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matter content in terms of (0, 2) superfields and their supersymmetric couplings. We study

this setup both from a gauge-theoretic point of view, in terms of the partially twisted

7-brane theory, and provide a global geometric description based on the structure of the

elliptic fibration and its singularities. Global consistency conditions are determined and

checked against the dual M-theory compactification to one dimension. This includes a

discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-

Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore,

by interpreting the resulting 2d (0, 2) theories as heterotic worldsheet theories, we propose

a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds

and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the

correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0, 2) GLSM
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1 Introduction

Two-dimensional N = (0, 2) supersymmetric gauge theories occupy a sweetspot in field the-

ory and string theory. Their relation to superconformal field theories in higher dimensions

is in part responsible for the recently revived interest in their dynamics. At the same time,

in combination with conformal invariance, two-dimensional field theories with (0, 2) super-

symmetry lie at the very heart of string theory since they describe the worldsheet of the

heterotic theories. Following the seminal paper [1] much interest was sparked also in non-

conformal (0, 2) gauge theories which flow to a (0, 2) superconformal field theory (SCFT)

in the infrared. Recent years have seen intensified efforts to understand the properties

of 2d (0, 2) theories from first principles, as well as through the connection with higher-

dimensional theories. For instance, defects of supersymmetric three-dimensional gauge

theories are described in terms of 2d (0, 2) theories [2]. Another avenue is to consider the

dimensional reduction of supersymmetric gauge theories, such as 4d N = 1 theories [3, 4]

or twisted reductions of 4d N = 4 theories [5–7]. Among the most intriguing connections
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is the relation to the enigmatic 6d (0, 2) theory which captures the effective theory of M5-

branes. Dimensionally reducing the 6d (0, 2) theory to 2d on a four-manifold (embedded as

a co-associate cycle in a G2 manifold) results in a (0, 2) supersymmetric gauge theory [8, 9],

whose characteristics are encoded in the geometry of the four-manifold. Much progress has

been made in uncovering the properties of such theories.

An alternative way to obtain large, and at times comprehensive, classes of gauge

theories is to geometrically engineer these within string theory. Geometric engineering

of 2d N = (0, 2) gauge theories has thus far been somewhat confined to a sparce set

of examples. Compatifications of Type II and heterotic supergravity to two dimensions,

mostly with focus on models with four supercharges, have been analyzed e.g. in [10–16],

and [17–20] have obtained (0, 2) models from D1-branes at local singularities. Here, our

goal is to develop a geometric engineering framework for 2d N = (0, 2) theories which

generates both a large class of examples and potentially even a classification by means of

constraining the gauge theory from the geometry of the compactification spaces.

In the 20 years after its uncovering, F-theory [21–23] has established itself as a powerful

framework for geometric engineering of gauge theories in even dimensions, specifically 8d,

6d, and 4d. Recent work has exemplified the strength of this approach, which resulted in a

classification of 6d N = (0, 1) SCFTs [24]. Thus far, entirely unexplored are compactifica-

tions of F-theory to two dimensions, whose analysis we initiate in this paper by constructing

2d N = (0, 2) theories from F-theory on elliptically fibered Calabi-Yau five-folds Y5.

As for any geometric engineering framework, we first have to develop the precise cor-

respondence between the gauge theoretic ingredients in 2d and the intricate structures of

the underlying five-fold geometry. Going beyond the geometric realization of gauge theo-

ries, this approach even offers the prospect of interpreting the 2d (0, 2) theory obtained by

F-theory compactification on Y5 as a (heterotic) worldsheet theory in its own right, thereby

establishing a new correspondence between the original compactification space Y5 and the

target space associated with the resulting 2d heterotic worldsheet theory. To pursue this

program, much of our interest will be focused on the elliptic fiber of the Calabi-Yau variety

Y5, as this will govern the gauge degrees of freedom, matter and supersymmetric couplings

in 2d and geometrically encode the 7-brane degrees of freedom in F-theory.

In carrying out this program we benefit from the considerable progress that has been

achieved in the study of lower-dimensional elliptic Calabi-Yau varieties in analysing 6d and

4d vacua with N = 1 supersymmetry. The latter case was partially motivated by the con-

struction of phenomenologically relevant string vacua [25–27] (for recent reviews of F-theory

see e.g. [28–30]). The advances made in this active field of studying F-theory on Calabi-

Yau three- and four-folds will provide an ideal setting to venture into the study of elliptic

Calabi-Yau five-folds. The geometric lessons learned on lower-dimensional compactification

spaces will serve as crucial input into our analysis. But various higher-dimensional intrica-

cies will be encountered along the way, making five-folds a much richer class of Calabi-Yau

varieties than the ones thus far studied. This is mirrored in the more complex structure

of the 2d N = (0, 2) landscape of gauge theories. In particular, the theories we set out to

study seem to be genuine (0, 2) models insofar as they are not in any way closely related to

N = (2, 2) theories, which for many constructions in the past have been the starting point

in the construction of (0, 2) theories.
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There are various approaches to studying the 2d theories that emerge from F-theory on

Calabi-Yau five-folds. A gauge theory with gauge group G arises as the world-volume theory

of 7-branes wrapping a complex three-fold MG (i.e., counting real dimensions, a six-cycle)

in the complex dimension four base B4 of the elliptic fibration. From this point of view, the

2d theory is described as a partially topologically twisted 8d supersymmetric Yang-Mills

(SYM) theory, where the twist is along the compact directions. The supersymmetric vacua

of this gauge theory are characterized in terms of generalized Hitchin equations on MG for

a Higgs bundle (A,ϕ). Such a gauge theoretic point of view, which also formed the basis

of the work [25–27] on four-dimensional F-theory compactifications, is particularly useful

in determining the precise correspondence between the geometric data of MG and the 2d

spectrum. We therefore begin our analysis by studying the dimensional reduction of the

partially topologically twisted 8d SYM theory to 2d.

Much of the properties of 7-branes in the F-theory compactification are encoded in

the geometry of the elliptic fiber, in particular its singularities above MG. Aspects of the

base of the fibration will for this paper not play a central role, but are key to the study of

superconformal points [31]. Due to the absence of a first-principle formulation of F-theory,

dualities are of particular importance in identifying the compactification data. The most

important of these is the duality with M-theory, compactified on the Calabi-Yau five-fold

Y5 to one dimension, which yields an N = 2 supersymmetric quantum mechanics. The

super-mechanics obtained from M-theory on smooth, not necessarily elliptically fibered

Calabi-Yau five-folds has been studied in [32]. As we will discuss, in the presence of a fi-

bration structure this super-mechanics theory lifts to a 2d N = (0, 2) theory in the F-theory

limit of vanishing fiber volume. Amongst other things, this approach will turn out to be

useful in studying the global consistency conditions of the compactification, the rich struc-

ture of gauge anomalies in chiral gauge theories and the inclusion of gauge backgrounds in

form of M-theory fluxes. The perturbative limit of the F-theory construction is described

by a Type IIB orientifold on a Calabi-Yau four-fold. This point of view provides us with

invaluable intuition in particular in studying the sector of D3-branes, whose dynamics in

the dual M-theory compactification, where they correspond to M2-branes, is considerably

more elusive. Another useful approach in studying F-theory compactifications is to con-

sider heterotic/F-theory duality, which is applicable when the base B4 of the five-fold is a

P1-fibration over B3. The 2d (0, 2) F-theory vacuum is then mapped to the theory obtained

from compactification of the heterotic string over an elliptic fibration over B3. The Higgs

bundles and their spectral covers that we discuss for the 7-branes in Calabi-Yau five-folds

should then have a counterpart in terms of spectral covers for the heterotic duals. The

exploration of this duality is left for future work.1

The theories we obtain from F-theory by combining these various angles have the

following structure. There are two sources for the vector multiplets: from the gauge fields

on the 7-branes as well as from extra D3-branes wrapping holomorphic curves inside B4.

Charged massless matter arises by dimensional reduction of the bulk modes, by which

1Note that the correspondence with heterotic GLSMs which we will discuss in this paper is of a different

nature than this more canonical heterotic/F-theory duality.
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we mean the gauge degrees of freedom along the worldvolume of the 7-branes (and in

principle also the D3-branes), from [p, q]-string excitations localised at the intersection of

two 7-branes over a complex surface (which will be referred to as surface matter), and from

[p, q]-strings at the intersection points between the 7- and the D3-branes, respectively. This

matter organizes into 2d (0, 2) chiral and Fermi multiplets, which are counted by certain

cohomology groups that we determine.

The matter interacts via non-derivative couplings allowed by the (0, 2) structure of

the effective theory which can be computed by evaluating the overlap of the internal zero-

mode wavefunctions. Apart from pure 7-brane bulk and bulk-surface matter couplings,

such interactions localize at the intersection of matter surfaces. Holomorphic couplings

charcterized in terms of the fields E and J arise from both codimension three and four

loci in the base, which give rise to cubic and quartic couplings, respectively. The pure

surface-matter couplings arise from the wavefunction overlap at distinguished curves in

the base over which the singularity structure of the fiber enhances further. Generically,

at such codimension three loci several types of gauge invariant interactions coalesce due

to the strong fiber enhancement. The interactions have contributions at leading order

from the point of view of the 7-brane theory, which give rise to so-called E- and J-type

couplings in the 2d theory. These are always cubic in nature. More general interactions

arise by integrating out massive fields. We indicate this latter point in an example which

realizes the quintic hypersurface sigma-model. At points in the base of the fibration, i.e.

over codimension four loci in the five-fold, additional quartic interactions arise.

The specific multiplicities of massless charged matter depends, apart from the topology

of the wrapped cycles, on the gauge background, which translates, via M/F-theory duality,

into 3-form gauge data. Even in the absence of gauge fluxes, chirality of the theory requires

the cancellation of gauge anomalies. In particular, the 3-form tadpole cancellation condition

from M-theory determines the total class of curves wrapped by the D3/M2-branes in such

a way that the complete matter from both the 7-branes and the D3-branes is anomaly-

free. The structure of anomaly cancellation for abelian gauge symmetries is considerably

enriched due to a wealth of Green-Schwarz terms, which we discuss from the IIB and

the M-theory perspective. Finally we find a powerful check of our expressions derived for

the chiral index of massless matter by analyzing the Chern-Simons terms in the M-theory

super-mechanics and comparing it with the 1-loop generated Chern-Simons obtained from

F-theory. This is the 1d/2d analogue of the higher-dimensional correspondence of [33–41].

We close this paper with an outlook towards superconformal theories and the relation

to gauged linear sigma-models (GLSMs), which have been central in the understanding

of the moduli space of 2d (0, 2) theories [1]. Some evidence will be given in support of a

new correspondence between F-theory compactifications on elliptic Calabi-Yau five-folds

Y5 with G4-flux and heterotic compactifications on three-folds with vector bundles. The

idea is here to interpret the 2d (0, 2) theory obtained by F-theory compactifiation on

Y5 as the GLSM which flows in the infra-red to the non-linear sigma-model describing

the propagation of the heterotic string on a Calabi-Yau target space. The simplest such

models correspond to heterotic sigma-models on toric hypersurfaces. From the F-theory

point of view, the underlying GLSMs are somewhat complementary to the ones discussed
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in the main part of the paper, as there is no non-abelian gauge group. The only gauge

degrees of freedom are from U(1)s, which are realized in terms of rational sections of elliptic

fibrations. In addition, GLSMs with non-abelian gauge groups do correspond to interesting

heterotic theories, e.g. on hypersurfaces of Grassmannians [1] or even more general varieties

(see e.g. [42–44] and references therein), and it will be an interesting avenue of research to

relate these models with the 2d (0, 2) F-theory models obtained in this paper.

Irrespective of the gauge group of the GLSM, the above correspondence suggests that

the various phases of the GLSM are realized in terms of different F-theory Higgs bundle

configurations (A,Φ) which were termed gluing branes or T-branes [45–50]. These are

off-diagonal background values for the Higgs field. Schematically, we find the following

identification of GLSM phases, focusing here for simplicity on the GLSM associated with

a degree n hypersurface in CPn−1 of [1]:

NLSM− phase GLSM LG− phase

G = ∅ gluing←−−−−−
data

G = U(1)
gluing−−−−−→
data

G = Z5

(Ã, Φ̃) (A,Φ) (Â, Φ̂)

(1.1)

Here, the GLSM with U(1) gauge group arises from a compactification with rank one

Mordell-Weil group (MW), and trivial Tate-Shafarevich (TS) group. The special phases

of the GLSM correponding to the non-linear sigma-model (NLSM) as well as the Landau-

Ginzburg (LG) phase are reached by turning on gluing data on the 7-brane theory in

the Calabi-Yau five-fold, which are non-diagonalizable vevs for the Higgs field. While

developing such a correspondence in greater depth will be the subject of future work [31],

we shall provide more details on this idea already, in section 12.2.

The paper is organized as follows: after setting the stage in section 2 with a reminder

on F-theory as well as 2d (0, 2) theories, we begin our analysis in sections 3 and 4 by first

analyzing the compactification of the partially twisted 7-brane theory. Here we characterize

the dimensional reduction to a 2d N = (0, 2) supersymmetric theory with gauge and matter

degrees of freedom in terms of geometric data on the 7-brane compactification cycle. Some

of the details of the computations are relegated to appendix A. The sector of D3-branes

wrapping curves in the compactification space is the subject of section 5. In section 6, we

describe these theories from the point of view of the elliptic Calabi-Yau five-fold underlying

the F-theory compactification and identify the gauge theoretic data with the geometric

properties of the elliptic fiber. Fluxes, global consistency conditions such as anomalies and

tadpoles and the Chern-Simons couplings are discussed in sections 8, 9 and 10. A large set

of examples can be found in sections 7 and 11, with some of the technical details provided

in appendix B. In section 12 we give a brief outline of the relation of this new class of 2d

(0, 2) theories with 2d SCFTs in the infrared [31], as well as a more detailed exposition

of the correspondence addressed in (1.1). The weakly coupled description of the F-theory

compactification in terms of Type IIB orientifolds can be found in appendix C. We conclude

in section 13 with a list of future research directions originating from the present paper.

Note added. After this article appeared on the arxiv, [51] was submitted, which has

some overlap with the results presented here.
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2 F-theory, five-folds and (0, 2) models

The purpose of this paper is to study the effective theory of F-theory compactified on an

elliptically fibered Calabi-Yau five-fold to R1,1. The low energy effective theory in 2d is

a supersymmetric gauge theory which preserves two chiral supercharges. The dictionary

between geometric properties of the Calabi-Yau and the gauge theoretic data, which will be

estabilished in the course of the next sections, will allow us to construct a rich class of (0, 2)

supersymmetric gauge theories. This section will serve as an overview of the general setup

underlying these constructions, as well as a summary of the methods, such as dualities to

M-theory, which will be instrumental in the following. We will also give a brief review of

2d gauge theories with (0, 2) supersymmetry.

2.1 F-theory on Calabi-Yau five-folds

We construct two-dimensional F-theory [21–23], i.e. non-perturbative Type IIB, vacua by

dimensional reduction on elliptically fibered Calabi-Yau varieties Y5 of complex dimension

five. Schematically, such varieties Y5 are of the form

π : Eτ → Y5

↓
B4

(2.1)

where Eτ is the elliptic fiber. We consider non-trivial fibrations, whereby the base B4 is a

complex four-dimensional Kähler cycle, with non-trivial canonical class. We shall assume

that the fibration has a zero-section, corresponding a map σ0 from the base to the fiber.

This in particular implies the existence of a Weierstrass form for Y5
2

y2 = x3 + f x z4 + g z6 , (2.2)

with f, g sections of suitable powers of the anti-canonical bundle of the base, K−1
B4

. The zero-

section is then realized by z = 0.3 The identification of the complex structure of the elliptic

fiber with the axio-dilaton τ of type IIB implies that non-trivial fibrations correspond to

vacua with varying string coupling, resulting in not necessarily perturbative vacua. The

natural action of SL(2,Z) on the complex structure of elliptic curves geometrizes thereby

the S-duality of type IIB string theory.

Singularities of the elliptic fiber correspond to divergences in the axio-dilaton sourced

by the presence of 7-branes. More precisely, the 7-branes correspond to logarithmic sin-

gularities creating branch-cuts in the the transverse directions to the branes, and the

axio-dilaton undergoes an SL(2,Z) monodromy. Singularities over complex codimension

2Projectivizing this in P123[z, x, y] realizes the zero-section as z = 0, also sometimes referred to as

w = 0 in the literature. As the F-theory aficionado will appreciate, the present notation was reached in

a diplomatic settlement, whereby the authors agreed to denote the zero-section by z = 0, whereas the

exceptional sections of the resolutions will be referred to as ζi.
3All that follows can be generalized to settings without a zero-section, so-called genus-one fibrations,

along the lines of [52–61]. Genus-one fibrations give rise to F-theory models with discrete gauge groups,

which will become of some importance for us in section 12.2.
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Singularities above codim 2d N = (0, 2) Gauge Theory

1 Gauge group G

2 Matter (chiral and Fermi) in R⊕ R̄

Bulk-surface matter couplings: E and J

3 Holomorphic matter couplings: E and J

4 Holomorphic matter couplings: E and J

Table 1. Identification of singularities in the elliptic fibrations above codimension d loci in the

base B4 of the elliptic Calabi-Yau five-fold with 2d gauge theoretic data.

one in B4 thus correpond to 7-branes wrapped on complex three-cycles MG times R1,1 and

give rise to the gauge degrees of freedom in the two-dimensional theory. The singularities

are characterized in terms of the vanishing of the discriminant of the Weierstrass equation

∆ = 4f3 + 27g2 . (2.3)

The gauge algebra g is encoded in the type of singularity above MG, which can be deter-

mined from the vanishing orders of (f, g,∆) along these loci.4 We will show as a very first

step that the world-volume theory of the 7-branes, i.e. 8d SYM, compactified on a complex

three-cycle indeed gives rise to a 2d (0, 2) supersymmetric theory, whose supersymmetric

vacua have a characterization in terms of a Hitchin-type equation. Singularities appearing

in codimension two in the base will be shown to correspond to additional matter sectors

— which can be thought of as arising from intersecting 7-branes. So far the dictionary is

very much alike to the compactification on Calabi-Yau three- and four-folds. The distinc-

tion to these earlier cases manifests itself in higher codimension. Like the four-fold case,

where codimension three points in the three-dimensional base give rise to cubic Yukawa

couplings, here we will find that the cubic holomorphic interactions are generated in codi-

mension three — this time over curves in the base. Over point in codimension four, the

only additional couplings are quartic. This is summarized in table 1.

In the absence of a first principle definition of F-theory, much of the analysis relies either

on inferring properties from the effective 7-brane theory, as will be studied in section 3,

relations to perturbative string theories, or dualities. Surprisingly few backgrounds of this

type have been studied in the past. Related perturbative constructions have appeared

in [13] in type IIA and IIB on Calabi-Yau four-folds, which preserve N = (2, 2) and

N = (0, 4), respectively, and torus orbifolds in [15]. Compactifications on Calabi-Yau

five-folds first appeared, in a rather different context, in [63].

Of particular relevance to understanding the low energy effective theory is the duality

to M-theory compactified on elliptic Calabi-Yau five-folds. M/F-duality corresponds to

taking the volume of the elliptic fiber in the M-theory compactification to zero, which

4For the present purposes it will not be necessary to distinguish between the gauge algebra g and the

gauge group G. See e.g. [62] for how this distinction arises in F-theory.
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results in a non-perturbative IIB background in 10d:

M-theory on Y5
Vol(Eτ )→0−−−−−−−−→ F-theory on Y5

↓ ↓

1d Super-Mechanics
RA∼ 1

RB
→ 0

−−−−−−−−−→ 2d (0, 2) Gauge Theory

(2.4)

Here the F-theory limit of taking the volume of the elliptic fiber to zero corresponds in

the M-theory/IIA language to the zero radius limit RA → 0, or equivalently, after T-

duality, to the decompactification limit in IIB, which lifts the supersymmetric Quantum

Mechanics to a 2d N = (0, 2) gauge theory. Compactifications of M-theory on smooth (not

necessarily elliptically fibered) Calabi-Yau five-folds to supersymmetric quantum mechanics

were studied in [32]. Applied to elliptic five-folds, these quantum mechanical models are

related by M/F-theory duality to the 2d (0, 2) theories studied in this paper. For our

purposes, this duality plays a crucial role in identifying D3-brane contributions, which in

M-theory correspond to M2-branes, Chern-Simons couplings in section 10 as well as fluxes

and tadpole cancellation conditions in section 9.

2.2 Two-dimensional N = (0, 2) theories

In this final overview part, we summarize some properties of 2d (0, 2) theories, mostly for

future reference and to setup our nomenclature. The conventions followed throughout are

those in [1]. We consider R1,1 with coordinates (y0, y1) or y± = y0 ± y1 and derivatives

∂± = ∂0 ± ∂1 and denote by SO(1, 1)L the two-dimensional Lorentz group. An N = (0, 2)

supersymmetric theory in two dimensions has negative chirality supersymmetry variation

parameters ε− and ε̄−, and corresponding supercharges of positive chirality. There are

three multiplets in an N = (0, 2) theory: the vector multiplet, the chiral multiplet with

components (ϕ, χ+) and the Fermi multiplet with leading fermionic component ρ−. The

fermions in the chiral multiplet (as well as its complex conjugate) have positive 2d chirality,

whereas they have negative chirality in the Fermi multiplet.

The (0, 2) superspace coordinates have positive chirality and will be denoted by θ+

and θ̄+. The 2d N = (0, 2) supersymmetry variations with respect to (ε−, ε̄−) are

δϕ = −
√

2 ε−χ+

δχ+ = i
√

2(D0 +D1)ϕ ε̄−

δρ− =
√

2ε−G− iε̄−E

δϕ̄ = +
√

2ε̄− χ̄+

δχ̄+ = −i
√

2(D0 +D1)ϕ̄ ε−

δρ̄− =
√

2ε̄−Ḡ+ iε−Ē .

(2.5)

Here D0 + D1 denotes the gauge covariantisation of ∂0 + ∂1. The expansion of the vector

superfield (in a Wess-Zumino type gauge) is

V = (v0 − v1)− 2iθ+η̄− − 2iθ̄+η− + 2θ+θ̄+D . (2.6)

We will occasionally also make use of the superfield

V+ = θ+θ̄+(v0 + v1) , (2.7)
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as well as the field strength

Υ = −2
(
η− − iθ+(D− iF01)− iθ+θ̄+∂+η−

)
. (2.8)

The chiral and conjugate-chiral superfields enjoy the expansion

Φ = ϕ+
√

2θ+χ+ − iθ+θ̄+(D0 +D1)ϕ

Φ̄ = ϕ̄−
√

2θ̄+χ̄+ + iθ+θ̄+(D0 +D1)ϕ̄ ,
(2.9)

and a Fermi superfield and its conjugate take the form

P = ρ− −
√

2θ+G− iθ+θ̄+(D0 +D1)ρ− −
√

2θ̄+E

P̄ = ρ̄− −
√

2θ̄+Ḡ+ iθ+θ̄+(D0 +D1)ρ̄− −
√

2θ+Ē .
(2.10)

Here E is a holomorphic function of the chiral superfields, which, like D and G, is an

auxiliary field. The kinetic term of a chiral multiplet Φi, taken for simplicity to be charged

under a U(1) gauge group with charge Qi, is

LΦ = − i
2

∫
d2yd2θ Φ̄i (∂0 − ∂1 + iQiV ) Φi (2.11)

=

∫
d2y

(
−|Dµϕi|2 + iχ̄+,iD−χ+,i − iQi

√
2ϕ̄iη−χ+,i + iQi

√
2ϕiη̄−χ̄+,i +Qiϕiϕ̄iD

)
.

A general (0, 2) theory with Fermi multiplets Pa and chiral multiplets Φi can exhibit non-

trivial superpotential couplings, also sometimes referred to as J-term couplings. These

take the form

LJ = − 1√
2

∫
d2y dθ+ PaJ

a(Φi)|θ̄+=0 − c.c. , (2.12)

which in components reads

LJ = −
∫
d2y

(
GaJ

a + ρ−,aχ+,i
∂Ja

∂ϕi

)
− c.c. . (2.13)

The superpotential Ja(Φi) is a holomorphic function of the chiral superfields and is subject

to the constraint

Tr Ja(Φ)Ea(Φ) = 0 , (2.14)

where Ea is the holomorphic combination of chiral superfields appearing in the definition

of the Fermi superfields. Together with D+Pa =
√

2Ea with D+ the gauge covariant

derivative in superspace [1] this constraint ensures that (2.12) represents a supersymmetric

interaction. The kinetic term and some of the interactions for the Fermi multiplet arise from

LF = −1

2

∫
d2yd2θ P P̄ . (2.15)

The induced interaction terms can be summarized as

LF,int = −
∫
d2y

(
ρ̄−

∂E

∂ϕi
χ+,i +

∂Ē

∂ϕ̄i
χ̄+,iρ−

)
. (2.16)
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Note that in addition to these standard couplings, the following type of interactions∫
d2θP P̄ Φ̄ ⊃ ρ− ρ̄− (D0 +D1) ϕ̄+ . . . (2.17)

induce derivative couplings, which do not affect the scalar potential.

Let us also indicate the kinetic term for the gauge field strength, for simplicity written

only for an abelian gauge field,

LΥ = − 1

8e2

∫
d2y d2θ ῩΥ =

1

e2

∫
d2y

(
1

2
F 2

01 + iη̄−∂+η− +
1

2
D2

)
. (2.18)

Of special importance for us is the Fayet-Iliopoulos (FI) term for an abelian gauge field

1

4

∫
dθ+ (tΥ|θ̄+=0 + c.c.) = −rD +

θ

2π
F01, t =

θ

2π
+ ir. (2.19)

In supergravity the constant FI parameter t will be promoted to a chiral superfield.

The superpotential, the Fermi interactions and the FI term then result in a scalar

potential

V =
1

2e2
D2 +

∑
a

(
|Ja|2 + |Ea|2

)
, (2.20)

where the Ga auxiliary fields have been integrated out and the U(1) D-term is

D = e2

(∑
i

Qiϕiϕ̄i − r

)
. (2.21)

With the FI parameter t replaced by a chiral superfield, this induces a scalar potential for

its imaginary part. In the following, we will identify how each of these fields arises from

the 7-brane theory reduced on a three-cycle in a Calabi-Yau five-fold, and determine the

geometric origin of the couplings J as well as E.

3 Partially twisted 8d Super-Yang-Mills theory

We begin our exploration of 2d (0, 2) theories from F-theory by considering the gauge theory

approximation, where the degrees of freedom are only those realized on 7-branes. The 8d

supersymmetric Yang-Mills theory (SYM) with gauge group G on the world-volume of a

stack of 7-branes will be dimensionally reduced on a complex three-cycle MG in the Calabi-

Yau five-fold Y5. To preserve supersymmetry in the transverse R1,1 one has to perform a

partial topological twist. This means that the R-symmetry of the 8d SYM is combined

with a subgroup of the holonomy group acting on the tangent bundle of MG in such a way

that some of the supercharges become scalars under this new, twisted symmetry and are

thus globally well-defined. This process was studied for 7-branes wrapped on four-cycles in

Calabi-Yau four-folds in [25–27]. We will find that the vacua of this partially twisted SYM

theory are characterized in terms of generalized Hitchin equations on MG. Furthermore, we

determine the spectrum of the theory and formulate it in terms of 2d (0, 2) supermultiplets.
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3.1 Scalar supercharges

The effective theory on a stack of 7-branes wrapping a Kähler three-cycle MG is a partially

twisted 8d N = 1 SYM theory with gauge group G. It can be obtained from compactifica-

tion of 10d SYM by decomposing the 10d gauge potential and the gaugino field as

SO(1, 9)L → SO(1, 7)L ×U(1)R

Aµ : 10 → 8v
0 ⊕ 1+2 ⊕ 1−2

Ψ : 16 → 8c
+1 ⊕ 8s

−1 ,

(3.1)

where 1±2 = Φ± are the two scalars in 8d. Upon dimensional reduction on a compact

six-manifold, the Lorentz group is further reduced as follows

SO(1, 7)L → SO(1, 1)L × SO(6)L

8v → 1+2 ⊕ 1−2 ⊕ 60

8c → 4+1 ⊕ 4−1

8s → 4−1 ⊕ 4+1 .

(3.2)

Since in the present case the six-cycle is in fact a Kähler three-cycle, the holonomy is

reduced further to U(3), resulting in

SO(6)L → SU(3)L ×U(1)L

4 → 1+3 ⊕ 3−1

6 → 3+2 ⊕ 3−2 .

(3.3)

Putting it all together the spinors decompose as

SO(1, 7)L ×U(1)R → SU(3)L × SO(1, 1)L × (U(1)L ×U(1)R)

8c
+1 → 11;3,1 ⊕ 1−1;−3,1 ⊕ 31;−1,1 ⊕ 3−1;1,1

8s
−1 → 1−1;3,−1 ⊕ 11;−3,−1 ⊕ 3−1;−1,−1 ⊕ 31;1,−1 .

(3.4)

To find a singlet supercharge we need to twist U(1)L with the U(1) R-symmetry, which

leaves us with the two possible choices Jtwist = 1
2 (JL ± 3JR). We fix conventions by defining

the twisted U(1) generator as

Jtwist =
1

2
(JL + 3JR) , (3.5)

where the generator was normalized such that it act as ∓1 on the (anti-)holomorphic

cotangent bundle of MG. This twist gives rise to two supersymmetry parameters ε− and

ε̄− of the same (negative) chirality in 2d,

ε̄− = 1−1;−3,1;0twist , ε− = 1−1;3,−1;0twist . (3.6)

Correspondingly, the supercharges are right chiral, and form the foundation for the (0, 2)

supersymmetry of the theory in two dimensions. Note that ε̄− originates from 4̄−1 contained

in 8c while ε− originates from 4−1 contained in 8s. Our conventions here follow [1] in that

the supersymmetry parameters generating the (0, 2) SUSY transformations have negative

2d chirality.
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3.2 Field content and supersymmetry

The dimensionally reduced partially twisted 8d SYM theory has the following spectrum

SO(1, 7)L ×U(1)R → SU(3)L × SO(1, 1)L ×U(1)twist

8v
0 → 12;0 ⊕ 1−2;0 ⊕ (30;1 ⊕ 30;−1) ≡ (v0, v1, a, ā)

Φ± = 12 ⊕ 1−2 → 10;+3 ⊕ 10;−3 ≡ (Φ+ = ϕ̄,Φ− = ϕ)

8c
+1 → 1−1;0 ⊕ 11;3 ⊕ 3−1;2 ⊕ 31;1 ≡ (η̄−, χ̄+, ρ̄−, ψ+)

8s
−1 → 1−1;0 ⊕ 11;−3 ⊕ 3−1;−2 ⊕ 31;−1 ≡ (η−, χ+, ρ−, ψ̄+) .

