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in four dimensions. We prove that only one special rational solution of the scattering

equations found by Weinzierl supports the MHV amplitudes. Namely, localized at this

solution, the integrated CHY formula produces the Parke-Taylor formula for MHV Yang-

Mills amplitudes as well as the Hodges formula for MHV gravitational amplitudes, with an
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scattering equations do not support the MHV amplitudes, and prove analytically that this

is indeed true for the other special rational solution proposed by Weinzierl, that actually

supports the anti-MHV amplitudes. Our results reveal a mysterious feature of the CHY

formalism that in Yang-Mills and gravity theory, solutions of scattering equations, involving

only external momenta, somehow know about the configuration of external polarizations
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1 Introduction

Scattering-equation-based formula [1–3] proposed by Cachazo, He and Yuan (CHY) pro-

vides a new perspective for understanding scattering amplitudes in relativistic quantum

field theories. The CHY formalism was proved in [4] by using Britto-Cachazo-Feng-Witten

(BCFW) recursion [5, 6]. Up to now a lot of efforts have been made on understanding the

CHY formula, including generalization to various theories [7–12], the study on the scatter-

ing equations and their solutions [13–20], new soft theorems from the CHY formula [21],

off-shell extension [22], the relationship to Feynman diagrams [23, 24], discussions on world-

sheet theories [25, 26] and generalizations to loop level [27–36].

However, although the CHY formalism is highly compact, it is really hard to obtain

explicitly the analytic results expressed in terms of Lorentz invariant variables (for example,

sab) for scattering amplitudes. In a sense, this is because neither the solutions to the
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scattering equations nor the relation between the CHY formula and Feynman diagrams is

easily available. Among the efforts on solving scattering equations, (as far as we know)

solutions in four dimensions are studied first in the work [13]. Shortly after, Weinzierl

proposed two special rational solutions in four dimensions in terms of spinor variables [15]

(for details, see eq. (2.15) and (2.16) and the discussion there):

σ(1)a =
〈a, n− 2〉〈n− 1, χ〉
〈a, χ〉〈n− 1, n− 2〉

, (1.1)

σ(2)a =
[a, n− 2][n− 1, χ]

[a, χ][n− 1, n− 2]
, (1.2)

which were conjectured to correspond to MHV and anti-MHV amplitudes in [13] and [9].

There has been no explicit proof of the statement that the integrated CHY formula of these

two solutions exactly reproduce the famous Parke-Taylor formula [37, 38] for MHV (and

anti-MHV) amplitudes. On the other hand, though the relationship between Feynman

rules and CHY integrations was already established for scalar amplitudes [23, 24], it has

not been able to derive the Parke-Taylor formula for generic MHV (and anti-MHV) tree-

level Yang-Mills amplitudes following this line of thoughts. Moreover, it is not apparent

at all to see that the Hodges formula [39] for gravity MHV (and anti-MHV) amplitudes at

tree level is also supported by these two solutions.

In this paper, we fill the gap by explicitly demonstrating that the special solution (1.1)

supports the Parke-Taylor formula for MHV Yang-Mills amplitudes as well as the Hodges

formula for MHV gravitational amplitudes, with an arbitrary number of external glu-

ons/gravitons. Similarly, the solution (1.2) supports the anti-MHV amplitudes for Yang-

Mills and gravity. To show this, our proof proceeds as follows:

• The original integrated CHY formula expresses amplitudes by summing over terms

localized at different solutions to the scattering equations. We first consider only the

term contributed by the special rational solution (1.1), and the reduced Pfaffian of Ψ

for a fixed-helicity MHV configuration (1−, 2−, 3+, . . . , n+), from which we can prove

that the Parke-Taylor formula for the color-ordered MHV Yang-Mills amplitude, as

well as the Hodges formula for MHV gravitational amplitude, are reproduced. Two

interesting properties of the reduced Pfaffian make the proof tractable:

– Property-1 The reduced Pfaffian of Ψ at the MHV configuration can be ex-

panded in terms of determinants of reduced C matrices with three columns

and three rows deleted. This property relies on the MHV configuration, but is

independent of which solution we choose.

– Property-2 Both the reduced Pfaffian of Ψ and the reduced determinant of Φ

localized at the solution (1.1) can be expressed in terms of the Hodges formula

for gravitational amplitude.

• We then extend our discussion to general color-ordered MHV amplitudes (with the

two negative helicities at arbitrary positions). This is achieved by extending the two

properties to more general cases, which can also be understood by considering the

Kleiss-Kuijf (KK) relation [40].
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• Finally, one needs to check that any solution other than eq. (1.1) leads to a zero

reduced determinant of C (with three rows and colums deleted as in Property-2).

For the other Weinzierl solution (1.2), this can be proved analytically.

There are two interesting observations in this approach that deserve more attention:

• In property-2, the building blocks det′(Φ) and Pf ′(Φ) are expressed in terms of the

gravitational amplitude M̄n(12 . . . n), while only the pre-factors in front of it can be

changed by an SL(2,C) transformation. Thus the SL(2,C) invariance of both the

color-ordered Yang-Mills MHV amplitude and the gravity MHV amplitude becomes

manifest.

• The vanishing of the reduced determinant of C actually imposes constraints on so-

lutions to the scattering equations. With these constraints, one can distinguish the

solution (1.1) contributing to MHV amplitudes from the other (n − 3)! − 1 solu-

tions. Similar statement is also true for the solution (1.2) that supports anti-MHV

amplitudes. We hope that such classification can be extended to other solutions.

This paper is organized as follows. Section 2 presents a review of the CHY formula,

Parke-Taylor formula and Hodges formula, and defines our notations. In section 3, we prove

that the special rational solution given by Weinzierl reproduces the Parke-Taylor formula

for MHV Yang-Mills amplitudes and the Hodges formula for MHV gravitational amplitudes.

This is achieved by a Möbius covariant calculation. In section 4, we check that other

solutions do not contribute to the MHV configuration. Especially, this is analytically proved

for the other Weinzierl rational solution (1.2). We then propose a set of complex polynomial

equations that distinguishes the special solution (1.1) that supports MHV amplitudes from

the others. Finally, we devote section 5 to a summary of our results and discussions on

possible extensions. Some useful properties of the spinor helicity formalism and details of

the proof are given in appendix A and B respectively.

2 Preparation: a review of the CHY, Parke-Taylor and Hodges formula

In this section, we present a warm-up review of some useful details of the general CHY

formula (2.1) for scattering amplitudes, the Parke-Taylor formula (2.18) for MHV Yang-

Mills amplitudes, as well as the Hodges formula (2.19) for MHV gravitational amplitudes,

all in four dimensions.

2.1 CHY formula

CHY proposed in a series of papers [1–3] that any n-point tree amplitude An(1, 2, . . . , n)

in arbitrary dimensions can be expressed by the following equation:

An(1, 2, . . . , n) =

∫
dz1 . . . dzn

Vol [SL(2,C)]

∏
a

′δ

∑
b 6=a

sab
zab

 In . (2.1)

The building blocks of eq. (2.1) are discussed in the following:
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• Scattering equations

The scattering equations for n massless particles, which are imposed by delta func-

tions in eq. (2.1), are ∑
b 6=a

sab
zab

= 0 , a ∈ {1, 2, . . . , n} , (2.2)

where sab = 2ka · kb and zab ≡ za− zb. The scattering equation is SL(2,C) covariant,

namely, if the set {σa} is a solution, the set {ζa} with

ζa =
ασa + β

γσa + δ
, α, β, γ, δ ∈ C , αδ − βγ = 1 , (2.3)

is also a solution. We can thus use this freedom to fix three arbitrarily chosen z’s

to three arbitrary positions on the Riemann sphere, say, (zp, zq, zr) = (σp, σq, σr).

