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1 Introduction

A study of arbitrary spin conformal fields was initiated in ref. [1], where a Lagrangian de-

scription of totally symmetric conformal fields in space-time R3,1 (Fradkin-Tseytlin fields)

was developed. A Lagrangian formulation of totally symmetric conformal fields in space-

time Rd−1,1 for arbitrary d was developed in ref. [2]. Throughout this paper conformal

fields studied in refs. [1, 2] will be referred to as short conformal fields. For the reader’s

convenience, we recall that, in the framework of AdS/CFT correspondence, the short con-

formal fields in Rd−1,1 are dual to non-normalizable modes of massless fields in AdSd+1.

Namely, for spin-2 and spin-s, s ≥ 2, fields it was demonstrated in the respective ref. [5]

and ref. [6] that ultraviolet divergence of an action of bulk AdS field evaluated on a solution

of the Dirichlet problem coincides with an action of the short conformal field. Besides the

short conformal fields, there are conformal fields which we will refer to as long, partial-short

and special conformal fields in this paper (for definition, see below). We note then that a

minimal Lagrangian formulation of long, short, partial-short and special conformal fields

may be found in ref. [3].1

1In ref. [3], conformal fields associated with arbitrary Young tableaux have also been studied. A

study of mixed-symmetry conformal fields associated with particular rectangular Young tableaux may be

found in ref. [4].
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In this paper, we study the long, partial-short and special conformal fields. Such

conformal fields are also interesting, among other things, in the context of AdS/CFT cor-

respondence. This is to say that, for arbitrary spin fields, it was demonstrated explicitly

in ref. [7], that the long conformal field in Rd−1,1 is dual to non-normalizable modes of

massive field in AdSd+1 having some discrete value of mass parameter. Our speculation

on string theory interpretation of a conjectural model that involves long higher-spin con-

formal fields and short low-spin conformal fields may be found in the conclusions of this

paper. Before we formulate our main aim in this paper let us discuss a terminology we use

throughout this paper.

Consider a free totally symmetric conformal bosonic field propagating in Rd−1,1. If a

Lagrangian of the conformal field is built in terms of one traceless totally symmetric rank-s

tensor field of the Lorentz algebra so(d− 1, 1) then the conformal field will be referred to

as spin-s conformal field, while the Lagrangian will be referred to as minimal Lagrangian.

If the minimal Lagrangian of free conformal field involves 2κ derivatives, where κ ≥ 1 is

arbitrary integer, then, as well known, a conformal dimension of the conformal field is given

by the expression

∆ =
d

2
− κ . (1.1)

The use of the labels κ, s, d, and our ordinary-derivative approach allows us to classify

all conformal fields propagating in Rd−1,1. Namely, depending on values of the arbitrary

integer κ ≥ 1 and the arbitrary integer s ≥ 1, conformal fields in Rd−1,1 with arbitrary

d ≥ 3 and ∆ as in (1.1) will be referred to as long, short, partial-short, and special

conformal fields. Result of our classification of conformal fields is summarized in table 1

(see next page).

For the reader’s convenience, we now recall the references devoted to the study of the

minimal Lagrangian formulation of conformal fields given in table 1.

i) For d = 4 and d ≥ 4, the minimal Lagrangian of the totally symmetric arbitrary spin

short conformal field in table 1 was obtained in the respective ref. [1] and ref. [2] (see also

ref. [6]).

ii) For d = 4 and d ≥ 4, the minimal Lagrangian of the totally symmetric arbitrary spin

conformal fields with κ = 1 in table 1 was obtained in the respective ref. [8] and ref. [9].

iii) Minimal Lagrangian for all totally symmetric conformal fields given in table 1 can be

found in ref. [3].

With the exception of the particular case κ = 1, the minimal Lagrangian of the totally

symmetric conformal fields involves higher-derivatives. Also we note that, with the excep-

tion of the short and partial-short conformal fields, the minimal Lagrangian turns out to

be gauge variant.2

2In this paper, if an action of a conformal field is invariant under gauge transformations, then the

respective Lagrangian is referred to as gauge invariant Lagrangian, while, if an action of a conformal field

has no gauge symmetries then the respective Lagrangian is referred to as gauge variant Lagrangian.
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Type of field Values of κ Values of s and d

long s+ d−4
2 +N , N = 1, 2, . . . ,∞ even d ≥ 4

short s+ d−4
2 s ≥ 1

type II part-short 1, 2, . . . , s− 1 d = 4, s ≥ 2

special 1, 2, . . . , d−4
2 even d ≥ 6,

type II part-short d−2
2 , d2 , . . . , s s ≥ d−2

2 ≥ 2

type I part-short s+ 1, s+ 2, . . . , s+ d−6
2 even d ≥ 8

s ≥ d−2
2 ≥ 3

special 1, 2, . . . , s even d ≥ 6,

1 ≤ s ≤ d−4
2

secondary long s+ 1, s+ 2, . . . , d−4
2 even d ≥ 8

1 ≤ s ≤ d−6
2

type I part-short d−2
2 , d2 , . . . , s+

d−6
2 even d ≥ 8

2 ≤ s ≤ d−4
2

long s+N , N = 0, 1, 2, . . . ,∞ d = 3, s ≥ 1

special 1, 2, . . . , s− 1 d = 3, s ≥ 2

long s+ d−5
2 +N , N = 1, 2, . . . ,∞ odd d ≥ 5, s ≥ 1

special 1, 2, . . . , s odd d ≥ 5, s ≥ 1

secondary long s+ 1, s+ 2, . . . , s+ d−5
2 odd d ≥ 7, s ≥ 1

Table 1. Classification of conformal fields in Rd−1,1. The integer s indicates spin of conformal

field, while the integer κ is related to conformal dimension as ∆ = d
2
− κ.

Our main aim in this paper is to construct the second-derivative (ordinary-derivative)

gauge invariant Lagrangian for all conformal fields given in table 1. We note that the

ordinary-derivative description of the short conformal fields was obtained in refs. [10, 11].

In other words, in this paper we extend approach in refs. [10, 11] to the cases of the long,

partial-short and special conformal fields. Our Lagrangian formulation of conformal fields

has the following two attractive features.

i) For spin-1, spin-2, and spin-s, s > 2, conformal fields, two-derivative contributions

to our ordinary-derivative Lagrangian take the form of the standard Maxwell, Einstein-

Hilbert, and Fronsdal kinetic terms.
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ii) In our approach, all vector and tensor fields are supplemented by appropriate gauge

transformations which do not involve higher than first order terms in derivatives. Also we

note that the one-derivative contributions to the gauge transformations of all vector and

tensor fields take the form of standard gradient gauge transformations.

This paper is organized as follows.

In section 2, we summarize conventions and notation we use in this paper.

In section 3, we briefly review a minimal Lagrangian formulation of spin-s conformal

field in Rd−1,1. We present the minimal Lagrangian for arbitrary values of κ, s, and

d and then we discuss the Lagrangian for some particular values of κ, s, and d. Also

we discuss how the minimal Lagrangian can be obtained in the framework of AdS/CFT

correspondence.

Section 4 is devoted to an ordinary-derivative Lagrangian formulation of conformal

fields. First, we discuss a field content entering our approach. Second, we present our

gauge invariant Lagrangian for all conformal fields in table 1.

In section 5, we describe gauge symmetries of our ordinary-derivative Lagrangian. We

start with a discussion of gauge transformation parameters entering our approach and then

we present gauge transformations of conformal fields. In our ordinary-derivative approach,

only symmetries of the Lorentz algebra so(d − 1, 1) are realized manifestly. Therefore, in

section 6, in order to complete our ordinary-derivative formulation, we discuss a realization

of the conformal algebra symmetries on a space of the gauge fields entering our approach.

In section 7, using the Faddeev-Popov procedure, we obtain various representations

for ordinary-derivative gauge-fixed BRST Lagrangian. Excluding auxiliary gauge fields

and auxiliary Faddeev-Popov fields we obtain a higher-derivative BRST Lagrangian and

use such Lagrangian for a computation of partition functions for all conformal fields.

In section 8, we discuss directions for future research.

2 Preliminaries

2.1 Notation and conventions

Our notation and conventions are as follows. Coordinates of the space-time Rd−1,1 are

denoted by xa, while derivatives with respect to xa are denoted by ∂a, ∂a ≡ ∂/∂xa. We use

vector indices a, b, c, e of the Lorentz algebra so(d − 1, 1) which take the following values

a, b, c, e = 0, 1, . . . , d− 1. Our flat metric tensor ηab is mostly positive. In scalar products,

to simplify our expressions we drop the metric tensor ηab. In other words, we use the

convention XaY a ≡ ηabX
aY b.

Throughout this paper a set of creation operators αa, αz, ζ, α⊕, α⊖ and the respec-

tive set of annihilation operators ᾱa, ᾱz, ζ̄, ᾱ⊖, ᾱ⊕ are referred to as oscillators. We

adopt the following conventions for commutation relations, the vacuum, and hermitian

conjugation rules

[ᾱa, αb] = ηab , [ᾱz, αz] = 1 , [ζ̄, ζ] = 1 , [ᾱ⊕, α⊖] = 1 , [ᾱ⊖, α⊕] = 1 , (2.1)

ᾱa|0〉 = 0 , ᾱz|0〉 = 0 , ζ̄|0〉 = 0 , ᾱ⊕|0〉 = 0 , ᾱ⊖|0〉 = 0 , (2.2)

αa† = ᾱa , αz† = ᾱz , ζ† = ζ̄ , α⊕† = ᾱ⊕ , α⊖† = ᾱ⊖ . (2.3)
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The oscillators αa, ᾱa transform in the vector representation of the Lorentz algebra

so(d− 1, 1), while the oscillators αz, ᾱz, ζ, ζ̄, α⊕, ᾱ⊖, α⊖, ᾱ⊕ transform in the scalar

representation of the Lorentz algebra. A hermitian conjugation rule for the derivatives is

given by ∂a† = −∂a. We use the following shortcuts for operators constructed out of the

oscillators, the derivatives ∂a and the coordinates xa:

� ≡ ∂a∂a , x∂ ≡ xa∂a , x2 ≡ xaxa , (2.4)

α∂ ≡ αa∂a , ᾱ∂ ≡ ᾱa∂a , α2 ≡ αaαa , ᾱ2 ≡ ᾱaᾱa , (2.5)

Nα ≡ αaᾱa , Nz ≡ Nαz = αzᾱz , Nζ ≡ ζζ̄ , (2.6)

Nα⊕ ≡ α⊕ᾱ⊖ , Nα⊖ ≡ α⊖ᾱ⊕ , (2.7)

Ãa ≡ αa − α2 1

2Nα + d− 2
ᾱa , Π[1,2] ≡ 1− α2 1

2(2Nα + d)
ᾱ2 , (2.8)

rζ =

(
(s+ d−4

2 −Nζ)(κ− s− d−4
2 +Nζ)(κ+ 1 +Nζ)

2(s+ d−4
2 −Nζ −Nz)(κ+Nζ −Nz)(κ+ 1 +Nζ −Nz)

)1/2

, (2.9)

rz =

(
(s+ d−4

2 −Nz)(κ+ s+ d−4
2 −Nz)(κ− 1−Nz)

2(s+ d−4
2 −Nζ −Nz)(κ+Nζ −Nz)(κ− 1 +Nζ −Nz)

)1/2

. (2.10)

Throughout this paper we adopt the following conventions and notation:

λ ∈ [p]2 ⇐⇒ λ = −p,−p+ 2, . . . , p− 2, p , (2.11)

λ ∈ [p, q]1 ⇐⇒ λ = p, p+ 1, . . . , q − 1, q , (2.12)

λ ∈ [p, q]2 ⇐⇒ λ = p, p+ 2, . . . , q − 2, q . (2.13)

2.2 Global conformal symmetries

In the space-time Rd−1,1, the so(d, 2) algebra is realized as algebra of conformal symmetries.