(3.7)

These fields give rise to the bulk matter.5 Interpreting the charge under U(1)twist as minus

the degree of the form, i.e. charge n ≤ 0 corresponds to Ω(n,0)(MG) and n ≥ 0 to Ω(0,n)(MG),

the spectrum of the twisted theory is counted by the following cohomology groups on MG:

Cohomology Bosons Fermions Multiplet

H(0,0) vµ, µ = 0, 1 η−, η̄− Vector

H(1,0) ⊕H(0,1) ām, am̄ ψ̄+m, ψ+m̄, Conjugate-chiral + Chiral (Wilson lines)

H(2,0) ⊕H(0,2) − ρ−mn, ρ̄−m̄n̄ Fermi + Conjugate-Fermi

H(3,0) ⊕H(0,3) ϕkmn, ϕ̄k̄m̄n̄, χ+kmn, χ̄+k̄m̄n̄ Chiral + Conjugate-chiral (deformations of MG)

(3.8)

The subscripts ± denote the 2d chirality of the fermions. In the fourth column we

have indicated how these degrees of freedom organize into (0, 2) multiplets according to

the conventions set out in section 2.2. These assignments follow from the supersymmetry

variations of the fields which will be presented in section 3.4. In particular we are finding

two types of chiral superfields in the present case given by

Φ = ϕ+
√

2θ+χ+ − iθ+θ̄+(D0 +D1)ϕ

A = a+
√

2θ+ψ+ − iθ+θ̄+(D0 +D1)a ,
(3.9)

where a corresponds to the internal components of the gauge field.

3.3 Massless spectrum

With no gauge field backgrounds turned on, all bulk multiplets transform in the adjoint

representation of the 7-brane gauge group G. The spectrum (3.8) counts both all massless

particles in the adjoint and their complex conjugate states in the same representation. The

latter can be viewed as the associated anti-particles. The independent massless states are

counted by the cohomology groups

H(0,p)(MG) = H0(MG, Ω̄
p
MG

) = Hp

∂̄
(MG) . (3.10)

Let us introduce the notation

(ϕ̄k̄m̄n̄)|zero−mode =
∑
κ

ϕ̄κ ⊗ ϕ̂k̄m̄n̄,κ , (3.11)

5Here the term bulk refers to the theory on the entire complex three-cycle MG, and not to the gravita-

tional theory on the ambient Calabi-Yau into which MG is embedded.
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with ϕ̄κ the 2d field associated with one of the dimH3
∂̄
(MG) zero modes and ϕ̂k̄m̄n̄,κ the

associated internal wavefunction. A similar notation will be used for the other fields. We

will suppress the ‘flavor index’ κ unless it is explicitly required.

The complex conjugate zero-mode multiplets are counted by the cohomology groups

H(p,0)(MG) = H0
∂̄
(MG, Ω̄p) ≡ Hp

∂̄
(MG)∗ , (3.12)

which are the complex conjugate of the cohomology groups Hp

∂̄
(MG).

More generally, we can consider configurations with a non-trivial gauge background

turned on along MG. These configurations are described by a non-trivial principal gauge

bundle L. Such gauge flux breaks the original gauge group G into a product of residual

gauge groups Hm. Correspondingly, the spectrum decomposes into irreducible representa-

tions R of unbroken gauge groups,

Adj(G) →
⊕
R

R . (3.13)

These representations include the adjoint representation Adj(Hm) of each remnant gauge

group factor Hm. Reality of Adj(G) implies that in (3.13) every complex representation

R 6= R̄ is accompanied by its conjugate representation R̄, and in this case the matter in

R and R̄ is independent. The independent massless matter states in representation R are

counted by the cohomology groups

H(0,p)(MG, LR) = Hp

∂̄
(MG, LR) , (3.14)

for some vector bundle LR which descends from the principal gauge bundle L. Their anti-

particles are counted by the complex conjugate groups. For R 6= R̄, there are independent

matter states in the representation R̄ from the appearance of R̄ in (3.13). Since LR̄ = L∗R
the latter are counted by

H(0,p)(MG, L
∗
R) = Hp

∂̄
(MG, L

∗
R) , (3.15)

and their anti-particles in representation R are counted by the complex conjugate groups.

The massless fermionic bulk particles in representation R and their anti-particles are in

summary accounted for by the following cohomology groups:

Cohomology Fermions ⊕Anti-Fermions

H0
∂̄
(MG, LR)⊕H0

∂̄
(MG, LR)∗ η̄R

− ⊕ ηR̄
−

H1
∂̄
(MG, LR)⊕H1

∂̄
(MG, LR)∗ ψR

+ ⊕ ψ̄R̄
+

H2
∂̄
(MG, LR)⊕H2

∂̄
(MG, LR)∗ ρ̄R

− ⊕ ρR̄
−

H3
∂̄
(MG, LR)⊕H3

∂̄
(MG, LR)∗ χ̄R

+ ⊕ χR̄
+

(3.16)

Note again that e.g. the particles ψR
+ and ψ̄R̄

+ are just complex conjugate to each other. For

R 6= R̄ there is an analogous table with LR replaced by L∗R for the states in representation

R̄ and their anti-particles in representation R.
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According to the Hirzebruch-Riemann-Roch theorem the index χ(MG, LR) takes

the form

χ(MG, LR) = h0
∂̄(MG, LR)− h1

∂̄(MG, LR) + h2
∂̄(MG, LR)− h3

∂̄(MG, LR)

=

∫
MG

ch(LR)Td(MG)

=
1

24
rk(LR)

∫
MG

c1(MG)c2(MG)+
1

12

∫
MG

c1(LR)
(
c2

1(MG)+c2(MG)
)

+
1

2

∫
MG

ch2(LR) c1(MG) +

∫
MG

ch3(LR) .

(3.17)

Similarly, again for R 6= R̄,

χ(MG, L
∗
R) =

1

24
rk(LR)

∫
MG

c1(MG) c2(MG)− 1

12

∫
MG

c1(LR)
(
c2

1(MG) + c2(MG)
)

+
1

2

∫
MG

ch2(LR) c1(MG)−
∫
MG

ch3(LR) ,

(3.18)

where we have used that chk(L
∗
R) = (−1)k chk(LR).

3.4 Supersymmetry variations and Hitchin equations

The supersymmetry variations of the dimensionally reduced and partially topologically

twisted 8d SYM theory are derived in appendix A.3. We start with the 10d SYM

Lagrangian

L10d = − 1

4g2
Tr
(
FMNF

MN
)
− i

2g2
Tr
(
ΨΓMDMΨ

)
, (3.19)

whose associated action is invariant under the supersymmetry variations

δAM = −iε̄ΓMΨ

δΨ =
1

2
FMNΓMN ε ,

(3.20)

and apply the dimensional reduction and twist as explained in section 3.1. In terms of the

twisted fields, the supersymmetry variations of the bosonic fields follow as

δϕkmn = −
√

2ε−χ+ kmn

δam̄ = −
√

2ε−ψ+ m̄

δ(v0 − v1) = 2iε−η̄− − 2iε̄−η− .

(3.21)

For the fermionic fields we find the variations

δχ̄+k̄m̄n̄ = −i
√

2ε−D+ϕ̄k̄m̄n̄

δψ+m̄ = i
√

2ε̄−D+am̄ = i
√

2ε̄Fµm̄

δη− = ε−(F01 + iD)

δρ−mn = ε−F̄mn + ε̄−(∂†aϕ)mn

δχ+kmn = i
√

2ε̄−D+ϕkmn

δψ̄+m = −i
√

2ε−D+ām = −i
√

2ε−F̄µm

δη̄− = ε̄−(F01 − iD)

δρ̄−m̄n̄ = ε̄−Fm̄n̄−ε−(∂̄†āϕ̄)m̄n̄ .

(3.22)
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Here we have defined the derivative D± = D0 ±D1 as well as the D-term

D = −(F23 + F45 + F67 − F89) . (3.23)

Supersymmetric vacua are characterized in terms of the vanishing of the fermions as well as

their supersymmetry variations. These BPS equations constrain both the internal profile

of the fields and the field components in 2d. From δε−ρ− and δε̄− ρ̄− we obtain the condition

that the field strength F along the compact directions along MG must have no (0, 2) and

(2, 0) components F̄mn = Fm̄n̄ = 0, i.e. the vacuum expectation values satisfy

F (2,0) = F (0,2) = 0 . (3.24)

Similarly, the vacuum configuration ϕmnk on MG is subject to the constraint (∂†aϕ)mn =

(∂̄†āϕ)m̄n̄ = 0, which is equivalent to

∂̄aϕ = 0 , ∂āϕ = 0 . (3.25)

Note that our identification of ρ−mn as a Fermi as opposed to a conjugate Fermi field is a

matter of convention and corresponds to identifying the holomorphic expression (∂†aϕ)mn
as the Fermi E-auxiliary field in the off-shell formulation in agreement with (2.5). Alter-

natively one can view the expression Fm̄n̄, which is holomorphic in the chiral superfields,

as the E-field, thereby exchanging the role of ρ and ρ̄.

The variations of ψ and χ result in the BPS equations

D+ϕ = D+ϕ̄ = 0 , D+a = D+ā = 0 . (3.26)

Regarding the D-term, note that F8,9 = [Φ8,Φ9] = i
2 [ϕ, ϕ̄]. For the remaining terms, let J

be the Kähler form of the three-fold MG, whereby with our choice of coordinates and metric

Jmn̄ = igmn̄ we can write in holomorphic coordinates 2zm = {x2 + ix3, x4 + ix5, x6 + ix7}

−D = gmn̄Fmn̄ −
i

2
[ϕ,ϕ] . (3.27)

With the help of the identity

igmn̄Fmn̄ = J ∧ ?FMG
= (?J) ∧ FMG

=
1

(n− 1)!
Jn−1 ∧ FMG

, (3.28)

with n = 3 for MG, the D-term becomes

D =
i

2
(J ∧ J ∧ FMG

+ [ϕ,ϕ]) . (3.29)

The resulting D-term condition for the BPS vacuum is

J ∧ J ∧ FMG
+ [ϕ,ϕ] = 0 , (3.30)

and generalizes the Hitchin equation [64] from compactifications of 4d SYM on a Riemann

surface to 8d SYM on a complex three-dimensional Kähler cycle.
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A background satisfying (3.24), (3.25) and (3.30) gives rise to a 2d (0, 2) supersym-

metric gauge theory. In this theory, the supersymmetry transformations of the 2d bosonic

field fluctuations around the vacuum values take the form

δϕ = −
√

2 ε−χ+

δa = −
√

2 ε−ψ+

δv0 = −δv1 = iε−η̄− − iε̄−η−

δϕ̄ = +
√

2 ε̄−χ̄+

δā = +
√

2 ε̄−ψ̄+ (3.31)

and those of the fermion variations are

δχ̄+ = −i
√

2ε−(D0 +D1)ϕ̄

δψ+ = i
√

2ε̄−(D0 +D1) a

δη− = ε−F01

δρ− = 0

δχ+ = i
√

2ε̄−(D0 +D1)ϕ

δψ̄+ = −i
√

2ε−(D0 +D1)ā

δη̄− = ε̄−F01

δρ̄− = 0 .

(3.32)

The 2d supersymmetry variations are in agreement with the general form (2.5) of the

supersymmetry variations for the chiral and Fermi multiplets and justify our identification

of the 2d superfields. In particular, since we are imposing (3.24) and (3.25) as part of the

defining properties of the vacuum, the auxiliary fields G(ρ̄−) and E(ρ̄−) vanish at this level.

3.5 Higgs bundles and Hitchin systems

The solutions to the F - and D-term equations are generalizations of Hitchin equations for

a Higgs bundle (A,Φ) over the complex three-cycle MG with the following properties

F (2,0) = F (0,2) = 0

D+ϕ = D+ϕ̄ = D+a = D+ā = 0

∂̄aϕ = ∂āϕ = 0

J ∧ J ∧ F + [ϕ,ϕ] = 0 .

(3.33)

Put differently, the BPS vacua of the twisted 8d SYM theory can be given an interpretation

in terms of a gauge field configuration defined by a bundle with connection A and an adjoint-

valued Higgs field ϕ. These take values in a higher rank gauge algebra g̃ ⊃ g which contains

the gauge algebra g of the 2d gauge theory. The F-term conditions ensure holomorphy of

the Higgs bundle, whereas the D-term equations are stability conditions. One important

caveat is that this approximation in terms of a gauge theory is exact in the limit when the

volume of the three-cycle MG is large, and the stability condition is expected to receive

corrections beyond this.

The first note-worthy point is that this characterization holds for 7-branes in any

F-theory compactification.6 The Higgs bundle encodes the local geometry of MG embedded

into the five-fold in terms of a local ALE-fibration over MG: the (1, 1)-forms in the ALE

6Whenever a heterotic dual exists, the corresponding spectral cover description of the Higgs bundle maps

to the spectral cover of the heterotic vector bundle. But this is in no way a necessary condition for a local

spectral cover description to exist. For an in depth discussion of the duality from this point of view see [65].
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fiber associate the deformations of the complex structure Ω5,0 to the Higgs field vevs in the

Cartan subalgebra (CSA) of the gauge algebra

δΩ5,0 =
∑
CSA

ω
(1,1)
i ∧ ϕi , (3.34)

and the gauge field configurations arise from the three-form C3. The simplest class of

solutions have ϕ = 0, resulting in flat gauge fields. The second simplest class has non-trivial

ϕ, with [ϕ, ϕ̄] = 0, in which case the vacua can be characterized in terms of the spectral data

of the Higgs field. The spectral cover defined as det(λ1− ϕ) = 0 is an n-sheeted covering

of MG. Likewise, the gauge bundle can be constructed from line bundles over the spectral

cover, and in the case of four-folds has been discussed in much detail e.g. in [66, 67]. The

local geometry defined by the Higgs bundle allows in particular now to transition from the

gauge theoretic description of the 7-branes to a full geometric construction of the Calabi-

Yau five-fold. More specifically, the coefficients in the spectral cover have a close relation

to the coefficients in the description of the elliptic fibration in terms of the so-called Tate

form. Developing the spectral covers for these generalized Higgs bundles certainly deserves

further consideration in the future.

3.6 Supersymmetric bulk couplings

The supersymmetric couplings in a general (0, 2) theory have been reviewed in section 2.2

and can take the form LJ and LF summarized in (2.13) and (2.16), respectively. In

our context, cubic Yukawa type couplings descend from the second term in the gauge

interaction (3.19) of the 10d SYM from which we have obtained the (0, 2) 2d theory by

reduction and twisting. This can be seen explicitly by plugging the decomposition of the

10d gaugino and the 10d gauge field into the interaction term (3.19). From the perspective

of the theory prior to twisting, the resulting couplings realize the different possibilities of

forming a singlet with respect to the structure group U(3) of the Kähler three-cycle MG.

Those interaction terms involving the 2d gaugino are part of the 2d SYM interactions. The

remaining ones are actual Yukawa couplings.

By decomposition we find two possible types of such Yukawa terms. The first type

of Yukawas corresponds to the existence of a U(3)-invariant interaction 1 ⊗ 3 ⊗ 3̄. From

the perspective of the twisted theory this translates into the possibility of forming a (3, 3)

form on MG from the internal wavefunctions, which can then be integrated to obtain the

coupling. Inspection of the form degrees of the internal wavefunctions reveals that the only

possible cubic interaction of this type is of the form (2.16) and given by

S
(F )
bulk = fαµε

∫
d2y ρ̄α−

(
ϕµ ψε+ + χµ+ a

ε
)

+ c.c. (3.35)

with couplings

fαµε =

∫
MG

ρ̂k̄m̄,α ∧
(
ϕ̂kmn,µ ∧ ψ̂n̄,ε

)
, (3.36)

in an expansion of the form (3.11). We are suppressing gauge indices and a gauge invariant

contraction of the involved representations is understood. Algebraically, this way of taking
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the overlap of the internal wavefunction corresponds to the canonical map

H2
∂̄(MG)×H1

∂̄(MG)×H0
∂̄(MG,KMG

) −→ H3
∂̄(MG,KMG

) ∼= C , (3.37)

where the last step uses the identification H3
∂̄
(MG,KMG

) = H3,3(MG), which can be inte-

grated over MG. The first two cohomology groups count the zero modes ρ̂k̄m̄,α and ψ̂n̄,ε and

the third counts ϕ̂kmn,µ ∈ H3
∂̄
(MG)∗ = H0

∂̄
(MG,KMG

) (or the respective superpartners),

as summarized in (3.16). The interaction being of the form LF it induces a modification

of the Fermi auxiliary E-field as

E(ρα−) = −fαµε ΦµAε . (3.38)

Interestingly, there exists another type of Yukawa couplings, which group theoretically

realizes the existence of the singlet εαβγ3
α3β3γ with respect to the structure group SU(3) ⊂

SU(3) × U(1)twist acting on the tangent bundle of MG. By dimensional reduction of the

10d SYM interactions, we find that this corresponds to a superpotential coupling

S
(J)
bulk = gαβγ

∫
d2y ρα− a

β ψγ+ + c.c. (3.39)

with

gαβγ =

∫
MG

ρ̃kmnn̄,α ∧ âk̄,β ∧ ψ̂m̄,γ . (3.40)

Again we are suppressing the suitably contracted gauge indices. Here

ρ̃kmnn̄,α = (Ω · ρ̂α)kmnn̄ (3.41)

is the element of H1
∂̄
(MG,KMG

) obtained from the (2, 0) form ρ̂km,α by contraction with

the (3, 3) form Ω on MG. Indeed, by Serre duality

H2
∂̄(MG)∗ =

(
H1
∂̄(MG,KMG

)∨
)∗ ∼= H1

∂̄(MG,KMG
) . (3.42)

In the sequel we will usually omit the tilde when we apply operations of this form. Such a

coupling realizes the canonical map

H1
∂̄(MG) ⊕ H1

∂̄(MG) ⊕ H1
∂̄(MG,KMG

) −→ H3
∂̄(MG,KMG

) ∼= C . (3.43)

The superpotential associated with (3.39) is

J(ρα−) = −gαβγ A
β Aγ . (3.44)

Note that this coupling is only quadratic in the fields. In (0, 2) theories that arise from

(2, 2) supersymmetric ones by deformation, it is known [1] that J = ∂ΦW, where W is a

general gauge invariant holomorphic function of the chiral superfields corresponding to the

superpotential of the (2, 2) theory. In a GLSM interpretation of the (0, 2) theory, the locus

J = 0 determines the target space of the heterotic string as a hypersurface in an ambient

space (as well as part of the gauge bundle data), and the form of J is thus of quite some

importance. In this paper, we started our analysis with the 8d SYM theory, taking only
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the ‘renormalizable’ couplings with us induced by the gauge kinetic terms in 8d. Including

higher order terms obtained by integrating out massive fields, as well as non-perturbative

contributions, we expect more general couplings to be generated in the effective theory

in 2d. In particular, this should give rise to more general GLSMs with non-trivial target

manifolds. This will be discussed in more depth in section 12.

Finally, we should address the supersymmetry condition TrE ·J = 0 (see (2.14)). Both

E- and J-couplings arise from the kinetic terms in the 8d SYM action upon dimensional

reduction. The off-shell action of the dimensionally reduced 2d theory will be determined

in [31]. Supersymmetry of the 2d theory, which follows from the higher dimensional super-

symmetry, combined with the twisted reduction implies that the couplings f and g cannot

be independent but have to be such that TrE ·J = 0. The condition in terms of component

fields reads

TrE · J = f ijkf ilm fαβγgαδε Φβ
jA

γ
kA

δ
lA

ε
m = 0 , (3.45)

where we have now made the gauge algebra indices i, j, . . . of the adjoint valued fields

manifest and f ijk are the structure constants. One would indeed expect the geometry to

imply the condition TrE · J = 0 automatically, and it would be interesting to find its

precise geometric origin.

4 Matter from the 6d defect theory

Additional matter arises from defects in the 8d SYM theory. Such defects correspond to

intersections of the 7-brane stack on MG with flavor 7-branes wrapping different cycles.

Two Kähler three-cycles inside the base B4 of our F-theory compactification generically

intersect over a Kähler surface SR ⊂ MG, along which such matter will therefore be

localized. The theory living on such a defect is an N = (1, 0) 6d SYM theory with an SU(2)

R-symmetry. We will couple this theory to the bulk theory by performing a topological twist

compatible with (0, 2) supersymmetry in two dimensions. As in F-theory compactifications

to four dimensions [25–27] one can think of this theory as a gauge theory with enhanced

gauge symmetry due to the collision of the two 7-brane stacks. Extra degrees of freedom

due to generically multi-pronged strings stretched between both branes localize on SR and

give rise to additional matter charged under the 7-brane gauge group. In terms of the Higgs

bundle, the matter surfaces are characterized by the vanishing of sections associated to ϕ,

i.e. sections of KMG
. These are precisely the loci where some of the Higgs field vevs vanish

and the gauge algebra is locally enhanced, thus resulting in matter through Higgsing the

adjoint of the higher-dimensional gauge algebra to g. After specifying the topological twist

along SR, we will now determine this charged matter, along with its E- and J-interactions

both with the bulk matter and the interactions of surface matter only.

4.1 Spectrum of matter fields

We adopt the convention that the supercharges of 6d N = (1, 0) supersymmetry trans-

form as a (4,2R) under SO(1, 5)L × SU(2)R (see e.g. [68]). The associated supersymmetry

parameters then transform as a (4̄,2R). The vector fields of the 6d theory will be identi-

fied with the restriction to SR of the vector fields on the two intersecting 7-brane stacks.
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Extra matter states from strings localised on SR organize into a hypermultiplet in the

6d SYM theory in representation R of the gauge group. With the above choice of su-

persymmetry parameters the fermions in the hypermultiplet transform as (4,1R) and the

scalars as (1,2R).

In coupling this theory to the 7-brane bulk theory we identify the R-symmetry obtained

from the latter with a U(1)R subgroup of SU(2)R. Upon compactification on the complex

Kähler two-cycle SR, SO(1, 5)L decomposes into SO(1, 1)L × SU(2) × U(1)L, where the

naive internal tangent bundle structure group SO(4) is reduced to U(2) ' SU(2) × U(1)L
due to Kählerity of SR. The decomposition of the 6d supersymmetry parameters and of the

hypermultiplet then yields the following supersymmetry parameters and matter content in

two dimensions:

SU(2)R × SO(1, 5)L → U(1)R × (SU(2)×U(1)L × SO(1, 1)L)

(2, 4̄) → (1+1 ⊕ 1−1)⊗ (1+1,−1 ⊕ 1−1,−1 ⊕ 20,+1)

(1,4) → 10,+1,+1 ⊕ 10,−1,+1 ⊕ 2̄0,0,−1 ≡ (σ̄+, τ+, µ̄−)

(2,1) → 1−1,0,0 ⊕ 1+1,0,0 ≡ (S̄, T ) .

(4.1)

In order for the theory on SR to preserve the same supersymmetries as the twisted bulk

theory, it must be topologically twisted in such a way that two negative chirality scalar

supersymmetry parameters transform as singlets under the twisted U(1). For the choice

Jtwist = JU(1)L − JU(1)R , (4.2)

the spinors 1+1,+1,−1 ⊕ 1−1,−1,−1 from the first line have the desired property. Their R-

charges identify these as the supersymmetry parameters ε̄− and ε− of R-charge +1 and −1

in the 2d (0, 2) theory (see (3.6))

ε̄− = 1+1,+1,−1 , ε− = 1−1,−1,−1 . (4.3)

The decomposition of the hypermultiplet fermion in (4.1) gives rise to two positive-chirality

fermions σ̄+ and τ+ and one negative-chirality fermion µ̄−. From the scalar superpartners

we obtain two complex scalars S̄ and T . As we will see below, the fields (T, τ+) and (S̄, σ̄+)

organize into a chiral superfield T and, respectively, a conjugate chiral multiplet S̄, while

µ̄− forms the lowest component of a conjugate Fermi multiplet.

To identify the cohomology groups associated with these multiplets, note first that, as

in the bulk theory, a section of Ω(0,q)(SR) has twist charge q ≥ 0. That is, sections of Ω(0,1)

are being identified with sections of the holomorphic tangent bundle. If a field transforms

as a spinor on SR, its twist charge receives an extra contribution of −1 from each factor

of the spin bundle K
1/2
SR

.7

7This can be seen by locally decomposing the tangent bundle of the surface SR as TSR = T1⊕T2 via the

splitting principle, see e.g. appendix A of [27]. This corresponds to viewing SR locally as a product of two

complex curves. In one complex dimension, massless Dirac spinors transform as sections of K1/2 ⊕K−1/2

with K1/2 = T−1/2. Identifying sections of the tangent bundle T with fields of twist charge +1, sections of

K1/2 then carry twist charge − 1
2

in one complex dimension. Using the splitting principle massless spinors on

the surface SR transform as sections of (K
1/2
1 ⊕K−1/2

1 )⊗ (K
1/2
2 ⊕K−1/2

2 ). The summands K
−1/2
1 ⊗K−1/2

2 ,

K
−1/2
1 ⊗K1/2

2 ⊕K1/2
1 ⊗K−1/2

2 and K
1/2
1 ⊗K1/2

2 carry twist charge 1, 0 and −1, respectively.
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It is therefore consistent to interpret, in absence of gauge flux, the fermions

(σ̄+, τ+, µ̄−) appearing in (4.1) with twist charges (1, −1, 0) as elements of H2
∂̄
(SR,

√
KSR

),

H0
∂̄
(SR,

√
KSR

) and H1
∂̄
(SR,

√
KSR

), respectively. This also fits with the twist charges of

the scalar superpartners T and S̄. The above assignments lead to a consistent spectrum

and are also in perfect agreement with the embedding of the 6d defect into the 8d bulk

theory as will be discussed momentarily.

In order for this interpretation to make sense we are assuming that, in absence of

gauge flux, the Kähler surface SR is spin, c1(KSR
) ≡ 0 ∈ H2(SR,Z2), such that the spin

bundle
√
KSR

is well-defined as an honest line bundle. The requirement of SR being spin

is modified in the presence of a non-trivial gauge bundle. Indeed, suppose the 6d hyper-

multiplet transforms as a representation R of the bulk gauge group. For non-zero gauge

flux each field in representation R is valued in a bundle LR. Then H0
∂̄
(SR, LR ⊗

√
KSR

)

and H2
∂̄
(SR, LR ⊗

√
KSR

) respectively count chiral multiplets (T, τ+)R and conjugate chi-

ral multiplets (S̄, σ̄+)R in representation R, while H1
∂̄
(SR, LR ⊗

√
KSR

) counts conjugate

Fermi multiplets with lowest component µ̄− in representation R. The complex conjugate

cohomology groups can be determined using Serre duality as follows

H i
∂̄(SR, LR ⊗

√
KSR

)∗ =
(
H2−i
∂̄

(SR, L
∗
R ⊗

√
KSR

)∨
)∗ ∼=H2−i

∂̄
(SR, L

∗
R ⊗

√
KSR

) , (4.4)

and count the respective anti-particles in representation R̄. The structure of the massless

localised spectrum can then be summarized as follows:

Cohomology Fermions ⊕Anti-Fermions

H0
∂̄
(SR, LR ⊗

√
KSR

)⊕H0
∂̄
(SR, LR ⊗

√
KSR

)∗ τR
+ ⊕ τ̄ R̄

+

H1
∂̄
(SR, LR ⊗

√
KSR

)⊕H1
∂̄
(SR, LR ⊗

√
KSR

)∗ µ̄R
− ⊕ µR̄

−

H2
∂̄
(SR, LR ⊗

√
KSR

)⊕H2
∂̄
(SR, LR ⊗

√
KSR

)∗ σ̄R
+ ⊕ σR̄

+

(4.5)

In general only the bundle LR ⊗
√
KSR

must be well-defined as an integer quantized

bundle even if both factors individually may not be. This must be guaranteed in a glob-

ally consistent F-theory compactification by the tadpole constraints and the Freed-Witten

quantization condition on the gauge fluxes.

For a smooth surface SR the chiral index χ(SR,R) is computed via the Hirzebruch-

Riemann-Roch theorem as

χ(SR,R) = h0
∂̄(SR, LR ⊗

√
KSR

)− h1
∂̄(SR, LR ⊗

√
KSR

) + h2
∂̄(SR, LR ⊗

√
KSR

)

=

∫
SR

(
1

12

(
c1(SR)2+c2(SR)

)
+

1

2
c1(SR)c1(LR ⊗K

1/2
SR

)+ch2(SR, LR ⊗K
1/2
SR

)

)
=

∫
SR

(
c2

1(SR)

(
1

12
− 1

8
rk(LR)

)
+

1

12
c2(SR)+

(
1

2
c2

1(LR)−c2(LR)

))
. (4.6)

Note that the appearance of only even powers of c1(LR) ensures that χ(SR,R) = χ(SR, R̄),

where the latter is defined in terms of the conjugate gauge bundle L∗R. This expression,

which is valid a priori for smooth matter surfaces, receives corrections in the presence of

singularities, as will be discussed in section 6.5.
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Consistency of this spectrum with the bulk spectrum can be seen as follows. From the

perspective of the theory on MG, the surface SR can be viewed as a defect, and the surface

matter corresponds to zero-modes trapped along this defect. The defect zero modes are

related to the bulk field zero modes (3.16) in the same way as described in [25] for a one-

dimensional defect inside a surface wrapped by a 7-brane. In this correspondence, the fields

whose bulk zero modes transform in H1(MG) give rise to defect zero modes transforming

as sections of the normal bundle NSR/MG
of the matter surface in the divisor MG. As

explained at the beginning of this section, the matter surfaces SR are loci characterized

by an enhanced gauge group, i.e. vanishing of Higgs vevs 〈ϕ〉. These are sections of the

canonical class KMG
of MG. Thus the normal bundle of SR in MG is isomorphic to KMG

.

Together with adjunction

KSR
= KMG

|SR
⊗NSR/MG

, (4.7)

this yields NSR/MG
= K

1/2
SR

[25]. This results in the ‘identifications’

ψ+ ∈ H1
∂̄(MG, LR) → τ+ ∈ H0

∂̄(SR, LR ⊗K
1/2
SR

)

ρ̄− ∈ H2
∂̄(MG, LR) → µ̄− ∈ H1

∂̄(SR, LR ⊗K
1/2
SR

)

χ̄+ ∈ H3
∂̄(MG, LR) → σ̄+ ∈ H2

∂̄(SR, LR ⊗K
1/2
SR

) ,

(4.8)

in agreement with the spectrum (4.5) obtained through the twisted defect theory.