The first consequence is that there are only n− 3 independent equations in (2.2). It

can be proved by a semi-analytical inductive method that the number of solutions is

(n − 3)! in any dimension [1]. The second consequence is that the integration over

zp, zq and zr actually encodes the SL(2,C) redundancy. Using a Fadeev-Popov like

trick, we can divide out the volume of the SL(2,C) group in eq. (2.1):

dz1 . . . dzn
Vol [SL(2,C)]

=
∏

c 6=p,q,r
dzc (σpqσqrσrp) . (2.4)

• The integrated CHY formula

In eq. (2.1), after integrating the z variables over the permutation invariant delta-

function

∏
a

′δ

∑
b 6=a

sab
zab

 ≡ perm(ijk)σijσjkσki
∏

a 6=i,j,k
δ

∑
b 6=a

sab
zab

 , (2.5)

the scattering amplitudes can be expressed by the following form

An = perm(ijk) perm(pqr)
∑

{σ}∈solutions

σpqσqrσrpσijσjkσki

det
(

Φi,j,k
p,q,r

) In , (2.6)

where the factor perm(pqr) is the signature of the permutation that moves the stan-

dard ordering (1, 2, . . . n) to the ordering (p, q, r, . . .), with (. . .) always keeping the

ascending order. If both (ijk) and (pqr) are in the ascending order, we have

perm(ijk) perm(pqr) = (−1)i+j+k+p+q+r.

Φ is an n× n matrix given by

Φab =


sab
σ2ab

a 6= b

−
∑
c 6=a

sac
σ2ac

a = b
, (2.7)
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and
(

Φi,j,k
p,q,r

)
is the matrix obtained by removing the (i, j, k)-th row and the (p, q, r)-th

column from Φ. Its determinant, det
(

Φi,j,k
p,q,r

)
, is nothing but the Jacobian associ-

ated with the delta-functions in eq. (2.5). If we define the reduced determinant

det′(Φ) to be

det′(Φ) ≡ perm(ijk) perm(pqr)
det
(

Φijk
pqr

)
σijσjkσkiσpqσqrσrp

, (2.8)

the amplitude (2.6) can then be expressed simply as

An =
∑

{σ}∈solutions

In
det′(Φ)

. (2.9)

This form suggests that to compute the amplitudes, we need to know all the solutions

to the scattering equations and sum over the contributions from all of them.

• The integrand for gauge theory and gravity

Finally, the integrand In for color-ordered gauge amplitudes is set to

In({k, ε, σ}) =
Pf ′(Ψ)

σ12σ23 . . . σn1
, (2.10)

while for gravitational amplitudes, we use

In ({k, ε, ε̃, σ}) = Pf ′ [Ψ(k, ε, σ)]× Pf ′ [Ψ(k, ε̃, σ)] , (2.11)

where ε and ε̃ together give the polarizations of the external gravitons. The reduced

Pfaffian in eq. (2.10) and eq. (2.11) is proportional to the Pfaffian of Ψ with both the

(i, j)-th row and (i, j)-th column removed:

Pf ′(Ψ) =
perm(ij)

σij
Pf(Ψij

ij) , (2.12)

where 1 ≤ i < j ≤ n. Here the 2n× 2n antisymmetric matrix Ψ is given by

Ψ({k, ε, σ}) =

(
A −CT

C B

)
, (2.13)

where k, ε denote the momenta and polarization vectors of external particles. The

matrices A, B and C are defined by

Aab =

{ sab
σab

a 6= b

0 a = b
, Bab =


2εa · εb
σab

a 6= b

0 a = b
, Cab =


2εa · kb
σab

a 6= b

−
∑
c 6=a

2εa · kc
σac

a = b
.

(2.14)
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• Two rational solutions in four dimensions

In four dimensions, one can express light-like 4-vectors in term of spinors. Two of

the solutions to the scattering equations have been found to be rational functions of

spinor variables [15]:

σ(1)a =
〈a, n− 2〉〈n− 1, χ〉
〈a, χ〉〈n− 1, n− 2〉

, (2.15)

σ(2)a =
[a, n− 2][n− 1, χ]

[a, χ][n− 1, n− 2]
. (2.16)

The others solutions are expected to be more complicated algebraic functions of

spinor variables. The spinor convention we have adopted in this work is given in

appendix A. When writing down this solution, we have implicitly fixed part of the

SL(2,C) freedom by choosing

σn−2 = 0 , σn−1 = 1 ,

for all the solutions. The arbitrary spinor |χ〉 represents the remaining SL(2,C) free-

dom, and we are going use a formalism that is manifestly covariant under this freedom.

It is not difficult to generalize to a formalism that is totally Möbius covariant, which

is mentioned in section 3.3. In the following sections, we will show that the relevant

quantities like reduced Pfaffian/determinant are of a factorized form, in which the

χ-dependent and χ-independent factors can be separately identified. It turns out

that in the final expressions for physical MHV amplitudes, the χ-dependent factors,

which represents part of the SL(2,C) freedom, are all canceled, making the invariance

under this freedom manifest. Thus, despite the appearance of the χ-dependence in

the intermediate steps, our calculation is actually SL(2,C) covariant, once properly

generalized. If we set |χ〉 = |n〉, we will return to the original form presented in [15]

and have σn = ∞. For the two solutions in eq. (2.15) and eq. (2.16), we have the

following expressions for σab = σa − σb

σ
(1)
ab =

〈a, b〉〈n− 2, χ〉〈n− 1, χ〉
〈a, χ〉〈b, χ〉〈n− 1, n− 2〉

, σ
(2)
ab =

[a, b][n− 2, χ][n− 1, χ]

[a, χ][b, χ][n− 1, n− 2]
, (2.17)

which will be used frequently later.