In a basis of the Lorentz algebra so(d − 1, 1), the generators of the so(d, 2) algebra are

decomposed into the translation generators P a, the dilatation generator D, the conformal

boost generators Ka, and the generators of Lorentz algebra so(d − 1, 1) denoted by Jab.

We use the following commutators of the so(d, 2) algebra:

[D,P a] = −P a , [P a, Jbc] = ηabP c − ηacP b ,

[D,Ka] = Ka , [Ka, Jbc] = ηabKc − ηacKb ,

[P a,Kb] = ηabD − Jab , [Jab, Jce] = ηbcJae + 3 terms . (2.14)

Consider conformal fields propagating in Rd−1,1. Let us collect all scalar, vector and

tensor fields required for a Lagrangian description of the conformal fields into a ket-vector

|φ〉. If a Lagrangian is invariant with respect to conformal algebra transformation (invari-

ance of a Lagrangian is assumed to be up to total derivatives)

δG|φ〉 = G|φ〉 , (2.15)

– 5 –
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then we can present a realization of the conformal algebra generators G in terms of differ-

ential operators acting on |φ〉 in the following way

P a = ∂a , (2.16)

Jab = xa∂b − xb∂a +Mab , (2.17)

D = x∂ +∆ , (2.18)

Ka = −
1

2
x2∂a + xaD +Mabxb +Ra . (2.19)

In relations (2.18)–(2.19), ∆ stands for a operator of conformal dimension, whileMab stands

for a spin operator of the Lorentz algebra so(d− 1, 1). The operator Mab is acting on spin

degrees of freedom collected into the ket-vector |φ〉 and satisfies the following commutation

relations:

[Mab,M ce] = ηbcMae + 3 terms , Mab = −M ba . (2.20)

An operator Ra appearing in (2.19) does not depend on the space-time coordinates xa.

In general, this operator depends on the derivatives ∂a.3 In the framework of minimal

Lagrangian formulation of conformal fields, the operator Ra is equal to zero, while, in the

framework of our ordinary-derivative approach, the operator Ra turns out to be non-trivial.

From relations (2.16)–(2.19), we see that all that is required for the complete description of

conformal symmetries is to find a realization of the operators ∆, Mab, and Ra on a space

of the ket-vector |φ〉.

3 Review of minimal Lagrangian formulation of conformal fields

To discuss the minimal Lagrangian formulation of a conformal field with arbitrary integer

spin s ≥ 1 and arbitrary integer κ ≥ 1 we use a field φa1...as which is totally symmetric

traceless rank-s tensor field of the Lorentz algebra so(d− 1, 1),

φaaa3...as = 0 . (3.1)

Conformal dimension of the field φa1...as is given in (1.1). The minimal Lagrangian found

in ref. [3] can be presented as

L =
1

2

N∑

n=0

2n(κ+ 1− n)n

n!(s−n)!(κ+s+ d−2
2 − n)n

(∂nφ)a1...as−n�
κ−n(∂nφ)a1...as−n , (3.2)

(∂nφ)a1...as−n ≡ ∂b1 . . . ∂bnφb1...bna1...as−n , (3.3)

N ≡ min(s, κ) , (3.4)

(p)q ≡
Γ(p+ q)

Γ(p)
. (3.5)

3In the framework of gauge invariant approach to conformal currents and shadow fields developed in

ref. [12], the operator Ra is independent of derivatives ∂a.
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We recall that (p)q defined in (3.5) is the Pochhammer symbol. From (3.2) we see that the

minimal Lagrangian involves 2κ derivatives. For the reader’s convenience, we note that

the leading terms entering minimal Lagrangian (3.2) are given by

L =
1

2s!
φa1...as�

κφa1...as (3.6)

+
κ

(s− 1)!(κ+ s+ d−4
2 )

∂bφba1...as−1�
κ−1∂cφca1...as−1

+
κ(κ− 1)

(s− 2)!(κ+ s+ d−4
2 )(κ+ s+ d−6

2 )
∂b1∂b2φb1b2a1...as−2�

κ−2∂c1∂c2φc1c2a1...as−2 + . . . .

The following remarks are in order.

i) For the short and partial-short conformal fields given in table 1, Lagrangian (3.2) is

invariant under gauge transformations

δφa1...as = Πtr∂(a1 . . . ∂at+1ξat+2...as) , t ≡ s+
d− 4

2
− κ ,

for short and partial-short conformal fields, (3.7)

where a gauge transformation parameter ξat+2...as is a rank-(s − 1 − t) traceless totally

symmetric tensor field of the Lorentz algebra so(d − 1, 1) and we use a projector Πtr to

respect the tracelessness constraint (3.1).

ii) For the long and special conformal fields, minimal Lagrangian (3.2) is gauge variant.

iii) With the exception of the particular case κ = 1, minimal Lagrangian (3.2) involves

higher-derivatives.

iv) Lagrangian (3.2) is invariant under the conformal algebra transformations presented

in (2.16)–(2.19). We note then that a realization of spin operator Mab (2.20) on a space of

the traceless tensor field φa1...as of the Lorentz algebra so(d−1, 1) is well known. Realization

of the operator ∆ on a space of the traceless field φa1...as is given by (1.1). We note also that

the operator Ra is trivially realized on a space of the traceless field φa1...as , i.e., Ra = 0.

We now discuss minimal Lagrangian (3.2) for some particular values of κ, s, and d.

Conformal spin-s field with arbitrary integer s and κ = s + d−4

2
, d-even.

According to table 1 such conformal field is referred to as short conformal field. For

the short conformal field, Lagrangian (3.2) takes the form

L =
1

2

s∑

n=0

2n(s+ d−2
2 − n)n

n!(s− n)!(2s+ d− 3− n)n
(∂nφ)a1...as−n�

s+ d−4
2

−n(∂nφ)a1...as−n , (3.8)

where we use the notation as in (3.3), (3.5). Lagrangian (3.8) is invariant under gauge

transformations given in (3.7) with t = 0. Representation for the minimal Lagrangian of

the short conformal field given in (3.8) was obtained in ref. [6]. Alternative representations

for the minimal Lagrangian of the short conformal field may be found in refs. [1, 2].

– 7 –
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Conformal spin-s field with arbitrary integer s and κ = 1. For arbitrary integer

s and κ = 1, Lagrangian (3.2) takes the form

L =
1

2s!
φa1...as�φa1...as +

1

(s− 1)!(s+ d−2
2 )

∂bφba1...as−1∂cφca1...as−1 . (3.9)

For d = 4 and d ≥ 4, Lagrangian (3.9) with arbitrary s was obtained in the respective

ref. [8] and ref. [9]. According to table 1, for s ≥ 2, d = 4, Lagrangian (3.9) describes the

type II partial-short conformal fields and is invariant under gauge transformations given

in (3.7) with t = s− 1. For s ≥ 2, d = 3 and s ≥ 1, d ≥ 5, Lagrangian (3.9) describes the

special conformal fields and is gauge variant. For s = 1, d = 3, Lagrangian (3.9) describes

the long conformal field and is gauge variant. For s = 1, d = 4, Lagrangian (3.9) describes

the short conformal (Maxwell) field.

Conformal spin-1 field with arbitrary integer κ≥1. For this case, Lagrangian (3.2)

takes the following form

L =
1

2
φa

�
κφa +

2κ

2κ+ d− 2
∂aφa

�
κ−1∂bφb , κ = 1, 2, . . . ,∞ . (3.10)

Alternatively, Lagrangian (3.10) can be represented the form similar to the Proca,

Lagrangian

g2L = −
1

4
F ab

�
κ−1F ab −

1

2
m2φa

�
κφa , (3.11)

F ab ≡ ∂aφb − ∂bφa , (3.12)

g2 ≡
2κ+ d− 2

4κ
, (3.13)

m2 ≡
2κ− d+ 2

4κ
, (3.14)

g2 +m2 = 1 , (3.15)

where we introduce formally coupling constant g (3.13) and dimensionless mass parameter

m (3.14). For κ = 1, . . . , (d− 4)/2, d ≥ 6, we have m2 6= 0 and Lagrangian (3.11) is gauge

variant. According to our classification in table 1, for κ = 1 and d ≥ 6, we refer to the

field φa as the special conformal field, while, for κ = 2, . . . , (d − 4)/2 and d ≥ 8, the field

φa is referred to as the secondary long conformal field. For κ = (d − 2)/2, we get m2 = 0

and this case corresponds to a spin-1 short conformal field with gauge invariant Lagrangian

in (3.11). For κ > s− 2 + [d/2] and d ≥ 3, the Lagrangian given in (3.11) is gauge variant

and the field φa is referred to as the long conformal field.

Conformal spin-2 field with arbitrary integer κ≥1. For this case, Lagrangian (3.2)

takes the form

L =
1

4
φab

�
κφab +

2κ

2κ+ d
∂bφba

�
κ−1∂cφca

+
4κ(κ− 1)

(2κ+ d)(2κ+ d− 2)
∂a∂bφab

�
κ−2∂c∂eφce , κ = 1, 2, . . . ,∞ . (3.16)

We note that, for κ = 2, d = 4, Lagrangian (3.16) describes the Weyl graviton (spin-2 short

conformal field) and is invariant under gauge transformations given in (3.7) with t = 0.