Finally, note that the specific representation R in which the defect matter transforms

can be deduced geometrically as described in section 6, but a priori it seems that there is

an ambiguity in assigning matter the representation R as opposed to its conjugate R̄. This

ambiguity is merely a matter of convention because changing R and R̄ exchanges the role

of the two independent chiral superfields S and T as well as of the Fermi field µ− and its

conjugate, thereby exchanging the role of the E and J-type couplings associated with µ.

4.2 SUSY variation and BPS equations

To prove that the fermionic and scalar fields organize into 2d (0, 2) superfields as claimed

above we must decompose the 6d (1,0) supersymmetry variation taking into account the

identification (4.3). The 6d SUSY variation of the hypermultiplet fermions Ψ transforming

as (4,1) of SO(1, 5)× SU(2)R is (see e.g. [68])

δΨ = −i
√

2 ε̄Aγ
µDµ ΦBε

AB . (4.9)

The subscripts A,B = 1, 2 refer to the SU(2)R symmetry representation of the 6d su-

persymmetry parameters εA transforming in a (4̄,2) and of the hypermultiplet scalars

ΦB transforming as the (1,2), and εAB is the anti-symmetric tensor. After applying the

decomposition (4.1) one finds, much like the analysis in appendix A,

δτ+ = i
√

2 (D0 +D1)T ε̄−

δσ̄+ = −i
√

2 (D0 +D1)S̄ ε−

δµ̄
α̇
− =
√

2i
(
ε̄− ε

α̇β̇Dβ̇T − ε− D̄
α̇S̄
)
.

(4.10)
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These variations are expressed in terms of the 2+4-dimensional fields, which for simplicity

we denote by the same symbol as their 2d components. In this spirit the index α̇ = 1, 2

refers to the doublet structure of µ̄− under the internal SU(2)-structure group, as is clear

from (4.1). The BPS equations are obtained by separately setting to zero the fermionic

variations with respect to ε− and ε̄−. The vacuum expectation values have to satisfy the

BPS equation

∂̄AT = 0 , ∂AS̄ = 0 . (4.11)

Solutions to these equations describe the string vacuum which gives rise to the effective

(0, 2) supersymmetric theory in 2d. In this theory, the 2-dimensional components of the

scalars are furthermore subject to the BPS equations

(D0 +D1)T = 0 , (D0 +D1)S̄ = 0 . (4.12)

The supersymmetry variations indeed confirm our assertion that out of a single 6d hy-

permultiplet one obtains one chiral (conjugate chiral) 2d (0, 2) superfield with fermionic

component τ+ (σ̄+) and scalar component T (S̄), and in addition one 2d conjugate (0, 2)

Fermi superfield with lowest component µ̄−. The variation of µ̄− is furthermore in per-

fect agreement with the form of the variation of ρ̄− and the bulk-surface matter corre-

spondence (4.8). In the vacuum defined by solutions to (4.11) the auxiliary fields in this

conjugate Fermi multiplet vanish at this point of the analysis.

4.3 Bulk-surface matter interactions

The localised matter just described interacts with the bulk matter of table (3.8). At

the level of cubic non-derivative couplings, these interactions derive from the bulk cou-

plings (3.35) and (3.39) by treating the matter on SR as localised zero-modes originating

from the bulk modes as in (4.8). In this approach, which has been introduced for F-theory

compactifications to 4d in [25, 27], one views the configuration of 7-branes intersecting over

SR as a Higgs bundle over MG with spatially varying Higgs field ϕ. By cataloguing all

possible resulting couplings we find

Sbulk+matter = S
(F )
bulk+matter + S

(J)
bulk+matter

S
(F )
bulk+matter = bαβγ

∫
d2y ρ̄α−

(
τβ+ S

γ + σγ+ T
β
)

+ c.c.

+ eδγε

∫
d2y µ̄δ−

(
Sγψε+ + σγ+a

ε
)

+ c.c.

S
(J)
bulk+matter = cδβε

∫
d2y µδ−

(
T β ψε+ + τβ+ a

ε
)

+ c.c. .

(4.13)

We are employing here a similar decomposition as in (3.11) such that the superscripts

denote the different zero modes (‘families’) of the respective type as counted by the coho-

mology groups in tables (3.16) and (4.5). The couplings are gauge invariant due to the

existence of a singlet in the tensor product Adj⊗R⊗ R̄ and a gauge invariant contraction

is understood. The two couplings (4.13) are induced from the bulk E- and J-type interac-

tions by replacing two of the bulk fields with corresponding surface localised zero modes,

whereas the third bulk field is merely restricted to SR, where it couples to the localised

matter modes.
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The coupling constants are computed by taking the overlap of the internal wavefunction

associated with each zero mode and integrating over the surface SR,

bαβγ =

∫
SR

ρ̂m̄n̄,α ∧
(
τ̂mn,β Ŝγ + σ̂γ T̂mn,β

)
eδγε =

∫
SR

ˆ̄µm̄,δ ∧
(
Ŝmn,γ ∧ ψ̂n̄,ε + σ̂mn,γ ∧ ân̄,ε

)
cδβε =

∫
SR

µ̂m̄,δ ∧
(
T̂mn,β ∧ ψ̂n̄,ε + τ̂mn,β ∧ ân̄,ε

)
.

(4.14)

Here we have made the form indices m,n and m̄, n̄ on SR explicit for the hatted, internal

wavefunctions (but not the additional spinor indices). These derive from the degrees of the

cohomology groups counting the respective matter states. For instance, the wavefunction

τ̂ transforms as an element of H0
∂̄
(S2, LR ⊗

√
KSR

) ∼= H2
∂̄
(SR, L

∗
R ⊗

√
KSR

)∗ (see (4.4)).

Since elements of Ω(0,q) have q anti-holomorphic indices, the complex conjugate of the

cohomology group H2
∂̄
(SR, L

∗
R⊗

√
KSR

) counts (2, 0) forms with values in (L∗R⊗
√
KSR

)∗.

Equivalently, the first coupling in (4.14) realizes the map

H0
∂̄(SR, LR ⊗

√
KSR

)⊕H0
∂̄(SR, L

∗
R ⊗

√
KSR

)⊕H2
∂̄(SR,Adj) −→ H2

∂̄(SR,KSR
)∼=C ,

(4.15)

where
τ̂ ∈ H0

∂̄(SR, LR ⊗
√
KSR

)

Ŝ ∈ H2
∂̄(SR, LR ⊗

√
KSR

)∗ ∼= H0
∂̄(SR, L

∗
R ⊗

√
KSR

) ,
(4.16)

and H2
∂̄
(SR,Adj) in (4.15) appears due to the restriction of ˆ̄ρ ∈ H2

∂̄
(MG,Adj) to SR. In

the last step of (4.15) we identify H2
∂̄
(SR,KSR

) = H2,2(SR) and integrate over SR. The

third coupling (and similarly the second one) corresponds to the canonical map

H1
∂̄(SR, L

∗
R ⊗

√
KSR

)⊕H0
∂̄(SR, LR ⊗

√
KSR

)⊕H1
∂̄(SR,Adj) −→ H2

∂̄(SR,KSR
)∼=C

(4.17)

for the cohomology groups

µ̂ ∈ H1
∂̄(SR, LR ⊗

√
KSR

)∗∼=H1
∂̄(SR, L

∗
R ⊗

√
KSR

)

T̂ ∈ H0
∂̄(SR, LR ⊗

√
KSR

) ,
(4.18)

and with H1
∂̄
(SR,Adj) arising from the restriction of ψ̂ ∈ H1

∂̄
(MG,Adj) to SR.

The coupling S
(F )
bulk+matter derives from an interaction of the form (2.16) if we modify

the auxiliary field E(ρ−) associated with the bulk Fermi multiplet of ρ− as

E(ρα−) = −fαµε ΦµAε − bαβγT βSγ , (4.19)

where again suitable contraction of gauge indices is understood. The first term in E(ρα−)

reproduces the pure bulk couplings (3.35). Furthermore we find a contribution

E(µδ−) = −eδγε Sγ Aε . (4.20)

Likewise, the coupling S
(J)
bulk+matter implies a superpotential of the form

J(µδ−) = −cδβεT β Aε , (4.21)

in addition to the pure bulk superpotential (3.44).
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4.4 Cubic surface-matter interactions

Apart from these cubic interactions with the bulk matter states, there are cubic interactions

involving only the localised matter fields. As will be discussed more in section 6.3, these

interactions are localised at the intersection of matter surfaces over curves in the base, i.e. in

codimension three in B4. We will summarize the resulting couplings here. The E-couplings

have a contribution from three matter surfaces intersecting over a curve, associated to three

representations Ri, as follows

E

(
µ

Ra1 ,δ

−

)
= −dδεγ(Ra1Ra2Ra3)

(
ZRa2 ,ε
a2 ZRa3 ,γ

a3

)
, (4.22)

where Z can be a chiral superfield S or T such that the above coupling is gauge invariant.

Likewise, the bulk J-coupling induces a cubic matter surface superpotential

J(
µ

Rb1
,δ

−

) = −hδεγ(Rb1Rb2Rb3)
(
ZRb2

,ε

b2
ZRb3

,γ

b3

)
. (4.23)

Both interactions are induced by the bulk E- and J-type interactions (3.35) and (3.39).

Note that the supersymmetry requirement TrE · J = 0 has to hold for the combination of

all E- and J-couplings.

5 D3-brane sector

In addition to 7-branes on complex three-cycles, F-theory compactifications to 2d contain

spacetime-filling D3-branes wrapping holomorphic curves in the base B4 of the elliptic

fibration. In the dual M-theory compactification, such D3-branes correspond to spacetime-

filling M2-branes. In 2d compactifications these D3/M2-branes are of particular importance

because of the appearance of chiral matter at the intersection with the 7-branes. This

fundamentally distinguishes the 3-7 sector from its analogue in higher-dimensional theories.

The theory on a D3-brane is 4d N = 4 SYM. To properly describe its coupling to the

7-brane sector derived in the previous sections, we must perform a compatible topological

twist for this theory, similarly to the coupling of 6d (1, 0) theory at the intersection of two

7-branes. This analysis will be presented in [31]. For the purpose of this article it suffices

to get a handle on the matter in the 3-7 sector, and we here take the following simplified

approach. The DBI part of the 3-brane action

SD3 =
2π

`4s

∫
D3
e−φ
√

det(g + `2sF ) , (5.1)

identifies the 2d gauge coupling for the effective gauge theory of a D3-brane compactified

on a curve CBM2 as
1

g2
D3

= e−φ Vol(CBM2) `2s , (5.2)

with the volume Vol(CBM2) measured in units of `s. The gauge theory on the 3-brane

is therefore weakly coupled as long as the product of the string coupling e−φ = Im(τ)

times the volume of the wrapped curve is sufficiently large. Let us first assume that the
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3-brane admits such a weakly-coupled description. In perturbative string theory, a single

spacetime-filling 3-brane contributes a U(1) gauge group factor to the total gauge group

in 2 dimensions. Massless matter charged both under the 7-brane and the 3-brane gauge

group arises from the spectrum of massless strings at the intersection of the two types

of branes. Generically, the complex three-cycle wrapped by the 7-brane and the complex

3-brane curve CBM2 intersect in an isolated number of points on B4. In perturbative string

theory, the open strings in the 3-7 sector are subject to mixed Dirichlet-Neumann boundary

conditions in all eight internal real dimensions. The vacuum energy for the Neveu-Schwarz

ground state is thus aNS = −1
2 + 8

8 = 1
2 .

Consequently, the massless string spectrum contains only the fermionic excitations

from the Ramond-Ramond sector with aR = 0. In the 2d (0, 2) theory this gives rise to a

negative-chirality spinor ν− which forms the lowest-lying component of a Fermi multiplet.

Apart from subtleties from SL(2,Z) monodromies to be discussed momentarily the number

of such 3-7 Fermi multiplets is given by the number of intersection points∫
B4

[MG] ∧ [CBM2] . (5.3)

The Fermi multiplets transform in the fundamental representation of the non-abelian gauge

group G realized on the 7-brane and carry charge −1 under the abelian gauge group on

the 3-brane. We will denote this representation as R3−7. The 3-7 brane matter can be

summarized as follows:

Cohomology Fermions ⊕Anti-Fermions

H0
∂̄
(MG ∩ CBM2)⊕H0

∂̄
(MG ∩ CBM2)∗ ν

R3−7
− ⊕ ν̄R̄3−7

−
(5.4)

The assignment of representation R3−7 to the Fermi multiplet component, as opposed

to its conjugate, is a matter of convention. As will be discussed at the end of section 9.5,

the appearance of this matter induces a gauge anomaly for the D3-brane U(1) factor, which

is cancelled by a Green-Schwarz mechanism rendering the U(1) massive.

In addition, there is matter from the bulk sector of the D3-branes in the adjoint

representation of the D3-brane gauge group [31]. For single D3-branes with a (massive)

U(1) gauge symmetry, this matter is uncharged under the 2d gauge group and we therefore

do not consider it further here.

Generically, the 3-7-matter sector cannot interact with the 7-7 matter via supersym-

metric cubic non-derivative couplings of the form (2.13) or (2.16). Such interactions would

require two chiral field insertions, which must come from the 7-7 sector as the 3-7 sector

only contains Fermi multiplets. But generically, the D3-branes intersect the 7-brane cycle

MG away from the codimension one matter surfaces so that the only gauge invariant in-

teractions would be of the form Adj ⊗ R3−7 ⊗ R̄3−7, in contradiction with the required

structure of the couplings. The same argument prevents such couplings between the modes

from the 3-7 sector and from the D3-D3 sector.

In general F-theory compactifications the axio-dilaton varies over the base B4 and

strong coupling effects become relevant, when Im(τ) = O(1) even though we stress again

that it is the combination (5.2) rather than Im(τ) itself which controls the gauge coupling on
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the 3-brane. In particular, the above perturbative derivation of the spectrum is expected to

remain valid as long as the volume of CBM2 is large enough and/or the 3-branes do not extend

into regions of small Im(τ). A detailed analysis of D3-branes including non-perturbative

regimes will appear in [69]. However, even in such situations SL(2,Z) monodromies in τ

do leave their imprint on the 3-7 sector: in particular, the number of multiplets in the 3-7

sector is in general only a fraction 1
ord(g) of the number of geometrical intersection points∫

B4
[MG]∧ [CBM2] due to the appearance of monodromies of order ord(g) around the 7-brane

locus. While the effect of these monodromies is automatically taken into account in the

description of the 7-branes in the language of the elliptic fibration, it needs to be accounted

for separately for the 3-7 sector, which after all is not geometrised in F/M-theory. We will

encounter examples of this effect in sections 11.4 and 11.5, where we consider the global

consistency of an SO(10) and an E6 model, respectively, and test our description of the

3-7 sector by computing the contribution to the 7-brane gauge anomalies. We view this

computation as a non-trivial check of our approach. This being said, when the D3-brane

itself becomes strongly coupled an analysis in the spirit of [70, 71] is more appropriate and

will be part of [69].

6 Elliptic five-folds and 2d gauge theories

So far we have described 2d (0, 2) F-theory compactifications from the perspective of the

topologically twisted field theory realized on stacks of 7-branes and their intersections. This

captures the local properties of the F-theory compactification, in the sense of decoupled

gravity and without taking into account global consistency of the theory. We now embed

this construction into a globally consistent compactification of F-theory to two dimensions.

The effective theory of such compactifications is conveniently approached via duality with

M-theory compactified on the very same elliptically fibered Calabi-Yau five-fold Y5, via

M/F-duality (2.4). In the sequel we summarize some of the salient features of such com-

patifications. Much of the material in sections 6.1 (apart from the specific relation to the

dual 1d M-theory compactification) and 6.2 follows in close analogy with F-theory compact-

ifications to six and four dimensions, and we review this here for the reader’s convenience.

In section 6.3 we develop the structure of surface localised couplings, which is very spe-

cific to compactifications to two dimensions, and in the remaining sections we put special

emphasis on some peculiarities on five-folds as compared to their lower-dimensional cousins.

6.1 Dictionary

The setup we consider was already outlined in section 2.1. The 7-brane gauge theory lives

on a complex three-cycle (divisor) MG in the base B4 of the elliptic Calabi-Yau five-fold

Y5, which is characterized in terms of the vanishing of the discriminant ∆ of the elliptic

fibration to order n > 0, i.e.

∆ = O(ζn0 ) , where ζ0 = 0 : MG ⊂ B4 . (6.1)

The singularity type in the fiber above such codimension one loci, and thus the gauge

algebra g on the 7-brane world-volume, is characterized in terms of the Kodaira type of
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the fiber. One way to determine this is to consider the [p, q] 7-brane composition of such

singularity and the resulting monodromy of the axio-dilaton. The [p, q]-strings give rise to

precisely the adjoint of the gauge algebra g [72–75]. Somewhat more directly, the gauge

degrees of freedom can be understood from the dual M-theory picture in terms of the

dimensional reduction of C3 and wrapped M2-branes [33]. To characterize these degrees

of freedom, it is useful to determine the fiber type by means of resolving the singularities.

The resolved fibers are collections of rational curves, i.e. P1s, which intersect in (up to a few

low rank oddities) affine Dynkin diagrams of an ADE Lie algebra g and can be associated

to its simple roots αi,

P1s above codim 1 loci MG ↔ Simple roots αi of g . (6.2)

This Kodaira fiber type in turn determines the gauge algebra of the 2d gauge theory. In

M-theory the non-abelian gauge bosons arise from M2-branes wrapped on the P1s and the

gauge bosons associated with the Cartan subalgebra of g stem from reduction of C3 along

the (1, 1) forms ωi related to these fibral curves

C3 = Ai ∧ ωi + . . . . (6.3)

The (1, 1) forms are dual to the divisors which are obtained by fibering the rational curves

P1
i over the discriminant component and which intersect with the fibral curves in the

negative Cartan matrix of the gauge algebra g. In turn, each fibral curve is associated

with a simple root of g. In the M-theory compactification to one dimension the resolution

of the singular fiber corresponds to moving onto the ‘Coulomb branch’ along which the

wrapped M2-brane modes become massive. The structure of this Coulomb branch will

have a similarly elegant description as in 6d and 4d [76–80]. In the F-theory limit, which

takes the volume of the fibral curves to zero, these wrapped M2-branes become massless

gauge degrees of freedom.

Before discussing this point further, let us turn to the charged matter fields arising

from singularities above codimension two loci, i.e. complex surfaces SR ⊂MG in the base

B4. These can be thought of as 7-brane intersections, or loci of enhancements of the

singularities in the elliptic fibration. The geometric process that characterizes the matter

fields is the splitting of rational curves in the fiber above codimension two loci in the

base, along which the order of vanishing of the discriminant increases. Representation-

theoretically, this means that some of the P1s associated to simple roots become reducible

above codimension two loci, and split into weights of representations R of the gauge algebra

g. From the point of view of the 2d theory, the states originating in M-theory from wrapped

M2-branes on these fibral curves correspond to matter fields in the associated representation

P1s above codim 2 loci SR ↔ Matter in Representation R . (6.4)

The fibers above such codimension two matter surfaces SR ⊂ MG will be described in

section 6.2, where we characterize the fibral curves associated to matter in terms of their

intersections as carrying charges associated to the weights of the representation R.
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We now discuss in more detail the relation between the 2d field theory and the (1+0)-

dimensional theory obtained from M-theory compactified on Y5, which is a supersymmetric

quantum mechanics (SQM) with two supercharges. The SQM resulting from M-theory

compactification on smooth, not necessarily elliptically fibered, Calabi-Yau five-folds has

been studied in [32]. In our context, we need to implement the fibration structure of Y5

and in addition uplift the (1 + 0)-dimensional theory to a 2d field theory by taking the

F-theory limit. We reserve a detailed analysis to [31] and for the purpose of this paper it

suffices to summarize simply the identification between these theories. The 1d SQM has

two types of ‘bosonic’ multiplets [32]: the 2a multiplet, which has a real scalar, fermion

and auxiliary field f , and the 2b multiplet, comprised of a complex scalar and fermion

(in this case the auxiliary field is not an independent degree of freedom). In addition we

will need a fermionic 2b multiplet with a fermion as its lowest component and otherwise

only auxiliary fields [32]. This 1d super-mechanics is related to the 2d (0, 2) field theory

obtained from F-theory by dimensional reduction of the latter on a circle S1. Upon circle

reduction, a 2d (0, 2) Fermi descends to a fermionic 2b multiplet in the super-mechanics. A

2d chiral superfield can either descend to a 2b multiplet or to a 2a multiplet together with

a 1-form potential in the super-mechanics theory. A 2d vector multiplet either descends to

a 2a multiplet plus 1-form, or to a 2b multiplet. All these possibilities are indeed at work.

Consider first an off-shell vector multiplet in the 2d F-theory associated with one of the

Cartan U(1) gauge factors. The vector component along the compactification S1 becomes

a real scalar in a 2a multiplet, which is precisely the volume modulus of the associated

resolution P1 in the elliptic fiber. Their number is given by h1,1(Y5)− h1,1(B4)− 1, where

we are subtracting the base Kähler moduli and the modulus associated with the generic

fiber class.8 Resolving the fiber gives vevs to these 2a scalar fields, which corresponds to

moving onto a Coulomb branch of the 1d SQM. On the other hand, we can reduce C3

along ωi as in (6.3), which in one dimension gives rise to a ‘1d vector’ Ai. Despite being

non-dynamical, this field will play an important role in our discussion of Chern-Simons

couplings and global consistency conditions in section 9.1. Lifting this to F-theory, the

h1,1(Y5)− h1,1(B4)− 1 vectors Ai yield the second off-shell vector degree of freedom of the

2d (0, 2) vector multiplets. This is summarized in the first line of table 2.

For completeness let us also give the identification of the remaining moduli fields

which are uncharged under g and which are thus not part of the gauge theory considered

so far: the h1,1(B4) Kähler moduli of the F-theory compactification organize into 2d (0, 2)

chiral multiplets with complex scalar fields
∫
Da

(J ∧ J ∧ J + iJ ∧ C4). Here Da denote the

independent divisor classes of B4. In the 1d super-mechanics obtained from M-theory these

chiral multiplets dualize into 2a multiplets plus vectors Aa from reduction of C3 along the

dual 2-forms ωa. If the F-theory allows for a perturbative IIB limit defined on a Calabi-Yau

four-fold, this number equals the number of orientifold even divisors h1,1(B4) = h1,1
+ (X4).

The modulus associated with the universal fiber volume and the associated 1-form A0

uplifts to components of the gravity multiplet in 2d. Among the 1
2b

3(Y5) 2b multiplets

8In presence of extra rational sections, this quantity counts the number of Cartan and extra non-Cartan

U(1) gauge groups, as in higher-dimensional reductions [23].
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# 1d SQM from M-theory 2d (0,2) SYM from F-theory

h1,1(Y5)− h1,1(B4)− 1 2a multiplet + Ai gauge multiplet

h1,1(B4) 2a multiplet + Aa chiral multiplet

1
2(b3(Y5)− b3(B4)) 2b multiplet chiral multiplet

1
2b

3(B4) 2b multiplet vector multiplet

h4,1(Y5) 2b multiplet chiral multiplet

h3,1(Y5) fermionic 2b multiplet Fermi multiplet

Table 2. Identification of multiplets in the 1d SQM obtained from M-theory on an elliptically

fibered Calabi-Yau five-fold Y5 with those in the 2d (0, 2) theory obtained form F-theory on Y5.

whose scalar components combine the degrees of freedom from reduction of C3 along the

independent 3-forms [32] in M-theory, 1
2(b3(Y5) − b3(B4)) 2b multiplets uplift to 2d (0, 2)

chiral multiplets associated with reduction of the F-theory C2 and B2-fields along h1,1
− (X4)

and the remaining ones contain the degrees of freedom from reduction of C4 into 2d (0, 2)

vector multiplets. The complex structure moduli arise as h4,1(Y5) 2b multiplets [32] in

M-theory, which become chiral multiplets in F-theory. Finally, there are h3,1(Y5) fermionic

degrees of freedom sitting in a fermionic 2b multiplet in M-theory [32] and in a Fermi

multiplet in F-theory.

6.2 Geometry of singular fibers

We will now give a more in-depth characterization of the singular fibers in elliptic five-folds.

The fibers in elliptic Calabi-Yau n-folds in codimension one have a canonical description

in terms of Kodaira fibers [81, 82], which associate to the singular fibers a Lie algebra g.

Likewise the situation in codimension two is by now very well understood — see [83–85]

for early discussions in explicit resolutions of Calabi-Yau four-folds and [86] for an analysis

of codimension two in Calabi-Yau three-folds. In fact, the general characterization of the

fibers is in terms of representation-theoretic data of g [77]. What will be crucial in our

analysis is the precise relation between curve classes above codimension one and two loci

in the base. The notation in this section will be that of [77, 78].

Above codimension one, along a component MG of the discriminant ∆ in the base

B4 of the elliptic fibration Y5, the rational curves associated to the simple roots αi of the

non-abelian Lie algebra g will be denoted by Fi, i = 1, . . . , rk(g). The so-called Cartan

divisors, obtained by fibering these rational curves over MG, will be denoted by Di with

the following intersection property

Di ·Y5 Fj = −Cij , (6.5)

in terms of the Cartan matrix Cij of g. The curve F0 associated to the extended node α0

will be intersected by the section of the elliptic fibration, and we define the singular limit

π : Y → Ysing as the limit where all fiber components are shrunk to zero volume, except

for F0, which intersects the section. We furthermore define the relative Mori cone NE(π)

as the cone containing all curves that are contracted by the singular limit.
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This setup in codimension one gets modified along codimension two loci in the base,

where the singularity of the elliptic fibration gets enhanced. The main effect is that rational

curves in the codimension one fiber can become reducible. These rational curves intersect

with the Cartan divisors in terms of the weights of representations of g. The simplest

instances is that of an In (or SU(n)) fiber in codimension one, with fundamental matter

n, which corresponds to a splitting of the fibers along the matter locus as

Fi → C+
i + C−i+1 , (6.6)

for some i. Here C±i are rational curves which correspond to fundamental weights Li and

−Li+1. What will be relevant in our context is that M2-branes wrapping Fi along codimen-

sion one and M2-branes wrapping the curves C±i are in fact not going to be independent

states. The relevant notion is that of the generating set of the relative cone of curves.

More generally (6.6) is replaced by a splitting into curves C±
λR
a

for a representation R

and associated weight λR
a , a = 1, . . . , dim(R). The effective curves are either associated to

the simple roots Fi or to weights with specific sign assignments

ε : R → {±}
λR → ε(λR) ,

(6.7)

and the associated curves are characterized by the weight as well as a sign

C
ε(λR

a )

λR
a

, a = 1, · · · , dim R . (6.8)

For each of the dim R states in representation R let λR
a be the rk(g)-component weight

vector in the Cartan Weyl basis. Intersecting these with the Cartan divisors Di results in

Di ·Y5 C
ε(λR

a )

λR
a

= ε(λR
a )λR

ai , i = 1, · · · , rk g . (6.9)

Here λR
ai denotes the ith component of the weight vector of λR

a . The consistent sign

assignments (6.7) are encoded in the box graphs. The physical significance of these sign

functions is that for ε(λR
a ) = ±1, the state with weight λR

a arises from an M2-brane (anti-

M2-brane) wrapping the effective curve C
ε(λR

a )

λR
a

.

It was shown in [77] that the extremal generators of the relative cone of effective curves

in codimension two are obtained in terms of data encoded in the so-called box graphs,and

that this relative cone takes the form9

NE(π) =
⊕

`k∈Kfib

Z+`k . (6.10)

The set of extremal generators `k ∈ Kfib is given by those rational curves Fi which remain

irreducible above the codimension two loci, as well as the curves C
ε(λR

a )

λR
a

which arise in

the splitting along codimension two loci associated to representations R with weights λ.

9For each codimension two locus there is a well defined cone of this kind. But if there are codimension

three or four loci, there can be identifications and the set of extremal generators may be reduced [77].

– 31 –



J
H
E
P
0
5
(
2
0
1
6
)
0
5
9

From this analysis, it follows that the fibers in codimension two can be either of standard

Kodaira type or monodromy-reduced Kodaira fibers [77].

So far we have only assumed the existence of a zero-section σ0, but in general an

elliptic fibration can have extra rational sections. These generate the Mordell-Weil group

MW(Y5). Its rank M counts the number of non-Cartan U(1) gauge group factors on Y5 [23]

as will be reviewed momentarily. In the presence of extra rational sections σm additional

curves in the fiber arise over codimension two loci in B4. At the level of homology, a basis

of H2(Y5) is therefore composed of a basis of H2(B4) together with the class of the generic

fiber F, a basis of the effective curves Kfib of the fiber, as well as a basis of effective curves

Cσm, m = 1, . . .M , in the presence of M additional independent sections σm.

We also introduce a dual basis of divisors

D(B)
a , a = 1, . . . , h1,1(B4)

Di, i = 1, . . . , rk(g)

Sm, 0 = 1, . . . ,M = rk(MW(Y5)).

(6.11)

Here D
(B)
a denotes the pullback of a basis of divisors from B4, Di are the Cartan divisors

associated with the non-abelian gauge algebra (g) and S0 represents a divisor whose only

non-trivial intersection number with the above set of curves is

S0 ·Y5 F = 1 . (6.12)

If Y5 is an elliptic fibration, S0 is the class of the divisor defined by the zero-section σ0, but

a divisor S0 can be defined also in absence of a zero-section. To each additional section σm
the Shioda maps associates a divisor

Sm = σm − σ0 −DB −
∑
i

niDi , (6.13)

where the coefficients ni are determined such that Sm has trivial intersection with the

Fi, and DB denotes a suitable base divisor. The significance of this divisor Sm is that

expansion of the M-theory 3-form C3 in terms of its dual 2-form gives rise to the gauge

potentials of extra, non-Cartan U(1)m gauge group factors, as studied for explicit fibrations

recently e.g. in [41, 55, 78, 85, 87–103].

Note that the Shioda-divisors Sm have non-trivial intersections with the fibral curves

C
ε(λR

a )

λR
a

. These intersection numbers compute the U(1)m charges of the matter fields as-

sociated to C
ε(λR

a )

λR
a

. The intersection possibilities for fibers in codimension two with the

Shioda-divisors Sm, i.e. the U(1) charges of matter fields, can be characterized compre-

hensively in terms of the splitting of the fibers in codimension two [78]. The models with

additional rational sections provide the framework for realizing GLSMs with abelian gauge

groups, as will be discussed in section 12.2.