2.2 Parke-Taylor formula

The color-ordered tree-level Yang-Mills MHV amplitude AMHV
n with two negative-helicity

gluons x and y (1 ≤ x < y ≤ n) is given by Parke-Taylor formula [37, 38]

AMHV
n (1+, . . . , x−, . . . , y−, . . . , n+) =

〈xy〉4

〈12〉〈23〉 . . . 〈n1〉
. (2.18)

Replacing 〈. . .〉 by [. . .], one can obtain the anti-MHV amplitudes.
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2.3 Hodges formula

The gravitational reduced MHV superamplitude M̄n(12 . . . n) for the N = 7 formulation1

of N = 8 supergravity can be expressed by the Hodges formula [39]

M̄n(12 . . . n) = (−1)n+1perm(ijk) perm(pqr)cijkc
pqr det

(
φi,j,kp,q,r

)
, (2.19)

where the c symbol is

cabc = cabc =
1

〈ab〉〈bc〉〈ca〉
. (2.20)

Here, we use the notation of [2], in which (i, j, k) denotes the deleted rows and (p, q, r)

denotes the deleted columns, while [39] uses the opposite convention. The φ matrix is

define by

φab =
[ab]

〈ab〉
, φaa = −

n∑
l=1
l 6=a

[al]〈lχ〉〈l1〉
〈al〉〈aχ〉〈a1〉

, (2.21)

for 2 ≤ a 6= b ≤ n. We note that φaa is invariant if we change the spinor |1〉 or |χ〉 into any

|θ〉 that is not collinear with |a〉. As an example, for a 6= n, we multiply 〈an〉 into both the

numerator and denominator

φaa = −
n∑
l=1
l 6=a

[al]〈lχ〉〈l1〉〈an〉
〈al〉〈aχ〉〈a1〉〈an〉

= −
n∑
l=1
l 6=a

(
[al]〈l1〉〈nχ〉
〈aχ〉〈a1〉〈an〉

+
[al]〈ln〉〈l1〉
〈al〉〈an〉〈a1〉

)
= −

n∑
l=1
l 6=a

[al]〈ln〉〈l1〉
〈al〉〈an〉〈a1〉

. (2.22)

It can also be shown that M̄n(12 . . . n) is independent of any choice of (i, j, k) and

(p, q, r) [39]. Using Hodges formula, one can write down the n-point MHV gravitational

amplitude Mn immediately

Mn(1+, . . . , x−, . . . , y−, . . . , n+) = 〈xy〉8 M̄n(12 . . . n) , (2.23)

where only the gravitons x and y have negative helicity.

3 MHV Yang-Mills and gravity amplitudes from CHY formula

Having prepared the useful properties of the CHY formula for this paper, let us first

consider the relation between the CHY formula and the Parke-Taylor formula of MHV

amplitudes in four dimensions. Without loss of generality, we start with the color-ordered

MHV amplitude AMHV
n (1−, 2−, 3+, . . . , n+) where 1 and 2 are the two negative helicity

gluons. The Parke-Taylor formula for this amplitude is given by

AMHV
n

(
1−, 2−, 3+, . . . , n+

)
=

〈12〉4

〈12〉 〈23〉 . . . 〈n1〉
. (3.1)

1As stated in e.g., [41].
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To relate the Parke-Taylor formula (3.1) with the CHY formula in four dimensions, we

should write the external polarizations by the spinor-helicity formalism [38]. In appendix A,

we have also included a short review of this formalism. It has been shown that the reduced

Pfaffian is independent of the gauge choice (namely, the Ward identity holds). In spinor-

helicity formalism, one can choose reference momentum for each external gluon to fix the

gauge. For the MHV configuration, we can choose the momentum kn of the gluon n as the

reference momentum of the two negative helicity gluons 1 and 2. The reference momentum

of positive helicity gluons 3, . . . , n is chosen as k1. Thus the polarizations of our external

gluons are written as

εµi (−) =
〈i|γµ|n]√

2[ni]
(i = 1, 2), εµj (+) =

〈1|γµ|j]√
2〈1j〉

(j = 3, . . . , n). (3.2)

In this section, we are going to prove that using only the rational solution given in eq. (2.15),

we can derive both Parke-Tylor formula and Hodges formula. We first substitute the

external polarizations (3.2) into the integrated CHY formula (2.6) and then show in detail

(in appendix B) that the Parke-Taylor formula (3.1) can really emerges with only the

rational solution given in eq. (2.15). Then we sketch the calculation that generic MHV

amplitudes with negative helicity gluons being at arbitrary positions can also emerge from

eq. (2.15). In both cases, we find that Pf ′(Ψ) and det ′(Φ) are proportional to the reduced

gravitational amplitude M̄n(12 . . . n) defined in eq. (2.19), which makes the derivation of

the MHV gravity amplitude using the CHY formula very straightforward.

Before we start, we need to clarify some terminology. If we say, for example, row-(i)

of part C, we mean the i-th row of the original matrix C. This is convenient since we

constantly delete rows and columns and as a result it is cumbersome to track the position

of a specific row in the new matrix after several such manipulations.

3.1 An(1−2− . . .) and Mn(1−2− . . .) from the integrated CHY formula with

solution (2.15)

Now let us prove that the Parke-Taylor formula (2.18) with x = 1, y = 2 is reproduced

by the CHY integral (2.6) localized at the rational solution (2.15). Before presenting our

proof, we first list two interesting intermediate results:

Property-1. The reduced Pfaffian Pf ′(Ψ) in MHV configuration can be expressed by the

following expansion in terms of the determinant of C1,2,m
1,n−1,n matrices

Pf ′(Ψ) = (−1)s(n)
n∑

m=3

(−1)mB2mC11

[
−1

σn−1,n
det
(
C1,2,m
1,n−1,n

)]
, (3.3)

where Ci,j,kp,q,r is the matrix C with the row-(i, j, k) and column-(p, q, r) deleted, and

the overall sign is controlled by

s(n) =
(n− 2)(n− 3)

2
+ n+ 1.

This property relies on the MHV configuration but is independent of the solutions

for the scattering equations.
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Property-2. Once we substitute in eq. (2.15), Pf ′(Ψ), det ′(Φ) and the MHV-like factor

σ12 . . . σn1 will have the following compact forms

det ′(Φ) = (Fχ)2n (Pχ)4 M̄n(12 · · ·n) , (3.4a)

σ12 . . . σn1 =

(
1

Fχ

)n Dn

(Pχ)2
, (3.4b)

Pf ′(Ψ) = (−1)s(n)(
√

2)n (Fχ)n (Pχ)2 〈12〉4M̄n(12 · · ·n) . (3.4c)

In eq. (3.4), M̄n(12 . . . n) is given by the Hodges formula (2.19). Dn is just the denominator

of the Parke-Taylor formula

Dn = 〈12〉〈23〉 . . . 〈n1〉 . (3.5)

Finally, the symbol Fχ and Pχ are defined as

Fχ ≡
〈n− 1, n− 2〉

〈n− 2, χ〉〈n− 1, χ〉
, (3.6)

Pχ ≡
n∏
a=1

〈aχ〉. (3.7)

Given eq. (3.4), we can see clearly that the CHY formula with the special solution (2.15)

can repreduce the correct Parke-Taylor formula (2.18) for the Yang-Mills MHV amplitude

(with a trivial overall factor)

Pf ′(Ψ)

det ′(Φ)× [σ12 . . . σn1]
= (−1)s(n)(

√
2 )n

〈12〉4

〈12〉 〈23〉 . . . 〈n1〉
= (−1)s(n)(

√
2 )nAMHV

n (1−2−3+ . . . n+) , (3.8)

and the Hodges formula (2.23) for the gravitational MHV amplitude

Pf ′(Ψ)× Pf ′(Ψ)

det′(Φ)
= 2n〈12〉8M̄n(12 · · ·n) = 2nMn(1−2−3+ . . . n+). (3.9)

3.2 General MHV amplitudes

In this part, we write down the generalized eq. (3.3) and eq. (3.4) for general MHV ampli-

tudes, in which the negative helicity particles can occupy arbitrary positions. If particles

at position x and y (x < y such that 1 ≤ x ≤ n − 1) have negative helicity while all the

others are positive, we have

Pf ′(Ψ) = (−1)s(n)
n∑

m=1
m 6=y

(−1)y+m+θ(y−m)+θ(x−m)BymCxx

[
(−1)j+n+θ(x−j)