– 8 –
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Conformal spin-2 field with κ = 1

2
(d − 2) and even d ≥ 4. For this case,

Lagrangian (3.2) takes the form

L =
1

4
φab

�
d−2
2 φab +

d− 2

2(d− 1)
∂bφba

�
d−4
2 ∂cφca +

d− 4

4(d− 1)
∂a∂bφab

�
d−6
2 ∂c∂eφce . (3.17)

Lagrangian (3.17) describes the partial-short conformal field corresponding to the value

κ = 1
2(d− 2) in table 1. For the case of d = 4, Lagrangian (3.17) takes the form

L =
1

4
φab

�φab +
1

3
∂bφba∂cφca . (3.18)

Lagrangian (3.18) was obtained in ref. [13] (see also refs. [14]). Invariance of La-

grangian (3.18) under gauge transformation (3.7) with t = 1 was discovered in ref. [15]. In

ref. [16, 17], the spin-2 conformal field described by Lagrangian (3.18) has been identified

with a boundary value of the spin-2 partial-massless field in AdS5 (see also ref. [18]).

Minimal Lagrangian of conformal field from AdS/CFT correspondence.

Minimal Lagrangian (3.2) can be obtained in the framework of AdS/CFT correspondence.

We recall that, in the framework of AdS/CFT correspondence, conformal field that propa-

gates in Rd−1,1 and has conformal dimension as in (1.1) is dual to a non-normalizable mode

of bulk field that propagates in AdSd+1 and has lowest eigenvalue of an energy operator

equal to E0 = κ + d
2 . Let us refer to an action of AdS field evaluated on a solution of

the Dirichlet problem as effective action. We will denote the effective action as Seff . For

arbitrary values of κ, s, and d, the effective action for spin-s field in AdSd+1 was found in

ref. [19] and is given by

− Seff =
κ(2κ+ 2s+ d− 2)

s!(2κ+ d− 2)
cκΓ

stand , cκ ≡
Γ(κ+ d

2)

πd/2Γ(κ)
, (3.19)

where a 2-point function Γstand appearing in (3.19) is defined by the relations

Γstand =

∫
ddx1d

dx2 Γ
stand
12 , (3.20)

Γstand
12 = φa1...as(x1)

Oa1b1
12 . . . Oasbs

12

|x12|2κ+d
φb1...bs(x2) , Oab

12 ≡ ηab −
2xa12x

b
12

|x12|2
. (3.21)

From (3.20), (3.21), we see that Γstand is a standard 2-point CFT function for a bound-

ary shadow field φa1...as which has the conformal dimension given in (1.1). For mass-

less and massive spin-1 and spin-2 fields, the normalization factor appearing in front of

Γstand in (3.19) is in agreement with the results obtained in the earlier literature (see

refs. [5, 20–22])

For integer values of κ, the 2-point function (3.21) is not well defined (see, e.g.,

refs. [23, 24]). Using the regularization κ → κ − ǫ, ǫ ∼ 0, and the well known expres-

sion for UV divergence of the regularized kernel entering 2-point function Γstand
12 (3.21)4

1

|x|2κ+d

ǫ∼0
∼

1

ǫ
̺κ�

κδd(x) , ̺κ ≡
πd/2

4κΓ(κ+ 1)Γ(κ+ d
2)

, (3.22)

4Useful discussion of technical details of the regularization procedure (3.22) may be found in appendix G

in ref. [25].
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we verify that UV divergence of the 2-point function Γstand (3.20) takes the form

Γstand
∣∣∣
ǫ∼0

∼
2s!

ǫ

2κ+ d− 2

2κ+ 2s+ d− 2
̺κSmin , Smin =

∫
ddxL , (3.23)

where Lagrangian appearing in (3.23) is nothing but the minimal Lagrangian given in (3.2).

Plugging (3.23) into (3.19) we see that the UV divergence of the effective action is propor-

tional to the minimal action of conformal field

− Seff

∣∣∣
ǫ∼0

∼
1

ǫ

2

4κΓ2(κ)
Smin . (3.24)

From relation (3.24), we see that UV divergence of the effective action for field in AdSd+1

with integer value of κ is indeed realized as the minimal action for conformal field in Rd−1,1.

4 Ordinary-derivative gauge invariant Lagrangian of conformal field

Field content for long, partial-short and special conformal fields. In order to

develop an ordinary-derivative gauge invariant metric-like formulation of totally symmetric

arbitrary spin-s conformal field that propagates in Rd−1,1 and has conformal dimension

given in (1.1), we introduce the following set of real-valued scalar, vector, and tensor fields

of the Lorentz algebra so(d− 1, 1):

φ
a1...as′
λ,k′ (x) , (4.1)

where labels s′, λ, k′ take the following values

s′ = 0, 1, . . . , s , λ ∈ [s− s′]2 , k′ ∈ [κ− 1 + λ]2 , κ− 1 + λ ≥ 0,

for long and secondary long conformal fields; (4.2)

s′ = 0, 1, . . . , s , λ ∈ [s− s′]2 , k′ ∈ [κ− 1 + λ]2 , κ− 1 + λ ≥ 0,

s− s′ + 2− 2κ ≤ λ ,

for special conformal fields; (4.3)

s′ = 0, 1, . . . , s , λ ∈ [s− s′]2 , k′ ∈ [κ− 1 + λ]2 , κ− 1 + λ ≥ 0,

λ ≤ s+ s′ + d− 4− 2κ ,

for type I partial-short conformal fields; (4.4)

s′ = 0, 1, . . . , s , λ ∈ [s− s′]2 , k′ ∈ [κ− 1 + λ]2 , κ− 1 + λ ≥ 0,

s− s′ + 2− 2κ ≤ λ ≤ s+ s′ + d− 4− 2κ ,

for type II partial-short conformal fields; (4.5)

s′ = 0, 1, . . . , s , λ = s′ − s , k′ ∈ [ks′ ]2 , ks′ ≥ 0 , ks′ ≡ s′ +
d− 6

2
,

for short conformal fields. (4.6)
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Relation p ∈ [q]2 appearing in (4.2)–(4.6) is defined in (2.11). We recall also that values of

s and κ for the various conformal fields are defined in table 1.

The following remarks are in order.

i) In the catalogue (4.1)–(4.6), fields φ
a1...as′
λ,k′ with s′ = 0 and s′ = 1 are the respective

scalar and vector fields of the Lorentz algebra so(d− 1, 1), while fields φ
a1...as′
λ,k′ with s′ > 1

are totally symmetric rank-s′ tensor fields of the Lorentz algebra. By definition, the tensor

fields φ
a1...as′
λ,k′ with s′ ≥ 4 are double traceless tensor fields,

φ
aabba5...as′
λ,k′ = 0 , s′ ≥ 4 . (4.7)

ii) Conformal dimensions of the fields φ
a1...as′
λ,k′ (4.1) are given by the relation

∆(φ
a1...as′
λ,k′ ) =

d− 2

2
+ k′ . (4.8)

iii) Taking into account the restrictions on the label λ given in the second lines in (4.3)–

(4.5), we see that the domains of values of the label λ for the special and partial-short

fields (4.3)–(4.5) are obtained by decreasing the domain of values of the label λ for the

long fields in (4.2). In other words, the field contents of the special, type I partial-short

and type II partial-short conformal fields are obtained from the field content of the long

conformal fields by setting to zero those fields in (4.2) whose values of λ do not respect

constraints in the second lines in the respective relations (4.3), (4.4), and (4.5). It is the

restrictions on λ appearing in the second lines in (4.3)–(4.5) and AdS/CFT dictionary that

motivate us to classify fields into the special, types I and II partial-short conformal fields

(see below). Also we see that the field content of the short conformal field is obtained by

setting to zero all fields in (4.2) with λ 6= s′ − s. The field content entering the ordinary-

derivative formulation of the short conformal fields has been found in ref. [11].

iv) The terminology we use in this paper is inspired by AdS/CFT dictionary. Namely, a

conformal field that propagates in Rd−1,1 and has conformal dimension as in (1.1) is dual to

a non-normalizable mode of bulk field that propagates in AdSd+1 and has lowest eigenvalue

of an energy operator equal to E0 = κ + d
2 . Our long and secondary long conformal

fields (4.2) are dual to AdS massive fields associated with the respective unitary and non-

unitary irreps of the so(d, 2) algebra. Conformal field in (4.3) is related to AdS massive field

associated with non-unitary irrep of the so(d, 2) algebra. In view of the restriction on λ in

the second line in (4.3) we refer to such conformal field as special conformal field. Conformal

fields in (4.4), (4.5) are dual to AdS partial-massless fields.5 In view of the restrictions on

λ in the second lines in (4.4) and (4.5) we refer to such conformal fields as the respective

type I and type II partial-short conformal fields. Conformal field in (4.6) is dual to massless

AdS field. Therefore we refer to such conformal field as short conformal field.

5Arbitrary spin partial-massless fields in AdS4 were first studied in refs. [26, 27]. Generalization of results

in the latter references to AdSd+1, d ≥ 3, may be found in refs. [28, 29]. Discussion of various aspects of free

and interacting partial-massless AdS fields may be found in the respective refs. [30–33] and refs. [34–36].
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v) For the special and partial-short conformal fields, the restriction κ−1+λ ≥ 0 appear-

ing in (4.2)–(4.5) is satisfied automatically, while, for some long conformal field in R2,1,

this restriction leads to a constraint on the field content. Namely, using expression for κ

corresponding to the long conformal field in R2,1 with N = 0 (see table 1), we find the

relation κ = s and note that, for s′ = 0 and λ = −s, the restriction κ − 1 + λ ≥ 0 is not

satisfied. This implies that the fields with s′ = 0 (scalar fields) and λ = −s do not enter

the field content of the spin-s long conformal field in R2,1 that has κ = s, (the case of

N = 0 in table 1). We note then that, for a short conformal field in R3,1, the restriction

ks′ ≥ 0 appearing in (4.6) also leads to some constraint on the field content. Namely, using

expression for ks′ in (4.6), we see that for d = 4 and s′ = 0, the constraint ks′ ≥ 0 is not

satisfied. This implies that fields with s′ = 0 (scalar fields) do not enter the field content

of the ordinary-derivative formulation of the short conformal field in R3,1.

vi) For d = 4, it is easy to see that the restrictions on λ in the second line in (4.5)

lead to the restriction s′ ≥ 1. This implies scalar fields do not enter field content of the

ordinary-derivative formulation of the type II partial-short conformal fields in R3,1.

Generating form of field content. In order to obtain a gauge invariant description of

a conformal field in an easy-to-use form, we use oscillators αa, αz, ζ, α⊕, α⊖ and collect

all fields given in (4.2)–(4.6) into the following ket-vector:

|φ〉 =
∑

s′,λ,k′

|φs′

λ,k′〉 , (4.9)

where basis ket-vectors |φs′

λ,k′〉 appearing in (4.9) take the form

|φs′

λ,k′〉 ≡
ζ

1
2
(s−s′+λ)α

1
2
(s−s′−λ)

z√
( s−s′+λ

2 )!( s−s′−λ
2 )!

(α⊕)
1
2
(κ−1+λ−k′)(α⊖)

1
2
(κ−1+λ+k′)

(κ−1+λ+k′

2 )! s′!