6.3 Cubic matter Couplings

Finally we are in a position to complete the general discussion of supersymmetric cubic

couplings in the 2d theory. In sections 3.6 and 4.3 we had analyzed such interactions
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between the bulk matter states and, respectively, between bulk and surface matter. In

addition, the sector of holomorphic couplings includes triple interaction terms involving

only matter fields localised on matter surfaces. Such interactions can arise when two or

more matter surfaces SRi in B4 intersect such that the internal wavefunctions describing

the matter zero-modes can overlap and produce a gauge invariant coupling. The triple

coupling originates in the bulk Yukawa interactions (3.35) and (3.39) by again treating the

internal wavefunctions of the surface matter as localised bulk zero modes in the presence

of a non-trivial Higgs bundle. This way we anticipate that the possible Yukawa couplings

can only be of the form (4.22) or (4.23).

Generically, triple intersections of matter surfaces occur already in complex codimen-

sion three, i.e. over complex curves Σ. The significance of these codimension three loci is

that here fibral curves CλRi
associated to matter in representations with weights λRi split,

i.e. become reducible

CλR1
→ CλR2

+ CλR3
. (6.14)

When this happens the singularity of the fiber enhances further. Such a splitting (or, viewed

in the reverse, joining) is a necessary condition for a coupling between matter associated

with M2-branes wrapped on CλRi
to occur. Indeed, above a codimension three curve

ΣR1R2R3 = ∩iSRi the fiber enhancement is compatible with a gauge invariant contraction

R1 ⊕R2 ⊕R3 → C . (6.15)

To realize a coupling over a curve Σ it must be possible to produce a (1, 1) form from

the internal matter wave-functions, which can then be integrated over Σ. Let us again

perform a decomposition of the form (3.11) for the zero-modes of the surface matter. As

for a superpotential, a coupling of the form
∫

Σ µ̂
R1 T̂R2 τ̂R3 , where for field µ̂ we dualized

with (4.4), corresponds to a map

H1
(

Σ, LR1 ⊗K
1/2
SR1
|Σ
)
⊕H0

(
Σ, LR2 ⊗K

1/2
SR2
|Σ
)
⊕H0

(
Σ, LR3 ⊗K

1/2
SR3
|Σ
)
→ C , (6.16)

which exists by assumption of gauge invariance (6.15) for a suitable assignment of represen-

tations to the fields. This leads to a superpotential coupling arising from the deformation

of the bulk coupling (3.44) of the form∫
d2y hδεγ(R1R2R3)µR1,δ

−

(
τR2,ε

+ TR3,γ + τR3,γ
+ TR2,ε

)
(6.17)

with

hδεγ(R1R2R3) =

∫
Σ
µ̂R1 ∧ T̂R2 ∧ τ̂R3 . (6.18)

The associated superpotential is topological and takes the form

J(
µ

R1,δ
−

) = −hδεγ(R1R2R3)
(
T R2,ε T R3,γ

)
. (6.19)

Note that as long as allowed by gauge invariance, similar couplings exist for, more generally,

Z given by either T or S. For instance there can be any such couplings

J(
µ

R1,δ
−

) = −hδεγ(R1R2R3)
(
ZR2,ε

2 ZR3,γ
3

)
. (6.20)
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Furthermore, there is an E-type coupling induced by (3.35). For a matter spectrum con-

sistent with (6.17) the possible gauge invariant E-terms are∫
d2y dδεγ(R1R2R3) µ̄R2,δ

−

(
σR1,ε

+ TR3,γ + τR3,γ
+ SR1,ε

)
(6.21)

with coupling constant

dδεγ(R1R2R3) =

∫
Σ
µ̂

R2

δ ∧ σ̂R1
ε ∧ T̂R3

γ (6.22)

plus an analogous term with R2 and R3 exchanged. To see these couplings we must

use (4.4) for the mode associated with the superfields of type S and apply a similar logic

as in (6.16). These couplings imply an extra term in the E-auxiliary field

E

(
µ

R̄2,δ
−

)
⊃ −dδεγ(R1R2R3)

(
SR1,ε T R3,γ

)
(6.23)

and similarly for E

(
µ

R̄3,δ
−

)
. As before, more generally, there can be E-type interactions

E

(
µ

R̄2,δ
−

)
= −dδεγ(R1R2R3)

(
ZR1,ε

1 ZR3,γ
3

)
(6.24)

as long as gauge invariance allows it.

In five-folds, additional fiber splittings occur in complex codimension four, when two

or more of the codimension three curves Σ intersect in a set of isolated points. Here the

fibre splittings allow for a combination of two types of couplings into quartic couplings.

While such couplings are always allowed field theoretically, here they localised at a point

in the base. The precise structure of these couplings will be exemplified in section 7.1.

Supersymmetry requires that the final structure of J- and E-type couplings must be

such that the constraint

Tr

(∑
a

Ea Ja

)
= 0 (6.25)

is satisfied with the index a running over all massless Fermi multiplets.

6.4 Monodromy and non-minimality

There are several effects which make the structure of higher-codimension fibers more in-

tricate for five-folds. Particularly relevant for later considerations are the existence of

additional monodromies in the fibers as well as non-minimality arising in codimension four.

Monodromy is the effect that locally two curves may appear independent, but globally

are identified. As already observed [77] in codimension two, monodromies can yield non-

Kodaira fibers, which was shown to always occur whenever the local enhancement is to an

algebra g̃ such that the commutant of the gauge algebra in g̃ is non-abelian, e.g. su(2) for

su(6) ⊂ e6, corresponding to Λ36 matter.

This continues to hold in higher codimension. In particular, for five-folds new mon-

odromy reductions of the fibers can occur in codimension three. The effect can be easily

explained by considering for instance an SU(n) model with In fiber in codimension one,
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which has I∗m fibers in codimension three. In [104]10 it was shown that these always have

fiber components that are quadratic equations above codimensions three loci

b2x
2 + b4ζ2k−1x+ b6ζ

2
2k−1 = 0 , (6.26)

where ζ2k−1 is one of the resolution divisors and bi are certain sections on the base. For

a four-fold, this happens over a point, such that the quadratic can be factored into two

irreducible components as first observed in [83],11 and the fiber is a Kodaira I∗m. In higher-

dimensional elliptic varieties the quadratic does not factor globally, and the two components

are generically identified under monodromy of the quadratic equation. This results in

non-Kodaira I∗n fibers in codimension three in five-folds. For a generic SU(n) model in

particular, the fiber in codimension three will be a monodromy reduced fiber with two

of the multiplicity one curves getting identified. The condition for the monodromy to

be absent is simply the vanishing of the discriminant b24 − 4b2b6 = 0. We will show this

explicitly for SU(5) in section 7.

A second point to note is that in order for the singular five-fold to admit a flat Calabi-

Yau resolution there must be no non-minimal singular loci. Non-minimal fiber enhancement

occurs for vanishing orders of the Weierstrass model of the form ord(f, g,∆) ≥ (4, 6, 12).

We will oftentimes re-express the Weierstrass model in Tate-form (7.1), with the role of f

and g taken by the Tate coefficients bi transforming as certain sections on B4. In terms

of these, the condition for non-minimality is that ord(bi; ∆) ≥ (1, 2, 3, 4, 6; 12). Compared

to Calabi-Yau three- and four-folds, for five-folds new constraints arise from requiring that

no such non-minimal enhancement occurs in codimension four. In numerous models this

implies that certain intersection loci in the base need to be trivial.

As an example consider a IV ∗ fiber in codimension one, realizing an E6 gauge theory

with a Tate model with vanishing orders ord(bi; ∆) = (1, 2, 2, 3, 5; 8). The fiber enhances

in codimension two to E7 realized by a type III∗ fiber, and in codimension three to E8

with vanishing orders (1, 2, 3, 4, 5; 10). The only codimension four locus is b6 = 0, which

results in a non-minimal fiber. In the following we will always remove such non-minimal

loci by excluding such intersection points, in addition to the known non-minimal fibrations

in codimension two and three as listed in [104]. Removing such loci plays in particular a

role, e.g in computing the anomalies and tadpole conditions.

6.5 Singularity of higher codimension loci

Singularities of matter surfaces, i.e. codimension two loci in the base, can lead to corrections

to the matter chiralities χ(SR,R) in (4.6). The expression in (4.6) is applicable if there are

no singularities on the matter surfaces. We will now explain where these effects come from,

and provide examples for the corrected chirality formulas in the context of SU(n) models.

Without fluxes, i.e. for LR = O, the expression (4.6) for the chirality can be rewritten via

10See (3.27) of [104], which is the equation for the fiber in codimension three for all In to I∗m enhancements.
11This absence of monodromy-reduction was already observed in the four-fold case for SU(5) in [83, 84],

for general I∗n in [104] and lower rank cases in [105]. The relevance of these non-monodromy-reduced fibers

for the generation of couplings was elucidated in [106].
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the adjunction formula as

χ(SR,R) =
1

24
MG · [SR] ·

(
2c2 − c2

1 + [SR]2 +M2
G

)
, (6.27)

where the matter surface SR on the 7-brane divisor MG is written as the intersection of

MG with a divisor whose class we denote by slight abuse of notation also by [SR] and

ci = ci(B4). However, this expression does not account for contributions from singular

matter surfaces. Let us define the elliptic fibration via a Tate form as in (7.1). Generically,

singular matter surfaces arise whenever the divisor defining the codimension two locus on

MG is the vanishing locus of a non-trivial polynomial in the coefficients bi in the Tate form

as opposed to merely a monomial of bi. The classic example is SU(2k + 1), where the

fundamental matter arises along a surface S2k+1 given by the intersection of MG with the

vanishing locus of

P = b21b6 − b1b3b4 + b2b
2
3 . (6.28)

There are now two effects: first, the codimension two locus P = 0 is singular along b1 =

b3 = 0. This implies a curve of double points along

C1 = MG · [b1] · [b3] (6.29)

in the base B4. Second, the discriminant of P , viewed as a degree 2 polynomial in b1
and b3, is

δ = b24 − 4b2b6 . (6.30)

Whenever δ = 0, the polynomial P becomes a perfect square P = π2, and there is a

double curve

C2 = MG · [P ] · [δ] . (6.31)

To account for the contributions of the singular curves we need to compute the Euler

characteristic χ(C1) and χ(C2) and add these to the naive chirality formula (6.27). Note

that these may not be smooth and thus computing these contributions in general will

require a more extensive treatment of such singularities.

Furthermore, these two curves can intersect above points MG · [b1] · [b3] · [δ]. A re-

lated effect was observed in the context of four-dimensional IIB orientifold models with

pinch-point singularities along Whitney divisors wrapped by orientifold-invariant 7-branes

in [107]. The correction to the Euler characteristic was determined by a local resolution,

which essentially determines the contributions by counting the number of such pinch points.

In our context the situation is somewhat more refined. In our case the correct expression

for the chiral index of the fundamental representation of SU(2k + 1) is

χ(S2k+1,2k + 1)total = χ(S2k+1,2k + 1)− 1

8
MG · [b1] · [b3] · ([P ] + [δ]) . (6.32)

Likewise for SU(2k) we find the fundamental matter at P = b24 + b1b3b4 − b6b21 = 0, which

is singular along b1 = b4 = 0 and has discriminant δ = b23 + 4b6. The corrected chirality

count is then

χ(S2k,2k)total = χ(S2k,2k)− 1

8
MG · [b1] · [b4] · ([P ] + [δ]) . (6.33)
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Another example is one with gauge group SO(10): here the matter surfaces are all smooth,

given by b3 = 0 for the spin representation and b2 = 0 for the fundamental, however

there is a contribution from singular curves in codimension three, b3 = δ = 0 where now

δ = b24 − 4b2b6. This gives a contribution

χ(S16,16)total = χ(S16,16) +
1

4
MG · [b3] · [b4] · [δ] . (6.34)

These correction terms have been somewhat empirically determined, by checking consis-

tency of the anomaly and Chern-Simons constraints derived in section 11. It would be

very interesting to determine the found expressions from first principles by for instance

resolving these singularities such as in [107].

7 Example fibrations

Before we proceed with an in depth characterization of global consistency conditions of

F-theory on Calabi-Yau five-folds, it will be useful to have a few examples in mind. These

examples will be developed further in view of their global consistency in the second example

section 11. We will discuss here mainly the geometry of fibrations with non-abelian ADE

type groups, with a focus on the odd SU(2k+1) gauge groups, and discuss the correspond-

ing geometry and 2d field theory associated to them. A second class of examples have,

in addition to non-abelian gauge group factors, one additional rational section. Further

theories with SU(2k), SO(2n) and exceptional groups are discussed in appendix B and

section 11.

7.1 SU(2k + 1) theories

We begin our exploration of examples with SU(2k + 1) theories. Geometrically, an

SU(2k+ 1) gauge group is realized by I2k+1 fibers in codimension one. In general, we

will not work with the Weierstrass form (2.2), but with the so-called Tate form [108, 109]

y2 + b1xy + b3y = x3 + b2x
2 + b4x+ b6 , (7.1)

which is a simple coordinate change away from the Weierstrass form. It has the crucial

advantage that the vanishing orders of the coefficients bi (which are sections of suitable line-

bundles over the base) imply, without further tuning, the singularity type of the fibration.

For instance the SU(2k+1) theories have vanishing orders ordζ0(bi) = (0, 1, k, k+1, 2k+1),

whereas the Weierstrass form would require a suitable tuning to arrive at ordζ0(f, g,∆) =

(0, 0, 2k + 1). This is what allows resolving these models by toric resolutions [110, 111] as

exemplified for Calabi-Yau four-folds in [112, 113]. The resolutions for these general fibers

have been discussed in detail in [104], up to codimension three. In the resolutions for five-

folds, however, interesting new effects occur due to additional monodromies in the fibers.

Here we start with the prototypical example of SU(5) to illustrate the type of fibers

that occur, including the ones in codimension four. This example is particularly nice, as

it has a rich class of higher codimension enhancements, including exceptional loci. The

fibration is realized in terms of a Tate model

y2 + b1xy + b3ζ
2
0y = x3 + b2ζ0x

2 + b4ζ
3
0x+ ζ5

0b6 , (7.2)
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with the singularity locus above ζ0 = 0. The classes of the coefficients bi are

[b1] = c1, [b2] = 2c1 −MG, [b3] = 3c1 − 2MG, [b4] = 4c1 − 3MG, [b6] = 6c1 − 5MG.

(7.3)

The discriminant is

∆ =b41
(
b2b

2
3 − b1b3b4 + b21b6

)
ζ5

0 +O(ζ6
0 ) . (7.4)

Note that the discriminant locus P ≡ b2b
2
3 − b1b3b4 + b21b6 = 0 is singular at b1 = b3 = 0,

and there will be corrections to the chirality formulas as discussed in section 6.5. The

complete enhancement patterns, including the putative unhiggsed gauge group in higher

codimension, are summarized as follows:

Codim 2 :

{
SO(10) : b1 = 0

SU(6) : b21b6 − b1b3b4 + b2b
2
3 = 0

Codim 3 :

{
SO(12) : b1 = b3 = 0

E6 : b1 = b2 = 0

Codim 4 :

{
SO(14) : b1 = b3 = b24 − 4b2b6 = 0

E7 : b1 = b2 = b3 = 0

(7.5)

To determine the actual fiber structure, as well as various topological quantities such as

Chern classes, we resolve the model with the following resolution sequence12

(x, y, ζ0; ζ1) , (x, y, ζ1; ζ2) , (y, ζ1; ζ3) , (y, ζ2; ζ4) . (7.6)

Applied to the standard Tate form the sections are associated to the simple roots via

the correspondence (ζ0, ζ1, ζ2, ζ3, ζ4) ↔ (α0, α1, α2, α4, α3). This corresponds to the toric

triangulation introduced in [85, 114] as T11 and in this algebraic form appeared in [104]. In

the following, all resolutions and intersection computations are computed in Smooth [115].

As introduced earlier, we denote the rational curves in the fiber associated to the simple

roots αi by Fi. The codimension two fibers correspond to the following splittings13

Local Enhancement Fiber Type Codim 2 Locus Fiber Splitting

SO(10) I∗1 b1 = 0
F2 → C+

24 + C−34

F4 → C+
24 + F1 + C−15

SU(6) I6 P = 0 F3 → C+
3 + C−4

(7.7)

12Using the notation in [104], (x, y, ζ1; ζ2) corresponds to the blowup of x = y = ζ1 = 0, where the

exceptional section of the blowup is ζ2. Small resolutions are (y, ζ1; ζ2) etc.
13To compare with the analysis of this splitting in the appendix of [85], we give the map to the notation

therein: ζ0 → w, b1 → a1, b2 → a2,1, b3 → a3,2, b4 → a4,3, b6 → a6,5, Fi → P1
i , C

+
24 → P1

24, C−34 → P1
2B ,

C−15 → P1
4D, C+

3 + C−4 → P1
3x + P1

3F . The toric resolution coordinates ei of [85] are associated with the

Cartan divisors Ei, called Di in the present paper. Furthermore, to ease comparison with [78, 79], this is

the resolution/Coulomb phase 8 for the anti-symmetric representation and II for the fundamental.
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Here C±i (C±ij ) corresponds to the weight ±Li (±(Li + Lj)) of the fundamental (anti-

symmetric) representation. In figure 1, the associated fibers are shown including multi-

plicities and intersections. The resolution corresponds to the Coulomb phases/box graphs

in figure 2.

In codimension three these further split as follows (continuing the splitting from the

codimension two locus b1 = 0):

Local Enhancement Fiber Type Codim 3 Locus Fiber Splitting

E6 IV ∗mono b1 = b2 = 0
C−15 → C+

24 + C+
3

F3 → C+
3 + C−4

SO(12) I∗2 mono b1 = b3 = 0 F3 → C−34 + Ĉ

(7.8)

Here Ĉ is defined by a quadratic equation,

Ĉ : ζ2
3b6 + ζ3xb4 + x2b2 = 0 , (7.9)

and corresponds to a curve intersecting C−34 twice. Note that in four-folds, this would

be a fiber above a codimension three locus, i.e. a point, where the quadratic factors into

two lines [83]. These codimension three loci realize interactions of the type 10 × 10 × 5

and 5 × 5 × 10, respectively. We will determine the precise couplings in terms of E and

J terms below.

The codimension four fibers can be best understood by considering the enhancement

from the E6 locus with IV ∗mono fibers. The extremal generators of the relative cone of

effective curves there are

KIV ∗mono
= {F1, C

+
24, C

+
3 , C

−
4 , C

−
34} , (7.10)

which intersect in the monodromy reduced fiber shown in figure 1. Along the codimension

four locus b1 = b2 = b3 = 0 the descriminant goes up to ζ9
0 , and the IV ∗mono fibers split as

III∗mono : b1 = b2 = b3 = 0 : C−4 → C−34 + C̃+
3 , (7.11)

where the local enhancement is to E7 and the extremal generators of the relative cone of

effective curves are

KIII∗mono
= {F1, C

+
24, C

+
3 , C

−
4 , C̃

+
3 } . (7.12)

Equivalently, the splitting from I∗2 mono to III∗mono is

C−15 → C+
24 + C+

3 , Ĉ → C+
3 + C̃+

3 . (7.13)

The fiber is shown in figure 1. It is a monodromy reduced III∗ fiber, which arises from

the underlying Kodaira fiber by removing the component with multiplicity 4 and one of

the multiplicity 3 ones. Note that C̃ has the same intersections as C+
3 , but these seem to

be distinct curves.

These codimension four splittings of fibral curves have the following interpretation:

starting with the codimension three coupling 10 × 10 × 5 corresponding to the E6 en-

hancement, we see that the curve C−4 associated to the 5 splits further into the curves C−34
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-
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+
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+
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+

C15
-

^

I2
*
mono

F1

F0

F1

C34
-

C3
+

C24
+

III*mono

C3
+

~

codim 2codim 1

F0

F1

F2

F4

F3

F0 F1

F2F4

C3
+
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-
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-
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+
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-
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-
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+
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+
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-
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*
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F1 C3
+
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Figure 1. Codimension one to four fibers of an F-theory model with gauge group SU(5) realized

by an I5 fiber in codimension one. Lines correspond to rational curves, and multiple lines indicate

the multiplicities of the fiber components. In codimension two, the fibers correspond to local

enhancements to SU(6) and SO(10), respectively, and are given in terms of Kodaira fibers. All

higher codimension fibers have monodromy reduction: compared to the standard Kodaira fiber,

components are absent due to monodromies. The resolution shown here is encoded in the box

graph in figure 2, and is realized in terms of the blowup sequence (7.6).

and C̃+
3 , associated to states in the representations 10 and 5̄, respectively. This generates

a quartic coupling mediated by an M2-brane wrapping the interpolating 3-chain bounded

by all these curves, much alike the codimension three case [84, 106]. Note that the 3-chain

is localized above the codimension four point, and its volume vanishes in the F-theory

limit. Similar reasoning applies to the splitting from I∗2 to III∗. In summary, the two

codimension four loci realize quartic interactions of the type

10× 10× 10× 5 and 5̄× 5̄× 5̄× 10 (7.14)

localized over the point of E7 enhancement.

Finally, consider the splitting along b24 − 4b2b6 = 0 of the matter locus b1 = b3 = 0.

This is precisely the discriminant of (7.9), and thus all that happens at this locus is that

the curve Ĉ in the enhancement from I∗2 mono factors

I∗3 mono : b1 = b3 = b24 − 4b2b6 = 0 : Ĉ → C+
3 + C̃+

3 . (7.15)

Note that this is again a monodromy-reduced fiber, where one of the multiplicity two sets

of curves is absent. All codimension three and four fibers follow the monodromy-reduction
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rules set out in [77, 116] that they are given in terms of Kodaira fibers where nodes of the

affine Dynkin diagram are deleted (irrespective of higher multiplicities). In the presence of

singlets at this point, this would correspond to a coupling 5 5̄ 1, but in absence of an extra

U(1) group no such singlet states are available.

The chiralities for the two matter curves are

χ(b1,10) =
1

24
c1MG

(
2c2 +M2

G

)
χ(P,5) =

1

24
MG (8c1 − 5MG)

(
−80c1MG + 63c2

1 + 2c2 + 26M2
G

)
+

1

8
c1MG (16c1 − 11MG) (3c1 − 2MG)

=
1

12
MG

(
271c1M

2
G − 5

(
76c2

1 + c2

)
MG + 180c3

1 + 8c2c1 − 65M3
G

)
,

(7.16)

where for the fundamental matter we included the correction due to the singular matter

locus (6.32). For later global considerations, note that the fourth Chern class in this

resolution is

MG ·Y5 c4(Y5) = MG ·B4

(
360c3

1 − 750c2
1MG + 525c1M

2
G + 12c2c1 − 120M3

G

)
. (7.17)

The even SU(2k) theories proceed similarly, and we derive some of the details for the

example SU(6) in the appendix B.1.

7.2 2d gauge theories

Let us exemplify the structure of the 2d (0, 2) theories obtained for the above SU(5) model

(without any gauge backgrounds turned on). We assume that there is only one D3-brane

in the model wrapping a single curve in B4. In this situation, the D3-sector contributes

at best a massive U(1) gauge multiplet to the 2d theory (see the discussion at the end

of section 9.5). At the massless level, apart from the SU(5) gauge multiplet, the theory

contains charged massless matter fields as summarized in the following table:

Matter Rep Massless Fields Muliplicity

24 ρ24
− qα = 1, . . . , h2(MSU(5))

24 A24 = (a24, ψ24
+ ) pβ = 1, . . . , h1(MSU(5))

24 Φ24 = (ϕ24, χ24
+ ) rγ = 1, . . . , h3(MSU(5))

10 µ10
− iα = 1, . . . , h1(S10,

√
KS10)

10 T 10 = (T 10, τ10
+ ) jβ = 1, . . . h0(S10,

√
KS10)

10 S10 = (S10, σ10
+ ) kγ = 1, . . . , h2(S10,

√
KS10)

5 µ5
− lα = 1, . . . , h1(S5,

√
KS5)

5 T 5̄ = (T 5̄, τ 5̄
+) mβ = 1, . . . h0(S5,

√
KS5)

5 S5 = (S5, σ5
+) nγ = 1, . . . , h2(S5,

√
KS5)

5̄ ν5̄
− sα = 1, . . . , h0

∂̄
(MSU(5) ∩ CBM2)

(7.18)

The last line refers to the 3-7 matter discussed in section 5.
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At the level of cubic non-derivative couplings, the ‘bulk’ matter in the 24 interacts

via pure bulk couplings of the from (3.35) and (3.39) as well as via bulk-surface interac-

tions (4.13). Let us choose the convention that the different types of matter fields localised

along S10 transform in representation 10 versus 10 as displayed in (7.18), and similarly

for 5 versus 5̄. With the assignment given above, the surface matter in the 10 and 5 rep-

resentations couples in addition via E- and J-type interactions as discussed in section 6.3.

At generic position of the D3-branes, no E- and J-type couplings are possible involving

the Fermi multiplets ν5̄
− for the reasons given in section 5. The allowed couplings lead to

the following ansätze for the auxiliary E-fields,

−E(ρ24,qα
− ) = fqαpβrγA

24,pβΦ24,rγ + b1
qαjβkγ

T 10,jβS10,kγ + b2
qαmβnγ

T 5̄,mβS5,nγ

−E(µ10,iα
− ) = d1

iαjβnγ
T 10,jβS5,nγ + d2

iαmβjβ
T 5̄,mβT 5̄,jβ + e1

iαkγpγS
10,kγA24,pγ

−E(µ5,lα
− ) = d3

lαmβjβ
T 5̄,mβT 10,jβ+d4

lαmβjβ
S10,mβS10,jβ+e2

lαmγpγS
5,mγA24,pγ ,

(7.19)

and for the superpotential J

−J (ρ24,qα
− ) = gqαpβpγA

24,pβA24,pγ

−J
µ10,iα
−

= h1
iαkγmγS

10,kγT 5̄,mγ+h2
iαmβmγ

S5,mβS5,mγ + c1
iαjβpγ

T 10,jβA24,pγ

−J
µ5,lα
−

= h3
lαjβjγ

S10,jβS5,jγ + h4
lαjβjγ

T 10,jβT 10,jγ + c2
lαmβpγ

T 5̄,mβA24,pγ .

(7.20)

The bulk couplings f and g and the bulk-surface couplings bi, ci and ei are computed as

wavefunction overlaps as in (3.36), (3.40) and (4.14), while the surface matter couplings

di and hi arise from the overlaps at codimension three curves, (6.22) and (6.18). In

addition we have seen quartic interactions from the codimension four points in the base of

the fibrations.

Supersymmetry requires that the explicit form of the couplings as determined from

the wavefunction overlaps must be compatible with the constraint∑
iα

E(µ10,iα
− )J

µ10,iα
−

+
∑
lα

E(µ5,lα
− )J

µ5,lα
−

= 0 . (7.21)

Since the precise information about the couplings is encoded entirely in the geometry

of the internal wavefunctions, consistency of the compactification will ensure that the

constraint (7.21) is indeed satisfied.

7.3 SU(2k + 1) × U(1) theories

We have seen that the monodromy in (7.9) is due to the quadratic equation describing the

fiber above the codimension three locus b1 = b3 = 0. We can force the monodromy to be

reduced by considering b6 = 0 or b2 = 0. The former is exactly the so-called U(1)-restricted

Tate model of [87], which has gauge group SU(5) × U(1). In addition to the resolutions

in (7.6), we also blow up (x, y; s), where s = 0 corresponds to the additional rational

section that gives rise to the abelian gauge factor. Resolutions of this SU(5)×U(1) model

including the complete set of curve splittings in codimension two and three have been
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discussed torically in [85] and from algebraic resolutions in [100], to which we refer for

more details. The complete set of fiber splittings, i.e. all resolutions, determined in terms

of Coulomb phases for models with U(1)s can be found in [78].

In fact we can state more generally that any model with I2k+1 singularity in codimen-

sion one with a U(1)-restriction

b6 = 0 (7.22)

in the Tate model guarantees that the monodromy in the I∗m codimension three fiber is

absent, as can be readily seen from the factorization of the locus (6.26). We will show

later on that this class of models is globally consistent and anomaly free. Furthermore, the

matter loci are all smooth and there are no singular contributions to the chiral index of

the surface matter.

8 The flux sector

8.1 Four-form fluxes on five-folds

An important ingredient in F/M-theory compactifications on Calabi-Yau five-folds is the

flux background, which is the vacuum expectation value for the field strength G4 = dC3 of

the M-theory 3-form potential. Let us first briefly review the situation on a general Calabi-

Yau five-fold as studied in [32]. The M-theory flux is described by an element G4 ∈ H4(Y5)

subject to the Freed-Witten quantization condition [117]

G4 +
1

2
c2(Y5) ∈ H4(Y5,Z) . (8.1)

Important aspects of this quantization condition have been discussed in detail for elliptically

fibered four-folds in [118, 119]. On a Calabi-Yau five-fold H4(Y5) splits into H3,1(Y5),

H2,2(Y5) and H1,3(Y5). As shown in [32], in order for the M-theory compactification on Y5

to preserve two supercharges, the (3, 1) and (1, 3) flux components must vanish and thus

G4 +
1

2
c2(Y5) ∈ H4(Y5,Z) ∩H2,2(Y5) . (8.2)

The remaining (2, 2) flux induces, in the effective N = 2 super-mechanics, a scalar potential

for the Kähler moduli of Y5 that derives from the superpotential [32]

Wflux =

∫
Y5

G4 ∧ J ∧ J ∧ J . (8.3)

Let us now specialise to M-theory compactifications on elliptically fibered Calabi-

Yau five-folds. By M/F-theory duality (2.4), G4 flux encodes both the analogue of the

Type IIB/F-theory closed string Neveu-Schwarz and Ramond-Ramond fluxes and the gauge

fluxes on the 7-branes. In order for G4 to uplift to these types fluxes in the F-theory vacuum,

it must satisfy the transversality constraints∫
Y5

G4 ∧ S0 ∧ ω4 = 0 and

∫
Y5

G4 ∧ ω6 = 0 , ∀ω4 ∈ H4(B4), ω6 ∈ H6(B4) . (8.4)
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These are the direct analogue of the familiar constraints first discussed in [120] for G4-fluxes

in M/F-theory compactifications on Calabi-Yau four-folds to 3/4 dimensions. In the first

condition, S0 denotes the divisor defined around (6.12) associated with the zero-section of

the elliptic fibration.14 It rules out fluxes with all legs in the base as these would not survive

the M/F-theory scaling limit. This is consistent with the absence of 4-form fluxes on the

compactification space of F-theory/Type IIB vacua. The second constraint ensures that

the flux does not have two legs along the generic fiber as such flux would break Poincaré

invariance in the dual F-theory. If we insist that the flux do not break the non-abelian

gauge symmetry on the 7-branes, we demand in addition that∫
Y5

G4 ∧Di ∧ ω4 = 0 ∀ω4 ∈ H4(B4) . (8.5)

In this work we are primarily interested in G4 fluxes which uplift to gauge flux along the

7-branes in F-theory. The constraint that G4 be of (2, 2) type reproduces the BPS condi-

tion (3.24) that the associated gauge flux be of (1,1) type. The supersymmetry condition

induced by the superpotential (8.3) in M-theory uplifts in F-theory to the requirement that∫
Y5

G4 ∧ Sm ∧ JB ∧ JB = 0 (8.6)

for all classes Sm generating a U(1)m gauge symmetry via the Shioda map (6.13). JB is

the Kähler potential on the base B4. To see this expand the Kähler form of Y5 as

J = t0S0 +
∑
m

tmSm +
∑

tiDi + JB (8.7)

and require that the derivative of (8.3) with respect to the Kähler moduli t0, tm, ti and

the Kähler moduli on the base vanish. In the F-theory limit, where t0 → 0, tm → 0 and

ti → 0, the only non-trivial constraint for fluxes satisfying (8.4) and (8.5) is (8.6). Note

that (8.6) corresponds to the BPS condition of vanishing D-term (3.29) (for trivial charged

matter field VEVs). From the perspective of the 2d (0, 2) theory obtained from F-theory

this amounts to the vanishing of the flux-induced field-dependent U(1)m Fayet-Iliopoulos

term as will be discussed after (9.40).