σjn
det
(
Cx,y,mx,j,n

)]

= (−1)s(n)
n∑

m=1
m 6=y

perm(xym)perm(xjn)BymCxx

[
1

σjn
det
(
Cx,y,mx,j,n

)]
, (3.10)
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where j can be any number except for x and n, and the final result does not depend on

this choice. In this calculation, we use the polarization vectors

εµi (−) =
〈i|γµ|n]√

2[ni]
(i = x, y) , εµj (+) =

〈x|γµ|j]√
2〈xj〉

(1 ≤ j 6= x, y ≤ n) . (3.11)

If we plug the special solution (2.15) in, we get

Pf ′(Ψ) = (−1)s(n)(
√

2)n(Fχ)n(Pχ)2〈xy〉4M̄n(12 · · ·n) . (3.12)

On the other hand det′(Φ) and [σ12 . . . σn1] remain the same as in eq. (3.4) since they depend

only on kinematics but not helicity configurations. It is thus straightforward to see that

the CHY formula gives the desired general MHV Yang-Mills and gravitational amplitudes

Pf ′(Ψ)

det′(Φ)× [σ12 . . . σn1]
= (−1)s(n)(

√
2)n

〈xy〉4

〈12〉〈23〉 . . . 〈n1〉
, (3.13a)

Pf ′(Ψ)× Pf ′(Ψ)

det′(Φ)
= 2n〈xy〉8M̄n(12 . . . n) . (3.13b)

The derivation of eq. (3.10) and eq. (3.12) follows closely to those elaborated in section B.1

and B.2, except that one needs to be more careful on the order of the indices involved.

The fact that the special rational solution (2.15) also gives support to general MHV Yang-

Mills amplitudes with arbitrary two negative helicity gluons can also be seen directly from

the KK relations for color-ordered Yang-Mills amplitudes [40] and the Parke-Taylor like

factors under a given solution [42]. Similarly, by using only eq. (2.16), we can get general

anti-MHV amplitudes. All we need to do is to exchange all the angular spinor brackets

with the corresponding square spinor brackets, and vice versa.

3.3 Manifest Möbius invariance

The CHY formalism is of course invariant under Möbius transformations, namely, if we

apply the same SL(2,C) transformation, say, eq. (2.3), to all the solutions, we should still

obtain the same physical amplitude. It is thus interesting to explore how the SL(2,C)

dependence of our Pf ′(Ψ), det′(Φ) and [σ12 . . . σn1] cancel against each other.

Suppose now we put σn to the infinity and use instead the solution proposed by

Weinzierl [15]

wa =
〈a, n− 2〉〈n− 1, n〉
〈a, n〉〈n− 1, n− 2〉

, (3.14)

then wa and eq. (2.15) are related through the Möbius transformation

wa =
〈n− 1, n〉〈n− 2, χ〉σa

〈n, χ〉〈n− 1, n− 2〉σa − 〈n, n− 2〉〈n− 1, χ〉
. (3.15)

In particular, this transformation leaves wn−2 = σn−2 and wn−1 = σn−1, but set wn =∞.

Following the CHY formalism, we find that the solution (3.14) gives

det ′(Φ) = (Fn)2n (Pn)4 M̄n(12 · · ·n) , (3.16a)

σ12 . . . σn1 =

(
1

Fn

)n Dn

(Pn)2
, (3.16b)

Pf ′(Ψ) = (−1)s(n)(
√

2)n (Fn)n (Pn)2 〈xy〉4M̄n(12 · · ·n) . (3.16c)
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In these quantities, the effect of our SL(2,C) transformation is entirely encoded in

Fχ → Fn =
〈n− 1, n− 2〉

〈n− 1, n〉〈n− 1, n〉
, Pχ → Pn =

n∏
a=1

〈an〉 ∼ 1

wn

n−1∏
a=1

〈an〉 . (3.17)

Clearly Fn and Pn will cancel each other when calculating physical amplitudes as in

eq. (3.13). Although we need a regulator wn for intermediate steps, it does not show

up in the physical amplitudes. Now it is also clear that if we want to embrace the full

SL(2,C) freedom by relaxing σn−2 and σn−1 from 0 and 1, we should change the spinor

|n − 1〉 and |n − 2〉 in the solution (2.15) by some other spinors, say |θ〉 and |η〉. Then in

the final result, we only need to make the replacement

Fχ =
〈n− 1, n− 2〉

〈n− 2, χ〉〈n− 1, χ〉
→ 〈θη〉
〈ηχ〉〈θχ〉

. (3.18)

Here the arbitrary choice in the spinors |θ〉, |η〉 and |χ〉 represents the full SL(2,C) free-

dom. Thus our calculation explicitly verifies that the MHV amplitudes resulting from the

integrated CHY formula is invariant under the Möbius transformations acting on the so-

lution (2.15). Moreover, we have shown that the SL(2,C) dependent pieces factorize out

of the gauge invariant building blocks of physical amplitudes, and they cancel with each

other if we use the CHY recipe for both gauge and gravity amplitudes.

3.4 Summary

Now we summarize what we have done in this section. The main conclusion is that the

special solution (2.15) supports general MHV gauge and gravitational amplitudes. If we

permute the negative helicity particles around, eq. (2.15) will always return the correct

amplitudes, without the help of other solutions.

An immediate question one may ask is what roles do the other (n − 3)! − 1 solutions

play in the MHV case? Actually, it has been proposed in [43] that all the other solutions

do not contribute to the MHV amplitudes. Using the machinery worked out in this section,

we can give an algebraic characterization between eq. (2.15) and the other solutions. This

is the main subject of the next section.

4 Other solutions at MHV and Non-MHV

First, we note that similar result as in section 3 can also be proved for anti-MHV amplitudes

using the other special solution (2.16). All we need to do is to exchange angular and

square brackets.

As to other solutions at MHV, it is not difficult to check numerically (we have checked

up to 9-point) that if we plug any solution other than eq. (2.15) into eq. (3.10), we get

Pf ′(Ψ) = 0, due to the fact that

det
(
Cx,y,mx,j,n

)
= 0 . (4.1)

However, we can study this problem from another direction, namely, we can solve from the

independent set of eq. (4.1) all the solutions to the scattering equation except for the special
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one (2.15). In other words, if we put together eq. (4.1) and the scattering equation (2.2),

the solution set will be those of eq. (2.2) that do not contribute to the MHV amplitudes.

We hope that this is the first step towards understanding and classifying the Eulerian

number pattern of the solution set [43]. In the following, we call the solution (2.15) the

MHV solution and (2.16) the anti-MHV solution. All the others are thus called non-MHV

solutions, since they only contribute to certain non-MHV amplitudes.

4.1 Independent set of characteristic equations

Once we change x, y, m and j in eq. (4.1), we get a new equation that should be satisfied

by the non-MHV solutions. However, such a system of equations is redundant, out of which

we need to extract a complete and independent set.

For a given x, which is the position of the first negative helicity particle, and the gauge

choice (3.11), the entries of matrix C can be written as

Cab = −
√

2
[ab]〈xb〉
σab〈xa〉

, 1 ≤ a 6= x ≤ n− 1 and b 6= a .