× αa1 . . . αas′φ
a1...as′
λ,k′ (x)|0〉 , (4.10)

and, depending on the type of the conformal field, the summation indices s′, λ, k′ in (4.9)

run over values given in (4.2)–(4.6). Note that, for the short conformal field, the λ is fixed

(see (4.6)).

From relations (4.9), (4.10), it is easy to see that the ket-vector |φ〉 satisfies the following

algebraic constraints

(Nα +Nαz +Nζ − s)|φ〉 = 0 , (4.11)

(Nαz −Nζ +Nα⊕ +Nα⊖ − κ+ 1)|φ〉 = 0 , (4.12)

while the basis ket-vectors |φs′

λ,k′〉 (4.10) satisfy the algebraic constraints

Nα|φ
s′

λ,k′〉 = s′|φs′

λ,k′〉 , (4.13)

(Nζ −Nαz)|φs′

λ,k′〉 = λ|φs′

λ,k′〉 , (4.14)

(Nα⊖ −Nα⊕)|φs′

λ,k′〉 = k′|φs′

λ,k′〉 , (4.15)

where a definition of the operators Nα, Nζ , etc., may be found in relations (2.6), (2.7).
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From relation (4.11), we learn that the ket-vector |φ〉 is a degree-s homogeneous poly-

nomial in the oscillators αa, αz, ζ. Relation (4.13) tells us that the basis ket-vector |φs′

λ,k′〉 is

a degree-s′ homogeneous polynomial in the oscillators αa. From relations (4.14) and (4.15)

we learn that the ket-vector |φs′

λ,k′〉 is an eigenvector of the respective operators Nζ −Nαz

and Nα⊖ −Nα⊕ . Also we note that, in terms of the ket-vector |φ〉, constraint given in (4.7)

takes the following form

(ᾱ2)2|φ〉 = 0 . (4.16)

Remark on the short conformal fields. As we have already said, the field content en-

tering the ordinary-derivative formulation of the short conformal fields given in (4.1), (4.6)

has been found in ref. [11]. For the reader’s convenience and in order to match result

in ref. [11] with the presentation in this paper we now write down the explicit form of

the ket-vector |φ〉 for the short conformal field. Such explicit form is obtained by plug-

ging κ = s + d−4
2 and the labels s′, λ, k′ given in (4.6) into ket-vector (4.9), (4.10).

Doing so, we get

|φ〉 =
∑

s′k′

|φs′

s′−s,k′〉 , for short conformal fields, (4.17)

|φs′

s′−s,k′〉 ≡
αs−s′
z (α⊕)

1
2
(ks′−k′)(α⊖)

1
2
(ks′+k′)

√
(s− s′)! (

ks′+k′

2 )! s′!
αa1 . . . αas′φ

a1...as′
s′−s,k′(x)|0〉 , (4.18)

where ks′ is defined in (4.6).

Comparing the basis ket-vectors in (4.10) and (4.18), we see that the basis ket-vectors

of the short conformal field (4.18) do not depend on the oscillator ζ.6 This implies that

ket-vector |φ〉 (4.17) satisfies the following algebraic constraints

(Nα +Nαz − s)|φ〉 = 0 , (4.19)

(Nαz +Nα⊕ +Nα⊖ − ks)|φ〉 = 0 , ks ≡ s+
d− 6

2
, (4.20)

while basis ket-vectors |φs′

s′−s,k′〉 (4.18) satisfy the algebraic constraints

Nα|φ
s′

s′−s,k′〉 = s′|φs′

s′−s,k′〉 , (4.21)

Nαz |φs′

s′−s,k′〉 = (s− s′)|φs′

s′−s,k′〉 , (4.22)

(Nα⊖ −Nα⊕)|φs′

s′−s,k′〉 = k′|φs′

s′−s,k′〉 . (4.23)

Gauge invariant Lagrangian. We now discuss an ordinary-derivative gauge invariant

Lagrangian for all conformal fields given in table 1. We find the following representation for

6We note the clash of the notation and conventions in this paper and in ref. [11]. Namely, the fields

φ
a1...as

′

s′−s,k′ appearing in (4.17), (4.18) are denoted by φ
a1...as

′

k′ in ref. [11]. Also we note that the ket-vector |φ〉

of the short conformal field in ref. [11] is obtained from (4.17), (4.18) by using the replacements αz → ζ,

α⊕ → υ⊖, α⊖ → υ⊕.

– 13 –



J
H
E
P
0
5
(
2
0
1
6
)
0
9
6

action and ordinary-derivative Lagrangian in terms of the ket-vector |φ〉 above discussed:

S =

∫
ddxL , (4.24)

L =
1

2
〈φ|

(
1−

1

4
α2ᾱ2

)
(�−M2)|φ〉+

1

2
〈L̄φ|L̄φ〉 , (4.25)

M2 ≡ α⊕ᾱ⊕ , (4.26)

L̄ ≡ ᾱ∂ −
1

2
α∂ᾱ2 −Π[1,2]ē1 +

1

2
e1ᾱ

2 , (4.27)

e1 = ζeζα
⊕ + αzezᾱ

⊕ , (4.28)

ē1 = −ᾱ⊕ēζ ζ̄ − α⊕ezᾱ
z , (4.29)

where operators �, α2, α∂, etc., appearing in (4.25), (4.27) are defined in (2.4)–(2.8). We

now describe quantities entering the Lagrangian in (4.25).

i) Bra-vector 〈φ| entering Lagrangian (4.25) is defined according the rule

〈φ| ≡ (|φ〉)†β , (4.30)

where an operator β appearing in (4.30) takes the following form for various conformal

fields:

β = 1 , for long conformal fields in Rd−1,1 and

for short conformal fields in Rd−1,1, d-even; (4.31)

β = eiπNζ , for secondary-long, special, and partial-short fields in Rd−1,1, d-even;

(4.32)

β = eiπNζǫ(Nζ−t−1)+iπ(t+ 1
2
)θ(Nζ−t−1) , t ≡ s+

d− 4

2
− κ ,

for secondary long and special fields in Rd−1,1, d-odd; (4.33)

where symbols ǫ and θ appearing in (4.33) are defined as

ǫ(n) = 1 for n< 0, ǫ(n) = 0 for n ≥ 0 , (4.34)

θ(n) = 0 for n< 0, θ(n)= 1 for n ≥ 0 . (4.35)

Note that, on a space of the ket-vector |φ〉, one has the relation β2 = 1. Appearance

of the operator β in (4.30) is related to the fact that our Lagrangian is constructed out of

real-valued fields of the Lorentz algebra so(d−1, 1). Only for the long and short conformal

fields, eigenvalues of the operator β are strictly positive (4.31). For the secondary long,

special, and partial-short conformal fields, we see that, depending on eigenvalues of the

operator Nζ on a space of ket-vector |φ〉 (4.9), a spectrum of the operator β involves both

the positive and negative eigenvalues. For the case of the long and short fields, the strictly

positive spectrum of the operator β can intuitively be explained by the fact that, in the

framework of AdS/CFT, the long and short conformal fields in Rd−1,1 are related to unitary

massive and massless fields in AdSd+1. Accordingly, the appearance of the both positive

and negative eigenvalues of β for the secondary long, special, and partial-short conformal
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fields can intuitively be explained by the fact that, in the framework of AdS/CFT, the

secondary long and special conformal fields in Rd−1,1 are related to non-unitary massive

fields in AdSd+1, while the partial-short conformal fields in Rd−1,1 are related to partial-

massless fields in AdSd+1 which are also non-unitary.

ii) Operators eζ , ez, ēζ appearing in (4.28), (4.29) take the following form for the various

conformal fields

eζ = rζ , ez = rz , ēζ = rζ , for long fields in Rd−1,1; (4.36)

eζ = |rζ | , ez = rz , ēζ = −|rζ |, for secondary long, special, and partial-short

fields in Rd−1,1, d-even; (4.37)

eζ = |rζ | , ez = rz , ēζ = eiπǫ(Nζ−t)|rζ | ,

for secondary long and special fields in Rd−1,1, d-odd; (4.38)

eζ = 0 , ez =
[ 2s+ d− 4−Nz

2s+ d− 4− 2Nz

] 1
2
, for short fields in Rd−1,1, d-even; (4.39)

where operators rζ , rz appearing in (4.36)–(4.38) are defined in (2.9), (2.10), while the

parameter t is defined in (4.33).

iii) The quantity |L̄φ〉 appearing in (4.25) is defined as |L̄φ〉 ≡ L̄|φ〉, while 〈L̄φ| is defined

as 〈L̄φ| ≡ (|L̄φ〉)†β. We note that if, in expression for L̄ (4.27), we set e1 = 0, ē1 = 0, then

the quantity |L̄φ〉 becomes the standard de Donder divergence entering Lagrangian of a

massless field in Rd−1,1.7 For this reason, the quantity |L̄φ〉 with L̄ as in (4.27) we refer

to as modified de Donder divergence. Obviously, it is the use of the modified de Donder

divergence that allows us to simplify significantly our representation for the gauge invariant

Lagrangian given in (4.25).

iv) If, in Lagrangian (4.25), we set M2 = 0, e1 = 0, ē1 = 0, then we are left with two

derivative contributions to the Lagrangian. It is easy to see that, for spin-1, spin-2, and

spin-s, s > 2, fields, those two-derivative contributions take the form of the respective

Maxwell, Einstein-Hilbert, and Fronsdal kinetic terms.

v) Using the above-given explicit expressions for the operators e1, ē1, and β, we check

that, on a space of the ket-vector |φ〉, the following hermitian conjugation rules

β† = β , (βe1)
† = −βē1 (4.40)

hold true. For the derivation of relations (4.40), we use the fact that the ket-vector |φ〉

satisfies the relation e2πiNζ |φ〉 = |φ〉 which, in turn, implies the relation β2|φ〉 = |φ〉.