8.2 Extracting gauge bundles from G4

The flux associated with a non-trivial gauge background has been described in sections 3

and 4 as the field strength of a line or in general vector bundle on the complex three-

cycle MG wrapped by the 7-brane. Suitable powers of this bundle enter the cohomology

groups (3.16) and (4.5) counting, respectively, charged bulk matter along MG and charged

matter at the intersection SR of two 7-branes. The description of fluxes in terms of a gauge

bundle sharply localised along individual 7-brane cycles is correct when the structure group

of the associated bundle is contained in one of the non-abelian gauge groups of the model.

Most gauge fluxes, however, are not of this form. This is because they are either associated

to massless non-Cartan abelian gauge symmetries, or given in terms of even more general

elements of H2,2(Y5) with no connection to a massless gauge symmetry at all. As argued

in [114], the latter type of flux is to be interpreted as the F-theory analogue of gauge flux

14The part of S0 in genus-one fibrations without a section is taken by a suitable modification of the

divisor class describing the embedding of the base B4 into Y5 as analysed in [60].
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associated with geometrically massive U(1) symmetries in the sense of [121]. While such

fluxes are not localised in any way along the non-abelian 7-brane cycles MG, the matter

spectra (3.16) and (4.5) only depend on the restriction of the gauge flux to the matter

loci in question. It is therefore sufficient to extract these gauge data from a globally

specified 4-form flux. Quite generally, since we are working on the Coulomb branch of

the M-theory, i.e. on a resolved Calabi-Yau five-fold, we can only access the abelian gauge

data. The bundles we can extract from G4 are therefore necessarily line as opposed to

higher rank vector bundles. Possible extensions to including non-abelian gauge data were

obtained in [45, 46, 48–50].

Consider matter in representation R localised on a surface SR. The line bundle LR

whose cohomology groups count this matter as in (4.5) is related to the gauge flux G4 as

follows: pick a fibral curve C
ε(λR

a )

λR
a

associated with one of the weights λR
a and assume for

definiteness that ε(λR
a ) = 1. Integration of G4 over this fibral curve gives rise to a 2-form on

SR which precisely describes the gauge flux to which the matter states in representation

R couple. This intuitive notion can be formalized as in [122] by describing the gauge

data on Y5 in terms of an element G of CH2(Y5), the rational equivalence class of complex

codimension two cycles on Y5. The cohomology class associated with G is precisely the

gauge flux G4 ∈ H2,2(Y4), but viewed as an element of CH2(Y5) G contains considerably

more information including that of the ‘Wilson line’ backgrounds of the 3-form C3. The

fibration of C
ε(λR

a )

λR
a

over SR describes by itself an element CR of CH2(Y5). At the level of

intersection theory within the Chow ring, the notion of integrating G4 over the fiber curve

C
ε(λR

a )

λR
a

amounts to taking the pullback of G to CR and projecting onto SR. This gives

rise to an element in CH1(SR), the group of line bundles on SR, which we identify with

LR.15 The result is independent of the choice of λR
a inside the weight system of R. The

cohomology groups of LR then count the massless matter according to (4.5) in presence

of gauge data encoded in G. This procedure will be exemplified in section 11.2. A similar

construction extracts the line bundles relevant for the bulk sector in (3.16).

The chiral index (4.6) associated with these cohomology groups can be written as

χ(SR) = χ(SR)|c1(LR)=0 + χ(SR)|flux . (8.8)

In absence of singularities of the type discussed in section 6.5, the flux-dependent part

takes the form

χ(SR)|flux =
1

2

∫
SR

c2
1(LR) . (8.9)

In section 10 we will see that this piece is now directly related to the integrals 1
2(G4∧G4)·Y5

Di with Di the Cartan divisors given by fibering the resolution P1s, Fi, over the 7-branes

or, in the presence of abelian gauge groups, to the integrals 1
2(G4 ∧ G4) ·Y5 Sm with Sm

defined in (6.13). For instance suppose that a fibral Fi associated with the simple root αi
splits into C+

i ∪C
−
i+1 in the fiber over SR such that the latter appear in the weight system

15More precisely viewing CR and G as elements of CH3(Y5), this intersection-theoretic process defines an

element of CH3+3−5(Y5|SR), whose projection to SR is an element of CH1(SR) ' CH1(SR) = Pic(SR). See

sections 2.4 and 3.1 in [122] for more details on the analogous construction on Calabi-Yau four-folds.
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of only the representation R (and of no other representation). Then we will find that

− 1

2
G4 ∧G4 ·Y5 Di =

1

2

∫
SR

c1(LR)2 . (8.10)

More generally, the methods developed in section 10 will allow us to systematically express

the expression on the left as a linear combination of χ(SRi)|flux for several representations

Ri. We leave it as an interesting task for future work to derive these identities directly

from the intersection theoretic relation between LR and G4 outlined above.

9 Global consistency conditions and anomalies

We are now in a position to study the global consistency conditions for the construction of

2d F-theory vacua. The D3-bane tadpole, which will be analysed in section 9.1 is crucial

for cancellation of gauge anomalies in the 2d (0, 2) theory because of the chiral nature

of matter from strings stretched between the D3- and 7-branes. The gauge anomalies

will be discussed in detail in section 9.2. In particular we will uncover a rich pattern of

Green-Schwarz and Stückelberg type couplings, which are essential in the context of abelian

gauge anomalies.

9.1 Tadpole constraints

The effective supergravity action for 11d M-theory on R× Y5 contains two types of topo-

logical couplings of the 3-form potential C3 with field strength G4,

SM = 2π

(∫
R×Y5

d11x
√
−gR− 1

2

∫
R×Y5

G4 ∧ ∗G4

)
+ Stop , (9.1)

where Stop has the contributions

Stop = SM2 + Scurv

SM2 = −2π

∫
R×Y5

C3 ∧ δ([CM2])

Scurv = 2π

∫
R×Y5

C3 ∧
(

1

24
c4(Y5)− 1

6
G4 ∧G4

)
.

(9.2)

Here [CM2] denotes the class of all curves on Y5 wrapped by M2-branes. The non-compact

part of the M2-brane worldvolume fills the time direction R1,0 of the effective super-

mechanics theory. We are working in units in which the 11d Planck length `M = 1.

In general we allow for a non-trivial 4-form flux G4 ∈ H2,2(Y5) as introduced in section 8.

Given a basis {ωα}, α = 1, . . . , h(1,1)(Y5) of 2-forms on Y5 we can expand C3 as C3 =∑
αAα ∧ ωα + . . ., where Aα denote 1-form potentials in R. Under this expansion the

couplings (9.2) induce the (1 + 0)-dimensional analogue of a Chern-Simons coupling [32],

Stop = 2π
∑
α

∫
R
Aα ∧ (kαM2 + kαcurv) (9.3)

kαM2 = −
∫
Y5

ωα ∧ δ([CM2]) (9.4)

kαcurv =

∫
Y5

ωα ∧
(

1

24
[c4(Y5)]− 1

2
G4 ∧G4

)
. (9.5)
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In section 9.4 we will see that the Chern-Simons couplings for the 1-form fields Aa,

a = 1, . . . ,H1,1(B4), arise by dimensional reduction of a classical topological coupling in

2d F-theory upon circle reduction to M-theory. By contrast, the Chern-Simons terms for

the remaining 1-forms, studied in detail in section 10, have no analogue in the 2d (0, 2)

theory obtained from F-theory. They are induced at the quantum level in the process of

this circle reduction. Irrespective of their origin, in (1+0) dimensions the Chern-Simons

couplings constitute tadpoles for Aα and must therefore vanish. This results in the (1+0)-

dimensional analogue [32] of the M2-brane tadpole cancellation condition familiar from

higher-dimensional M-theory compactifications

δ([CM2]) =
1

24
c4(Y5)− 1

2
G4 ∧G4 . (9.6)

This tadpole condition can only be satisfied for δ([CM2]) ∈ H8(Y5,Z). Otherwise, the

compactification is inconsistent and must be discarded. In section 4.1 we had encoun-

tered another integrality condition for consistency of the spectrum: the bundles LR⊗K
1/2
SR

appearing in the cohomology groups in (4.5) counting massless matter states at the intersec-

tion of two 7-branes must also be integer quantized. We conjecture that this is guaranteed

whenever G4 + 1
2c2(Y5) ∈ H4(Y5,Z) and the right-hand side of (9.6) is integer-quantized.

Indeed, c4(Y5) is sensitive to the global details of the 7-brane configuration.

We can now decompose the class [CM2] appearing on the left-hand side of (9.6) into a

base component [CBM2] ∈ H2(B4) and a remaining fibral part. M2-branes wrapping curves

on the base B4 dualize, upon M/F-theory duality, to D3-branes wrapping the same curve

and filling the two spacetime dimensions of F-theory compactified on Y5. Supersymmetry

requires that this base class be effective on B4

[CBM2] =
1

24
[c4(Y5)]B −

1

2
[G4 ∧G4]B ≥ 0 . (9.7)

This ensures that the D3-brane tadpole can be canceled with D3-branes only, as opposed

to anti-D3-branes. As in higher-dimensional compactifications this implies a bound on the

allowed G4-flux.

By contrast, the components of [CM2] along the fiber dualize to matter particles in

the 2d F-theory compactification. In fact, there exists an intriguing interpretation of the

righthand side of the tadpole equation (9.6) regarding its uplift to F-theory, which is the

subject of section 10.

9.2 Anomalies in 2d

Two-dimensional gauge theories exhibit gauge and gravitational anomalies [123]. These

are generated by anomalous 1-loop diagrams with two exterior legs for the field strength

F or two exterior legs for the curvature tensor R. In keeping with the general approach of

this paper, we focus on the anomalies in the gauge sector, postponing a discussion of the

more supergravity related questions concerning the gravitational anomaly to [31].

The gauge anomalies receive contributions from massless charged chiral fermions run-

ning in the loop and from self-dual scalar fields which couple linearly to an abelian gauge
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potential. As lucidly reviewed e.g. in [7] the contribution from a canonically normalised

Weyl fermion in representation R with action

LWeyl = ψ̄(iγµ∂µ − iAµT (R))ψ (9.8)

to the non-conservation of the gauge current takes the form

∂µJ
µa =

1

8π
Tr(γ3T aRT

b
R)F bµνε

µν , (9.9)

with a, b Lie algebra indices and γ3 the chirality matrix in 2 dimensions. Here we are

working in the renormalisation scheme defined in appendix B of [7]. Let us therefore define

the anomaly coefficient of a single Weyl fermion of chirality P = ±1 in representation

R to be

A(R, P ) = P C(R) with trT aRT
b
R = C(R) δab. (9.10)

It is worth noting that C(R) = C(R̄) so that the anomaly contributions from chiral

fermions in real representations do not automatically vanish, unlike in 4n dimensions. For

example, for the group G = SU(n) these anomaly coefficients take the form

G = SU(n) : C(Adj) = n, C(n) =
1

2
, C(Λ2n) =

n− 2

2
. (9.11)

For completeness, let us add that the contribution from an (anti-)self-dual scalar field

of charge q linearly coupled to a U(1) gauge field via

Lscalar =
1

2
∂µφ∂

µφ+
q√
π
∂µφAµ , (9.12)

to the gauge anomaly equals that of an (anti-)chiral Weyl fermion

∂µJ
µ =

1

8π
P q2 Fµνε

µν . (9.13)

The anomaly is induced at tree-level by linear exchange of a scalar propagating between two

gauge potential insertions. Equivalently, after fermionisation of the current 1√
π
∂µφ→ ψ̄γµψ

the anomaly is induced at the 1-loop level by the associated chiral fermionic degree of free-

dom. Since the scalar fields in the chiral multiplets of the (0, 2) theories under consideration

comprise both a self-dual and an anti-self-dual contribution, the only contributions to the

gauge anomalies arise from the Weyl fermions.

9.3 Non-abelian gauge anomalies from charged matter

Consider first the gauge anomalies associated with the non-abelian gauge group G realized

on a 7-brane wrapping the divisor MG on the base of the Calabi-Yau five-fold. The anomaly

receives contributions from all charged chiral and anti-chiral fermions localised in the bulk

of MG, those at the intersection surfaces of MG with the other branes in the model and

from the fermions at the intersection of MG with the 3-branes

Atotal = Abulk +Asurface +A3−7 . (9.14)
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Let us begin with the anomaly Abulk induced by the states in the bulk. The fermionic bulk

matter content is given in table (3.16). To compute the contribution to the anomalies we

take into account the Weyl fermions (as opposed to the anti-fermions) in every represen-

tation R appearing in the decomposition (3.13). In absence of gauge flux, this is just the

adjoint representation of G, but in general there will be contributions from all irreducible

representations of the unbroken bulk gauge groups. Taking into account the sign from the

chirality of the matter states in (3.16), the contribution from each representation R is

Abulk(R) = −C(R)χ(MG, LR) , (9.15)

with χ(MG, LR) given in (3.17). For instance if the gauge flux on MG breaks G→ H×U(1)

such that AdjG → AdjH ⊕
⊕

(R⊕ R̄), then the contribution to the anomalies of H is

Abulk = Abulk(AdjH) +
∑
R

(
Abulk(R) +Abulk(R̄)

)
, (9.16)

with

Abulk(AdjH) = − 1

24
C(AdjH)

∫
MG

c1(MG) c2(MG)

∑
R

(
Abulk(R) +Abulk(R̄)

)
= −

∑
R

C(R)

∫
MG

c1(MG)

(
1

12
rk(LR) c2(MG) + ch2(LR)

)
.

(9.17)

The anomaly contribution from the localised massless matter spectrum on a matter

surface SR is given by

Asurface(R) = C(R)χ(SR, LR) , (9.18)

with χ(SR, LR) as in (4.6) (for smooth SR). Note the relative sign compared to (9.15).

This sums up to

Asurface =
∑
R

Asurface(R) (9.19)

=
∑
R

C(R)

∫
SR

(
c2

1(SR)

(
1

12
− 1

8
rk(LR)

)
+

1

12
c2(SR)+

(
1

2
c2

1(LR)− c2(LR)

))
.

Finally, the Fermi multiplets (5.4) in the 3–7 sector in representation R yield a con-

tribution to the gauge anomalies of the form

A3−7 = − 1

ord(G)
C(R)

∫
B4

[MG] ∧ [CBM2]

= − 1

ord(G)
C(R)

∫
B4

[MG] ∧
(

1

24
[c4(Y5)]B −

1

2
[G4 ∧G4]B

)
.

(9.20)

The sign is a consequence of the negative chirality of the fermions. The integral counts the

number of intersection points between the curve class CBM2 on B wrapped by the D3/M2-

branes and the 7-brane cycle supporting the non-abelian gauge group in question, and the

prefactor 1
ord(G) accounting for SL(2,Z) monodromies was discussed at the end of section 5.
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In the last equation we have implemented the result (9.7) for CBM2 assuming cancellation

of the D3/M2-brane tadpole. The contribution of the 3-7 string sector to the anomalies

is a notable difference to F-theory compactifications to four dimensions, where the 3-7

spectrum is always non-chiral.

9.4 Non-abelian anomaly cancellation via anomaly inflow

In a consistent compactification all non-abelian gauge anomaly contributions must auto-

matically cancel each other

Abulk +Asurface +A3−7 = 0 . (9.21)

In fact, non-abelian anomaly cancellation is a direct consequence of the tadpole cancellation

condition (9.6), thanks to the mechanism of anomaly inflow [124–126] applied to 7-branes

in the F-theory/Type IIB setting: let us integrate both sides of (9.6) over the class MG of

the 7-brane supporting the non-abelian gauge group G and multiply by −C(R3−7) to find

− C(R3−7)MG ·Y5 C
B
M2 = −C(R3−7)MG ·Y5

(
1

24
[c4(Y5)]− 1

2
G4 ∧G4

)
. (9.22)

Assuming an SL(2,Z) monodromy factor 1
ord(g) = 1 to begin with, the lefthand side is

the 3-7 anomaly contribution A3−7 determined in (9.20). The righthand side uplifts, in

F-theory, to the projection onto MG of the flux and curvature induced couplings of the

IIB/F-theory Ramond-Ramond 4-form C4 in the presence of 7-branes. This can be made

precise if the F-theory vacuum admits a description in terms of a IIB orientifold on a

Calabi-Yau four-fold X4 (but is true more generally). Such perturbative situations are

discussed in detail in appendix C. The Chern-Simons couplings of a 7-brane and O7-plane

on X4 to C4 are given by (C.1). Upon dimensional reduction to 2d C4 is expanded into

a basis of orientifold even 2-forms of X4 as C4 = ca2 ωa. Summing over all 7-branes in

the vacuum results in a coupling of the top-forms ca2 in the 2d effective theory. Since

the basis of orientifold even 2-forms uplifts to a basis of H1,1(B4) in F-theory, we can

directly identify these couplings with couplings in the 2d F-theory vacuum up to a factor

of 1
2 explained e.g. in [114].16 Upon circle reduction to M-theory, the 2-forms ca2 with

one leg along the compactifcation circle S1 reproduce the 1-forms Aa, a = 1, . . . , h1,1(B4)

in M-theory obtained by reduction of the M-theory 3-form C3 along a basis of H1,1(B4).

This identifies the 7-brane Chern-Simons couplings (C.1) as the origin of the curvature and

flux-dependent part of the 1d Chern-Simons couplings (9.5) for this subclass Aa of 1-forms.

The particular choice ωa = [MG] singles out the projection of the K-theoretic Ramond-

Ramond 4-form charges of the 7-branes and the O7-plane onto the 7-brane carrying non-

abelian gauge group G. The role of these Ramond-Ramond charges in the worlvolume

theory of the 7-branes is to cancel the gauge (and gravitational) anomalies due to chiral

16The simplifying assumption that 1
ord(g)

= 1 corresponds to a configuration where the D7-branes and

image branes as well as the D3-branes and their images wrap cycles not invariant under the orientifold action

so that no additional relative correction factor is necessary in comparing the D3 and and the D7-sector. In

particular the non-abelian part of the 7-brane gauge group is SU(n).
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fermions localised at the intersection of 7-branes in Type IIB/F-theory [124–126]. This

includes the bulk matter (3.16) as a special case, viewed as matter at the intersection

of the 7-brane with itself. It follows that the righthand side of (9.22) equals minus the

contribution of the full 7-7 sector to the non-abelian gauge anomalies, −(Abulk +Asurface),

thereby establishing anomaly cancellation. The aforementioned factor of 1
2 from the IIB/F-

theory correspondence reproduces the factor C(R3−7) for 3-7 matter in the fundamental

representation of SU(n) as expected for F-theory models with a IIB limit.

Despite our explicit reference to a weak coupling limit, we expect the correspondence

between the correctly interpreted Ramond-Ramond charges and the 2d anomaly cancel-

lation to hold more generally, where now also non-trivial SL(2,Z) monodromy factors
1

ord(g) 6= 1 must be taken into account. Various examples including some with 1
ord(g) 6= 1

will be presented in section 11.

9.5 2d abelian anomalies and the GSS mechanism

The structure of abelian gauge anomalies is considerably enriched by the possibility of a

Green-Schwarz mechanism as described first in [17, 18] for the (0, 2) worldvolume theory of

D1-branes at singularities and studied in (0, 2) linear sigma models relevant for heterotic

compactifications in [127–131]. It is convenient to phrase the discussion in superspace:

under a U(1) gauge transformation, the vector superfields V and V+ defined in (2.6), (2.7)

transform as

δΛV+ =
1

2i
(Λ− Λ̄), δΛV = −1

2
∂−(Λ + Λ̄) , (9.23)

with Λ a chiral superfield. A U(1) gauge anomaly corresponds to a gauge variance of the

quantum effective action W of the form (see e.g. [130] for a careful derivation)

δΛW =
A

16π

∫
d2y dθ+ΛΥ + c.c. . (9.24)

The anomaly coefficient A is the specialization of (9.10) to the case of a U(1) gauge theory

with charged Weyl fermions of chirality Pi and charge qi given by

A =
∑
i

Piq
2
i , (9.25)

with obvious generalizations to mixed abelian anomalies. In addition to this 1-loop induced

quantum anomaly, the U(1) anomaly can receive a contribution from the variation of a

classically non-gauge invariant interaction term [127–131] of the form

SGS = m

∫
d2y dθ+ΦΥ + c.c. . (9.26)

This is the generalization of the FI-term (2.19) with the the FI parameter promoted to a

chiral Φ superfield. Such interaction induces an anomaly of the action provided Φ trans-

forms under the U(1) gauge symmetry as

δΛΦ = Φ + qΛ , (9.27)
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such that

δΛSGS = q m

∫
d2y dθ+ΛΥ + c.c. . (9.28)

The scalar components of the Green-Schwarz interaction are given by

SGS ⊃ 4m

∫
d2y

(
−D Im(ϕ) + F01Re(ϕ)

)
, (9.29)

with ϕ the scalar component in Φ. This identifies Re(ϕ) as an axionic scalar field whose

linear coupling to the field strength F is the hallmark of the Green-Schwarz mechanism.

For real Λ the transformation (9.27) can be viewed as a gauging of the shift symmetry

of the axion Re(ϕ). In any event the gauging (9.27) requires a suitable modification of the

kinetic term for Φ such as to keep the latter gauge invariant. In the present context we

can take this kinetic term to be [131]

SStuckelberg =

∫
d2y dθ+

((
1

2i
(Φ− Φ̄)− qV+

)(
∂−

1

2
(Φ + Φ̄) + qV

))
. (9.30)

This gauge invariant coupling induces, amongst other things, a quadratic Stückelberg mass

term for the gauge potential proportional to q2. It also contributes interactions similar

to (9.29) of the form

SStuckelberg ⊃ 2q

∫
d2y
(
D Im(ϕ) + F01Re(ϕ)

)
. (9.31)

Note the crucial relative sign difference between both terms in brackets compared to (9.29).

It is this sign which distinguishes the Green-Schwarz and the Stückelberg interactions. Fur-

thermore, we would like to stress that the gauging (9.27) and the resulting gauge invariant

modification of the kinetic term (9.30) do not require the existence of the anomalous

Green-Schwarz coupling (9.26). As in higher-dimensional theories, a Stückelberg massive

U(1) field need not be anomalous in the sense that the 1-loop fermionic gauge anomaly

is cancelled by a tree-level gauge variance of Green-Schwarz type. By contrast, for the

Green-Schwarz term to contribute to the anomaly, the gauging (9.27) and (9.30) are of

course required.

Combining (9.29) and (9.31) we see that the sum of the Green-Schwarz and the

Stückelberg couplings 4m + 2q can be determined from the coefficient of the axionic cou-

pling Re(ϕ)F01 in the effective action – which we will refer to as Green-Schwarz-Stückelberg

(GSS) couplings. To uniquely determine m and q individually further information is re-

quired, e.g. by inspecting also the D-term couplings of Im(ϕ). A complete analysis of

this type is beyond the scope of this paper and will appear in future work. It suffices

here to outline the origin of the axionic couplings in the F-theory compactifications under

consideration, to which we turn in the next section.

9.6 Origin of the GSS-couplings in M/F-theory

In 2d F-theory compactifications the axionic scalar fields cρ = Re(ϕρ) participating in

the Green-Schwarz mechanism arise by KK reduction of the F-theory/Type IIB Ramond-

Ramond forms. This can be made very precise in the special case of a Type IIB orientifold
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on a Calabi-Yau four-fold X4 with stacks of D7-branes along complex three-cycles Di with

individual U(1) gauge field strengths Fi. As shown in appendix C.1 there can in general

be four different types of GSS-couplings in the 7-brane sector from reduction of C6, C4, C2

and C0. They take the form

SGSS ⊃
∑
ρ,i

Qρi

∫
R1,1

cρFi = −
∑
ρ,i

Qρi

∫
R1,1

dcρ ∧Ai = −
∑
ρ,i

Qρi

∫
R1,1

∗dc̃ρ ∧Ai , (9.32)

where we have introduced the dual axionic fields c̃ρ. The different types of couplings are

listed in (C.9), (C.12), (C.15) and (C.17), respectively. Of these only (C.12) possesses

a straightforward derivation via M/F-theory duality. This is the coupling to the axions

obtained by dimensional reduction of the IIB/F-theory self-dual 4-form C4 along a basis of

H2,2
+ (X4). The relevant U(1) fields in this context are those linear combinations U(1)m of

U(1)i gauge potentials which are massless in the absence of gauge flux. These geometrically

massless U(1) gauge fields can be recovered in M-theory by expansion of C3 as

C3 = Am ∧ Sm + . . . (9.33)

with Sm the U(1)m generating divisor class (6.13). Under F/M-theory duality the GSS

terms (9.32) become couplings in the 1d super-mechanics obtained by dimensional reduction

of M-theory of the form

S1d
GSS = −Qρm

∫
R
∗dc̃ρAm . (9.34)

One obvious source for such interactions is the G4 dependent piece in the 11d Chern-Simons

term (9.5),

Sflux = −2π

6

∫
C3 ∧G4 ∧G4 . (9.35)

The dual scalars c̃k are obtained by dimensional reduction of the M-theory 6-form C6

magnetically dual to C3

C6 =
∑
k

c̃k ω̃k, with {ω̃k} a basis of H3,3(Y5) . (9.36)

To make contact with (9.35) we express one copy of G4 as G4 = ∗11dG7 = ∗11ddC6 and

expand

∗11d G7 = ∗11ddC6 = ∗11dd(c̃k ∧ ω̃k) = ∗1ddc̃
k ∧ ∗Y5ω̃k = ∗1ddc̃

k ∧ ωk . (9.37)

Here we have introduced the basis {ωk} of H2,2(Y5) dual to {ω̃k}. Reducing furthermore

C3 as in (9.33) this results in a coupling

−Qkm
∫
R
∗dck Am , where Qkm = 2π

∫
Y5

Sm ∧G4 ∧ ωk . (9.38)

The couplings Qkm in (9.38) from M-theory are to be identified with the eponymous objects

from the IIB/F-theory reduction obtained in (C.12) if we specify

ωk ∈ H2,2(B4) . (9.39)
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Indeed the basis of H2,2
+ (X4) involved in the reduction of C4 in the Type IIB derivation

uplifts to a basis of H2,2(B4) with B4 the base of the elliptic fibration Y5. As in the Type

IIB limit, there are no contributions from 4-forms in H3,1(B4) because G4 is of (2, 2)-type.

In view of the general structure (9.29) and (9.31) the axions ck must form the real part

of a chiral multiplet in the 2d (0, 2) theory. The origin of ck as axionic modes of C4 suggests

that the imaginary part of the scalar component is related to the scalars tk obtained by

reduction of J ∧ J along the basis ωk. Thus

Re(ϕ)k ∼ ck ←→ C6 =
∑
k

c̃k ω̃k

Im(ϕ)k ∼ tk ←→ J ∧ J =
∑
k

tkωk .
(9.40)

The couplings of Imϕk in (9.29) and (9.31) yield a contribution to the scalar potential (2.20)

which is minimized, for zero non-linearly charged matter fields, if the flux-induced D-term

vanishes. The flux-induced D-term has already been derived from the supersymmetry

variations as the first term in (3.29). This expression translates into the object
∫
Y5
G4 ∧

Sm ∧ JB ∧ JB from the M-theory perspective, and it is exactly this form which is in

agreement with the proposal (9.40) for the Im(ϕ)k moduli together with (9.38). A full

supergravity analysis of both the Green-Schwarz and the Stückelberg couplings and the

relation to Kähler moduli will appear in [31].

Let us briefly comment on the M-theory origin of the remaining Green-Schwarz cou-

plings (C.9), (C.15) and (C.17). First, Type IIB U(1) symmetries which possess a ge-

ometric Stückelberg coupling (C.9) are massive already in absence of gauge flux. As in

compactifications to 3/4 dimensions, their mass is at the KK scale and a description of

their gauge potential requires the introduction of non-harmonic forms [87, 121]. In partic-

ular such U(1) symmetries are not associated with extra rational sections on the elliptic

fibration [99, 106]. What is new compared to the 3/4 dimensional situation is the ap-

pearance also of higher curvature geometric Stückelberg terms (C.15). By contrast, the

flux-dependent Green-Schwarz terms in (C.15) can be non-vanishing already in absence of

a geometric Stückelberg mass term. These interactions should therefore have a description

in M-theory reduction with harmonic forms. In Type IIB, these terms must involve, for

geometrically massless U(1)s, orientifold odd gauge fluxes, which are notoriously difficult to

uplift to F-theory [99, 106, 132]. Finally the coupling (C.17) involves the axion C0, which

is geometrised in F-theory as the real part of the axio-dilaton τ = C0 + i
gs

. Couplings of

this sort are particularly challenging to extract via M-theory (see e.g. [133]), and we leave a

derivation of all these Green-Schwarz couplings as an interesting challenge for future work.

