms in

eqs. (4.20), that are quadratic in the curvature tensors, are given respectively by

α2Λ2 (n− 2)(n− 3)

2n(n− 1)
, −2α2Λ2 (n− 2)(n− 3)

n2(n− 1)
. (4.21)

These relations are consequence of the fact that the GB term in the action is topological for

d = 4 and identically vanishes for d = 2 and d = 3. The previous equations imply that in
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the case of the AdS2×R3 geometry, the contributions given by the GB terms to the EOM

vanish; therefore, the near horizon metric (4.19) is an exact solution of both Einstein and

GB EOM. In particular, the latter reduces to the usual Einstein-Maxwell equations in 5d.

Summarising, we have seen that the AdS2 × R3 geometry is not only a near horizon

approximation but it is an exact solution of the field equations of GB-Maxwell gravity.

The presence of two exact extremal solutions (the extremal soliton interpolating through a

throat region the AdS2×R3 geometry with the asymptotic AdS geometry and the AdS2×R3

geometry itself) is a typical feature of extreme black branes describing BPS states (see e.g.

refs. [44, 45]). The two solutions correspond to two different extremal limits. As we will

see in section 5, the presence of two different extremal, exact, solutions gives rise to a

non-trivial extremal thermodynamic behaviour.

4.5 f+ branch

This branch does not describe a BB but a spacetime with a singularity for every value of

the parameters Q 6= 0,M 6= 0. Depending on the value of the parameter α2 we have either

a spacetime with a naked singularity (for α2 > 0) or a cosmological, asymptotically de

Sitter (dS) solution with a singularity (for α2 < 0.) This follows from the above discussion

of the singularities of the scalar curvature (4.7). In the f+ branch the spacetime always

has a singularity, which can be located at r = 0 or r =
√
Y1 depending on the values of

the parameters. This is consistent with the results of ref. [36], according to which the f+

branch is unstable and contains ghosts.1

For M,α2 > 0, the metric functions for the f+ branch are the dashed lines shown in

figure 1. An interesting, peculiar feature is that in this case, all the solutions of the f−
branch are continuously connected with the solution of the f+ branch passing trough the

singularity. This feature has a simple analytic explanation. In the cases under consideration

the singularities are the zeros of the function g(Y ) and when g(Y ) = 0 then f+ = f−. This

fact can have interesting holographic implications: we have two CFTs with different central

charges connected through the same singularity.

For M > 0 and α2 < 0, the f+ branch describes a cosmological solution with a

singularity. The corresponding metric functions are shown (dashed lines) in figure 2. Also

in this case the solutions of the f− branch with an horizon are continuously connected with

the solution of the f+ branch passing trough the singularity. We have now an asymptotically

AdS solution continuously connected through a cosmological singularity to a late de Sitter

geometry. On the other hand, the solutions of the f− branch describing a naked singularity

are disconnected from the cosmological solutions.

For α2,M < 0, the f+ branch describes a cosmological solution with a singularity with

late de Sitter behaviour, whereas the f− branch describes an asymptotically AdS spacetime

1In principle, one could have hoped to have a regular spacetime when the function g(Y ) has a double

zero at positive Y . In fact in this case the branch point singularity is removed and if the spacetime in the

region Y1 ≤ Y <∞ is geodesically complete we have regular, solitonic geometry. The function g(Y ) has a

double zero at positive Y for σ, ρ < 0, ∆ = 0, but unfortunately the spacetime cut at Y = Y1 thus it is not

geodesically complete.
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Figure 3. Behaviour of the metric functions f± for α2,M < 0 and selected values of the other

parameters. The dashed (solid) lines describe the f+ branch (f−branch). The solid lines describe

spacetimes with naked singularities, whereas the dashed lines describe cosmological, asymptotically

dS solutions with a singularity.

with a naked singularity. However, here the two branches are disconnected. The metric

functions for this case are shown in figure 3.

It should be stressed that in the Q = 0 case, the f+ branch has ghosts in the spec-

trum [36]. We naturally expect this to extend to the charged case and is consistent with

the intrinsic instability of these branch of solutions connected with the presence of naked

singularities.