Caa =
√

2

n∑
l=1
l 6=a

[al]〈xl〉
σal〈xa〉

, 1 ≤ a ≤ n . (4.2)

After extracting common factors of each line and column, we get

det
(
Cx,y,mx,j,n

)
= (
√

2)n−3
〈xy〉〈mx〉
〈xj〉〈nx〉

det
(
Dx,y,m
x,j,n

)
, (4.3)

where

Dab = − [ab]

σab
, Daa =

n∑
l=1
l 6=a

[al]〈xl〉
σal〈xa〉

. (4.4)

The range of the indices in D is the same as that of C. We find that the following quantity

only depends on x

Dx ≡
perm(xym)perm(xjk)

〈xy〉σym〈mx〉〈xj〉σjk〈kx〉
det
(
Dx,y,m
x,j,k

)
. (4.5)

The proof is very similar to that of Pf ′(Ψ) be independent of i and j given in [2]. In terms

of this new quantity, eq. (3.10) can be rewritten as

Pf ′(Ψ) = (−1)s(n)(
√

2)n〈xy〉4DxCxx . (4.6)

Next, we show that there is no σx contained in Dx. Indeed, since both the row-(x) and

column-(x) is deleted, the only place σx can appear is in the diagonal entry Daa, as 1/σax.

However, because of the 〈xl〉 in the numerator, the coefficient of 1/σax is actually zero.

Consequently

Dx = 0 (1 ≤ x ≤ n− 3) (4.7)
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forms a complete and independent system of polynomial equations for our n− 3 unknown

σ’s. For n = 5, there is only one solution to eq. (4.7), which is exactly eq. (2.16). We

have numerically studied a number of cases up to n = 9, and find that the (n − 3)! − 1

non-MHV solutions of the scattering equation all satisfy eq. (4.7). On the other hand,

eq. (4.7) contains additional solutions other than those of the scattering equation. We

have confirmed this fact numerically at n = 6.

As an example, it is easy to show analytically that the anti-MHV solution (2.16) indeed

satisfies Dx = 0 for arbitrary n. In this case, we have

Dab = − [aχ][bχ][n− 1, n− 2]

[n− 2, χ][n− 1, χ]
, Daa = − [aχ]2[n− 1, n− 2]

[n− 2, χ][n− 1, χ]
(4.8)

for 1 ≤ a 6= b 6= x ≤ n. After we delete two more rows and columns, and extract [aχ] from

row-(a) and [bχ] from row-(b), we will get a matrix whose entries are identical, and it must

have zero determinant. Thus we have proved that the solution (2.16) leads to Dx = 0 and

makes no contribution to MHV amplitudes. For the other (n− 3)!− 2 non-MHV solutions,

at this moment one can use only numerical methods, since no analytic expression for any

of them is known in the literature.

Geometrically, the scattering equation (2.2) represents a set of (n− 3) hyper-surfaces

in the space of n− 3 complex variables (locally Cn−3) while the (n− 3)! solutions are just

the intersection points of these hyper-surfaces. Meanwhile, eq. (4.7) defines another set of

(n − 3) hyper-surfaces and their intersection points always have (n − 3)! − 1 in common

with the ones given by eq. (2.2). The algebraic geometric property of these two sets of

equations needs to be further studied.

4.2 Non-MHV solutions and Non-MHV amplitudes

It has been indicated in [43] that there is an Eulerian number partition pattern in the (n−3)!

solutions. Namely, NkMHV amplitudes are only supported by A(n− 3, k) solutions, where

A(n−3, k) is the k-th Eulerian number of index n−3. We have also numerically checked this

fact up to n = 9. Our approach described above in section 3 may potentially be generalized

to non-MHV amplitudes, despite the fact that there is no compact analytic expression

known for any of the other non-MHV solutions: working out similar characteristic equations

for non-MHV solutions is still promising. We leave this to our future work.

5 Conclusions and discussions

In this paper, we have proved in the CHY formalism that the special rational solution (2.15)

of the scattering equations leads to the Parke-Taylor formula for MHV Yang-Mills ampli-

tudes with an arbitrary number of external gluons, as well as the Hodges formula for MHV

gravity amplitudes. This is achieved by developing techniques to compute relevant reduced

Pfaffians/determinants in a manifestly Möbius covariant formalism. Two useful properties

have been introduced and proved, which make the Möbius invariance of the formalism

manifest. Then the fact that another known special solution (2.16) supports only the

anti-MHV amplitudes follows immediately. By numerical check, we pointed out that all
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other solutions of the scattering equations do not contribute to the MHV amplitudes at

all. Moreover, algebraic conditions satisfied by the (n− 3)!− 1 non-MHV solutions, which

do not contribute to the MHV amplitudes, have been established. We leave further study

on amplitudes beyond MHV and anti-MHV to future work.

The correspondence we have established in this paper between the MHV solutions of

scattering equations and the MHV Yang-Mills/gravity amplitudes has a profound physi-

cal implication: namely in the CHY formalism for Yang-Mills and gravity, the solutions

of scattering equations, involving only external momenta, know mysteriously about the

external helicity/polarization configurations of the scattering amplitudes.

Recently, Lam and Yao developed a systematic method [44, 45] to evaluate CHY

integrations for n-point amplitudes. Their method can be applied to any fixed helicity

configuration with manifest Möbius invariance. Many examples with a small value of

n were explicitly calculated in [44], with results in the MHV cases consistent with the

Parke-Taylor formula. However, it is not easy to see the correspondence between solutions

of scattering equations and helicity configurations in their way. Nevertheless, this work

initiates a new approach to study the CHY formula, especially for non-MHV or non-anti-

MHV configurations, for which no analytic solution of scattering equations is known. The

connection between the approach by Lam and Yao [44, 45] and the current work is an

interesting topic and deserves further study.
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A Spinor-helicity formalism

In this section, we briefly introduce the spinor helicity formalism [38] and show the con-

ventions we have employed in our calculation. The metric we use is gµν = (1,−1,−1,−1).

The usual Dirac u and v spinor can be defined as

us(p) =

(
ξα(p, s)

η†α̇(p, s)

)
, vs(p) =

(
ηα(p, s)

ξ†α̇(p, s)

)
, (A.1)

such that the Dirac conjugate is:

us(p) =
(
ηα(p, s), ξ†α̇(p, s)

)
, vs(p) =

(
ξα(p, s), η†α̇(p, s)

)
. (A.2)

Here ξ and η are Weyl spinors. The dotted and undotted indices are converted through

the conjugation † while they are raised and lowered by:

ε12 = −ε21 = 1, ε12 = −ε21 = −1 . (A.3)
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u and v satisfy the Dirac equation:

(γµpµ −m)us(p) ≡
(
/p−m

)
us(p) = 0 , us(p)

(
/p−m

)
= 0 ,

(γµpµ +m) vs(p) ≡
(
/p+m

)
vs(p) = 0 , vs(p)

(
/p+m

)
= 0 . (A.4)

In the massless limit, s labels the helicity and we have the special solution:

ξα(p,+) = 0 , ξα(p,−) =
√

2E

(
−e−iφ/2 sin θ

2

eiφ/2 cos θ2

)
,

ηα(p,+) =
√

2E

(
−e−iφ/2 sin θ

2

eiφ/2 cos θ2

)
, ηα(p,−) = 0 , (A.5)

for the momentum pµ = (E,E sin θ cosφ,E sin θ sinφ,E cos θ). Other nonzero two-spinors

are related to them by

ξ†α̇(p,−) = η†α̇(p,+) =
√

2E

(
e−iφ/2 cos θ2
eiφ/2 sin θ

2

)
,

ξα(p,−) = ηα(p,+) =
√

2E

(
eiφ/2 cos

θ

2
, e−iφ/2 sin

θ

2

)
,

ξ†α̇(p,−) = η†α̇(p,+) =
√

2E

(
−eiφ/2 sin

θ

2
, e−iφ/2 cos

θ

2

)
. (A.6)

The normalization
√

2E agrees with the one used in [41]. We define the new angular and

square bracket notation for the spinors:

u+(p) = v−(p) =

(
0

η†α̇(p,+)

)
≡ |p〉 , u−(p) = v+(p) =

(
ξα(p,−)

0

)
≡ |p] ,

u+(p) = v−(p) =
(
ηα(p,+), 0

)
≡ [p| , u−(p) = v+(p) =

(
0, ξ†α̇(p,−)

)
≡ 〈p| . (A.7)

Then using this notation, a light like four-vector can be expressed in terms of the spinors as

pµ =
1

2
〈p |γµ| p] =

1

2
[p |γµ| p〉 , /p = |p 〉[ p|+ |p ]〈 p| , (A.8)

and the Mandelstam variable sij can be expressed as

sij = 2pi · pj = −〈pipj〉[pipj ] . (A.9)

B Proof of eq. (3.3) and eq. (3.4)

In the following subsections, we prove the two properties given in eq. (3.3) and eq. (3.4).

In the derivation, if we say, for example, B part of a matrix, we mean those entries that

belong to the original B sub-matrix in Ψ.
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2
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0 0

A

B

C

Figure 1. The structure of the matrix Ψ after we fixed the gauge. Only the shaded regions are

generally nonzero.

B.1 Proof of property-1

Now let us prove eq. (3.3) by recursively expanding the Pfaffian using the formula

Pf(X) =

2N∑
j=1
j 6=i

(−1)i+j+1+θ(i−j)xijPf(Xij
ij ) (B.1)

for a 2N × 2N anti-symmetric matrix X = (xij). The proof consists of the following steps:

(i) The structure of Ψ

As our first step, we substitute the polarizations given by eq. (3.2) into the B and

C matrices defined by eq. (2.14). Under the choice of reference momenta, the only

nonzero εi ·εj in the B matrix are ε−2 · ε
+
b with 3 ≤ b ≤ n−1. Thus only the second row

and the second column contain nonzero entries. Under our chioce of gauge eq. (3.2),

we also have

ε−1,2 · kn = 0, ε+a · k1 = 0 (3 ≤ a ≤ n), (B.2)

Then the last n − 2 entries of the first column (row) as well as the first two entries

of the last column (row) in C (−CT ) matrix have to be zero. Hence the general

structure of the matrix Ψ has the form shown by figure 1.

(ii) The expansion of Pf ′(Ψ)

To calculate Pf ′(Ψ), we choose to delete the (n − 1)-th and n-th row and column,

which leads to

Pf ′(Ψ) =
−1

σn−1,n
Pf
(

Ψn−1,n
n−1,n

)
≡ −1

σn−1,n
Pf(Ψ̃) . (B.3)

We now expand Pf(Ψ̃) with respect its n-th row, which is row-(2) of B and C, and

obtain

Pf(Ψ̃) =

2n−2∑
b=1
b 6=n

(−1)n+b+1+θ(n−b)Ψ̃nbPf
(

Ψ̃n,b
n,b

)
, (B.4)
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0

0

0

n− 3 n− 1

n
−

1
n
−

3

(a) 1 ≤ b ≤ n− 2

0

0

00

0

0 0

n− 2 n− 2

n
−

2
n
−

2

(b) n− 1 ≤ b ≤ 2n− 2

Figure 2. (a) The submatrix of Ψ̃ when the deleted column is in the C part during the recursive

expansion of Pf(Ψ̃). The Pfaffian of this submatrix is zero. (b) The structure of ψm, which has

nonzero Pfaffian in general. It is the submatrix obtained when the deleted column is in the B part

during the recursive expansion of Pf(Ψ̃).

where

Ψ̃nb =

{
C2b 1 ≤ b ≤ n− 2

B2,b−n+2 n− 1 ≤ b ≤ 2n− 2
. (B.5)

(iii) The reduction of Pf
(
Ψ̃n,b

n,b

)
in eq. (B.4)

It is not difficult to see that all the sub-Pfaffians Pf
(

Ψ̃n,b
n,b

)
with 1 ≤ b ≤ n−2 are zero.

In this case the Ψ̃n,b
n,b has a zero B part, which is still n×n dimensional. However, the

nonzero off-diagonal C part has dimension (n−1)×(n−3), as illustrated in figure 2a.

Then by elementary transformations, we can always make two rows of the C part

zero, such that we get a matrix with two entire rows zero, which has zero determinant.

Since elementary transformations do not change determinant, we must have

Pf
(

Ψ̃n,b
n,b

)
=

√
det
(

Ψ̃n,b
n,b

)
= 0 (1 ≤ b ≤ n− 2). (B.6)

We then re-express Pf(Ψ̃) by

Pf(Ψ̃) =
n∑

m=3

(−1)b+1B2mPf
(

Ψ̃n,m+n−2
n,m+n−2

)
≡

n∑
m=3

(−1)m+1B2mPf (ψm) . (B.7)

The summation starts from m = 3 since B21 ∼ ε−2 · ε
−
1 vanishes due to our choice of

gauge and B22 = 0 by definition. The general structure of ψm thus can be shown by

figure 2b.
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Figure 3. The (2n− 6)× (2n− 6) dimensional submatrix of ψm when the deleted column is not

the first one. The Pfaffian of this submatrix is zero, which can be told from switching two rows and

columns.

(iv) The reduction of Pf (ψm) in eq. (B.7)

We apply the reduction process in (iii) on ψm, and expand it with respect to its

(n− 1)-th row, which is row-(1) of C

Pf(ψm) =
n−2∑
s=1

(−1)n+s+1C1sPf
(

[ψm]n−1,sn−1,s

)
. (B.8)

If s 6= 1, the Pfaffian of the corresponding submatrix of ψm is zero. The proof is

similar to the previous one. In this case, the first row and column of ψm is inherited

by the submatrix. Both the first row and first column are entirely zero in the C part.