We conclude this section by stressing that we have so far focused on the U(1) gauge

groups from the 7-brane sector. The D3-brane sector naively contributes a U(1) gauge

group from each single D3-brane wrapping a holomorphic curve CBM2 as well. In Type IIB

theory these U(1)s receive a Green-Schwarz-Stückelberg term (C.16) from the coupling to

C2 provided the homology class of the wrapped curve in the IIB Calabi-Yau four-fold is

not orientifold invariant. In fact, anomaly cancellation for the D3-brane U(1) gauge group

requires this GSS mechanism to be in work in order to cancel the anomalies from the 3-7

sector: the latter contains only charged Fermi multiplets (5.4) at the intersection of the
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D3-branes with all 7-branes in the theory, and these contribute with the same sign to the

anomaly. In absence of such homology-odd contributions to the curve class, the only other

consistent option is that the U(1) is projected out such that no U(1) anomaly arises in the

first place. This is the case if the D3-brane curve is invariant as a whole under the orientifold

action. In both situations, the U(1) is massive from the perspective of the low-energy

effective action. It will be interesting to study this more from the F-theory perspective [31].

10 Chern-Simons couplings from M/F-duality

We now come to an interpretation of the Chern-Simons couplings (9.3) in the light of

F/M-theory duality (2.4), which relates the supersymmetric quantum mechanics obtained

by the reduction of M-theory on the resolved Calabi-Yau five-fold Y5 to the 2d (0, 2) field

theory obtained by F-theory compactification on the same space.

Our first aim is to understand the Chern-Simons terms 2π
∫
RAα k

α
curv involving the

1-forms Aα obtained by expanding C3 = Aα ∧ ωα, where ωα is a basis of 2-forms dual

to the divisors listed in (6.11). In section 9.4 we already identified the F-theory origin

of the couplings involving the 1-forms Aa, a = 1, . . . , h1,1(B4), in the M-theory effective

super-mechanics with couplings of the Ramond-Ramond four-form in F-theory induced

by the 7-branes of the system. To understand the remaining Chern-Simons couplings,

recall that at the level of effective field theories, the precise F/M-theory match is obtained

by compactifying the 2d F-theory effective action on a circle S1, similarly to the circle

reduction relating F/M-theory in d = 6/5 [34, 37, 39] and d = 4/3 [35, 36, 41, 134]

spacetime dimensions. As reviewed in section 6.1, the fact that we are working not on a

singular elliptic fibration, but on its resolution corresponds to the fact that the M-theory

effective action is on its Coulomb branch, on which the non-abelian part g of the gauge

algebra is broken to its Cartan subalgebra with massless gauge potentials Ai.

For notational simplicity let us first assume that this g constitutes the full gauge algebra

in F-theory, and analyze the couplings 2π
∫
RAi k

i
curv, i = 1, . . . , rk(g). The generalization

including extra non-Cartan u(1)m gauge potentials will be detailed momentarily. Consider,

as in the discussion around (6.9), a representation R of g, described by the weight vector

λR
a for a = 1, . . . , dim(R). The charge of the a-th state in this representation with respect

to the Cartan u(1)i is given by

qai = λR
ai = ε(λR

a ) Di ·Y5 C
ε(λR

a )

λR
a

. (10.1)

For ε(λR
a ) = 1(−1) the fibral curve C

ε(λR
a )

λR
a

is wrapped by the (anti-)M2-brane associated

with the state under consideration, as explained in section 6.2.

Upon circle reduction, a charged particle in 2d gives rise to a KK zero-mode in 1d plus

a tower of KK-states. The mass of the fermionic KK zero-mode of the a-th state is given by

m0(λR
a ) =

rk(g)∑
j=1

qaj ξj =

rk(g)∑
j=1

λR
aj ξj

=

rk(g)∑
j=1

ε(λR
a )(ξjDj) ·Y5 C

ε(λR
a )

λR
a

= ε(λR
a )

∫
C
ε(λR

a )

λR
a

J .

(10.2)
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The ξj denote the vacuum expectation values of scalar fields parametrizing the Coulomb

branch of the supersymmetric quantum mechanics. From the discussion in section 6.1 we

recall that these scalars are the volume moduli of the resolution P1s Fi. Correspondingly,

the last equation relates this field theoretic expression to the volume of the fibral curve

wrapped by the M2-brane associated to the state with charge λR
aj . Note that this fermion

mass can be positive or negative depending on the sign ε(λR
a ). The mass at the n-th KK

level is then given by

mn(λR
a ) = m0(λR

a ) + n

∫
F
J . (10.3)

Indeed, while the KK zero-modes originate from M2-branes wrapping fibral curves with

vanishing intersection with the divisor S0 characterized by S0 · F = 1 (see the discussion

around (6.12)), the KK-tower arises by adding to this curve class n powers of the class of

the generic fiber F.

We are interested in the M-theory effective action at energies below the smallest mass of

wrapped M2-brane states. At this energy, all massive M2-brane states have been integrated

out and we are left with the massless fields only. The latter include the 1-form potentials

Ai in the Cartan subalgebra, which remain unbroken along the Coulomb branch. The

effective action of the massless modes is to be compared with the circle reduction of the 2d

F-theory effective action, where all massive modes are integrated out. In this process the

curvature and flux induced Chern-Simons terms 2π
∫
RAi k

i
curv in (9.5) are reproduced by

integrating out the massive fermionic modes charged under Ai in the S1-reduction of the F-

theory effective action. The relevant diagrams arise at 1-loop level only [33]. This parallels

the match of the Chern-Simons couplings in 5 [33, 34] and 3 [35] dimensions obtained by

M-theory compactifications on Calabi-Yau three-folds and four-folds, respectively, with the

1-loop terms obtained from F-theory in 6 [37–40] and 4 [36, 41] dimensions reduced on an

S1. In other words there exists a match

1d from M-theory : kicurv ←→ 2d from F-theory on S1 : ki1−loop , (10.4)

where ki1−loop denotes the 1-loop induced Chern-Simons term from integrating out massive

states in F-theory reduced on an S1.

Taking the chiral nature of the 2d theory into account, the result for the 1-loop am-

plitude we are encountering here is

ki1−loop = −1

2

∑
R

(
n+

R − n
−
R

) dim(R)∑
a=1

qai sign(m0(λR
a )) . (10.5)

Indeed, a single massive fermion in representation R yields a correction

δki1−loop = −1

2
P

dim(R)∑
a=1

qai sign(m(λR
a )) , (10.6)

where P = ±1 denotes the 2d chirality of the fermion. This is the direct analogue of

the higher-dimensional expressions determined in [33–35, 38]. Assuming a mass hierarchy

– 56 –



J
H
E
P
0
5
(
2
0
1
6
)
0
5
9

between the Coulomb-branch masses and the masses of all KK-states, |m0| < |mn|, each

KK-state at level n comes with an opposite sign compared to the KK-state at level −n for

n 6= 0. As stressed in [40] this assumption corresponds to the zero-section of the fibration

being holomorphic as opposed to rational. We henceforth assume that the fibration has

a holomorphic zero-section, if possible at the expense of going to a birational model as

demonstrated in [96].17 Under this assumption all that remains is the contribution from

the KK zero modes (10.5).

This field theoretic relation can be expressed in geometric terms with the help of (10.1)

and (10.2). In particular from (10.2) we identify the sign contribution as18

sign
(
m0(λR

a )
)

= ε(λR
a ) . (10.7)

Equating the resulting expression for ki1−loop with the M-theoretic formula (9.5) for kicurv

we therefore conclude that

Di ·Y5

(
1

24
[c4(Y5)]− 1

2
G4 ∧G4

)
= −1

2

∑
R

(
n+

R − n
−
R

)dim(R)∑
a=1

ε(λR
a )λR

ai


= −1

2

∑
R

(
n+

R − n
−
R

)dim(R)∑
a=1

Di ·Y5 C
ε(λR

a )

λR
a

 ,

(10.8)

where the chiralities are related to the chiral indices χ as

n+
R − n

−
R =

{
−χ(MG,R) bulk matter

+χ(SR,R) surface matter .
(10.9)

The chiral index χ(MG,R) for a representation R in the bulk is given by (3.17), while the

chiral index χ(SR,R) for a representation localised on a smooth surface in codimension

two is given by (4.6). Note that the sum runs over all particles which become massive along

the Coulomb branch and, for simple g, only receives contributions from those particles for

which not all ε(λR
a ) are of the same sign. This implies that the particles from the 3-7

strings do not contribute as will be discussed further in [31].

This expression readily generalizes to situations with gauge algebra

g⊕
M⊕
m=1

u(1)m . (10.10)

Every representation R carries in addition charge Q = (Q1, . . . , Qm) under the non-Cartan

U(1)m. This includes singlets under g with charges Qm 6= 0. The charges can again be

written as

Qm = ε(λ
RQ
a ) Sm ·Y5 C

ε

(
λ

RQ
a

)
λ

RQ
a

, (10.11)

17It would be interesting to determine under which conditions a smooth birational model with a holo-

morphic zero-section exists.
18See [77] for the precise identification of the sign of the volume integral with the signs ε in the box graphs.
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and are of course independent of the choice of a. In particular, identifying the 1-loop CS

coupling km1−loop with the M-theoretic expression for the couplings kmcurv associated with

the U(1)m gauge potentials Am results in

Sm ·Y5

(
1

24
[c4(Y5)]− 1

2
G4 ∧G4

)
= −1

2

∑
RQ

(n+
RQ
− n−RQ

)

dim(R)∑
a=1

Sm ·Y5 C
ε(λ

RQ
a )

λ
RQ
a

 .

(10.12)

The terms in brackets are simply

dim(R)∑
a=1

Sm ·Y5 C
ε(λ

RQ
a )

λ
RQ
a

= Qm(2N+(RQ)− dim(RQ)) , (10.13)

with N+(RQ) denoting the number of positive weights for representation RQ.

In section 6.5 we had seen that the expression (4.6) for the chiral index on matter

surfaces is a priori valid only if SR is smooth and is in general modified in the presence of

singularities. While in principle the correction terms can be derived on purely geometric

grounds by passing to a suitable normalization of the singular surface, it is in fact simpler

to indirectly read off the chiralities by solving (10.8) for the individual χ(SR). This is

indeed what we have done to determine the correction factors presented in section 6.5.

What is left is a discussion of the CS-coupling involving the U(1) potential A0 asso-

ciated with the expansion C3 = A0 ∧ S0. As in higher-dimensional settings, this gauge

potential A0 corresponds to the KK U(1) from the perspective of the circle reduction of

F- to M-theory. This sector and its relation to the 2d gravitational anomalies will be

discussed in [31].

So far we have only explained the origin of the couplings kcurv in (9.5) in the light of

F/M-theory duality. By contrast, the couplings kM2 in (9.4) are induced, in M-theory, by

the massive M2-branes wrapping fibral curves on Y5. In the M-theory effective action at en-

ergies below the Coulomb branch scale, these massive states are not present any more, and

consequently also their couplings kM2 to the massless gauge fields are to be discarded below

this energy scale. It is only at energies comparable to the Coulomb branch mass parameter

that the massive M2-states become relevant and the couplings kM2 complete the effective

action. At this mass scale the tadpole equation (9.6) follows from the effective action.

Since it is the M-theory effective action at energies below the Coulomb branch mass

parameter which maps to F-theory on S1, the couplings kM2 cannot be reproduced from

the F-theory circle reduction. Likewise, the tadpole constraint (9.6) evaluated along the

fibral part of the homology of Y5 has no analogue in F-theory: it is a consistency condition

only of the M-theory compactification on Y5. An M-theory compactification violating this

does not give rise to a consistent vacuum to begin with and therefore has no F-theory

dual. This is the F/M-theory analogue of the observation of [10] (see also [13]) that Type

IIA string theory compactified on a Calabi-Yau four-fold to 2 dimensions is subject to a

tadpole constraint resulting from a term

SIIA ⊃
∫
R1,9

B2 ∧X8 . (10.14)
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This coupling enforces the inclusion of a certain number of spacetime-filling fundamental

strings in the 2d effective action to cancel the tadpole for B2. By contrast, Type IIB string

theory compactified on the same four-fold does not know of such a tadpole constraint

because no corresponding coupling exists in the Type IIB effective action. Comparing the

Type IIA and IIB vacua in 2 dimensions by T-duality maps the background strings required

in the Type IIA theory to momentum modes of massless particles in Type IIB [10, 13].

While in this way the particle content of the Type IIB theory automatically gives rise to

the correct number of spacetime-filling Type IIA strings required to cancel the Type IIA

tadpole, the couplings (10.14) are not reproduced in this 2d/2d T-duality map. Similarly

the 2d/1d map between F/M-theory can reproduce only (9.5) but not (9.4) for the reasons

detailed above.

11 Examples: global consistency

In this section we will exemplify the global consistency conditions derived in this paper for

2d F-theory compactifications. As a first step we will discuss the general computational

method to determine the Chern-Simons terms in concrete models. By explicitly match-

ing both sides of our prediction (10.8) for these terms via F/M-theory duality we provide

a strong general consistency check of the entire framework. In particular we will verify

the corrections discussed in section 6.5 for the chiral index of surface localised matter in

presence of singularities. By analyzing the non-abelian gauge anomalies we will further-

more determine the subtle monodromy factors arising in coupling the D3-brane and the

7-brane sector.

We begin with SU(2k+ 1) examples, with and without an additional U(1), and in the

appendix B.1 show consistency of an SU(6) class of models along the same lines. We then

provide an example with SO(10) and with E6 gauge group.

11.1 Intersections for SU(2k + 1) CS-terms

Before we can check the gauge anomaly and Chern-Simons terms (10.8), we determine

some useful identities for the intersection ring in SU(2k + 1) fibrations with fundamental

and anti-symmetric matter. We are interested in the expression in the last bracket of the

righthand side of (10.8).

Let Li, i = 1, · · · , 2k+1 be the weights of the fundamental representation, which satisfy

Li · Lj = −δij and the tracelessness condition
∑
Li = 0. Then it is easy to verify that19

∑
Li

CεiLi ·Y5 Dj = −
2k+1∑
i=1

εi(δi,j − δi,j+1) = εj+1 − εj . (11.1)

If CLj and CLj+1 of this particular resolution have the same sign, then the result is 0, else,

the result is −2. This has one non-trivial contribution coming from the simple root αj ,

19We adopt here the convention, more appropriate for the geometric analysis, that the simple roots square

to −2. This will directly give rise to the intersection ring, which is precisely −1 times the representation-

theoretic convention. All group theory conventions are otherwise those in [135].
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and associated Dj , which splits in codimension two. It is clear that the contributions arise

precisely from the extremal generators of the cone of effective curves, i.e. elements of Kfib.

In summary for the fundamental we find

∑
Li

CεiLi ·Y5 Dj =

{
0 if Fj does not split

−2 if Fj splits.
(11.2)

Likewise for the anti-symmetric representation

∑
Li,j

C
εi,j
Li+Lj

·Y5 Dk = −
2k+1∑

i,j=1,i<j

εi,j(δi,k − δi,k+1 + δj,k − δj,k+1)

= −
∑
i<k

εi,k − εi,k+1 +
∑
j>k

εk,j − εk,j+1 .

(11.3)

Again, the only non-zero contributions arise for those k for which Fk splits and the result

is given by summing over the extremal generators.

Consider for example SU(5). Then the intersections of the fundamental 5 and anti-

symmetric 10 representations take the following form,∑
Li

CεiLi ·Y5 Dk = {ε2 − ε1, ε3 − ε2, ε4 − ε3, ε5 − ε4}k

∑
Li,j

C
εi,j
Li+Lj

·Y5 Dk =


−ε1,3 − ε1,4 − ε1,5 + ε2,3 + ε2,4 + ε2,5 k = 1

−ε1,2 + ε1,3 − ε2,4 − ε2,5 + ε3,4 + ε3,5 k = 2

−ε1,3 + ε1,4 − ε2,3 + ε2,4 − ε3,5 + ε4,5 k = 3

−ε1,4 + ε1,5 − ε2,4 + ε2,5 − ε3,4 + ε3,5 k = 4 .

(11.4)

For instance for ε1,k = 1 and all others −1 this is (−6, 0, 0, 0), and the contributions from

C+
1,k, k = 3, 4, 5 equal those of C−2,k, consistent with the fact that only F1 splits. For

ε1,k = 1 and ε2,3 = 1 and all else −1, we obtain (−4, 0,−2, 0) (or reversed order, depending

on the assignment of roots to rational curves). In this case both F1 and F3 split. We will

determine similar relations for the E6 and SO(10) examples in the following.

11.2 Global consistency of SU(5) × U(1)

After this intersection-theoretic preparation we can now explicitly address the global con-

sistency of the U(1)-restricted SU(2k+1)-models. The reason why we begin with this class

of fibrations is because here no subtleties due to singular matter surfaces or monodromy

factors in the D3-brane sector arise, nor are there any non-minimal loci in codimension

three or four. For definiteness we specialise to k = 2 in the geometric realization, including

resolution, reviewed in section 7,20 however, the result holds more generally.

20For all models we will only present one resolution and perform all computations therein. For SU(5) ×
U(1) we focus on the one introduced as T11 in [85] and summarized in section 7. Of course, there are

generically several small resolutions. The complete network of resolutions for this model was determined

in [76, 79]. Changing the resolution does not affect the singular F-theory limit, but it will change some of

the details of our analysis such as c4(Y5) and the expressions in (10.8). Of course the global consistency is

independent of the resolution.
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As a warmup we check that the SU(5) anomaly (9.21) cancels. The first contribution

is from the 3-7 strings. Their number is given by MG ·Y5 c4(Y5). This intersection can be

computed in the specific resolution under consideration to be

MG ·Y5 c4(Y4) = MG ·B4

(
144c3

1 − 264c2
1MG + 12c1c2 + 162c1M

2
G − 30M3

G

)
, (11.5)

where all Chern classes without any specifications are taken for the base of the fibration,

ci = ci(B4). Then the anomaly contribution from the 3-7 sector is

A3−7 =
1

2

(
− 1

24
MG ·Y5 c4(Y5)

)
, (11.6)

where we have used that the 3-7 strings are in the fundamental representation of SU(5)

with anomaly coefficient C(5) = 1
2 .

The matter surfaces SR contribute as follows. There are three SU(5)-charged matter

loci corresponding to 10 and two 5 representations with classes

10−1 : MG · [b1] = MG · c1

5−3 : MG · [b3] = MG · (3c1 − 2MG)

52 : MG · [b1b4 − b2b3] = MG · (5c1 − 3MG) .

(11.7)

The subscripts denote the charges under the non-Cartan U(1)X associated with the

divisor [85]

SX = 5(σX − σ0 − c1) + 2D1 + 4D2 + 6D3 + 3D4 . (11.8)

This is the image of the extra rational section σX under the Shioda map (6.13). In addition

there exists a charged singlet localised at a matter surface away from the SU(5) brane

with class

1−5 : [b3] · [b4] = (3c1 − 2MG) · (4c1 − 3MG) . (11.9)

Let us first consider a configuration with vanishing gauge flux, G4 = 0. In this case, the

chiral indices for the charged matter surfaces are

χ10−1 =
1

24
c1MG

(
2c2 +M2

G

)
χ5−3 =

1

24
MG (3c1 − 2MG)

(
−12c1MG + 8c2

1 + 2c2 + 5M2
G

)
χ52 =

1

12
MG (5c1 − 3MG)

(
−15c1MG + 12c2

1 + c2 + 5M2
G

)
χ1−5 =

1

24
(4c1 − 3MG) (3c1 − 2MG)

(
24c2

1 + 2c2 − 36c1MG + 13M2
G

)
.

(11.10)

They contribute

Asurface =
3

2
χ10−1 +

1

2
χ5−3 +

1

2
χ52 (11.11)

to the SU(5) anomaly, with the numerical coefficients being the anomaly coefficients

C(10)= 5−2
2 , C(5)= 1

2 . Finally, the bulk contribution from the adjoint is, using C(24)=5,21

Abulk = −5χbulk = − 5

24
MG (c1 −MG) (MG (MG − c1) + c2) . (11.12)

21The factor of −1 is because χbulk ≡ χ(MG) =
∑3
i=0(−1)ihi(MG) counts minus the number of chiral

plus the number of anti-chiral bulk fermions in the adjoint of SU(5).
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With the help of these expressions we verify the identity

A3−7 +Abulk +Asurface = 0 , (11.13)

which precisely reproduces the anomaly cancellation condition (9.21).

Likewise the relations (10.8) and (10.12) from the Chern-Simons analysis are automat-

ically satisfied without any fluxes. For this note the following intersection relations in the

resolution under consideration22 between c4(Y5) and the Cartan divisors Di as well as the

U(1)X divisor SX ,

c4(Y5) ·D1 = −4c1M
3
G + 2c2

1M
2
G + 2c2M

2
G − 2c1c2MG + 2M4

G

c4(Y5) ·D2 = −3c1M
3
G + 2c2

1M
2
G + 2c2M

2
G + 2M4

G

c4(Y5) ·D3 = 175c1M
3
G − 272c2

1M
2
G − 8c2M

2
G + 144c3

1MG + 14c1c2MG − 38M4
G

c4(Y5) ·D4 = −2c1M
3
G + 2c2

1M
2
G + 2c2M

2
G + 2c1c2MG + 2M4

G

c4(Y5) · SX = 720c4
1+60c2

1c2−2016c3
1MG−84c1c2MG+2136c2

1M
2
G+30c2M

2
G−

− 1011c1M
3
G + 180M4

G .

(11.14)

These can be expressed in terms of the matter chiralities for G4 = 0 as

1

24
c4(Y5) ·D1 = −2χbulk

1

24
c4(Y5) ·D2 = −2χbulk + χ10−1

1

24
c4(Y5) ·D3 = −2χbulk + χ5−3 + χ52

1

24
c4(Y5) ·D4 = −2χbulk + 2χ10−1

1

24
c4(Y5) · SX = −3

2
χ5−3 + χ52 +

5

2
χ1−5 .

(11.15)

The first four equations precisely reproduce the predicted relations (10.8), given the split-

tings of the fibers in codimension two and the general relations (11.4). To see this for the

bulk contribution we take into account that∑
α∈∆+

Di ·Y5 Fα = −2 , (11.16)

where the sum is over all 10 generators associated to the positive roots α ∈ ∆+ in the

adjoint of su(5). This relation holds for all Di, and a similar one exists for the negative

roots α ∈ ∆−. Together with the additional sign in (10.9) and the factor of −1
2 in (10.8)

this reproduces (11.15). As for the matter contributions, F3 splits along both 5 matter

loci, which thus contribute to the Chern-Simons term related to D3, while F2 and F4 split

for the 10-representation. The associated box graphs are shown in figure 2, from which one

can read off the signs that enter into the general expressions for the Chern-Simons terms.

22Note that the specific expressions are resolution dependent, but the agreement with the F-theory

predictions of course is not.
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L 1 L 5L 4L 3L 2

α2

L12 L13 L15L14

L23 L25

L34 L35

L45

L24

α1 α3 α4 α2 α3 α4

α
2

α
1

α
3

Figure 2. Box Graph for the 5 (on the left) and 10 (right) representation of SU(5) corresponding

to the fiber in codimension two of the resolution discussed in section 7.1. Each box corresponds

to a weight of the representations. The action of the roots αi connects the weights into this

representation graph. The coloring corresponds to the signs blue ε = + and yellow ε = −, indicating

that C
ε(λ)
λ is an effective curve.

More precisely, the geometric intersection numbers between the Cartan divisors and the

curves are determined as explained in section 11.123

10∑
a=1

Di ·Y5 C
ε
(
λ

10−1
a

)
λ

10−1
a

= (0,−2, 0,−4)

5∑
a=1

Di ·Y5 C
ε
(
λ

52
a

)
λ

52
a

= (0, 0,−2, 0) =
5∑

a=1

Di ·Y5 C
ε
(
λ

5−3
a

)
λ

5−3
a

,

(11.17)

in perfect agreement with (10.8) and (11.15).

Finally the last equation in (11.15) can be understood in terms of (10.12). For the 10-

representation the number of positive and negative weights is equal in the resolution under

consideration so that this state does not contribute, whereas for both 5 representations

N+(5) = 2. As for the singlet, we have in fact N+(1−5) = 1.24

Let us now exemplify the inclusion of G4 flux by considering the gauge flux associated

with the non-Cartan U(1). It takes the form [85]

G4 = F ∧ SX , (11.18)

with SX defined in (11.8) and F ∈ H1,1(B4) an arbitrary class parametrizing the flux. The

procedure outlined in section 8.2 identifies the line bundles counting localised matter in

representation RQ as [85]

c1(LR) = QF |SRQ
. (11.19)

Since the bulk matter is uncharged under the extra U(1), the flux on the SU(5) locus

MG induced by such G4 is trivial. We can then check explicitly that the relations (10.8)

continue to hold in the presence of G4 by accounting for the flux-dependent correction

23This can also be seen directly from the explicit analysis in the appendix of [85].
24Indeed, the effective fibral curve wrapped by the rational section σX over the singlet matter locus gives

rise to a state of charge −5 [85].
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in the chiralities of the matter states appearing on the lefthand side as in (8.9). To be

maximally explicit, we find

−1

2
(G4 ∧G4) ·D1 = 0

−1

2
(G4 ∧G4) ·D2 =

1

2
c1F

2MG

−1

2
(G4 ∧G4) ·D3 =

47

2
c1F

2MG − 15F 2M2
G

−1

2
(G4 ∧G4) ·D4 = c1F

2MG

−1

2
(G4 ∧G4) · SX = 375c2

1F
2 − 1083

2
c1F

2MG + 195F 2M2
G ,

(11.20)

and therefore confirm that

−1

2
(G4 ∧G4) ·D1 = 0

−1

2
(G4 ∧G4) ·D2 = χ10−1 |flux

−1

2
(G4 ∧G4) ·D3 = χ5−3 |flux + χ52 |flux

−1

2
(G4 ∧G4) ·D4 = 2χ10−1 |flux

−1

2
(G4 ∧G4) · SX = −3

2
χ5−3 |flux + χ52 |flux +

5

2
χ1−5 |flux ,

(11.21)

with

χ10|flux =
1

2

∫
S10−1

F 2, χ52 |flux =
1

2

∫
S52

4F 2 , χ5−3 |flux =
1

2

∫
S5−3

9F 2 . (11.22)

Likewise, the flux-induced contributions to the SU(5) gauge anomaly cancel automatically.

More generally, similar arguments hold for all SU(2k+1)×U(1) gauge groups obtained

from U(1)-restricted Tate forms, i.e. b6 = 0.

11.3 Global consistency of SU(5) models

Somewhat more subtle is the global consistency of the generic SU(2k + 1) model without

U(1)-restriction. Let us illustrate this for SU(5), assuming again that there are no gauge

fluxes. Compared to the analysis for the model with U(1)-restriction in section 11.2, there

are only two matter loci b1 = 0 and P = b21b6 − b1b4b3 + b2b
2
3 = 0. The chiral index of the

fundamental matter acquires additional contributions, as discussed in section 6.5, and the

expressions for χ(b1,10) and χ(P,5) are summarized in (7.16). The contributions to the

anomaly (9.14) are as follows

A3−7 = − 1

48
MG · c4(Y5)

Abulk = −5χbulk = − 5

24
MG(c1 −MG)(MG(MG − c1) + c2)

Asurface =
3

2
χ(b1,10) +

1

2
χ(P,5) .

(11.23)
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With the value for c4(Y5) obtained in (7.17), it is straightforward to check that these terms

cancel to satisfy (9.14). It is crucial for the cancellation that there are the additional

contribution from the singularities of the matter surface P that contribute to χ(P,5). The

additional term, which is given in (6.32), is key to cancel both the anomaly as well for

satisfying the relations arising from the Chern-Simons analysis (10.8) and (10.12). To

check the latter, note that the intersection ring gives the following intersections between

c4(Y5) and the Cartan divisors Di, again, in the resolution of section 7

c4(Y5) ·D1 = −4c1M
3
G + 2c2

1M
2
G + 2c2M

2
G − 2c1c2MG + 2M4

G

c4(Y5) ·D2 = −3c1M
3
G + 2c2

1M
2
G + 2c2M

2
G + 2M4

G

c4(Y5) ·D3 = 538c1M
3
G − 758c2

1M
2
G − 8c2M

2
G + 360c3

1MG + 14c1c2MG − 128M4
G

c4(Y5) ·D4 = −2c1M
3
G + 2c2

1M
2
G + 2c2M

2
G + 2c1c2MG + 2M4

G .

(11.24)

The Chern-Simons relations imply that these can be written in terms of linear combinations

of the chiralities, with coefficients as dictated by the general analysis in section 11.1. Indeed,

the following relations hold

1

24
c4(Y5) ·D1 = −2χbulk

1

24
c4(Y5) ·D2 = −2χbulk + χ(b1,10)

1

24
c4(Y5) ·D3 = −2χbulk + 2χ(b1,10)

1

24
c4(Y5) ·D4 = −2χbulk + χ(P,5) ,

(11.25)

where we note again that the last equation crucially makes use of the additional contribu-

tions from the singularities in (6.32). Similar relations hold for the remaining SU(2k + 1)

models without U(1) restriction.

11.4 Global consistency of SO(10) models

The models with SO(10) or more general SO(2n) gauge group can be studied along similar

lines. The interest here is in exemplifying the subtleties in the D3-brane sector, as already

discussed in section 5. The Tate form for SO(10) (or rather Spin(10)) has vanishing orders

(1, 1, 2, 3, 5), i.e.

y2 + xyb1ζ0 + yb3ζ
2
0 = x3 + x2b2ζ0 + xb4ζ

3
0 + b6ζ

5
0 , (11.26)

whose discriminant is

∆ = b32b
2
3ζ

3
0 +O(ζ4

0 ) . (11.27)

We resolve the model as in appendix B.2 of [104], and summarize here only the dif-

ferences and additional information we need to study the consistency of the five-fold
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compactification. The enhancement patterns are as follows:

Codim 2 :

{
SO(12) : b3 = 0

E6 : b2 = 0

Codim 3 :

{
SO(14) : b3 = b24 − 4b2b6 = 0

E7 : b2 = b3 = 0

Codim 4 :

{
SO(16) : b3 = b24 − 4b2b6 = 2b4 − b21b2 = 0

E8 : b2 = b3 = b4 = 0 .

(11.28)

There are two matter loci given by intersection of MG with b2 = 0, which gives rise to

the spin representation 16, and with b3 = 0, above which the fundamental matter 10

is localized.