5 Charged GB black brane thermodynamics

In this section, we will study the thermodynamics of the GB BB solutions, i.e., solutions

in the f− branch and make a comparison with the Reissner-Nordström black branes.

The effective thermodynamic potentials M = MADM/N, S,Φ and the temperature

T = TH/N can be written as functions of the horizon radius r+ and the charge Q by

specializing eqs. (2.9), (2.10), (2.11) to d = 5. We obtain the following equations

M =
r4

+

ω5L2

(
1 +

4π

3

GNQ
2L2

r6
+

)
, T =

1

πL2

(
r+ −

2πGNQ
2L2

3r5
+

)
,

S =
V3

4GN

(r+

L

)3
, Φ =

V3

2L3

Q

r2
+

, (5.1)
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that satisfy the first principle dM = TdS+ ΦdQ. As pointed out in section 2.1, because of

the universality of the thermodynamic behaviour, the thermodynamic relations (5.1) hold

for both for the charged GB and the RN BB. The only difference is that for the GB brane,

with metric function (4.4), M and T are the effective parameters whereas in the RN case

M = MADM and T = TH .

In order to have a clear and complete description of the GB BB thermodynamics, one

should eliminate r+ from the eqs. (5.1) and write M(T,Q), S(T,Q). This parametrization

cannot be done in analytic form because we have to solve a 6th grade equation in r+. Thus,

we will derive the explicit scaling behaviour of M and S as a function of the temperature in

the large and small T limit. These relations will shed light on the holographic interpretation

of the solutions. The functions M(T,Q) and S(T,Q) can be obtained in implicit form by

using the second equation in (5.1) as an implicit definition of the function r+(T,Q), and

they read

M(T,Q) =
r3

+

ω5L2

(
3r+ − 2πL2T

)
, S(T,Q) =

V3

4GN

(r+

L

)3
. (5.2)

Let us now consider separately the two limits of interest: T →∞ and T → 0.

5.1 Large temperature

The limit T → ∞ corresponds to large radius BB, i.e., r+ → ∞. In this regime, the

temperature scales linearly with r+

T ' r+

πL2
(5.3)

and, at the leading order, we get for M and S

M =
3V3L

3

16πGN
(πT )4 , S =

V3L
3

4GN
(πT )3 . (5.4)

This is exactly the scaling behaviour one expects for a UV fixed point described by a CFT4.

Because of the universality of the thermodynamic behaviour, the relations (5.4) hold for

both the RN and the GB BB. In the former case, eqs. (5.4) hold when M = MADM, T = TH ,

in the latter when M,T are given by the effective values in eq. (2.8). Thus, for the GB

BB, mass and entropy acquire a 1/N3 factor.

The central charge c of the associated CFT is determined by the proportionality factor

and can be easily calculated. In the case of the RN BB, when M = MADM and T = TH
in eq. (5.1), we have c ∝ L3/GN . On the other hand, in the GB BB case, we have seen

that the same thermodynamic relations (5.1) hold for M,T given by the effective values in

eq. (2.8) and we will get from eqs. (5.4)

c ∝ L3

N3GN
. (5.5)

5.2 Small temperature

The T → 0 thermodynamic behaviour corresponds to extremal BBs in which the BPS

bound (4.13) is saturated. This is achieved at non vanishing, constant value of the BB
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radius

r+ =

(
2πGNL

2Q2

3

)1/6

≡ r0 (5.6)

that corresponds, as expected for BPS states, to the extremal brane T = 0 state with non

vanishing mass and entropy given by

Mext =
3r4

0

2ω5L2
, Sext =

V3

4GN

(r0

L

)3
. (5.7)

We can now expand in Taylor series the temperature near r0 to obtain

T ' 3

πL2

[
2(r+ − r0)− 5

r0
(r+ − r0)2

]
, (5.8)

and the behaviour of M and S near T = 0 is of the form

M −Mext =
2r2

0

3ω5
(πLT )2 +O(T 4), S − Sext =

πr2
0V3

8GNL
T +O(T 2) . (5.9)

Again, universality of the thermodynamic behaviour imply that the relations in

eq. (5.9) hold both for the RN and for the GB BB. For the RN case, the relations take

the same form with M = MADM and T = TH . For the GB case, when we express the

relations (5.9) in terms of ADM mass and Hawking temperature we get

MADM = NMext +
2r2

0

3Nω5
(πLTH)2 +O(T 4)

S = Sext +
πr2

0V3

8NGNL
TH +O(T 2).