Then we can exchange both row-(1) and column-(1) with row-(n − 2) and column-

(n − 2) in the A part. This manipulation only changes the sign of the Pfaffian in

question. The resultant matrix has a (n − 2) × (n − 2) dimensional zero block at

the bottom right corner, while the off-diagonal nonzero block is (n − 2) × (n − 4)

dimensional. Thus the Pfaffian is zero for the same reason as given in the paragraph

above eq. (B.6). This process is illustrated in figure 3. Therefore we have only one

sub-Pfaffian contributing

Pf(ψm) = (−1)nC11Pf
(

[ψm]n−1,1n−1,1

)
≡ (−1)nC11Pf(ψ′m) . (B.9)

(v) The expression of Pf(ψ′m) in eq. (B.9)

It is now instructive to see what the (2n − 6) × (2n − 6) dimensional matrix ψ′m is

composed of in terms of the original A, B and C matrix. It is straightforward to

observe that

ψ′m =


A1,n−1,n

1,n−1,n −
(
C1,2,m
1,n−1,n

)T
C1,2,m
1,n−1,n 0

 . (B.10)
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In the off-diagonal blocks of ψ′m, we have the original matrix C with row-(1, 2,m) and

column-(1, n− 1, n) deleted. If the determinant of C1,n−1,n
1,2,m is zero, then Pf(ψ′m) = 0

since elementary transformations can make one entire row in the lower half of ψ′m zero.

If C1,n−1,n
1,2,m has a nonzero determinant, we always find an elementary transformation

that makes the A part of ψ′m zero. For example, to make the first row of the A part

zero, we need to find x3, · · · , xm−1, xm+1, · · · , xn from the following set of equations

x3C3l + x4C4l + · · ·+ xm−1Cm−1,l + xm+1Cm+1,l + · · ·+ xnCnl = −A2l

(2 ≤ l ≤ n− 2) . (B.11)

Now that we have n−3 unknowns with n−3 equations, we can always find a solution

when C1,2,m
1,n−1,n has nonzero determinant. Then multiplying each row in C1,2,m

1,n−1,n by

the corresponding x, adding it to the first row of A, we can make the first row of the

A part zero. Continuing this operation to all rows of the A part, we can thus make

the entire block zero. Therefore, both situations can be captured in the following

equation

Pf(ψ′m) = Pf


0 −

(
C1,2,m
1,n−1,n

)T
C1,2,m
1,n−1,n 0

 = (−1)
(n−2)(n−3)

2 det
(
C1,2,m
1,n−1,n

)
. (B.12)

Now if we put together eq. (B.3), eq. (B.7), eq. (B.9) and eq. (B.12), we get eq. (3.3),

and the the proof of Property-1 is complete.

Feynman diagram analysis.2 Although eq. (3.3) have been derived from properties

of Pfaffians structures, it is worth pointing out that the reductions (i)–(v) can be under-

stood more physically from Feynman diagrams. In the amplitudes calculated from usual

Feynman diagrams, polarization for any external gluon must be contracted with either

another polarization or an external momentum. In n-gluon tree diagrams, the number of

polarizations is n and the number of vertices in a Feynman diagram should be at most

n− 2. Thus we at least have one factor of εi · εj . As already mentioned in (i), the nonzero

εi · εj can only be ε−2 · ε
+
b (3 ≤ b ≤ n−1). Since the polarization ε−2 can only appear once in

one diagram, we only have one nonzero factor of the type εi · εj for each Feynman diagram.

Thus MHV partial amplitude can be written as a summation of the terms proportional to

ε−2 · ε
+
b , which agrees with eq. (B.7). Meanwhile, all the other n−2 polarizations have to be

contracted with n− 2 external momenta. Next we study whether we can have ki · kj in the

summand. The most possible contributing diagrams are those constructed by only cubic

vertices, each of which contributes a factor of the form kµηρσ to each summand. An n-

gluon tree diagram at most contains n−2 vertices such that the vertices contribute 3(n−2)

Lorentz indices. However, since we have 2(n − 3) propagators contracting with vertices,

thus the total number of external Lorentz indices is n. Then the n external polarizations

can either contract with kµ or ηρσ.

2Similar analysis can be found in e.g., [41].
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• If all the (n − 2) momenta k contract with external polarizations (i.e., there is no

ki · kj), there must be two polarizations left and have to contract with each other.

This case is allowed because we do have nonzero contractions ε2 · εb (3 ≤ b ≤ n− 1)

available.

• If there exists a factor ki · kj , we should have at least two less k’s contract with

polarizations. Thus we have at least two more polarizations contract with each other

via ηρσ, which should vanish since there are no more nonzero εi · εj .

Thus for MHV case with our gauge choice (3.2), Feyman diagram can only contribute term

that contains just one signle factor (ε−2 · εb) (2 < b ≤ n− 1) and (n− 2) factors of the type

ε · k. In the CHY language, it means that Pf ′(Ψ) should not contain any entries in the A

matrix, which also agrees with eq. (B.8).

B.2 Proof of property-2

We now turn to prove the three relations in eq. (3.4).

The entries of Φ. We plug in eq. (2.15) and write Φ in terms of spinor products. Using

eq. (2.17), we express the entries of Φ as

Φab =
sab
σ2ab

= − [ab]〈aχ〉2〈bχ〉2〈n− 1, n− 2〉2

〈ab〉〈n− 2, χ〉2〈n− 1, χ〉2
(a 6= b) , (B.13)

Φaa = −
n∑
l 6=a

Φal =
〈aχ〉2〈n− 1, n− 2〉2

〈n− 2, χ〉2〈n− 1, χ〉2
n∑
l 6=a

[al]〈lχ〉2

〈al〉
(diagonal) . (B.14)

The determinant of Φ1,2,m
1,n−1,n with 3 ≤ m ≤ n−1. Now we calculate det

(
Φ1,2,m
1,n−1,n

)
with row-(1, 2,m) and column-(1, n− 1, n) removed.

• From eq. (B.13) and eq. (B.14), we know that each entry of the Φ matrix contains a

factor F 2
χ such that We should thus have in all n − 3 rows containing this common

factor. By extracting all of them out of the determinant, we get an overall factor

(Fχ)2(n−3) . (B.15)

• As shown by eq. (B.13), each Φab (a 6= b) contains a factor 〈aχ〉2 〈bχ〉2. It thus

is tempting to extract 〈aχ〉2 out of each row and 〈bχ〉2 out of each column, but the

obstacle is in Φaa, which seem to contain only 〈aχ〉2 instead of 〈aχ〉4, as in eq. (B.14).

Now let us show that a Φaa (a 6= n) secretly contains one more 〈aχ〉2 if we apply the

Schouten identity properly. First, we define the following quantities for convenience

P (a) ≡
n∏
c=1
c 6=a

〈ac〉 , P (a, l) ≡
n∏
c=1
c 6=a,l

〈ac〉 . (B.16)
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Then we rewrite the summation in Φaa as

n∑
l=1
l 6=a

[al]〈lχ〉2

〈al〉
=

1

P (a)

n∑
l=1
l 6=a

[al]〈lχ〉2P (a, l) . (B.17)

Starting from l = 2, we always have 〈a1〉 in P (a, l) (for a ≥ 2) and we use the

Schouten identity

〈lχ〉〈a1〉 = 〈aχ〉〈l1〉+ 〈al〉〈1χ〉 (B.18)

such that

n∑
l=1
l 6=a

[al]〈lχ〉2P (a, l) = P (a, 1)〈1χ〉
n∑
l=1
l 6=a

[al]〈lχ〉+ 〈aχ〉
n∑
l=1
l 6=a

[al]〈lχ〉〈l1〉
〈a1〉

P (a, l) . (B.19)

The first sum yields zero because of momentum conservation, while the second term

leads to

Φaa =
〈aχ〉4〈n− 1, n− 2〉2

〈n− 2, χ〉2〈n− 1, χ〉2
n∑
l=1
l 6=a

[al]〈lχ〉〈l1〉
〈al〉〈aχ〉〈a1〉

. (B.20)