To check the anomaly note first that the group theoretic anomaly contributions of the

relevant representations of SO(10) are

C(Adj) = 4, C(10) =
1

2
, C(16) = 1 . (11.29)

The key point, discussed in section 5, is that the contribution from the D3-branes is only

a fraction of what one would naively expect based on counting the number of geometrical

intersection points with the 7-branes. The fraction is determined by 1
ord(g) where ord(g) is

the order of the SL(2,Z) monodromy around the 7-branes. For SO(2n) groups, this is 1/2.25

Thus we have

A3−7 =
1

2
C(10)

(
− 1

24
MG · c4

)
, (11.30)

where

MG ·Y5 c4(Y5) = MG ·B3 (−756c2
1MG + 528c1M

2
G + 360c3

1 + 12c2c1 − 120M3
G) . (11.31)

The remaining contributions are

Abulk = −C(Adj)χbulk =
1

6
MG (c1 −MG) (MG (MG − c1) + c2)

Asurface = C(16)χ(b2,16) + C(10)χ(b3,10)
(11.32)

with matter chiralities

χ(b2,16) =
1

24
MG (2c1 −MG)

(
−4c1MG + 2

(
c2 +M2

G

)
+ 3c2

1

)
+

1

4
MG (4c1 − 3MG) 2 (3c1 − 2MG)

χ(b3,10) =
1

24
MG (3c1 − 2MG)

(
−12c1MG + 8c2

1 + 2c2 + 5M2
G

)
.

(11.33)

25This factor can be understood from the perspective of a Type IIB orientifold as follows: D7-branes

producing a gauge group SO(2n) necessarily lie on top of the O7-plane, while the D3-branes are generically

not contained in the O7-plane. Matter between the D3-brane and the D7-brane stack is mapped to matter

between the image D3-brane and the same D7-brane stack. This requires a factor of 1
2

to avoid overcounting

the D3-D7- matter compared to the matter in the D7-brane sector. Interestingly, this reasoning seems to

remain valid even for SO(2n) without a weakly coupled description such as the SO(10) model with a spinor

representation.
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L 1 L 3L 2 L4 L5

-L5 -L4 -L3 -L2 -L1

α1 α2 α4α3

α1α2α4 α3

α5

Figure 3. Box Graph for the 10 representation of SO(10) corresponding to the fiber in codimension

two of the SO(10) model. Each box corresponds to a weight of the 10. The action of the roots

αi connects the weights into this representation graph. The coloring corresponds to the signs blue

ε = + and yellow ε = −, indicating that C
ε(λ)
λ is an effective curve.

Note that the terms in the second line of χ(b2,16) are those arising from the singulari-

ties of the higher codimension loci (6.34). Putting these terms together, we see that the

anomaly cancels

A3−7 +Abulk +Asurface = 0 . (11.34)

Furthermore, we check the identities implied by the 1-loop Chern-Simons terms. Using the

resolution, we find the intersections between the Cartan divisors and c4(Y5)

c4(Y5) ·D1 = −4c1M
3
G + 2c2

1M
2
G + 2c2M

2
G − 2c1c2MG + 2M4

G

c4(Y5) ·D2 = −4c1M
3
G + 2c2

1M
2
G + 2c2M

2
G − 2c1c2MG + 2M4

G

c4(Y5) ·D3 = 12c1M
3
G − 20c2

1M
2
G − 2c2M

2
G + 12c3

1MG + 6c1c2MG − 2M4
G

c4(Y5) ·D4 = −4c1M
3
G + 2c2

1M
2
G + 2c2M

2
G − 2c1c2MG + 2M4

G

c4(Y5) ·D5 = 524c1M
3
G − 726c2

1M
2
G − 6c2M

2
G + 336c3

1MG + 10c1c2MG − 126M4
G .

(11.35)

These formulae can be expressed in terms of chiralities of the matter surfaces as follows

1

24
c4(Y5) ·D1 = −2χbulk

1

24
c4(Y5) ·D2 = −2χbulk

1

24
c4(Y5) ·D3 = −2χbulk + 2χ(b3,16)

1

24
c4(Y5) ·D4 = −2χbulk

1

24
c4(Y5) ·D5 = −2χbulk + 2χ(b2,10) .

(11.36)

We now confirm these from the resolution of the fiber and the intersections of the

effective curves associated to the matter represetations C±λ with the Cartan divisors Dk. For

the 10 representation, it was shown in [77] that there are precisely two possible resolutions,

for which either α5 or α4 split. In the resolution above, the former case is realized, and the

associated box graph of the fiber in codimension two is shown in figure 3. As for SU(5),

the Li are fundamental weights, and αi = Li − Li+1, for i = 1, · · · , 4 and α5 = L4 + L5.
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From this we compute the sum that enters the Chern-Simons couplings to be

10∑
a=1

Dk ·Y5 C
ε(λ10

a )
λ10a = (0, 0, 0, 0,−4)k . (11.37)

Finally, we need to check the intersections in the fiber realizing the 16 of SO(10). The

box graphs for this case are determined in [116]. The resolution is such that F3 splits

corresponding to the box graph and the only contribution arises from intersections with

this, giving rise to
16∑
a=1

Dk ·Y5 C
ε(λ16

a )
λ16a = (0, 0,−4, 0, 0)k . (11.38)

Combining these expressions, (11.37) and (11.38), we obtain precisely the desired re-

sult (11.36), confirming our general analysis.

11.5 Models with exceptional gauge group

For elliptic five-folds, the exceptional theories generically lead to non-minimal enhance-

ment loci in codimension four (and already in codimension two and three for E7 and E8,

respectively). We briefly discuss the salient properties of these models. The resolutions are

summarized in appendix B.2. For E6 the codimension four locus b3 = b4 = b6 = 0 is non-

minimal and thus we impose that these intersection points are absent in the base four-fold:

MG · [b4] · [b3] · [b6] = 0 . (11.39)

The anomaly and Chern-Simons relations can be checked and shown to be satisfied: the

group theoretic anomaly factors for E6 are

C(Adj) = 2, C(27) =
1

2
. (11.40)

The anomaly from the 3-7 sector is then

A3−7 = − 1

ord(g)
C(27)

1

24
(c4 ·Y5 MG)

= − 1

ord(g)

1

48

(
−774c2

1MG + 549c1M
2
G + 360c3

1 + 12c2c1 − 126M3
G

)
,

(11.41)

and the single matter locus b3 = 0 that gives rise to the 27 representation has

χ(b3,27) =
1

24
MG (3c1 − 2MG)

(
−12c1MG + 8c2

1 + 2c2 + 5M2
G

)
. (11.42)

Then the anomaly indeed cancels

A3−7 +
1

2
χ(b3,27) + 2χbulk = 0 (11.43)

with 1
ord(g) = 1

6 . The naive expected value based on the Z3 monodromy around an E6 locus

would be 1/3, but the monodromy is in general also sensitive to higher-codimension singular

fibers.26 It would be interesting to precisely understand the origin of this monodromy

reduction in more detail.
26The analogue of the perturbative orientifold reasoning sketched in footnote 25 would be in terms of the

non-perturbative Z3 ‘orientifold’ of [136].
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(1) (2) (3) (4) (5) (6)

(56) (46) (45)

(36) (35) (34)

(26) (25) (24)

(16) (15) (14)

(23)

(13)

(12)

L1

L2

L3

L4

L5

L6

α1 α5α4α3α2

α6

α3

α2

α2

α1

α3

α5

α4

α6

α3

α4

Figure 4. Box Graph for the 27 representation of E6 corresponding to the fiber in codimension

two of the E6 model. Each box corresponds to a weight of the 27, as listed in (11.45). The action

of the roots αi connects the weights into this representation graph. The coloring corresponds to

the signs blue ε = + and yellow ε = −, indicating that C
ε(λ)
λ is an effective curve.

Finally, we can check also the relations from the Chern-Simons couplings. The inter-

sections of c4(Y5) with the Cartan divisors Di are summarized in (B.16). These satisfy the

relations
1

24
c4(Y5) ·D1 = −2χbulk + 2χ(b3,27)

1

24
c4(Y5) ·D2 = −2χbulk + χ(b3,27)

1

24
c4(Y5) ·D3 = −2χbulk

1

24
c4(Y5) ·D4 = −2χbulk + χ(b3,27)

1

24
c4(Y5) ·D5 = −2χbulk

1

24
c4(Y5) ·D6 = −2χbulk + χ(b3,27) .

(11.44)

In the expression for D5 we made use of the absence of the non-minimal loci (11.39).

We now show that this is in agreement with the general analysis from the fiber under

consideration. To determine the sign assignments of the weights of the effective curves

C
ε(λ27

a )
λ27a of the 27 representation, recall that these arrange in a representation graph as

shown in figure 4. The resolution that we consider is given in terms of the sign assignments

shown in the figure, where blue/yellow corresponds to ε = ±. The notation here is as

follows (for a more detailed exposition of these matters related to box graphs and fibers we

refer the reader to [77]): Li, i = 0, · · · , 6 as in SU(n), and furthermore 3L0 − (L1 + L2 +
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L3 + L4 + L5 + L6) = 0, for these to represent the roots and weights of E6. The simple

roots are then αi = Li − Li+1 for i = 1, · · · , 5 and α6 = L0 − L1 − L2 − L3. The weights

of the 27 can be written in terms of

λ27 :


Li i = 1, · · · , 6

(i) 2L0 −
∑
j 6=i

Lj

(ij) L0 − Li − Lj

, (11.45)

and they are connected as in figure 4 by the action of the simple roots. The coloring/sign-

assignment of the graph dictates which curves are effective. Using this data, we can then

compute the intersections relevant for the Chern-Simons couplings to be

27∑
a=1

Dk ·Y5 C
ε(λ27

a )
λ27a = (−4,−2, 0,−2, 0,−2)k . (11.46)

These are precisely the values that enter into the linear combination in (11.44), thus con-

firming our general expressions (10.8) and (11.15).

Regarding models with gauge group E7 and E8, it must be ensured that all non-

minimal loci in codimension two and three are absent. This requires that the corresponding

intersections of the discriminant components vanish. In these instances, we nevertheless

obtain non-trivial gauge theories through bulk matter and its couplings. The resolutions

and codimension two fiber properties for the E7 model with matter in the 56 representation

as well as the E8 model can be found in [104], with the box graphs characterizing the fibers

above the codimension two loci in the E7 model classified in [77]. We expect there to be

bulk-matter-surface interactions, and global consistency is ensured by restricting to models

where potential non-minimal loci are absent.

12 Superconformal theories and GLSM

There are many applications of the constructions obtained in this paper from the perspec-

tive of 2d field theory, of which we outline two in this section: first we briefly comment

on the relation between our models and (0, 2) superconformal field theories, including an

outlook on the possible geometric realization of strongly coupled 2d theories from F-theory.

Second, we interpret the 2d (0, 2) models obtained from F-theory as heterotic worldsheet

theories, relating in particular the celebrated Calabi-Yau–Landau-Ginzburg correspondence

via 2d gauge theories of [1] to different Higgs bundle configurations in F-theory.

12.1 (0, 2) SCFTs

The 2d theories studied in this paper are (0, 2) supersymmetric, but in general not super-

conformal. In particular the gauge theory is super-renormalisable with a coupling gYM of

mass dimension one. On general grounds, such theories become weakly coupled in the UV,

where they flow to a trivial fixed-point, and strongly coupled in the IR. This raises the

question of the existence of a strongly coupled superconformal fixed point in the IR. For
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(2, 2) gauged linear sigma models (GLSM), such a superconformal fixed-point is believed

to exist in the IR and to describe the non-linear sigma model underlying Type II com-

pactifications on a Calabi-Yau space [1, 137]. For (0, 2) GLSMs, superconformal invariance

might be broken, corresponding to the appearance of a destabilizing superpotential in the

N = 1 effective action describing the heterotic sigma model [138].

A perturbative criterion for existence of a superconformal fixed point in (0, 2) GLSMs

has been given in [139] (see also [140]): it involves the existence of a very specific non-

anomalous U(1)R symmetry. This U(1)R symmetry can be constructed as the linear com-

bination of the naive U(1)R symmetry associated with the (0, 2) supersymmetry algebra

and any further global U(1) symmetry present in the model. Let us parametrise the charges

under this U(1)R symmetry of the various chiral multiplets Φi = (φi, ψ+,i), the Fermi mul-

tiplets with fermions λ−a and the gauge multiplet with gaugino η− as

QR(ϕi) = −αi, QR(ψ+i) = 1− αi, QR(λ−a) = −αa, QR(η−) = −1 . (12.1)

Then the criterion for existence of a superconformal IR fixed-point is that this U(1)R
symmetry is free of mixed anomalies and that the charges must be related to the degrees

of homogeneity of the superpotential Ja and auxiliary Ea-fields as [139]

αaJ
a +

∑
i

Φi
∂Ja

∂Φi
= Ja, −αaJa +

∑
i

Φi
∂Ea
∂Φi

= Ea . (12.2)

An obvious first step in analyzing the possible superconformal IR fixed points in our context

is therefore the study the existence of such a non-anomalous U(1)R symmetry [31]. This in

particular exemplifies the importance of a complete and quantitative understanding of the

Green-Schwarz mechanism for abelian symmetries. An alternative approach to determining

the R-symmetry of the SCFT fixed-point is via c-maximisation as explored in [6, 7].

In the 2d (0, 2) theories constructed in this paper, the gauge coupling is directly related

to the volume of the complex three-cycle MG wrapped by the 7-branes, measured in string

units, 1
g2
YM
' `2s Vol(MG). A similar relation holds for the Yang-Mills coupling for the

gauge group factors associated with the D3-branes in the model, as summarized in (5.2).

The flow to the strong coupling regime gYM → ∞ can thus be engineered by taking the

limit of shrinking complex three- and one-cycle volumes. The shrinking of a complex

three-cycle MG to zero volume is compatible with MG shrinking to a complex two-cycle,

a one-cycle or even collapsing to a point on B4. As this happens, M5-brane instantons

wrapped along MG will become light and are expected to correct the dynamics of the (0, 2)

theory. The engineering of the strong coupling regime for 6d (0, 1) theories by collapsing

curves wrapped by 7-branes in F-theory has recently sparked a lot of interest [24, 141]. The

light modes associated with M5-instantons encountered in the 2d context are the analogue

of the mysterious tensionless strings from wrapped M5-branes along the collapsing curves

in 6d. It will be interesting to study these effects, the relation to the existence of a strongly

coupled superconformal sector and the possible classification of collapsing divisors on the

base B4 in [31].
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12.2 GLSM phases as T-branes/gluing data

Part of the fascination of 2d (0, 2) gauge theories realized in terms of GLSMs is due to

their role in interpolating [1] between non-linear sigma models (NLSMs) describing, for

instance, the propagation of the heterotic string on a target space Xhet with non-trivial

gauge bundle Vhet and a Landau-Ginzburg (LG) model, which can oftentimes be solved

exactly. The GLSMs appearing in this context in principle fall within the class of 2d (0, 2)

F-theory models considered in this paper. By interpreting the heterotic worldsheet GLSM

as an F-theory compactification on an elliptic fibration Y5, we find a correspondence

(Xhet, Vhet)
F-theory←−−−−−−−−→ (Y5, G4) (12.3)

between the heterotic target space Xhet and gauge bundle Vhet on the one hand, and the

F-theory five-fold Y5 and extra gauge data G4 on the other hand. As one example of this

correspondence, we will now relate the NLSM-LG-duality of [1] for the heterotic string to

a change in the underlying F-theory Higgs bundle data.

The 2d F-theory models allow for two different regimes: the first regime corresponds

to a strict field theory limit with the 2d (0, 2) supergravity decoupled. The other is where

we do not decouple supergravity, in which case we will have to integrate over all field

configurations. We now discuss both possibilities. The decoupling limit is achieved by

taking the base B4 of the elliptic five-fold Y5 to be non-compact while keeping the 7-brane

volumes finite such that the 2d Newton constant goes to zero.27 In this limit the geometric

Kähler and complex structure moduli become non-dynamical fields and decouple from

the gauge sector on the 7-branes. The resulting 2d gauge theory can then in principle

be interpreted as a heterotic GLSM, in a fashion which we will discuss in more detail

below. The second regime corresponds to a finite base volume such that the 2d (0,2)

supergravity sector remains dynamical. As it stands this sector differs from conventional

heterotic worldsheet theories prior to gauge fixing because in the latter only an N = (0, 1)

supersymmetry sector is local. It will therefore be interesting to study the implications

of local N = (0, 2) supersymmetry, possibly in terms of a super-critical string theory as

suggested in [51]. Furthermore in this sector also the geometric moduli are fully dynamical.

The relevance of this is28 that dynamical massless scalar fields in 2d quantum field theory

cannot take a definite field value due to the well-known logarithmic infra-red divergence

in their correlators. Rather, all field configurations must be integrated over in a quantum

description of such theories. As far as the geometric moduli are concerned, this suggests

that all regions of moduli space must be taken into account unless a dynamical stabilization

mechanism gives rise to a mass term of the modulus in question.

After these general remarks let us first briefly review the perhaps simplest example

of a (0, 2) GLSM [1]. Its associated NLSM describes the heterotic string propagating on

the quintic Calabi-Yau three-fold Xhet = P4[5] coupled to a rank three vector bundle. The

27Note that Newton’s constant in 2d is dimensionless. It is proportional to 1/vol(B4) with vol(B4)

measured in string units.
28We thank Cumrun Vafa for discussions on this point. See also [51].
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gauge group is just one U(1), with fields charged as follows:

Field Type U(1) Charge

Φi, i = 1, · · · , 5 Chiral +1

Pi, i = 1, · · · , 5 Fermi +1

Φ0 Chiral −5

P0 Fermi −5

Σ Chiral 0

(12.4)

The Yukawa couplings in this model are determined by the auxiliary fields Ei ≡ E(ρ−i) and

superpotentials J i ≡ Jρ−i . These are taken to be the lowest order, but at least quadratic

polynomials which are allowed by the gauge charges, subject to the constraint EiJ
i = 0 and

otherwise generic.29 Higher order terms compatible with the gauge charges are considered

irrelevant in the RG sense [1] and are therefore discarded. This fixes

Ei = Φi Σ

J i = Φ0 J i(Φj)

E0 = Φ0 Σ

J0 = P(Φj) ,
(12.5)

with P(Φj) and J i(Φj) homogeneous polynomials in Φi of degrees 5 and 4, respectively.

These must obey the above constraint EiJ
i=0. The induced scalar potential takes the form

V = VF + VD

VF = |P|2 +
∑
i

|ϕ0|2|J i|2 +
∑
i

|Ei|2 + |E0|2

VD =
e2

2

(∑
i

|ϕi|2 − 5|ϕ0|2 − r

)2

,

(12.6)

with r the Fayet-Iliopoulos (FI) parameter of the U(1) gauge group with gauge coupling e.

The NLSM phase corresponds to the limit where r � 0: the D- and F-term constraints

enforce ϕ0 = 0, but
∑

i |ϕi|2 = r and P = 0. This suggests interpreting the charged scalar

fields ϕi as homogeneous coordinates of the space P4 = (C5)∗/U(1). The NLSM target

space is the hypersurface Xhet : P = 0 ⊂ P4. The gauge bundle is determined via the

remaining E− and J-fields (see e.g. [142] for a review). Note that in the NLSM phase,

the GLSM gauge group is completely broken by the VEV of ϕi. On the other hand, for

r � 0 the GLSM flows to a Landau-Ginzburg orbifold model with |ϕ0|2 = − r
5 and ϕi = 0.

Here the gauge group U(1) is broken to the discrete remnant Z5 because of the charge

Q0 = −5 of ϕ0.

To realize such GLSMs from F-theory, with only an abelian gauge group, our starting

point is an elliptic Calabi-Yau five-fold Y5 with Mordell-Weil group of rank one, realizing

the U(1) gauge group. This ensures the existence of one independent rational section σ1

in addition to the zero-section σ0. The U(1) gauge group of the GLSM is then obtained by

expanding the M-theory 3-form along the harmonic 2-form dual to the class S1 obtained

29Genericity implies transversality of the polynomials as detailed in [1].
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from σ1 via the Shioda map, as reviewed around (6.13). This makes direct contact with

the recent advances [41, 55, 78, 85, 87–103] in the construction of elliptic fibrations with

extra abelian gauge group factors for F-theory. We will outline the fiber structure of Y5 at

the end of this section.

Of central importance in the NLSM-LG correspondence is the FI parameter r. As

described in section 8.1, a field-dependent FI term arises in 2d F-theory models with G4

flux from the gauging of the axionic shift symmetry of axionic fields on Y5. This term is

simply the contribution of the charged Kähler moduli to the D-term and given by

r '
∫
Y5

G4 ∧ S1 ∧ JB ∧ JB =

∫
B4

F ∧DB ∧ JB ∧ JB , (12.7)

with JB the Kähler form on the base B4 of Y5. The divisor class DB on B4 describes

the 7-brane effectively associated with the U(1) gauge group and the class F ∈ H1,1(B4)

parametrises the flux on DB. Both classes are determined by evaluating the expression

after the first equality in the above equation [85].

Let us first consider the decoupling limit, in which

vol(B4) =

∫
B4

J4
B →∞ ,

1

2κ2
2

→∞ , vol(DB) =

∫
DB

J3
B finite . (12.8)

The first two limits ensure that 2d gravity decouples and some of the Kähler moduli become

non-dynamical, while by the last condition the U(1) gauge coupling stays finite. The Kähler

moduli dependent D-term remains finite in this limit.

As noted in [143] in the context for 4d N = 1 theories, the existence of an FI term can

be compatible with a decoupling limit, as long as one gauges the S-multiplet introduced

therein. We expect this result to hold similarly in 2d (0, 2) theories. In addition to the

requirement of keeping a constant FI-parameter, and sending 1
2κ2

2
and the volume of B4 to

infinity, we also have to require that the Kähler modulus coupling in the D-term r becomes

non-dynamical, i.e. that its kinetic term diverges in this limit.30 It would be particularly

interesting to construct an example of a geometry which allows for such a decoupling, and

a constant FI-parameter in the field theory.31 By contrast, no such challenge arises for the

interesting, though much less studied, class of GLSMs with simple gauge groups, which

naturally arise from F-theory. Since the FI parameter in the GLSM is associated with the

Kähler moduli of the target space, such models should correspond rather to non-geometric

heterotic theories, and it would be very interesting to investigate these in the future.

Consider next the complementary regime, with 2d (0,2) supergravity not decoupled.

As remarked above, a full description requires now integrating over all possible values of

the moduli space (unless a dynamical stabilization mechanism is at work which induces a

physical mass for the 2d scalars) [51]. Despite this caveat, we see that for suitable fluxes32

the Kähler moduli dependent D-term (12.7) evaluates, in different regimes of the Kähler

moduli space, to different values of r, interpolating between and including the regions

r � 0 and r � 0.
30We thank Shamit Kachru for useful discussions on this point.
31A 4d example would for instance be realized in the context of the P11136[12] geometry studied in [144],

where one can show that the D-term receives contributions from two moduli, one of which becomes non-

dynamical in the limit of one of the cycles going to infinity whilst the other stays finite.
32For F = F1 − F2 with F1 and F2 both effective the sign on r depends on the Kähler moduli.
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These regions correspond to the NLSM and the LG phase and realize the two possible

ways of Higgsing the U(1) gauge group with the matter content (12.4). As the spectrum

is chiral due to the fluxes, the vevs correspond to so-called Higgs bundle configurations,

which are non-diagonalizable and were termed gluing data or T-branes [45–50]. Indeed,

as pointed out in [48], globally, the different gluing configurations correspond to different

types of fluxes. The NLSM-LG correspondence has then an interpretation in terms of

different gauge theory backgrounds, given in terms of gluing data (or, equivalently, T-

brane) configurations of the 7-brane theories in the five-fold:

NLSM− phase GLSM LG− phase

G = ∅ gluing←−−−−−
data

G = U(1)
gluing−−−−−→
data

G = Z5

(Ã, Φ̃) (A,Φ) (Â, Φ̂)

(12.9)

We now exemplify the fiber structure of the F-theory elliptic fibration Y5 leading to

the GLSM with matter content (12.4). As noted already, to engineer such a model we

require an elliptic fibration with one additional rational section, without any non-abelian

enhancements in codimension one. The singular fiber in codimension one is therefore a

Kodaira I1 fiber. Along codimension two the singularity enhances to I2 and generates the

suitable charged matter. Let us denote the two fiber components in codimension two by

C±, which have the property that C+ ·C− = 2. The enhacement from codimension one to

two is in terms of the splitting

F0 → C+ + C− , (12.10)

where F0 is the single nodal fiber component of the I1 fiber. The possible U(1) charges

for such models have been classified in [78]. For Calabi-Yau three-folds the constraints on

the normal bundle degrees of contractible rational curves imply a finite range of matter

charges.33 For four- and five-folds, no analogous restriction on the normal bundle is known

for contractible curves. Nevertheless, the charges can be determined as a function of the

normal bundle degree [78]. Let us briefly summarize how the results therein would realize

the spectrum in (12.4). Let σ0 and σ1 be the two sections of the model, with σi · F0 = 1.

The U(1) generator is given by S1 = σ1 − σ0 + DB for a suitable base divisor DB. The

charges of the singlet fields 1±q are then obtained by

(σ1 − σ0) · C± = ±q . (12.11)

In codimension two, the section can either transversally intersect the fiber components C±,

or contain them C± ⊂ σ. In such cases, the intersection number depends on the normal

bundle of the curve C± in the divisor σ. The summary of this analysis is given in figure 17

in [78], for

NC+/Y5
= O ⊕O ⊕O(1)⊕O(−3)

NC−/Y5
= O ⊕O ⊕O(−1)⊕O(−1) .

(12.12)

33The normal bundle in the Calabi-Yau three-fold of a contractible rational curve can only be NC/Y3
=

O(p)⊕O(−2− p) for p = −1, 0, 1 [145, 146].
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-1 1C+ C-

I2 q=  5

 -1

q=0 q=  1+- +-

Figure 5. The codimension two I2 fibers, realizing matter with charges q = ∓5, 0,±1. The

left-most picture shows the I2 fiber, with the two rational curves C± intersecting in two points.

The remaining fiber diagrams show how the charges are realized in terms of sections intersecting

or containing the curves C±. Blue/red corresponds to the sections σ0 and σ1, respectively. The

numbers next to fiber components contained (colored) in sections are the degrees of the normal

bundle of the curve in the section.

The charges q = −5, 0, 1 required for the GLSM in (12.4) can be obtained from the fiber

configurations shown in figure 5.

To obtain the exact spectrum including multiplicities in (12.4), we first need to find

a realization of this model in terms of an explicit fibration giving rise to the codimension

two fibers in figure 5. The above fibers are not unique in realizing these charges, and

the complete set can be obtained from [78]. In addition multiplicities will be generated

from fluxes. More precisely, we need to determine a gauge field background such that

the cohomology groups counting matter with all charges other than the ones in (12.4) is

trivial. The construction of such an elliptic fibration realizing these fiber types will be an

interesting challenge in the future.

In a model with the exact matter content (12.4), the E- and J-fields follow from the

structure of matter interactions described in section 6.3. In that section, we focused on

cubic E- and J-type interactions, assuming that suitable massless matter exists to form

cubic gauge invariant interactions. For the spectrum (12.4), however, no such cubic J-type

interactions are possible. Cubic interactions of the fields Φi with charge 1 must necessarily

involve fields of charge smaller than 5, whose mass sits at the KK scale for suitable gauge

flux, as we assume here. Integrating out these massive states will lead to higher-order

effective couplings of the form (12.5) as these are the leading order gauge invariant couplings

involving the massless spectrum (12.4). Furthermore, if the original cubic couplings satisfy

the constraint EiJ
i = 0, this condition cannot be violated by integrating out massive states

in a supersymmetric manner.

While we have focused on the simplest example of a GLSM, there are many gener-

alizations to be explored. For instance, GLSMs describing the heterotic string on hyper-

surfaces or complete intersections within toric spaces correspond, via the map (12.3), to

F-theory compactifications with a richer variety of charged matter and higher Mordell-

Weil group rank. Consider for example the GLSM whose associated NLSM has as its

target space the CICY

Xhet =

[
P2 1 1 1

P4 2 2 1

]
. (12.13)
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This is a complete intersection of three hypersurfaces of degrees (1, 2), (1, 2) and (1, 1)

inside P2 × P4. The GLSM is a U(1)×U(1) gauge theory with the following fields:

Field Type U(1)×U(1) Charge

Φi, i = 1, · · · , 3 Chiral (1, 0)

Pi, i = 1, · · · , 3 Fermi (1, 0)

Φ̃m, m = 1, · · · , 5 Chiral (0, 1)

P̃m, m = 1, · · · , 5 Fermi (0, 1)

Φ
(A)
0 , A = 1, 2 Chiral (−1,−2)

P
(A)
0 , A = 1, 2 Fermi (−1,−2)

Φ
(3)
0 Chiral (−1,−1)

P
(3)
0 Fermi (−1,−1)

Σ Chiral (0, 0)

(12.14)

In particular, the homogeneous coordinates of the ambient space factors P2 and P4 are

identified with the GLSM fields Φi, i = 1, . . . , 3 and Φ̃m, m = 1, . . . , 5, respectively. This

GLSM can be obtained from F-theory compactified on a five-fold Y5 with Mordell-Weil

group of rank two. In fact, the required type of fibration fits into the class [92, 93, 95, 96]

constructed as an explicit hypersurface in a Bl2P2-fibration, but now with a base four-fold

B4. In this model there are six types of localised charged matter representations with

charges ±(1, 0), ±(0, 1), ±(1, 2), ±(1, 1), ±(0, 2), ±(1,−1) from fiber enhancements to I2

along surfaces. The structure of the associated fibers is depicted e.g. in figure 2 of [96].

To interpret the 2d (0, 2) theory obtained from F-theory on this class of fibrations as the

above GLSM, we must invoke suitable flux ensuring the precise spectrum (12.14) of massless

fields, while all matter with charges (0, 2), (1,−1) must become massive. The neutral field

Σ can be identified with a suitable supergravity mode. The required J-couplings follow

from the cubic gauge invariant couplings allowed by the fiber structure [92, 93, 95, 96] upon

integrating out the massive states of charge (0, 2) and (1,−1).

More generally, for complete intersections in toric varieties, the number of scalings is

reflected in the number of U(1)s of the GLSM and thus the rank of the Mordell-Weil group

of the Calabi-Yau five-fold. The degree of each of the defining equations of the CICY gives

a constraint on the U(1) charges of the theory. The interplay between the charges both in

concrete models such as e.g. [55, 92, 93, 95, 96, 98, 102, 147], as well as using the abstract

classification of U(1)n charges in [78], will be developed and explored in [31].