(5.10)

5.3 Excitations near extremality and near-horizon limit

An important feature of the RN BB, which in view of the previous results extends to the

charged GB BB, is that the semiclassical analysis of its thermodynamic behavior breaks

down near extremality [44, 45]. In fact, the energy of an Hawking radiation mode is of

order TH and the semiclassical description breaks down when this energy is comparable

with the energy above extremality M −Mext given by eq. (5.9). This results in an en-

ergy gap for excitations above extremality [44], which in the case under consideration is

Egap ∼ (Nω5)/L2r2
0. The fact that the extremal limit is singular, can be also understood

in geometrical terms. It has been observed that at extremality the geometry splits into

two spacetimes: an extremal black hole and a disconnected AdS space [46].

The presence of this energy gap has important consequences for what concerns the

spectrum of BB excitations near extremality. In particular, whereas in the extremal case

the near-horizon geometry is given, as shown in section 4.3.1, by AdS2 ×R3, finite energy

excitations of AdS2 × R3 are suppressed. Analogously to the RN case in 4d [44], one

can consider near-horizon limits not restricted to zero temperature and excitation energy.

These limits are obtained by letting the 5d Planck length LP go to zero, holding fixed some

of the other physical parameters of the BB (energy, charge and temperature).
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6 Shear viscosity to entropy ratio

The universality of the shear viscosity η to entropy density s ratio for Einstein-Hilbert

gravity represents a very important result of the gauge/gravity correspondence. First

found for the hydrodynamic regime of the QFT dual to black branes and black holes of

the Einstein-Hilbert theory [13, 21, 22], the KSS bound η/s ≥ 1/4π has been extended to

a variety of cases. These include Einstein-Hilbert gravity with all possible matter terms in

the action, hence, among others the QFT dual to Reissner-Nordström 5d gravity [21, 22],

the important case of the quark-gluon plasma (see e.g. [47]) and charged solutions in gravity

theories with curvature squared corrections [48–51]. It has been also conjectured that the

KSS bound holds for any fluid in nature. For a detailed discussion on the shear viscosity

to entropy ratio see refs. [13, 21, 22, 24, 34, 41, 47, 52–54].

The KSS bound seems to lose its universality when one introduces, in the Einstein-

Hilbert action, higher powers of the curvature tensors. This is, for instance, the case of

Lovelock (and Gauss-Bonnet) gravity we are discussing in this paper. In particular, the

KSS bound depends on the coupling constant for the higher curvature terms [24].

Following the notation of [24], we rewrite the GB BB solution (4.4) as follows

f− =
r2

2λL2

[
1−

√
1− 4λ

(
1− ω5ML2

r4
+

4π

3

GNQ2L2

r6

)]
, (6.1)

where α0α2 = α2/L
2 = λ. In 5d Gauss-Bonnet gravity, the shear viscosity to entropy

ratio is [24]
η

s
=

1

4π
(1− 4λ) . (6.2)

The KSS bound still holds if λ ≤ 0 but is violated for 0 < λ ≤ 1/4 (the upper bound

follows from eq. (4.2)). The dependence of the bound from the coupling constant λ makes

the bound not anymore universal as in the Einstein-Hilbert theory. In terms of the dual

gauge theory, the curvature corrections to the Einstein-Hilbert action correspond to finite

N and λtH effects. It has been argued that the universality of the KSS bound strictly holds

in the limit N →∞ whereas, in general, finite N effects will give lower bounds for η/s [17].

A crucial issue is that the relation (6.2) seems to allow for arbitrary violations of the

KSS bound. However, consistency of the QFT dual to bulk GB gravity as a relativistic

field theory constrains the allowed values of λ. For instance, in [27–29] it was found that

causality and positivity of the energy for the dual QFT describing the Gauss-Bonnet plasma

require −7/36 < λ < 9/100 implying 4πη/s > 16/25, a bound lower then the KSS bound.