This is correct for 2 ≤ a ≤ n, which is adequate for our purpose since the first

line has already been deleted. Now we can extract one 〈an〉2 from each row with

3 ≤ a 6= m ≤ n, and one 〈bn〉2 from each column with 2 ≤ b ≤ n− 2. Then we have

a factor (
n−1∏
a=1

〈aχ〉4
)(

1

〈1χ〉〈2χ〉〈mχ〉〈1χ〉〈n− 1, χ〉〈nχ〉

)2

. (B.21)

After collecting all these factors in eq. (B.15) and eq. (B.21), we reduce the determinant

into the form

det
(

Φ1,2,m
1,n−1,n

)
= (−1)n−3F 2n−6

χ

(
n∏
a=1

〈aχ〉4
)

×
(

1

〈1χ〉〈2χ〉〈mχ〉〈1χ〉〈n− 1, χ〉〈nχ〉

)2

det
(
φ1,2,m1,n−1,n

)
. (B.22)

To settle eq. (2.21) into a form that is easier to generalize, we define the following two

quantities

dabc = dabc ≡ 1

〈aχ〉〈bχ〉〈cχ〉
. (B.23)

Then eq. (2.21) becomes

det
(

Φ1,2,m
1,n−1,n

)
= (−1)n−3 (Fχ)2n−6 (Pχ)4

(
d1,2,md

1,n−1,n)2 det
(
φ1,2,m1,n−1,n

)
. (B.24)
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The reduced determinant det ′(Φ). It is straightforward to find that after using

eq. (2.15), we have

σ12σ2mσm1σ1,n−1σn−1,nσn1 =

(
1

Fχ

)6 (
c1,2,mc

1,n−1,n)−1 (d1,2,md1,n−1,n)2 . (B.25)

Using eq. (B.24) and eq. (B.25), we can arrive at the result given in eq. (3.4a):

det ′(Φ) =
(−1)m+1

σ12σ2mσm1σ1,n−1σn−1,nσn1
det
(

Φ1,2,m
1,n−1,n

)
= (Fχ)2n (Pχ)4 M̄n(12 . . . n) .

(B.26)

in which M̄n is given by

M̄n(12 . . . n) = (−1)n+1(−1)m+1c1,2,mc
1,n−1,n det

(
φ1,2,m1,n−1,n

)
. (B.27)

This is just eq. (2.19) with the choice (i, j, k; p, q, r) = (1, 2,m; 1, n− 1, n) such that

perm(12m) perm(1, n− 1, n) = (−1)m .

The MHV-like factor σ12σ23 . . . σn1. Using eq. (2.15), eq. (3.6) and eq. (3.7), it is

not difficult to find that

σ12σ23 . . . σn1 =

(
1

Fχ

)n Dn

(Pχ)2
, (B.28)

which gives eq. (3.4b).

The determinant of C1,2,m
1,n−1,n. Now we study det

(
C1,2,m
1,n−1,n

)
, where the row-(1, 2,m)

and the column-(1, n− 1, n) in C have been removed. Inserting the polarizations (3.2) into

the C matrix defined by eq. (2.14), we get

Cab = −
√

2
[ab]〈aχ〉〈bχ〉〈b1〉〈n− 1, n− 2〉
〈ab〉〈a1〉〈n− 2, χ〉〈n− 1, χ〉

(3 ≤ a ≤ n and b 6= a) ,

Caa =
√

2
〈aχ〉2〈n− 1, n− 2〉
〈n− 2, χ〉〈n− 1, χ〉

n−1∑
l=1
l 6=a

[al]〈lχ〉〈l1〉
〈al〉〈aχ〉〈a1〉

(3 ≤ a ≤ n− 1) . (B.29)

Similar to what we have done to Φ, we extract 〈aχ〉 from the rows with 3 ≤ a 6= m ≤ n,

〈bχ〉 from all columns. Then we get:

det
(
C1,2,m
1,n−1,n

)
= (
√

2)n−3 (Fχ)n−3 (Pχ)2 d1,2,md
1,n−1,n det

(
C̃1,2,m
1,n−1,n

)
, (B.30)

in which the matrix C̃ has entries given by

C̃ab = − [ab]〈b1〉
〈ab〉〈a1〉

(a 6= b) , C̃aa =
n−1∑
l=1
l 6=a

[al]〈lχ〉〈l1〉
〈al〉〈aχ〉〈a1〉

. (B.31)
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For 3 ≤ a ≤ n and 2 ≤ b ≤ n. In C̃, we can extract a common factor 1/〈1a〉 from each

row, and another common factor 〈1b〉 from each column. These two common factors will

almost cancel each other outside the determinant while the reminant is

〈12〉〈1m〉
〈1, n− 1〉〈1n〉

due to the mismatch between the range of a and b. After doing this, we find that C̃ reduces

to a form that is identical to the Hodges matrix φ (see eq. (2.21)). Therefore we have

det
(
C̃1,2,m
1,n−1,n

)
= (−1)n−3

〈12〉〈1m〉
〈1, n− 1〉〈1n〉

det
(
φ1,2,m1,n−1,n

)
. (B.32)

Plugging it into eq. (B.30), we get

−1

σn−1,n
det
(
C1,2,m
1,n−1,n

)
=−(−

√
2)n−3 (Fχ)n−2 (Pχ)2

(
d1,2,mc

1,n−1,n) 〈12〉〈1m〉
〈1χ〉

det
(
φ1,2,m1,n−1,n

)
.

(B.33)

Using eq. (2.15) and eq. (3.2), we find that

B2m = 2Fχ〈12〉2 (d1,2,m)−1 c1,2,m
[mn]

〈1χ〉[ny]
, (B.34)

such that det
(
φ1,2,m1,n−1,n

)
can be grouped into M̄n, which independent of m. Thus we can

pull int out and perform the summation over m in eq. (3.3):

n∑
m=3

(−1)mB2m

[
−1

σn−1,n
det
(
C1,2,m
1,n−1,n

)]

= −(
√

2)n−1 (Fχ)n−1 (Pχ)2
〈12〉3

〈1χ〉2
M̄n(12 . . . n)

n∑
m=3

〈1m〉[mn]

[n2]

= −(
√

2)n−1 (Fχ)n−1 (Pχ)2
〈12〉4

〈1χ〉2
M̄n(12 . . . n) . (B.35)

Note that this equation is independent of the gauge choice of the polarizations. This quan-

tity is nothing but the D1 defined in eq. (4.5) with the special solution (2.15) plugged in.

The reduced Pfaffian Pf ′(Ψ). Finally, in eq. (3.3) we find that C11 is also gauge

independent, if eq. (2.15) is used

C11 = −
√

2Fχ〈1χ〉2. (B.36)

As a result, we get

Pf ′(Ψ) = (−1)s(n)(
√

2)n(Fχ)n(Pχ)2〈12〉4M̄n(12 · · ·n), (B.37)

which proves eq. (3.4c). Had we started with another gauge choice of the polarizations,

we should arrive at the same result at this point. The gauge invariance is encoded in

the property demonstrated in eq. (2.22). Now we have completed the proof of all three

equations listed in (3.4).
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