7Interesting applications of the standard de Donder divergence for studying various aspects of higher-

spin field theory may be found in refs. [37–41]. We think that our modified de Donder gauge could be useful

for the computations in conformal higher-spin field theory discussed in ref. [42].
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5 Gauge symmetries of conformal fields in ordinary-derivative approach

Gauge transformation parameters for long, partial-short, short, and special

conformal fields. In order to discuss gauge symmetries of the ordinary-derivative

Lagrangian (4.25), we introduce the following set of scalar, vector, and tensor gauge trans-

formation parameters:

ξ
a1...as′
λ,k′ (x) , (5.1)

where labels s′, λ, k′ take the following values

s′ = 0, 1, . . . , s− 1 , λ ∈ [s− 1− s′]2 , k′ ∈ [κ− 1 + λ]2 , κ− 1 + λ ≥ 0,

for long and secondary long conformal fields;

(5.2)

s′ = 0, 1, . . . , s− 1 , λ ∈ [s− 1− s′]2 , k′ ∈ [κ− 1 + λ]2 , κ− 1 + λ ≥ 0,

s− s′ + 1− 2κ ≤ λ ,

for special conformal fields; (5.3)

s′ = 0, 1, . . . , s− 1 , λ ∈ [s− 1− s′]2 , k′ ∈ [κ− 1 + λ]2 , κ− 1 + λ ≥ 0,

λ ≤ s+ s′ + d− 3− 2κ ,

for type I partial-short conformal fields; (5.4)

s′ = 0, 1, . . . , s− 1 , λ ∈ [s− 1− s′]2 , k′ ∈ [κ− 1 + λ]2 , κ− 1 + λ ≥ 0,

s− s′ + 1− 2κ ≤ λ ≤ s+ s′ + d− 3− 2κ ,

for type II partial-short conformal fields; (5.5)

s′ = 0, 1, . . . , s− 1 , λ = s′ + 1− s , k′ ∈ [ks′ + 1]2 , ks′ ≥ 0 ,

ks′ ≡ s′ +
d− 6

2
, for short conformal fields; (5.6)

and the relation p ∈ [q]2 appearing in (5.2)–(5.6) is defined in (2.11). Note also that the

values of s and κ for the various conformal fields are defined in table 1.

The following remarks are in order.

i) In the catalogue of gauge transformation parameters (5.2)–(5.6), parameters ξ
a1...as′
λ,k′

with s′ = 0 and s′ = 1 are the respective scalar and vector fields of the Lorentz algebra

so(d−1, 1), while parameters ξ
a1...as′
λ,k′ with s′ > 1 are totally symmetric rank-s′ tensor fields

of the Lorentz algebra. By definition, the gauge transformation parameters ξ
a1...as′
λ,k′ with

s′ ≥ 2 are traceless tensor fields,

ξ
aaa3...as′
λ,k′ = 0 , s′ ≥ 2 . (5.7)

ii) Conformal dimensions of the parameters ξ
a1...as′
λ,k′ are given by the relation

∆(ξ
a1...as′
λ,k′ ) =

d− 4

2
+ k′ . (5.8)
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iii) For the reader’s convenience, we note two alternative and equivalent simple rules for

getting the values of the labels in (5.2)–(5.6). Namely, values of the labels in (5.2)–(5.6)

can be obtained by using one of the two replacements for labels s′, s, and d in (4.2)–(4.6)

which we present as rule I and rule II,

rule I: s′ → s′ + 1, s and d fixed; (5.9)

rule II: s → s− 1, d → d+ 2 , s′ fixed. (5.10)

In order to simplify a presentation of gauge symmetries we use the oscillators αa, αz,

ζ, α⊕, α⊖ and collect all gauge transformation parameters given in (5.2)–(5.6) into the

following ket-vector

|ξ〉 =
∑

s′,λ,k′

|ξs
′

λ,k′〉 , (5.11)

where basis ket-vectors appearing in (5.11) take the form

|ξs
′

λ,k′〉 ≡
ζ

1
2
(s−1−s′+λ)α

1
2
(s−1−s′−λ)

z√
( s−1−s′+λ

2 )!( s−1−s′−λ
2 )!

(α⊕)
1
2
(κ−1+λ−k′)(α⊖)

1
2
(κ−1+λ+k′)

(κ−1+λ+k′

2 )! s′!

× αa1 . . . αas′ ξ
a1...as′
λ,k′ (x)|0〉 (5.12)

and, depending on the type of the conformal field, the summation indices s′, λ, k′ in (5.11)

run over values given in (5.2)–(5.6).

Using relations (5.11), (5.12), it is easy to see that ket-vector |ξ〉 (5.11) satisfies the

following relations

(Nα +Nαz +Nζ − s+ 1)|ξ〉 = 0 , (5.13)

(Nαz −Nζ +Nα⊕ +Nα⊖ − κ+ 1)|ξ〉 = 0 , (5.14)

while the basis ket-vectors |ξs
′

λ,k′〉 (5.12) satisfy the relations

Nα|ξ
s′

λ,k′〉 = s′|ξs
′

λ,k′〉 , (5.15)

(Nζ −Nαz)|ξs
′

λ,k′〉 = λ|ξs
′

λ,k′〉 , (5.16)

(Nα⊖ −Nα⊕)|ξs
′

λ,k′〉 = k′|ξs
′

λ,k′〉 . (5.17)

From relation (5.13), we learn that the ket-vector |ξ〉 is a degree-(s− 1) homogeneous

polynomial in the oscillators αa, αz, ζ. Relation (5.15) tells us that the basis ket-vector

|ξs
′

λ,k′〉 is a degree-s′ homogeneous polynomial in the oscillators αa. From relations (5.16)

and (5.17) we learn that the ket-vector |ξs
′

λ,k′〉 is an eigenvector of the respective operators

Nζ − Nαz and Nα⊖ − Nα⊕ . Also we note that, in terms of the ket-vector |ξ〉, constraint

given in (5.7) takes the following form

ᾱ2|ξ〉 = 0 . (5.18)
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Remark on gauge symmetries of short conformal fields. Gauge transformation

parameters (5.1), (5.6) entering the ordinary-derivative formulation of the short conformal

fields have been found in ref. [11]. In order to match result in ref. [11] with the presen-

tation in this paper we now write down an explicit form of the ket-vector |ξ〉 for gauge

transformation parameters of the short conformal field. Such explicit form is obtained by

plugging κ = s + d−4
2 and labels s′, λ, k′ given in (5.6) into ket-vector |ξ〉 (5.11), (5.12).

Doing so, we get

|ξ〉 =
∑

s′,k′

|ξs
′

s′+1−s,k′〉 , for short conformal fields, (5.19)

|ξs
′

s′+1−s,k′〉 ≡
αs−1−s′
z (α⊕)

1
2
(ks′+1−k′)(α⊖)

1
2
(ks′+1+k′)

√
(s− 1− s′)! (

ks′+1+k′

2 )! s′!
αa1 . . . αas′ ξ

a1...as′
s′+1−s,k′ |0〉 , (5.20)

where ks′ is given in (5.6).

Comparing the basis ket-vectors in (5.12) and (5.20), we see that the basis ket-vectors

for gauge transformation parameters (5.20), which are related to gauge symmetries of the

short conformal field, do not depend on the oscillator ζ.8 This implies that ket-vector

|ξ〉 (5.19) satisfies the following algebraic constraints

(Nα +Nαz − s+ 1)|ξ〉 = 0 , (5.21)

(Nαz +Nα⊕ +Nα⊖ − ks)|ξ〉 = 0 , ks ≡ s+
d− 6

2
, (5.22)

while basis ket-vectors |ξs
′

λ,k′〉 (5.20) satisfy the algebraic constraints

Nα|ξ
s′

s′+1−s,k′〉 = s′|ξs
′

s′+1−s,k′〉 , (5.23)

Nαz |ξs
′

s′+1−s,k′〉 = (s− 1− s′)|ξs
′

s′+1−s,k′〉 , (5.24)

(Nα⊖ −Nα⊕)|ξs
′

s′+1−s,k′〉 = k′|ξs
′

s′+1−s,k′〉 . (5.25)

Gauge transformations of conformal fields. The use of the ket-vector |φ〉 for the

description of the conformal fields and the ket-vector |ξ〉 for the description of the gauge

transformation parameters allows us to present gauge transformations of all conformal

fields on an equal footing. Namely, gauge transformations of the long, partial-short, short

and special conformal fields can entirely be presented in terms of the ket-vectors |φ〉, |ξ〉 in

the following way:

δ|φ〉 = G|ξ〉 , G ≡ α∂ − e1 − α2 1

2Nα + d− 2
ē1 , (5.26)

where the operators e1, ē1 appearing in (5.26) are given by relations (4.36)–(4.39).

From (5.26), we see the following two characteristic features of the gauge transforma-

tions in our approach to all conformal fields listed in table 1.

8We note the clash of the notation and conventions in this paper and in ref. [11]. Namely the gauge

transformation parameters ξ
a1...as

′

s′+1−s,k′ appearing in (5.20) are denoted by ξ
a1...as

′

k′−1 in ref. [11]. Also we note

that the ket-vector |ξ〉 in ref. [11] is obtained from (5.19), (5.20) by using the following replacements:

αz → ζ, α⊕ → υ⊖, α⊖ → υ⊕.
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i) The gauge transformations of fields do not involve higher than first order terms in

derivatives.

ii) The one-derivative contributions to the gauge transformations of fields take the form

of standard gradient gauge transformations.

6 Realization of conformal symmetries in ordinary-derivative approach

The dynamics of conformal fields propagating in Rd−1,1 should respect the conformal al-

gebra so(d, 2) symmetries. Note however that, in our ordinary-derivative approach to

conformal fields, only the Lorentz algebra so(d − 1, 1) symmetries are realized manifestly.

This implies that in order to complete our ordinary-derivative formulation of the conformal

fields we should provide a realization of the conformal algebra symmetries on a space of

conformal fields. As we have already said, from relations (2.15)–(2.19), we see that all that

is required to complete a description of the conformal symmetries is to find a realization

of the operators ∆, Mab, and Ra on a space of the ket-vector |φ〉. Our ket-vector |φ〉 is

built in terms of the oscillators (see relations (4.9), (4.10)). For such ket-vector, a realiza-

tion of the spin operators Mab of the Lorentz algebra is well known and is given by the

following relation:

Mab = αaᾱb − αbᾱa . (6.1)

A realization of the conformal dimension operator ∆ on a space of the |φ〉 can be read from

relations (4.8), (4.15), (4.23) and is given by

∆ =
d− 2

2
+ ∆′ , ∆′ ≡ Nα⊖ −Nα⊕ . (6.2)

Realization of the operator Ra on a space of the ket-vector |φ〉 we find is given by

Ra = r0,1ᾱ
a + Ãar̄0,1 + r1,1∂

a , (6.3)

r0,1 = −2ζeζα
⊖ + 2αzezᾱ

⊖ , (6.4)

r̄0,1 = 2ᾱ⊖ēζ ζ̄ − 2α⊖ezᾱ
z (6.5)

r1,1 = −2α⊖ᾱ⊖ , (6.6)

where an operator Ãa appearing in (6.3) is defined in (2.8), while the operators eζ , ez, ēζ
appearing in (6.4), (6.5) are defined in (4.36)–(4.39).