On the other hand, the hydrodynamic description of the dual GB plasma is valid in the IR

regime, i.e., for ω, k � T , whereas causality is determined by the propagation of modes in

the ω, k > T , UV regime. Thus, the existence of lower bounds for η/s implies a higher non-

trivial relationship between the transport properties in the IR and causality requirements

in the UV regime of the QFT dual to GB gravity.

Recent investigations have shown that if translation symmetry is broken in the IR

then one may have strong violation of the KSS bound even in the context of Einstein

gravity, in the form of η/s ∼ T 2ν , ν ≤ 1 [30, 55, 56]. Although, for these backgrounds,
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the breaking of translational invariance prevents an hydrodynamical interpretation of the

viscosity, this behaviour of η/s is clearly related to the emergence of extremely interesting

physics in the far IR.

A way to shed light on these questions is to investigate the behaviour of η/s in the

case of a gravitational bulk background for which there is a temperature flow of η/s. The

charged GB BB represents a nice example of this behaviour, particularly in view of the

universality of the IR AdS2 × R3 fixed point. This will be the subject of the next three

subsections.

6.1 η/s for the charged GB black brane

A standard way to calculate the shear viscosity for a QFT is by using the Kubo formula

for the transverse momentum conductivity

η = lim
ω→0

1

ω
ImGRxy, (6.3)

where GRxy is the retarded Green function for the Txy component of the stress-energy tensor.

The application of the usual AdS/CFT procedure for the computation of correlators

gives for the U(1)-charged Gauss-Bonnet black brane in five dimensions [34, 52]

η =
s

4π

[
1− 4λ

(
1− a

2

)]
, (6.4)

where a = 4π
3
GNQ

2L2

r6+
, and s is the entropy density S/V following from (5.1).

A drawback of the usual computation of the shear viscosity is that it does not work

in the extremal T = 0 case because the metric function has a double zero at the horizon.

For this reason, η in the case of extremal BB cannot be simply computed by taking the

TH = 0 limit in eq. (6.4). Building on [57], a method of dealing with this problem has been

developed in [14]. Recently, a very simple and elegant formula for computing correlators

of the form (6.3) in QFTs dual to a gravitational bulk theory has been proposed in [35]

(see also [30, 31]). This method also works in the extremal case; thus, in the following, we

will use it to compute η for the charged GB BB.

Considering perturbations gab = g
(0)
ab + hab of the background (6.1), at the linear level

the field equations (4.20) give for the hyx(t, r) = φ(r)e−iωt component of the perturbation

∂r

[√
γ(r)f−(r)F (r)∂rφ

]
+ ω2

√
γ(r)F (r)

N2f−(r)
φ = 0, (6.5)

where γ(r) = (r/L)3 is the determinant of the spatial metric, f−(r) is given by eq. (6.1)

and F = N
(

1− λL2

r ∂rf−(r)
)

. Notice that in the background (6.1), the component hyx
decouples from the other perturbation modes.

Let us first consider the non extremal black brane. The extremal case will be discussed

in section 6.3. Following ref. [35] we now denote with φ0(r) the time independent solution

of (6.5) which is regular on the horizon r = r+ and such that φ0 → 1 as r → ∞. The
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other linearly independent solution φ1(r) of eq. (6.5) behaves as 1/r4 for r = ∞ and can

be computed using the Wronskian method,

φ1 = φ0

∫ ∞
r

dr

φ2
0
√
γFf−

. (6.6)

Expanding near the horizon r = r+ we get at leading order

φ(r) = − 1

φ0(r+)

ln(r − r+)

4πTH
√
γ(r+)

[
1− 4λ(1− a

2 )
] , (6.7)

where TH is the Hawking temperature of the BB and a is defined as in eq. (6.4). Solving

now eq. (6.5) near the horizon with infalling boundary conditions and for small ω, one gets

at leading order in ω

φ(r) = φ0(r+)

(
1− iω

4πTH
ln(r − r+)

)
. (6.8)

Comparing eq. (6.7) with eq. (6.8) and expanding near the r → ∞ boundary of AdS,

one gets

φ(r) = 1 + iωφ2
0(r+)

√
γ(r+)

[
1− 4λ

(
1− a

2

)] 1

r4
. (6.9)

The usual AdS/CFT rules for computing boundary correlators tell us that the retarded

Green function is 1/(16πGN ) the ratio between normalizable and non-normalizable modes,

so that we have

η =
s

4π
φ0(r+)2

[
1− 4λ

(
1− a

2

)]
. (6.10)

Because φ0(r) goes to 1 as r →∞ and must be regular on the horizon, we have φ0(r+) = 1

and eq. (6.10) reproduces correctly the previous result (6.4).

Now, the second eq. (5.1) can be used to define, implicitly, the horizon radius as a

function of the BB Hawking temperature and the electric charge, thus allowing us to write

also the shear viscosity (6.4) as a function of TH and Q

η(TH , Q) =
1

16πGN

(
r+(TH , Q)

L

)3 [
1− 4λ

πL2TH
Nr+(TH , Q)

]
. (6.11)

In the same way, the entropy density in eq. (5.1) can be written as a mere function of TH
and Q, so that we can write the shear viscosity to entropy ratio in the form

η

s
=

1

4π

[
1− 4λ

πL2

Nr+(TH , Q)
TH

]
. (6.12)

It is interesting to investigate the behaviour of η/s at large and small TH . In fact, as we

have seen in the previous sections, in these limits the BB allows for a simple thermodynamic

description. We, therefore, expect this to be true also for the shear viscosity to entropy

ratio. This will be the subject of the next sections.

6.2 η/s in the large and small TH regime

The behavior of the shear viscosity (6.11) for large and small temperatures can be investi-

gated in a way similar to that used for the BB thermodynamics.
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6.2.1 Large TH

For large TH , the Hawking temperature is given by eq. (5.3), thus leading to the following

expression for the shear viscosity in eq. (6.11),

η =
1

16πGN

(
πLTH
N

)3

(1− 4λ) . (6.13)

The shear viscosity at large TH scales as T 3
H . In this limit, the entropy density also depends

on the temperature as T 3
H (see eq. (5.4)), the shear viscosity to entropy density ratio

approaches eq. (6.2) and reduces to the universal value 1/4π when λ → 0. This is rather

expected, because at large TH the contribution of the electric charge can be neglected.

6.2.2 Small TH

To investigate the small TH behaviour we invert eq. (5.8) and we write the horizon radius as

r+ − r0 '
πL2

6N
TH , (6.14)

where r0 is defined by eq. (5.6). At small temperature the subleading term in the shear

viscosity scales linearly in TH

η ' 1

16πGN

(r0

L

)3
[
1 +

(
1

2
− 4λ

)
πL2TH
Nr0

]
. (6.15)

The behavior of the entropy density in the small TH regime is given by the second equation

in (5.9). Hence, in this limit, also the subleading term of the shear viscosity to entropy

density ratio scales linearly
η

s
' 1

4π

[
1− 4λ

πL2TH
Nr0

]
. (6.16)

The result η/s = 1/4π for TH = 0 has been already found and discussed in the literature

in the case of the RN solution [14, 57]. It has been argued that at small temperatures, the

dual QFT behaves as a “strange RN metal”. The optical conductivity exhibits the generic

perfect-metal behaviour, but although we have a non-vanishing ground-state entropy, for

the strange metal hydrodynamics continues to apply and energy and momentum can diffuse.

In the limit TH = 0, the ratio becomes η/s = 1/4π attaining the universal value one

expects from the KSS bound. This result is what one naturally expects in view of the fact

that at TH = 0 the near-horizon solution of the GB brane gives exactly the same AdS2×R3

geometry of the RN solution. However, extra care is needed when one takes the TH → 0

limit in eq. (6.12). Taking TH → 0 directly in eq. (6.12) is not save for several reasons.

First, as discussed in section (5.3) the semiclassical description for the BB breaks down at

small temperature when the energy gap above extremality prevents excitations with finite

energy. Second, as noted by Cai [34], although the TH → 0 limit is well defined, the usual

computation of the shear viscosity to entropy ratio fails in the extremal case because the

metric function as a double zero at the horizon. Third, also the computations of section 6.1

do not hold for TH = 0 because the expressions (6.7) and (6.8) are ill defined for TH = 0.