The following remarks are in order.

i) We verify that the conformal boost operator Ka (2.19) with the operator Ra given

in (6.3)–(6.6) satisfies the commutator [Ka,Kb] = 0.

ii) Using the operators r0,1, r̄0,1 given in (6.4), (6.5) and the operator β given in (4.31)–

(4.33), we verify that, on a space of the ket-vector |φ〉, the operators r0,1, r̄0,1 (6.4), (6.5)

satisfy the following hermitian conjugation rule

(βr0,1)
† = −βr̄0,1 . (6.7)
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iii) Using relations for the operator Ra presented in (6.3)–(6.6), (4.36)–(4.39) and (2.9),

(2.10) we verify that the operator Ra is indeed acting on space of ket-vector |φ〉 (4.9) with

the values of the labels s′, λ, k′ given in (4.2)–(4.6). Note also that, using the explicit

expressions for the operators rζ , rz (2.9), (2.10) one can check that the field contents of the

special, partial-short, and short conformal fields in (4.3)–(4.6) can be realized as invariant

subspaces in the field content of the long conformal field in (4.2). In this respect there is

full analogy with massive and massless fields. As is well known a field content of a massless

field can be realized as an invariant subspace in a field content of a massive field when a

mass parameter tends to zero. In our case, the field contents of the special, partial-short,

and short conformal fields in (4.3)–(4.6) are realized as invariant subspaces in the field

content of the long conformal field in (4.2) when the parameter κ takes the respective

values given in table 1.

iv) A complete ordinary-derivative Lagrangian formulation of a conformal field implies

finding a Lagrangian, gauge symmetries and the operator Ra. We note that gauge symme-

tries taken alone do not admit to fix an ordinary-derivative Lagrangian uniquely. It turns

out that in order to determine an ordinary-derivative Lagrangian, gauge symmetries, and

the operator Ra uniquely we should analyse restrictions imposed by both gauge symme-

tries and the conformal algebra so(d, 2) symmetries. The general procedure for finding an

ordinary-derivative Lagrangian by using restrictions imposed by gauge symmetries and the

conformal algebra so(d, 2) symmetries has been developed in appendix B in ref. [11]. In

the latter reference, we used our general procedure for finding a Lagrangian formulation

for the short conformal fields. Our general procedure in ref. [11] is applied to the cases of

the long, partial-short, and special conformal fields in a rather straightforward way.

v) Our ordinary-derivative approach involves Stueckelberg and auxiliary fields. The

Stueckelberg fields can be removed by using the gauge symmetries in our approach, while

the auxiliary fields can be removed by using equations of motion. Doing so, one can

make sure that our ordinary-derivative Lagrangian leads to the minimal higher-derivative

Lagrangian given in (3.2). The general procedure for matching ordinary-derivative and

higher-derivative Lagrangian formulations was developed in section 5 in ref. [11]. Our gen-

eral procedure in ref. [11] can straightforwardly be used for the cases of the long, partial-

short, and special conformal fields. For the reader’s convenience, in section 7.2 in this

paper, by using example of BRST Lagrangian, we will demonstrate how higher-derivative

BRST Lagrangian is obtained from the ordinary-derivative BRST Lagrangian.

7 BRST Lagrangian and partition functions of conformal fields

In this section, by using the gauge invariant Lagrangian obtained in section 4 and the

standard Faddeev-Popov procedure, we obtain a gauge-fixed Lagrangian of conformal fields

which is invariant under global BRST transformations. After this we use the gauge-fixed

BRST Lagrangian for a derivation of partition functions of conformal fields.
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7.1 BRST Lagrangian of conformal fields

A general structure of our ordinary-derivative gauge invariant Lagrangian (4.25) and gauge

transformations (5.26) for conformal fields is similar to the one for massive fields.9 For the

case of arbitrary spin massive fields, gauge-fixed BRST Lagrangian was obtained in ref. [47].

Result in the latter reference is straightforwardly extended to the case of conformal fields.

Let us now to discuss our result for gauge-fixed BRST Lagrangian of conformal fields.

To discuss BRST Lagrangian of conformal fields we introduce a set of Faddeev-Popov

fields and Nakanishi-Lautrup fields,

c
a1...as′
λ,k′ , c̄

a1...as′
λ,k′ Faddeev-Popov fields; (7.1)

b
a1...as′
λ,k′ Nakanishi-Lautrup fields; (7.2)

where, depending on the type of the conformal field, the labels s′, λ, k′ take the same values

as the ones for gauge transformation parameters given in (5.2)–(5.6). In (7.1), (7.2), the

fields with s′ = 0 and s′ = 1 are the respective scalar and vector fields of the Lorentz

algebra so(d − 1, 1), while the fields with s′ > 1 are traceless totally symmetric rank-s′

tensor fields of the Lorentz algebra.

To describe the Faddeev-Popov fields and the Nakanishi-Lautrup fields in an easy-

to-use form we collect the Faddeev-Popov fields (7.1) into ket-vectors |c〉, |c̄〉, while the

Nakanishi-Lautrup fields (7.2) are collected into a ket-vector |b〉. We note then that the

ket-vectors |c〉, |c̄〉, |b〉 are obtained by making the respective replacements

ξ
a1...as′
λ,k′ → c

a1...as′
λ,k′ , ξ

a1...as′
λ,k′ → c̄

a1...as′
λ,k′ , ξ

a1...as′
λ,k′ → b

a1...as′
λ,k′ (7.3)

in the expressions for the ket-vector |ξ〉 given in (5.11), (5.12).

Using the ket-vectors above-described, gauge-fixed BRST Lagrangian Ltot can be pre-

sented as

Ltot = L+ Lqu , Lqu = −〈b|L̄|φ〉+ 〈c̄|(�−M2
)
|c〉+

1

2
ξ〈b||b〉 , (7.4)

where the gauge invariant Lagrangian L is given in (4.25), while the operator M2 and the

modified de Donder operator L̄ are given in (4.26) and (4.27) respectively.

We now note that gauge-fixed Lagrangian Ltot (7.4) is invariant not only under BRST

but also under anti-BRST transformations. Namely, gauge-fixed Lagrangian Ltot (7.4) is

invariant under BRST and anti-BRST transformations which take the following form:

s|φ〉 = G|c〉 , s|c〉 = 0 , s|c̄〉 = |b〉 , s|b〉 = 0 , (7.5)

s̄|φ〉 = G|c̄〉 , s̄|c〉 = −|b〉 , s̄|c̄〉 = 0 , s̄|b〉 = 0 , (7.6)

where an operator G appearing in (7.5), (7.6) is defined in (5.26). Using (7.5), (7.6), we

verify that the BRST and anti-BRST transformations (7.5), (7.6) are off-shell nilpotent:

s2 = 0 , s̄2 = 0 , s̄s+ s̄s = 0 . (7.7)

9Representation of gauge invariant Lagrangian of massive fields in terms of modified de Donder operator

was found in ref. [12]. For review, see section 2 in ref. [43].
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For a computation of partition functions of the conformal fields, it is convenient to use

the ξ = 1 gauge. Doing so, and integrating out the Nakanishi-Lautrup fields, we find that

the BRST Lagrangian Ltot (7.4) takes the following form:

Ltot =
1

2
〈φ|

(
1−

1

4
α2ᾱ2

)
(�−M2)|φ〉+ 〈c̄|(�−M2)|c〉, (7.8)

where the operator M2 is given in (4.26). Gauge-fixed Lagrangian (7.8) is also invariant

under BRST and anti-BRST transformations which take the following form

s|φ〉 = G|c〉 , s|c〉 = 0 , s|c̄〉 = L̄|φ〉 , (7.9)

s̄|φ〉 = G|c̄〉 , s̄|c〉 = −L̄|φ〉 , s̄|c̄〉 = 0 , (7.10)

where the operators L̄ and G appearing in (7.9), (7.10) are defined in (4.27) and (5.26)

respectively. BRST and anti-BRST transformations given (7.9), (7.10) are also nilpo-

tent (7.7). However, in contrast to the transformations given in (7.5), (7.6), transforma-

tions (7.9), (7.10) are nilpotent only for on-shell Faddeev-Popov fields.

Gauge-fixed BRST Lagrangian (7.8) can be represented in terms of traceless fields

which sometimes turn out to be more convenient for computations. To this end we use

the well known decomposition of the double-traceless ket-vector |φ〉 into two traceless ket-

vectors |φI〉, |φII〉,

|φ〉 = |φI〉+ α2N|φII〉 , N ≡ ((2Nα + d)(2Nα + d− 2))−1/2 , (7.11)

ᾱ2|φI〉 = 0 , ᾱ2|φII〉 = 0 . (7.12)

Plugging decomposition (7.11) into BRST Lagrangian (7.8), we get

Ltot =
1

2
〈φI |(�−M2)|φI〉 −

1

2
〈φII |(�−M2)|φII〉+ 〈c̄|(�−M2)|c〉 . (7.13)

To conclude this section, we note that it is the use of the modified de Donder operator

L̄ in gauge-fixed Lagrangian (7.4) that allows us to get the simple representations for

gauge-fixed BRST Lagrangian given in (7.8), (7.13).

7.2 Partition functions and number of D.o.F for conformal fields

Partition functions for long and special conformal fields. For the arbitrary spin-s

long, secondary long, and special conformal fields in Rd−1,1, we find that partition functions

take one and same form and are given by

Z =
1

(Ds)κ
, (7.14)

Dn ≡
√
det(−�) , (7.15)

where, in (7.15) and below, a quantity Dn stands for a determinant of the Laplace operator

evaluated on space of rank-n traceless tensor field. From (7.14), we see that numbers of
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propagating D.o.F for the long, secondary long, and special conformal fields take one and

same form and are given by

nD.o.F = κnso(d)
s , nso(d)

s ≡ (2s+ d− 2)
(s+ d− 3)!

(d− 2)!s!
, (7.16)

where n
so(d)
s given in (7.16) is nothing but the dimension of the totally symmetric spin-s

irrep of the so(d) algebra. It is well known, that the n
so(d)
s describes a number of D.o.F

for a spin-s totally symmetric massive field propagating in (d + 1) dimensional space-

time. In other words, we come to the conclusion that numbers of D.o.F for the spin-s

totally symmetric long, secondary long, and special conformal fields that propagate in d-

dimensional space-time are equal to κ times the number of D.o.F for massive spin-s totally

symmetric field that propagates in (d+1) dimensional space-time. For the case of the long

conformal field, the same conclusion was achieved by using light-cone gauge formulation of

the long conformal field in ref. [7].

Partition function for partial-short conformal fields. For the arbitrary spin-s

partial-short conformal field in Rd−1,1 with arbitrary d, we find the following partition

function

Z =
(Ds−1−t)s+

d−2
2

(Ds)κ
, κ = s+

d− 4

2
− t , (7.17)

where values of the κ for the types I and II partial-short conformal fields are given in table 1.

Using (7.17), we find that a number of propagating D.o.F for the partial-short confor-

mal field is given by the relation

nD.o.F =
(2s+d−2)(2s+d−4−2t)(s+d−4)!

2(d− 2)!s!

(
s+ d− 3− s

(s− t)t
(s− t+ d− 3)t

)
, (7.18)

where (p)q stands for the Pochhammer symbol Γ(p+ q)/Γ(p). We note that the number of

D.o.F given in (7.18) is found by using the relation

nD.o.F = κnso(d)
s − (s+

d− 2

2
)n

so(d)
s−1−t , (7.19)

where n
so(d)
s is defined in (7.16).