However, the general method based on [35] and used in section 6.1 for calculating η, works

also for extremal BB.
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6.3 η/s in the extremal case

Let us now extend the calculations of η described in section 6.1 to the case of the extremal

brane. In the extremal case the function f− given by eq. (6.1) and its first derivative vanish

when evaluated on the horizon. We have therefore at leading order near the horizon

f−(r+) = f ′−(r+) = 0, F (r+) = N, f−(r) ' k(r − r+)2, (6.17)

where k is some non zero constant. Using the previous expression in (6.6) one gets

φ1(r) =
1

kNφ0(r+)
√
γ(r+)

1

(r − r+)
. (6.18)

On the other hand the near-horizon, small ω expansion gives now

φ(r) = φ0(r+)

[
1 +

iω

kN(r − r+)

]
. (6.19)

Comparing eqs. (6.18) and (6.19), near the r →∞ boundary of AdS5 we find the expansion

φ(r) = 1 + iωφ2
0(r+)

√
γ(r+)

(
1

r4

)
, (6.20)

from which follows the shear viscosity

η =
s

4π
φ0(r+)2. (6.21)

Using the same argument used in section (6.1) to infer that φ0(r+) = 1, we get for the

shear viscosity to entropy ratio of the extremal GB black brane the universal value

η

s
=

1

4π
. (6.22)

It is interesting to notice that the universality of η/s for the extremal GB BB is a direct con-

sequence of the universality of the AdS2×R3, extremal, near-horizon geometry. In fact the

extremal, near-horizon metric background (4.19) does not depend on λ. The other source

for a λ- or Q-dependence of η is the function F in eq. (6.5). However, this contribution,

hence the dependence of η from λ and Q, is removed by the condition f ′(r+) = 0, which

implies that near the horizon the two-dimensional sections of the metric behave as AdS2.

To conclude, let us now discuss the global behaviour of η/s as a function of the

temperature in order to gain some insight about the η/s bounds. Taking into account

that r+(TH) is a monotonically increasing function, one easily finds that also the function

P (TH) = πL2TH/(Nr+) = 1−2πGNQ
2L2/(3r6

+) in eq. (6.12) is a monotonically increasing

function of TH , with P (0) = 0 and P (∞) = 1. The global behaviour of η/s in eq. (6.12)

therefore is ruled by the sign of λ. For λ < 0, η/s is a monotonically increasing func-

tion of TH , which raises from its minimum value 1/4π at TH = 0 to its maximum value

(1 + 4|λ|)/4π for TH = ∞, in full agreement with the KSS bound. On the other hand,

for 0 < λ < 1/4, η/s is a monotonically decreasing function of TH , which drops from its

maximum value 1/4π at TH = 0 to its minimum value (1 − 4λ)/4π for TH =∞, violating

the KSS bound. Similar arguments on the existence of a global minimum for the η/s ratio

in the case of scalar field coupled with a higher derivative gravity theory have been put

forward in ref. [58].
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6.4 Dependence on the time rescaling factor N

To conclude, let us briefly summarise the main facts concerning the role played by the

factor N , which controls the rescaling of the time coordinate. The rescaling of the time

coordinate in the metric (2.1) is compelling if one requires a unit speed of light in the

dual CFT. This rescaling of the time coordinate implies that all the thermodynamical

parameters, having the dimensions of energy (like e.g., mass and temperature), scale as

1/N . As a consequence, the thermodynamical behaviour of GB (more in general Lovelock)

black brane is universal (i.e., independent from higher curvature terms in the action) only

if one expresses thermodynamical relations in terms of the effective parameters (2.8). In

particular, this implies that the central charge of the dual CFT at the UV fixed point scales

as 1/N3 (see eq. (5.5)). On the other hand, the IR fixed point AdS2×S3 does not depend

on N . This has a counterpart in the behaviour of the shear viscosity to entropy ratio. In

the IR, the ratio η/s attains the universal, N -independent, value 1/4π. Conversely, away

from the IR fixed point, η/s shows a non trivial dependence on N . From eq. (6.12) we get

η

s
=

1

4π

[
1− 4NπL2(1−N2)

TH
r+

]
. (6.23)

When the electric charge is set to zero, the ratio TH/r+ in eq. (6.12) is N/(πL2) and

η/s reaches the value in eq. (6.2), as one expects. On the other hand, the dependence of

η/s on TH and N in the generic charged case is rather puzzling.