For type II partial-short conformal field in R3,1 with κ = 1 (maximal-depth partial-

short conformal field), partition function (7.17) and number of D.o.F (7.18) take the form

Z =
(D0)s+1

(Ds)
, nD.o.F = s(s+ 1) ,

for maximal-depth partial-short conformal field in R3,1 . (7.20)

The partition function and number of D.o.F given in (7.20) were first obtained in ref. [44].

Thus we see that, for the particular case of d = 4, t = s − 1, our result for Z and nD.o.F

in (7.17), (7.18) agrees with the result reported in the earlier literature and gives the

expressions Z and nD.o.F for arbitrary values of d and t = 1, . . . , s− 1.
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Partition function for short conformal field. Partition function for the arbitrary

spin-s short conformal field in Rd−,1 with arbitrary d is well known,

Z =
(Ds−1)νs+1

(Ds)νs
, νs ≡ s+

d− 4

2
. (7.21)

For d = 4 and d ≥ 4, the partition function (7.21) was obtained in the respective ref. [1]

and [45, 46]. Derivation of partition function (7.21) by using the gauge-fixed BRST La-

grangian of the short conformal field may be found in ref. [47]. As a side remark, we

note that partition function (7.21) can also be obtained by equating t = 0 in the partition

function of the partial-short conformal field (7.17).

Using (7.21), we find that the number of propagating D.o.F for the spin-s short con-

formal field in Rd−1,1 is given by the well known relation

nD.o.F =
1

2
(d− 3)(2s+ d− 2)(2s+ d− 4)

(s+ d− 4)!

(d− 2)!s!
. (7.22)

We note that the number of D.o.F given in (7.22) is found by using relation (7.19), where

we set t = 0 and use n
so(d)
s defined in (7.16).

For the case of the short conformal field in R3,1, partition function (7.21) and number

of D.o.F (7.22) take the form

Z =
(Ds−1)s+1

(Ds)s
, nD.o.F = s(s+ 1) , for short conformal field in R3,1. (7.23)

For d = 4 and d ≥ 4, the numbers of D.o.F (7.23) and (7.22) were found first in the

respective ref. [1] and ref. [11]. In ref. [11], the nD.o.F (7.22) was obtained by counting D.o.F

that enter the ordinary-derivative approach of the short conformal field. For d ≥ 4, the

computation of nD.o.F by using a partition function may be found in refs. [45, 46]. As a side

remark, we note that, according to (7.22), there are no local D.o.F for short conformal fields

in R2,1. Interesting recent discussion of conformal fields in R2,1 may be found in ref. [48].

Comparison of D.o.F for short conformal field and maximal-depth partial-short

conformal field in R3,1. In ref. [44], it was noticed that, in R3,1, the numbers of

D.o.F for the short conformal field and the maximal-depth partial-short conformal field

coincide (see relations (7.20), (7.23)). Here we would like to demonstrate how our ordinary-

derivative approach provides a simple and transparent explanation for this interesting fact.

To this end, using a shortcut φs′

k′ for the so(3, 1) algebra vector and tensor fields φ
a1...as′
s′−s,k′ , we

note that, for the arbitrary spin-s short conformal field in R3,1, the field content appearing
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in (4.6) can be presented as follows:

Field content for spin-s short conformal field in R3,1

φs
1−s φs

3−s . . . φs
s−3 φs

s−1

φs−1
2−s φs−1

4−s . . . φs−1
s−4 φs−1

s−2

. . . . . . . . .

φ2
−1 φ2

1

φ1
0

(7.24)

Accordingly, using a shortcut φs′

k′ for the so(3, 1) algebra vector and tensor fields

φ
a1...as′
s−s′,k′ , we note that, for the arbitrary spin-s maximal-depth partial-short conformal field

in R3,1, the field content in (4.5) can be presented as the follows:

Field content for spin-s maximal-depth partial-short conformal field in R3,1

φs
0

φs−1
−1 φs−1

1

. . . . . . . . .

φ2
2−s φ2

4−s . . . φ2
s−4 φ2

s−2

φ1
1−s φ1

3−s . . . φ1
s−3 φ1

s−1

(7.25)

From (7.24), (7.25), we see that, in R3,1, scalar fields do not appear in the field contents

of the short conformal field and the maximal-depth partial-short conformal field.

Using a light-cone gauge formulation, we verify then that light-cone gauge field contents

of the short and maximal-depth partial-short conformal fields take the same respective

forms as in (7.24) and (7.25), where all vector and totally symmetric tensor fields of the

Lorentz algebra so(3, 1) should be replaced by the respective vector and totally symmetric

traceless tensor fields of the so(2) algebra. Now taking into account that, for arbitrary

s ≥ 1, a dimension of the totally symmetric spin-s irrep of the so(2) algebra is equal to 2,

we see that total numbers of D.o.F for light-cone gauge fields in (7.24) and (7.25) coincide

and equal to s(s+ 1).

Higher-derivative Lagrangian. For the reader’s convenience, we now explain how the

partition functions and the numbers of D.o.F above-discussed can be obtained by using

gauge-fixed BRST Lagrangian. To this end it is convenient to exclude auxiliary fields and

cast the ordinary-derivative BRST Lagrangian (7.8) into a higher-derivative form. We now

explain some details of the derivation of a higher-derivative BRST Lagrangian.

– 25 –



J
H
E
P
0
5
(
2
0
1
6
)
0
9
6

First, we note that Lagrangian (7.8) leads to the following equations of motion for the

basis ket-vectors (4.10):

�|φs′

λ,k′〉 = |φs′

λ,k′+2〉 , k′ ∈ [1− νλ, νλ − 3]2 , νλ ≡ κ+ λ . (7.26)

Equations (7.26) tell us that all basis ket-vectors (4.10) having k′ > 1−νλ can be expressed

in terms of the basis ket-vector |φs′

λ,1−νλ
〉 as

|φs′

λ,k′〉 = �
1
2
(νλ−1+k′)|φs′

λ,1−νλ
〉 , k′ ∈ [3− νλ, νλ − 1]2 . (7.27)

Repeating the same analysis for the Faddeev-Popov fields entering Lagrangian (7.8), we

find the following solution for auxiliary Faddeev-Popov fields

|cs
′

λ,k′〉 = �
1
2
(νλ−1+k′)|cs

′

λ,1−νλ
〉 , |c̄s

′

λ,k′〉 = �
1
2
(νλ−1+k′)|c̄s

′

λ,1−νλ
〉 , k′ ∈ [3−νλ, νλ−1]2 .

(7.28)

Thus, from (7.27), (7.28), we see that all gauge fields and Faddeev-Popov fields that have

k′ > 1−νλ can be expressed in terms of the respective fields |φs′

λ,1−νλ
〉 and |cs

′

λ,1−νλ
〉, |c̄s

′

λ,1−νλ
〉.

In other words, all basis ket-vectors that have k′ > 1 − νλ turn out to be auxiliary fields.

Taking this into account, we introduce ket-vectors defined by the following relations:

|φL〉 ≡
∑

s′,λ

|φs′

λ,1−νλ
〉 , (7.29)

|cL〉 ≡
∑

s′,λ

|cs
′

λ,1−νλ
〉 , |c̄L〉 ≡

∑

s′,λ

|c̄s
′

λ,1−νλ
〉 , (7.30)

where the ket-vectors |φs′

λ,1−νλ
〉 in (7.29) are defined as in (4.10), while the ket-vectors

|cs
′

λ,1−νλ
〉, |c̄s

′

λ,1−νλ
〉 in (7.30) are defined as in (5.12). We note that the summation indices

s′, λ in (7.29) take the values given in (4.2)–(4.6), while the summation indices s′, λ in (7.30)

take the values given in (5.2)–(5.6). Plugging the solution for auxiliary fields (7.27), (7.28)

into (7.8), we find that gauge-fixed BRST Lagrangian (7.8) can be expressed in terms of

ket-vectors (7.29), (7.30) as

Ltot =
1

2
〈φL |

(
1−

1

4
α2ᾱ2

)
�

ν |φL〉+ 〈c̄L |�
ν |cL〉 , ν ≡ κ+Nζ −Nz . (7.31)

Obviously, Lagrangian (7.31) involves higher derivatives. Thus we see that, after excluding

the auxiliary gauge fields and the auxiliary Faddeev-Popov fields, our ordinary-derivative

Lagrangian (7.8) leads to higher-derivative Lagrangian (7.31).

Lagrangian (7.31) can be cast into the form which is more convenient for a computation

of partition functions. To this end we use the decomposition of the double-traceless ket-

vector |φL〉 into two traceless ket-vectors |φLI〉, |φLII〉 as in (7.11),

|φL〉 = |φLI〉+ α2N|φLII〉 , ᾱ2|φLI〉 = 0 , ᾱ2|φLII〉 = 0 . (7.32)

Plugging the decomposition (7.32) into Lagrangian (7.31), we get

Ltot =
1

2
〈φLI |�

ν |φLI〉 −
1

2
〈φLII |�

ν |φLII〉+ 〈c̄L |�
ν |cL〉 . (7.33)
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For the illustration purposes, we note that Lagrangian (7.33) can be expressed in terms of

the scalar, vector, and traceless tensor fields as

Ltot =
∑

s′,λ

Ls′

I,λ −
∑

s′,λ

s→s−2,d→d+4

Ls′

II,λ +
∑

s′,λ

s→s−1,d→d+2

Ls′

FP,λ , (7.34)

Ls′

I,λ ≡
1

2s′!
φ
a1...as′
Iλ,1−νλ

βI
s′,λ�

νλφ
a1...as′
Iλ,1−νλ

, Ls′

II,λ ≡
1

2s′!
φ
a1...as′
IIλ,1−νλ

βII
s′,λ�

νλφ
a1...as′
IIλ,1−νλ

, (7.35)

Ls′

FP,λ ≡
1

s′!
c̄
a1...as′
λ,1−νλ

βFP
s′,λ�

νλc
a1...as′
λ,1−νλ

, νλ ≡ κ+ λ . (7.36)

The summation indices s′, λ for the Ls′

I,λ-terms in (7.34) take values given in (4.2)–(4.6),

while the summation indices s′, λ for the Ls′

II,λ-terms and the Ls′

FP,λ-terms in (7.34) take

values which are obtained by making the respective replacements s → s − 2, d → d + 4

and s → s − 1, d → d + 2 in (4.2)–(4.6). Quantities βI
s′,λ, βII

s′,λ, and βFP
s′,λ appearing

in (7.35), (7.36) are obtained by using the respective substitutions Nζ → 1
2(s − s′ + λ),

Nζ →
1
2(s−2−s′+λ), and Nζ →

1
2(s−1−s′+λ) in expressions for β given in (4.31)–(4.33).

Using Lagrangian (7.34) allows us to obtain a general representation for a partition

function. Namely, we see that Lagrangian (7.34) leads to the following representation for

a partition function

Z =
Zs−1,d+2Zs−1,d+2

Zs,dZs−2,d+4
, (7.37)

Zs,d ≡
∏

s′,λ

(Ds′)κ+λ , (7.38)

where, depending on the type of the conformal field, the product indices s′, λ appearing

in (7.38) take values given in (4.2)–(4.6).

We now demonstrate how the general expressions given in (7.37), (7.38) can be used

for the computation of partition functions of various conformal fields.

Computation of Z for long conformal field. For the case of the long conformal field,

the labels s′, λ take values shown in (4.2). This implies that Zs,d (7.38) takes the form

Zs,d ≡
∏

s′∈[0,s]1

∏

λ∈[s−s′]2

(Ds′)κ+λ . (7.39)

where the relations k ∈ [p, q]1, k ∈ [p]2 are defined in (2.11)–(2.13). Using the general

formula
∏

λ∈[p,q]2

(Ds′)κ+λ = (Ds′)(
q−p

2
+1)(κ+ p+q

2
) , (7.40)

where the notation λ ∈ [p, q]2 is defined in (2.13), we see that Zs,d (7.39) can be

represented as

Zs,d =
∏

s′∈[0,s]1

(Ds′)(s−s′+1)κ . (7.41)

Plugging (7.41) in (7.37), we obtain Z given in (7.14). Note that for the long conformal

field the Zs,d (7.41) does not depend on d explicitly. Repeating the above-described com-

putation for the case of the secondary long and special conformal fields, we get the same

Z as in (7.14).
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Computation of partition functions for partial-short conformal fields. Partition

functions for the type I and type II partial-short conformal fields take one and same form

given in (7.17). Computation of a partition function turns out to be more involved for the

case of the type II partial-short conformal fields in Rd−1,1, d ≥ 6. Therefore, for the reader’s

convenience, we consider this case. To this end we note that, for the type II partial-short

conformal field, one has the relation t > (d− 6)/2, where t is defined in (7.17). We verify

then that the domain of values of the labels s′, λ given in (4.5) can be represented as a

direct sum of three domains of values of labels denoted by (1), (2), and (3) and defined by

the following relations:

(1) : s′ ∈

[
0, t−

d− 6

2

]

1

, λ ∈ [2t− s− s′ − d+ 6, s′ − s+ 2t]2 , (7.42)

(2) : s′ ∈

[
t−

d− 8

2
, s− t

]

1

, λ ∈ [s′ − s, s′ − s+ 2t]2 , (7.43)

(3) : s′ ∈ [s− t+ 1, s]1 , λ ∈ [s− s′]2 , (7.44)

where the relations k ∈ [p]2, k ∈ [p, q]1, and k ∈ [p, q]2 are defined in (2.11)–(2.13), while

the parameter t is defined in (7.17). Accordingly, the general expression for the partition

function Z given in (7.37), (7.38) can be represented as

Z = Z(1)Z(2)Z(3) , (7.45)

Z(k) ≡
Z

(k)
s−1,d+2Z

(k)
s−1,d+2

Z
(k)
s,dZ

(k)
s−2,d+4

, k = 1, 2, 3 , (7.46)

Z
(1)
s,d ≡

∏

s′∈[0,t− d−6
2

]1

∏

λ∈[2t−s−s′−d+6,s′−s+2t]2

(Ds′)κ+λ , (7.47)

Z
(2)
s,d ≡

∏

s′∈[t− d−8
2

,s−t]1

∏

λ∈[s′−s,s′−s+2t]2

(Ds′)κ+λ , (7.48)

Z
(3)
s,d ≡

∏

s′∈[s−t+1,s]1

∏

λ∈[s−s′]2

(Ds′)κ+λ . (7.49)

Using general formula (7.40), we straightforwardly compute the products over indices λ

appearing in (7.47)–(7.49),

∏

λ∈[2t−s−s′−d+6,s′−s+2t]2

(Ds′)κ+λ = (Ds′)(t+1)(s′+ d−4
2

) , (7.50)

∏

λ∈[s′−s,s′−s+2t]2

(Ds′)κ+λ = (Ds′)(t+1)(s′+ d−4
2

) , (7.51)

∏

λ∈[s−s′]2

(Ds′)κ+λ = (Ds′)(s−s′+1)κ . (7.52)

Plugging (7.50)–(7.52) into (7.47)–(7.49), we get the relations

Z
(1)
s,dZ

(2)
s,d =

∏

s′∈[0,s−t]1

(Ds′)(t+1)(s′+ d−4
2

) , Z
(3)
s,d =

∏

s′∈[s−t+1,s]1

(Ds′)(s−s′+1)κ . (7.53)
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Using the definition of Z(k) given in (7.46) and relations (7.53), we find

Z(1)Z(2) =
(Ds−1−t)(t+1)(κ+1)

(Ds−t)(t+1)κ
, Z(3) =

(Ds−t)(t+1)κ

(Ds)κ(Ds−1−t)tκ
. (7.54)

Relations (7.45) and (7.54) lead to the partition function for the partial-short conformal

fields given in (7.17). For the derivation of (7.17), the interrelation between κ and t given

in (7.17) also should be used.

8 Conclusions

In the framework of AdS/CFT correspondence, conformal field that propagates in Rd−1,1

and has conformal dimension as in (1.1) is dual to a non-normalizable mode of bulk field

that propagates in AdSd+1 and has lowest eigenvalue of an energy operator equal to E0 =

κ+ d
2 .

10 This implies that the short, partial-short and long conformal fields in Rd−1,1 are

dual to the respective massless, partial-massless and massive fields in AdSd+1. Taking this

into account, we speculated [52] on some special regime in AdS superstring theory when

parameters κ for all massive higher-spin fields take integer values. One can expect that

such conjectured regime in the AdS superstring theory should be related via AdS/CFT

correspondence to stringy theory of conformal fields that involves low-spin short conformal

fields and higher-spin long conformal fields.11 In fact it is such conjectured regime in AdS

superstring theory that triggered our interest to the study of long conformal fields.

In this paper, we developed the ordinary-derivative Lagrangian formulation for all to-

tally symmetric conformal fields propagating in Rd−1,1. Though, at the present time, the

minimal Lagrangian formulation of conformal fields, which with exception of some particu-

lar cases involves higher derivatives, is more popular, we think that the ordinary-derivative

approach is more perspective. This is to say that in our ordinary-derivative approach the

gauge symmetries of conformal fields are realized, among other things, by using Stueckel-

berg fields. Stueckelberg fields turned out be useful for the study of string theory. Namely,

all Lorentz covariant formulations of string theory available in the literature have been

built by exploiting Stueckelberg fields. Stueckelberg fields turn also to be helpful for study

of field theoretical models of interacting massive AdS fields (see, e.g., refs. [58–60]). We

think therefore that the use of gauge symmetries involving Stueckelberg fields might also be

useful for the study of various problems of conformal fields. The use of gauge symmetries

involving Stueckelberg fields for building ordinary-derivative Lagrangian of the interacting

spin-2 conformal field in six dimensions may be found in ref. [61]. In this respect it would

be interesting to extend result in the latter reference to higher space-time dimensions along

the lines in refs. [62, 63].

We now discuss various potentially interesting generalizations of our approach and

review some related studies in the literature.
10For arbitrary values of κ, s, and d, action for massive spin-s AdS field evaluated on a solution of the

Dirichlet problem was first found in refs. [19, 49]. Interesting discussion of group theoretical aspects of

AdS/CFT correspondence may be found in refs. [50, 51].
11One can speculate on the similar regime in the higher-spin gauge theory [53, 54] considered in the

perspective of broken higher-spin symmetries. The recent interesting discussion of broken higher-spin

symmetries may be found in ref. [55] (see also refs. [56, 57]).
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i) In ref. [64], we developed ordinary-derivative BRST-BV approach to the totally sym-

metric short conformal fields. Generalization of result in ref. [64] to the case of the long,

partial-short and special conformal fields should be relatively straightforward. We note also

BRST-BV higher-derivative Lagrangian for the Weyl gravity (spin-2 conformal field) was

discussed in ref. [65], while a higher-derivative gauge-fixed BRST Lagrangian of bosonic ar-

bitrary spin short conformal field was found in ref. [47]. Application of BRST-BV approach

for studying equations of motion for bosonic arbitrary spin conformal fields may be found

in refs. [16, 17]. We note also that ordinary-derivative formulation of conformal fields and

gauge invariant formulation of massive fields have many common features. BRST approach

has been extensively used for studying massless and massive fields (see, e.g., refs. [66–71]).

We think that a use of the methods in refs. [66–71] should lead to better understanding of

BRST formulation of conformal fields.

ii) An extended hamiltonian formulation of field dynamics is one of powerful approaches

in modern field theory. The extended hamiltonian formulation of the arbitrary spin bosonic

short-conformal fields was developed in ref. [72] by using ordinary-derivative gauge invariant

Lagrangian. Our ordinary-derivative gauge invariant Lagrangian for the long, partial-short

and special conformal fields is similar to the one for the short-conformal fields. We expect

therefore that generalization of result in ref. [72] to the case of the long, partial-short

and special conformal fields should be straightforward. Recent interesting discussion of

extended hamiltonian formulation of conformal fields may be found in ref. [73].

iii) Mixed-symmetry fields enter a spectrum of the string theory field content. Obviously

that the conjectured stringy generalization of higher-spin conformal field theory should also

involve mixed-symmetry conformal fields. In the frame-like approach, mixed-symmetry

conformal fields were studied in ref. [3]. Also, in the latter reference, the minimal La-

grangian for arbitrary mixed-symmetry long, short, partial-short, and special conformal

fields has been found. It would be interesting to apply approach in ref. [3] to the study

of ordinary-derivative Lagrangian of mixed-symmetry conformal fields. In the framework

of light-cone gauge approach, Lagrangian formulation of mixed-symmetry long and short

conformal field in R3,1 may be found in ref. [52] (see also ref. [7]). In the framework

of ambient approach, mixed-symmetry short conformal fields were studied in ref. [74].

Ordinary-derivative formulation of self-dual conformal fields may be found in ref. [75]

iv) In this paper, we have discussed a Lagrangian formulation of conformal fields by using

the double-traceless fields. In the literature, a formulation of the dynamics of massless

gauge fields in terms of unconstrained triplets was discussed in refs. [76–78] (see also recent

interesting discussion in ref. [79]). A use of unconstrained triplets might lead to simple

Lagrangian formulation of conformal fields.

v) In this paper we considered conformal fields in flat space. It would be interesting to

extend our approach for the long conformal fields to the case of AdS space [80] and consider

various applications of the ordinary-derivative formulation along the lines in refs. [81–84].
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