Given the universality of the thermodynamic behaviour of GB BB described in the

previous sections, one would naively expect also the shear viscosity to entropy ratio to

be universal, i.e., that eq. (6.23) becomes the same as in the RN case just by using the

effective temperature T = TH/N instead of TH . However, this is not the case. Only for

N = 1, which corresponds to α2 = 0, i.e., exactly the RN case, η/s assumes the universal

value 1/4π, while for a generic N we have a quite complicated dependence on N and

TH . This behaviour indicates strongly that the transport features of the dual QFT in the

hydrodynamic regime contain more information about the underlying microscopic theory

than that contained in the thermodynamic description.

7 Summary and outlook

In this paper, we have discussed in detail geometrical, thermodynamic and holographic

properties of charged 5d GB black branes. Although our discussion has been mainly con-

fined to the GB case, we expect that most of our results can be generalised to Lovelock

gravity theories in any spacetime dimensions.

We have shown that the particular combination of GB higher curvature terms added

to the Einstein gravity action have three main effects:

(1) They introduce a new branch of brane solutions, which are however not black branes

but describe naked singularities. The global structure of the RN geometry of Einstein

gravity is preserved only for α2 > 0. For α2 < 0 the spacetime splits into two

disconnected regions (an inner and outer region), with the external region having
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a single event horizon also in the non-extremal case. An interesting feature is that

the solutions of the two branches may be, in some cases, continuously connected

one with the other through the singularity. When this is the case, they describe

transitions of the kind: AdS5 → singularity→ AdS5, AdS5-black brane→ singularity

→ AdS5 or AdS5-black brane → singularity → dS5. Although, it is known that one

of the two branches of the solution (f+) is unstable [36] one expects that the first

two of these transitions have a holographic interpretation as the flow between two

CFTs of different central charge through a singularity. The interpretation of this

flow in the large N description is problematic not only because of the spacetime

singularity in the bulk but also owing to the presence of ghosts naturally tied to

instabilities in the dual quantum field theory. On the other hand, it is wide believed

that string theory could resolve gravitational singularities [60–66]. Some progress

about the holographic interpretation of black hole singularities [61, 62] and more

recently cosmological singularities [63–66] has been achieved. These results give some

hope that in the near future one could have some understanding of the holographic

flow between two CFTs trough a spacetime singularity.

(2) The thermodynamic behaviour of charged GB black brane is universal, i.e., when

expressed in terms of effective mass and temperature is indistinguishable from that

of the RN black brane.

(3) Higher curvature terms modify the asymptotics (the AdS length) of the 5d AdS-RN

gravity leaving unchanged the AdS2 × R3, extremal near-horizon geometry of the

RN black brane. At thermodynamic level, when expressed in terms of MADM and

TH a dependence on the normalization factor N of the metric is introduced but not

for the extremal, near-horizon geometry AdS2 × R3. In terms of the dual CFTs,

this property can be described as a deformation of the CFT which changes the UV

behaviour but leaves unchanged the IR. This behaviour is very similar to the at-

tractor mechanism found in supergravity theories [59, 67–69], where the AdS2 × Rn
(or AdS2 × Sn) geometry is always the same irrespectively from the asymptotic values

of the scalar fields.

We have also computed the shear viscosity to entropy density ratio for the GB charged

black brane both for the non-extremal and the extremal case. We have found that consis-

tently with the geometrical and thermodynamic picture, universality of η/s is lost in the

UV but is restored in the IR. The ratio η/s has a non-universal temperature-dependent

behaviour for non-extremal black branes but attains the universal 1/4π value at extremal-

ity. This result implies that η/s is completely determined by the IR behaviour and is

completely insensitive to the UV regime of the dual QFT. This is largely expected because

transport features in the hydrodynamic regime should be determined by IR physics (This

fact has been also clearly pointed out in ref. [70]). However, it is not entirely clear if this

result has a general meaning or it is a just a consequence of the peculiarities of the charged

GB black brane (higher curvature corrections vanish on the AdS2 ×R3 background).
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Although the lesson to be drawn from our results is that probably it is not wise to

look at the UV physics to infer about bounds on η/s, the question about the possible

existence of bounds on η/s lower than the KSS one remains still open. We have found

that η/s is a smooth monotonic function of the temperature. Going to small temperatures,

it always flows to the universal value 1/4π but this value is a minimum for λ < 0 and

maximum for λ > 0. Thus, the QFT dual to GB-Maxwell gravity with λ < 0 gives a nice

example of temperature-flow of η/s always bounded from below by 1/4π. On the other

hand, the KSS-bound-violating flow we obtain in the theory for 0 < λ < 1/4 remains open

to further investigations.

A The black hole case

This paper has been focused on the charged black brane solutions of GB gravity. However

we would conclude with some comments on the black hole solutions of the theory, i.e.,

solutions with κ = 1 in eq. (2.5). In the case of spherical black holes the discussion

considerably changes. In fact, in 5d, from eq. (2.5) we find that the metric function can be

written as

f(r) = 1 +
r2

2α2

[
1∓

√
1− 4α2

(
α0 −

ω5M

r4
+

4π

3

G5Q2

r6

)]
, (A.1)

where ω5 = 16πG5
3Σ3

and Σ3 is the volume of the 3-sphere. We have two branches of solutions,

but similarly to the BB case, the only one admitting horizon solutions is f− with α0, α2

constrained by (4.2). The black hole mass, can be expressed in terms of the horizon

radius r+ [2]

M =
r4

+

ω5

[
α0 +

α2

r4
+

+
1

r2
+

+
4πG5Q

2

3r6
+

]
. (A.2)

Due to the presence of the curvature (κ = 1), now the mass depends explicitly both on the

AdS radius, L2 = α−1
0 and on the GB coupling constant, α2.

The other important aspect which makes black holes different from black branes is

that also temperature and entropy depend explicitly from α2 through the coupling with

the curvature since all the higher curvature corrections (like the Gauss Bonnet one) enter

in the expression for the temperature trough a coupling with κ. As found by Cai [2], for a

charged 5d GB black hole one gets

T =
1

4πr+(r2
+ + 2α2)

[
4α0r

4
+ + 2r2

+ −
4πG5Q

2

3r4
+

]
, S =

Σ3r
3
+

4G5

(
1 +

6α2

r2
+

)
. (A.3)

We see that since M,T, S depend explicitly on the GB coupling constant α2, differently

from the black branes case, it is not anymore true that the thermodynamic behaviour of the

Reissner-Nordström and Gauss-Bonnet black hole is the same. From the previous equation

one can also realize that for the entropy, the area law no longer holds and that it receives

a correction from α2.

Let us now consider the extremal of the GB black hole. In the BB case we have found

the remarkable property that the extremal, near-horizon solution of the charged GB black
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brane is exactly the same as the RN black brane. One can easily show that this is not

the case for the extreme, near-horizon GB black hole. In the RN case the extremal, near-

horizon, solution, which actually is an exact solution of the field equation is the AdS2×S3

geometry (S3 is the three sphere), i.e the direct product of two maximally symmetric spaces,

respectively with negative curvature R(2) = −2/l2 and positive curvature R(3) = Λ, where

l and Λ can be written in terms of the 5d cosmological constant and the U(1) charge Q.

Using eqs. (4.21) one can show that the individual contributions of the AdS2 and S3

spaces, to the two terms in eq. (4.20) that are quadratic in the curvature tensors vanish.

Nevertheless there are still some cross-product contributions arising from the mixing of

AdS2 and S3 terms. Splitting the 5d indices (a, b) into µ, ν = 0, 1 (running on AdS2) and

i, j = 1, 2, 3 (running on S3) we find a contribution to the µ, ν components of the field

equations given by 2α2Λ/l2gµν and a contribution 4α2Λ/3l2gij to the ij components of the

field equations.

We see that the AdS2×S3 solution of the RN field equations cannot be also solution of

the GB field equations. Obviously, this not prevents the existence of a different AdS2×S3

solution, i.e a solution with different curvatures for AdS2 and S3. However, from the

structure of the field equations and from eqs. (4.21) one can infer that these solutions, if

existing, imply a dependence of l and/or Λ not only from the 5d cosmological contant and

from the black hole charge Q but also from the GB coupling constant α2.
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