Complementary to this, F-theory models with gauge group U(n) ' SU(n)× U(1)/Zn
should describe the GLSMs underlying heterotic string propagation on Grassmannians [1].

Many more interesting possibilities which can be engineered from F-theory are described

e.g. in [42–44] and references therein. It will be interesting to study the large class of

GLSM gauge groups arising in F-theory from the perspective of the dual heterotic NLSM

in the future.
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13 Conclusions and future directions

F-theory on Calabi-Yau five-folds provides a rich class of (0, 2) supersymmetric string vacua

in two dimensions. In this paper we have initiated the exploration of such 2d (0, 2) F-theory

vacua by laying out the correspondence between the field theoretic data of the 2d gauge

theories and the geometry of the underlying elliptically fibered Calabi-Yau five-fold Y5.

We have applied two central tools in arriving at this dictionary: the first is the analysis

of the 8d SYM theory on a stack of 7-branes, dimensionally reduced and topologically

twisted along an internal Kähler three-cycle. This way we have determined the spectrum

of charged massless (0, 2) multiplets and their non-derivative interactions in agreement

with the structure of (0, 2) supersymmetry. Secondly, in a global compactification this

gauge and charged matter sector is encoded in the geometry of the elliptic fibers of Y5

and their singularities. Non-trivial gauge backgrounds translate into M-theory four-form

fluxes. Utilitizing M/F-theory duality, we were able to derive a rich set of global consistency

conditions, and checked the validity of our approach in terms of models with ADE-type

gauge groups, including also additional abelian gauge group factors. From these results,

many exciting avenues for exploring this new class of 2d (0, 2) theories open up.

1. Derivation of the Supergravity Spectrum: the main focus of this first analysis has

been on the gauge theoretic data of the 2d (0, 2) theories and therefore on the charged

sector. However, as demonstrated for instance by the intricate structure of Green-

Schwarz terms in the presence of U(1) gauge symmetry, the gauge sector cannot

always be analyzed in complete isolation from the supergravity modes arising from

the Calabi-Yau five-fold. An identification of the spectra in M-theory and F-theory

can be found in section 6.1, but it wold be particularly interesting to derive the

structure of superfields in the 2d (0, 2) supergravity in full detail and match these

with the dual N = 2 super-mechanics [32] obtained from M-theory.

2. Geometry of higher-dimensional elliptic Calabi-Yau varieties: our understanding of

five-folds in this paper builds upon the recent progress in describing the geometry of

elliptically fibered three- and four-folds. Nevertheless, as we have seen, the higher-

codimension fibers offer several new effects, and an in-depth analysis of these is

mandatory in order to fully understand the gauge-geometry dictionary. Our analysis

here has focused on the fiber structure without any reference to the specifics of the

base B4 of the elliptic five-fold. However, fundamental questions such as the criteria

for non-Higgsability of singularities, as analysed for three- and four-folds in [148–153],

depend on the specifics of the base. Understanding which four-folds B4 can serve as

base spaces for consistent elliptically fibered Calai-Yau five-folds is thus an important

step towards classifying the resulting 2d (0, 2) theories.

3. D3-brane sector: apart from the 7-brane sector, gauge and matter degrees of free-

dom arise from D3-branes wrapping holomorphic curves on the base B4. These are

particularly important because the matter in the 3-7 sector contributes to the gauge

anomalies of the chiral 2d (0, 2) theory. Unlike the 7-branes, the D3-brane sector is
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not automatically encoded in the geometry of the elliptic fibration. It is considerably

harder to approach via duality with M-theory, where the D3-branes dualize to M2-

branes. In this paper we have treated the D3-brane sector purely perturbatively. A

priori this is only an accurate description for certain types of singularities. Interest-

ingly, this approach nonetheless gives a consistent spectrum of 3-7 strings even for

F-theory models without an orientifold limit upon inclusion of appropriate SL(2,Z)

monodromy factors. Generalizing our treatment of the D3-brane sector to arbitrary

monodromies of the axio-dilaton τ will be an important step towards understanding

this sector completely and will be addressed in [31] on the basis of a topological twist

similar to the analysis of the 7-brane sector.34

4. Relation to 2d SCFTs and strong coupling limit: as briefly recalled in section 12, the

existence of a superconformal IR fixed point is far from trivial for 2d (0, 2) theories.

It will be interesting to apply the techniques of [139] or [6, 7] in order to address

this question for the 2d (0, 2) models obtained from F-theory [31]. The results of

these papers suggest that only a subclass of the 2d (0, 2) theories obtainable from

F-theory may flow to a strongly coupled IR SCFT, and it would be exciting to de-

velop methods for their classification. Another, possibly related direction is to study

the strong coupling regime of the 2d (0, 2) models in the limit of vanishing volume

of the base three-cycles wrapped by the 7-branes and likewise of the holomorphic

curves wrapped by the D3-branes. In this context the aforementioned study of the

base properties will play a crucial role in pursuing the ambitious long-term goal of

obtaining a classification of the 2d (0, 2) SCFTs obtainable via F-theory.

5. Heterotic/F-theory duality: while we have started exploring 2d F-theory vacua from

the perspective of duality with M-theory as well as in their Type IIB description,

another angle is via duality to the heterotic string. This requires the base B4 to be

P1-fibered over a three-fold B3. The dual heterotic theory is defined by compactifi-

cation on a Calabi-Yau four-fold Z4 which is elliptically fibered over B3. It will be

interesting to extend the construction of heterotic gauge bundles via spectral covers

known for Calabi-Yau three-folds [156] to Calabi-Yau four-folds. More generally, one

should systematically explore the construction of 2d (0, 2) gauge theories obtained via

heterotic compactification on possibly not elliptically fibered Calabi-Yau four-folds.

6. Relation to (0, 2) worldsheet theories: as the study of the 2d (0, 2) theories obtained

from F-theory progresses, it will be crucial to determine the relation between this class

of models and the (0, 2) theories considered in the literature as heterotic worldsheet

theories. As discussed in section 12.2, engineering a GLSM [1] with only abelian gauge

multiplets from F-theory requires a fibration with a non-trivial Mordell-Weil group of

rational sections as these are responsible for abelian gauge symmetries in the effective

theory, but without additional non-abelian singularities. Since the heterotic target

space geometry and gauge bundle are determined by the J and E-type interactions of

the GLSM it will be important to understand the structure of couplings in more detail,

34Studies of related D3-brane setups with varying coupling can be found in [154, 155].
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including also non-perturbative corrections. The ease with which non-abelian gauge

groups appear in F-theory suggests studying also the associated heterotic worldsheet

interpretation of the associated GLSMs.

The synthesis of the last three directions laid out above may well establish 2d (0, 2)

theories as a link in a new duality between Calabi-Yau spaces of different dimensions: as we

have seen, the geometry (plus extra M-theory data such as fluxes) of an elliptic Calabi-Yau

five-fold defines a 2d (0, 2) gauge theory. If this theory has an IR SCFT fixed-point, it

should admit an interpretation as the worldsheet theory of the heterotic string describing

compactification on another Calabi-Yau space, together with a gauge bundle modulo the

caveats we have described. The information of this effective heterotic compactification

geometry must therefore be related to the geometry of the elliptic five-fold in a non-trivial

manner. It will be exciting to explore this new connection in the future.
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A Conventions and supersymmetry variations

In this appendix we will summarize our conventions in the main text regarding the 8d SYM

theory and its dimensional reduction and topological twist.

A.1 Conventions

We construct the 8d SYM theory by dimensionally reducing 10d SYM. The twisted re-

duction of the 8d theory is then performed by further reducing on a (Euclidean signature)

6-cycle. It is therefore useful to build the 10D Gamma matrices ΓM for SO(1, 9) starting

with the SO(6) gamma matrices γm as follows

Γ0 = σ ⊗ (iσ1)⊗ 18

Γ1 = σ ⊗ σ0 ⊗ 18

Γm = σ ⊗ σ ⊗ γm , m = 2, · · · , 7
Γ8 = σ0 ⊗ 116

Γ9 = σ1 ⊗ 116 ,

(A.1)

where the abbreviation was used

σ =

(
−1 0

0 1

)
, σ0 =

(
0 1

1 0

)
, σ1 =

(
0 −i
i 0

)
. (A.2)
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These satisfy the standard 10d Clifford algebra

{ΓM ,ΓN} = 2ηMN . (A.3)

The dimensional reduction from 10d to 8d is along x8 and x9, and the transverse directions

after the reduction along MG are x0 and x1. The chirality operators in each of the relevant

dimensions will be useful in the following and are

Γ2d = Γ0Γ1 , Γ6d = iΓ2Γ3 . . .Γ7 , Γ8d = Γ2d Γ6d = iΓ0 . . .Γ7,

Γ10d = Γ0Γ1 . . .Γ9 .
(A.4)

The conventions for the Lorentzian chirality matrices are Γd = i−k
∏

Γi with d = 2k + 2.

In the Euclidean chirality matrix Γ6d we have chosen the prefactor i in order to ensure that

Γ8d = Γ2d Γ6d. Furthermore define the R-symmetry generator as

ΓR = −iΓ8Γ9 , (A.5)

which is the chirality matrix in the Euclidean 8 − 9 plane, and Γ10d = Γ8d ΓR. Reality

conditions on spinors are imposed with

B = Γ3Γ5Γ7Γ9 (A.6)

with the properties

B∗B = 1, B = BT , (A.7)

and the charge conjugation matrix in 10d is

C = B Γ0. (A.8)

The 10d 32-component spinor can be written as

Ψ10d = (ψ++, ψ̄++, ψ−+, ψ̄−+, ψ+−, ψ̄+−, ψ−−, ψ̄−−)T , (A.9)

where the first superscript denotes the 2d chirality, i.e. the eigenvalue with respect to Γ2d,

and the second superscript denotes the R-charge.

The 10d positive and negative chirality spinors, defined with respect to Γ10d, decompose

into 8d spinors with R-charges ±1 according to

16 = 8c,+R + 8s,−R = (ψ++, 0, 0, ψ̄−+, 0, ψ̄+−, ψ−−, 0)

16 = 8c,−R + 8s,+R = (0, ψ̄++, ψ−+, 0, ψ+−, 0, 0, ψ̄−−) ,
(A.10)

where
8c,+R = Ψ++ + Ψ

−+
= (ψ++, 0, 0, ψ̄−+, 0, 0, 0, 0)

8c,−R = Ψ+− + Ψ
−−

= (0, 0, 0, 0, ψ+−, 0, 0, ψ̄−−)

8s,+R = Ψ−+ + Ψ
++

= (0, ψ̄++, ψ−+, 0, 0, 0, 0, 0)

8s,−R = Ψ−− + Ψ
+−

= (0, 0, 0, 0, 0, ψ̄+−, ψ−−, 0) .

(A.11)
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Each of the Ψ (Ψ) transform as 4 (4̄) under SO(6). Let α = 1, · · · , 4 and α̇ = 1̇, · · · , 4̇ be

indices labeling the four components of 4 and 4̄, respectively. Then for instance

Ψ++ = (ψ++
α , 0, 0, 0, 0, 0, 0, 0) , Ψ

−+
= (0, 0, 0, ψ̄−+α̇, 0, 0, 0, 0) . (A.12)

The Majorana condition on the ten-dimensional spinors is

Ψ∗ = BΨ , (A.13)

in particular

BΨ++ = Ψ
+−∗

BΨ−− = Ψ
−+∗

.
(A.14)

The conjugate spinor is then defined to be

Ψ̄ = ΨTBΓ0 = ΨTC . (A.15)

Furthermore, acting with charge conjuation C = BΓ0 yields

Ψ++ = Ψ
−−

, Ψ
−−

= Ψ++ , Ψ−+ = Ψ
+−

, Ψ
+−

= Ψ−+ , (A.16)

i.e. the conjugate spinor to Ψ++ transforms in 4̄, and has SO(1, 1) and U(1)R charges −1.

Using the block form of the charge conjugation matrix, the conjugate of a 32-component

positive chirality Majorana-Weyl spinor is found to be given by

Ψ̄ =
(

(0, ψ−−), (ψ̄+−, 0), (−ψ̄−+, 0), (0,−ψ++)
)

=:
(
(0, ψ̄++), (ψ−+, 0), (−ψ+−, 0), (0,−ψ̄−−)

) (A.17)

in terms of its constituent SO(6) Weyl spinors. The latter are given for instance by

ψ−−α = (ψ1, ψ2, ψ3, ψ4)→ (ψ̄++)α̇ = (−ψ4, ψ3,−ψ2, ψ1), (A.18)

(ψ̄+−)
α̇

= (ψ̄1̇, ψ̄2̇, ψ̄3̇, ψ̄4̇)→ (ψ−+)α = (ψ̄4̇,−ψ̄3̇, ψ̄2̇,−ψ̄1̇). (A.19)

We will make frequent use of the decomposition of the vector and spinor representations

under SU(4)→ SU(3)×U(1), under which

4→ 3−1 + 13 , 4̄→ 3̄1 + 1−3 , 6→ 32 + 3̄−2 . (A.20)

Let us fix the embedding of SU(3) into SU(4) by the convention that for the 4̄ representa-

tion, i.e. the anti-chiral spinor ψ̄α̇, we identify

(ψ̄1̇, ψ̄2̇, ψ̄3̇)←→ 3̄1, ψ̄4̇ ←→ 1−3. (A.21)

Since the product of an anti-chiral spinor ψ̄α̇ with the conjugate of a chiral spinor,

ψ̄α̇ψ̄
α̇, forms a singlet, this implies that for the conjugate spinor the components ψ̄4̇ and

(ψ̄1̇, ψ̄2̇, ψ̄3̇) correspond to the singlet and the triplet, respectively. Remembering the rela-

tion (A.18) defining the conjugate spinor we conclude that

(−ψ4, ψ3,−ψ2)←→ 3−1, ψ1 ←→ 13. (A.22)
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With conventions fixed like this, the decomposition of the vector representation of

SO(6) is determined uniquely. Given a vector Am, m = 2, . . . , 7, we interpret its com-

ponents in terms of the antisymmetric 6 of SU(4) and its conjugate with the help of the

conjugate SO(6) gamma matrices

∑
m

Am(γm) β
α =


0 A6 + iA7 A4 + iA5 A2 + iA3

−A6 − iA7 0 A2 − iA3 −A4 + iA5

−A4 − iA5 −A2 + iA3 0 A6 − iA7

−A2 − iA3 A4 − iA5 −A6 + iA7 0

 (A.23)

∑
m

Am(γ†m)α̇
β̇

=


0 −A6 − iA7 −A4 − iA5 −A2 + iA3

A6 + iA7 0 −A2 − iA3 A4 − iA5

A4 + iA5 A2 + iA3 0 −A6 + iA7

A2 − iA3 −A4 + iA5 A6 − iA7 0

 . (A.24)

In the decomposition 6→ 32 + 3̄−2, the 3̄−2 corresponds to the two-index anti-symmetric

representation of SU(3). With the anti-fundamental representation 3̄1 fixed to be associated

with spinors indices 1̇, 2̇, 3̇ by (A.21), there exists a singlet in the product

(3̄2)β̇ (3̄−1)α̇ (3̄−1)γ̇ εβ̇α̇γ̇ , α̇, β̇, γ̇ ∈ 1̇, 2̇, 3̇. (A.25)

For example, the component (3̄2)3̇ must correspond to the entry in the representation (A.24)

of the antisymmetric 6 of SU(4) which contracts with the component 3̄1̇
−1 and 3̄2̇

−1, i.e. the

entry associated with (γ†m)2̇
1̇
). In all this yields the identification

Aβ̇ =


∑

mAm(γ†m)3̇
2̇∑

mAm(γ†m)1̇
3̇∑

mAm(γ†m)2̇
1̇
)

 =

 A2 + iA3

−A4 − iA5

A6 + iA7

 ←→ 3̄−2 . (A.26)

Applying analogous reasoning to the representation 32, or simply using that its com-

ponents are the complex conjugate of those of 3̄−2, we furthermore identify

Aβ =


∑

mAm(γm) 3
2∑

mAm(γm) 4
2∑

mAm(γm) 4
3

 =

 A2 − iA3

−A4 + iA5

A6 − iA7

 ←→ 32 . (A.27)

A.2 Variations

The variation of Φ8 and Φ9 is given by

iδΦ8 = ε̄Γ8 Ψ = ε−−α̇(ψ̄+−)α̇ + (ε̄+−)αψ−−α − (ε̄−+)αψ++
α − (ε++)α̇(ψ̄−+)

α̇
(A.28)

= (ε̄++)α̇(ψ̄+−)α̇ + (ε−+)αψ−−α − (ε+−)αψ++
α − (ε̄−−)α̇(ψ̄−+)α̇ (A.29)

and

iδΦ9 = ε̄Γ9 Ψ = −iε−−α̇(ψ̄+−)α̇ − i(ε̄+−)αψ−−α − i(ε̄−+)αψ++
α − i(ε++)α̇(ψ̄−+)

α̇
(A.30)

= −i(ε̄++)α̇(ψ̄+−)α̇ − i(ε−+)αψ−−α − i(ε+−)αψ++
α − i(ε̄−−)α̇(ψ̄−+)α̇ (A.31)
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and thus

i δ(Φ8 + iΦ9) = 2
(
ε−− ψ̄+− + ε̄+− ψ−−

)
= 2

(
ε̄++ ψ̄+− + ε−+ ψ−−

)
, (A.32)

i δ(Φ8 − iΦ9) = −2
(
ε̄−+ ψ++ + ε++ ψ̄−+

)
= −2

(
ε+− ψ++ + ε̄−− ψ̄−+

)
. (A.33)

The variation of Am takes the form

i δAm = (0, ε−−)γm

(
ψ++

0

)
+ (ε̄+−, 0)(−γm)

(
0

ψ̄−+

)
(A.34)

+ (−ε̄−+, 0)(−γm)

(
0

ψ̄+−

)
+ (0,−ε++)γm

(
ψ−−

0

)
. (A.35)

With this we find

iδAβ |±± = 2

 (ε̄±±)1̇ ψ
±±
1 + (ε̄±±)4̇ ψ

±±
4

(ε̄±±)2̇ ψ
±±
1 − (ε̄±±)4̇ ψ

±±
3

(ε̄±±)3̇ ψ
±±
1 + (ε̄±±)4̇ ψ

±±
2

 (A.36)

and

iδAβ̇ |±∓ = 2

 (ε±∓)1(ψ̄±∓)1̇ + (ε±∓)4(ψ̄±∓)4̇

(ε±∓)1(ψ̄±∓)2̇ − (ε±∓)3(ψ̄±∓)4̇

(ε±∓)1(ψ̄±∓)3̇ + (ε±∓)2(ψ̄±∓)4̇

 . (A.37)

After the twist only the terms involving (ε̄++)4̇ and (ε̄−+)1 survive as these correspond

to singlets of SU(3). The other variations iδAβ̇ |±± and iδAβ |±∓ only contain combinations

of ε which do not survive the twist.

A.3 Supersymmetry variations for twisted theory

To derive the supersymmetry variations in 2d, we start with the 10d SYM theory

L10d = − 1

4g2
Tr
(
FMNF

MN
)
− i

2g2
Tr
(
ΨΓMDMΨ

)
, (A.38)

which is invariant under the supersymmetry variations

δAM = −iε̄ΓMΨ

δΨ =
1

2
FMNΓMN ε .

(A.39)

Using the spinor and gamma-matrix decompositions in the last section, and noting that

the supercharges that remain after the twist are

ε− = ε−− , ε̄− = ε̄−+ , (A.40)

the variations of the gauge field AM reduce as follows

iδΦ8 = ε̄Γ8 Ψ = ε−−4̇(ψ̄+−)4̇ − ε̄−+ 1ψ++
1 ,

iδΦ9 = ε̄Γ9 Ψ = −iε−−4̇(ψ̄+−)4̇ − iε̄−+ 1ψ++
1 ,

(A.41)
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and thus
δ(Φ8 + iΦ9) ≡ δϕ = −2i ε−− ψ̄+− ≡ −

√
2 ε−χ+,

δ(Φ8 − iΦ9) ≡ δϕ̄ = +2i ε̄−+ ψ++ ≡ +
√

2 ε̄−χ̄+ .
(A.42)

The variation of the 6d gauge field Am takes the form

i δAm = (0, ε−−)γm

(
ψ++

0

)
+ (−ε̄−+, 0)(−γm)

(
0

ψ̄+−

)
. (A.43)

Projecting onto the chiral and anti-chiral spinor components in 3 and 3̄, respectively, yields

δAα ≡ δa = 2i ε−−ψ++
α ≡ −

√
2 ε−ψ+,

δAα̇ ≡ δā = −2i ε̄−+ψ̄+−
α̇ ≡ +

√
2 ε̄−ψ̄+ .

(A.44)

Furthermore, the variation of the 2d vector field components are

δv0 = −δv1 = iε−η̄− − iε̄−η− . (A.45)

Likewise the gaugino variation δΨ reduces to

δΨ++ = ε−

(
−F0,8 − F1,8 + iF0,9 + iF1,9

031

)
+ ε̄−


0

F0,6 + F1,6 − i (F0,7 + F1,7)

F0,4 + F1,4 − i (F0,5 + F1,5)

F0,2 + F1,2 − i (F0,3 + F1,3)

028



δΨ̄+− = ε−


020

F0,2 + F1,2 + i(F0,3 + F1,3)

−F0,4 − F1,4 − i(F0,5 + F1,5)

F0,6 + F1,6 + i(F0,7 + F1,7)

09

+ ε̄−

 023

F0,8 + F1,8 + i(F0,9 + F1,9)

08



δΨ−− = ε−



024

−F0,1 + i (F2,3+F4,5+F6,7−F8,9)

F2,4 − F3,5 + i (F2,5 + F3,4)

F3,7 − F2,6 − i (F2,7 + F3,6)

F4,6 − F5,7 + i (F4,7 + F5,6)

04


+ ε̄−


025

F6,8 + F7,9 + i (F6,9 − F7,8)

F4,8 + F5,9 + i (F4,9 − F5,8)

F2,8 + F3,9 + i (F2,9 − F3,8)

04



δΨ̄−+ = ε−


012

−F2,8 + iF2,9 − iF3,8 − F3,9

F4,8 − iF4,9 + iF5,8 + F5,9

−F6,8 + iF6,9 − iF7,8 − F7,9

017

+ ε̄−



012

F5,7 − F4,6 + i (F4,7 + F5,6)

F3,7 − F2,6 + i (F2,7 + F3,6)

F3,5 − F2,4 + i (F2,5 + F3,4)

−F0,1 − i (F2,3+F4,5+F6,7−F8,9)

016


,

(A.46)

where the subscript of Ψ indicates 2d chirality and R-symmetry charges, respectively, i.e.

these are the projections of the 10d spinor onto the components with these 2d chiralities
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and R-symmetry. Furthermore, we projected onto either 4 or 4̄. Rewriting this in terms

of the component fields (3.8) the variation of δΨ++ and δΨ−− gives rise to

δψ++
1 ≡ 1

i
√

2
δχ̄+ = −ε−(D0 +D1)(Φ8 − iΦ9) ≡ −ε−(D0 +D1)ϕ̄

δψ++
α ≡ − 1

i
√

2
δψ+ = −ε̄−(D0 +D1)Aα ≡ −ε̄−(D0 +D1) a

δψ−−1 ≡ −δη− = ε−(−F01 + i(F2,3 + F4,5 + F6,7 − F8,9)) ≡ ε−(−F01 − iD)

δψ−−α ≡ δρ− = ε−εα
β̇γ̇Dβ̇Aγ̇ + ε̄−DαΦ+

(A.47)

δψ̄+−
4̇
≡ 1

i
√

2
δχ+ = ε̄−(D0 +D1)(Φ8 + iΦ9) ≡ ε̄−(D0 +D1)ϕ

δψ̄+−
α̇ ≡ − 1

i
√

2
δψ̄+ = ε−(D0 +D1)Aα̇ ≡ ε−(D0 +D1)ā

δψ̄−+
4̇
≡ −δη̄− = ε̄−(−F01 − i(F2,3 + F4,5 + F6,7 − F8,9)) ≡ ε̄−(−F01 + iD)

δψ̄−+
α̇ ≡ δρ̄− = ε̄−εα̇

βγDβAγ − ε−Dα̇Φ− ,

(A.48)

where ε is the invariant tensor of SU(3), satisfying εα
β̇γ̇ = −εαγ̇β̇ , which enables the

isomorphism between Λ23̄ and 3. The variations of Ψ−+ and Ψ+− yield the conjugates to

these variations.

B Examples: SU(6) and E6

We collect various useful properties of elliptic fibrations, their singularity resolution, and

intersection rings in the following. Whenever possible we refer back to the general analysis

of resolutions in [104], which applies to four-folds, and only give details whenever necessary

for the five-fold case.

B.1 SU(6) theories

For illustration consider SU(6). Again the general k resolutions have appeared in [104].

The Tate form is

y2 + xyb1 + yb3ζ
3
0 = x3 + x2b2ζ0 + xb4ζ

3
0 + b6ζ

6
0 . (B.1)

The classes of the coefficients are

[b1] = c1, [b2] = 2c1 −MG, [b3] = 3c1 − 3MG, [b4] = 4c1 − 3MG, [b6] = 6c1 − 6MG.

(B.2)

From the discriminant

∆ = b41
(
b4 (b1b3 + b4)− b21b6

)
ζ6

0 (B.3)

+ b21b2
(
8b1b3b4 + 8b24 − b21

(
b23 + 12b6

))
ζ7

0

− 8
(
b22
(
−2b1b3b4 − 2b24 + b21

(
b23 + 6b6

)))
ζ8

0

+
(
−16b32

(
b23+4b6

)
+(b1b3+2b4)

(
−32b1b3b4−32b24+b21

(
b23+36b6

)))
ζ9

0 +O(ζ0)10 ,
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we identify the two codimension two loci b1 = 0, which corresponds to matter in the

Λ26=16, and P6 = b1b3b4+b24−b21b6 = 0 associated with the fundamental 6 representations.

Consider the resolution sequence

(x, y, ζ0; ζ1), (x, y, ζ1; ζ2), (x, y, ζ2; ζ3), (y, ζ1; ζ4), (y, ζ2; ζ5) . (B.4)

The exceptional sections correspond to the simple roots

(α0, α1, α2, α3, α4, α5)↔ (ζ0, ζ1, ζ2, ζ3, ζ5, ζ4) . (B.5)

Again the antisymmetric matter is localized along b1 = 0, and the fundamental matter at

P6 = b24 + b1b1b4 − b21b6 = 0. In codimension four, this model has a non-minimal locus

b1 = b2 = b4 = 0, where the Tate form vanishing orders are (1, 2, 3, 4, 6). Thus, we need to

remove this non-minimal locus

[b1] · [b2] · [b4] = c1 · (4c1 − 3MG) · (2c1 −MG) = 0 . (B.6)

The fiber splittings were derived in general in [104] in codimension two and three. As can

be seen from the codimension three fibers therein, the codimension three enhancement to

I∗m, i.e. to a D-type singularity, is again monodromy reduced, as the fiber is characterized

in terms of a quadratic equation. In the above resolution c4(Y5) is computed to be

MG ·Y5 c4(Y5) = MG ·B4

(
360c3

1 − 894c2
1MG + 12c1c2 + 753c1M

2
G − 210M3

G

)
. (B.7)

Anomaly cancellation can be checked with the following expressions for the chiralities of

the matter, for trivial gauge bundle:

χbulk =
1

24
MG (c1 −MG)

(
−c1MG + c2 +M2

G

)
χ(b1,15) =

1

24
c1MG

(
2c2 +M2

G

)
χ(P6,6) =

1

12
MG (4c1 − 3MG)

(
−96c1MG + 63c2

1 + 2c2 + 37M2
G

)
+ χsing

6 .

(B.8)

The corrections due to the higher codimension singular loci take the form given in (6.33),

which accounts for the singular matter locus P along b1 = b4 = 0 and the additional

contributions from the double curves when δ = b23 + b6 = 0,

χsing
6 = −1

4
c1MG (7c1 − 6MG) (4c1 − 3MG) . (B.9)

The anomaly contributions are, including the group theory factors,

Asurface = 2χ(b1,15) +
1

2
χ(P6,6) , Abulk = −6χbulk , (B.10)

and cancel the contribution from A3−7 detailed in (B.7).
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The Chern-Simons terms are easily computed as well

c4(Y5) ·D1 = −4c1M
3
G + 2c2

1M
2
G + 2c2M

2
G − 2c1c2MG + 2M4

G

c4(Y5) ·D2 = −3c1M
3
G + 2c2

1M
2
G + 2c2M

2
G + 2M4

G

c4(Y5) ·D3 = 760c1M
3
G − 874c2

1M
2
G − 10c2M

2
G + 336c3

1MG + 14c1c2MG − 220M4
G

c4(Y5) ·D4 = 6c1M
3
G − 28c2

1M
2
G + 2c2M

2
G + 24c3

1MG + 2M4
G

c4(Y5) ·D5 = −2c1M
3
G + 2c2

1M
2
G + 2c2M

2
G + 2c1c2MG + 2M4

G .

(B.11)

The box graphs (from which we determine
∑

λCλDk) for the even SU(2k) groups have

been determined in [77], and confirm that the intersections of the Cartan divisors with

c4(Y5) can be written in terms of the chiralities as

1

24
c4(Y5) ·D1 = −2χbulk

1

24
c4(Y5) ·D2 = −2χbulk + χ(b1,15)

1

24
c4(Y5) ·D3 = −2χbulk + χ(P6,6)

1

24
c4(Y5) ·D4 = −2χbulk + χ(b1,15)

1

24
c4(Y5) ·D5 = −2χbulk + 2χ(b1,15) .

(B.12)

B.2 E6 theories

Finally, we discuss some properties of the exceptional gauge groups, which appear in the

main text in section 11.5. The E6 Tate form with vanishings (1, 2, 2, 3, 5) is

y2 + b1ζ0xy + b3ζ
2
0y = x3 + b2ζ

2
0x

2 + b4ζ
3
0x+ b6ζ

5
0 . (B.13)

The only matter locus in codimension one above ζ0 = 0 is b3 = 0, which gives rise to matter

in the 27. We resolve the model with the following chain of blowups

(x, y, ζ0; ζ1) , (x, y, ζ1; ζ2) , (y, ζ1; ζ3) , (y, ζ2; ζ4) , (ζ2, ζ3; ζ5) , (ζ3, ζ4; ζ6) , (ζ3, ζ5; ζ7) .

(B.14)

The simple roots are associated to the exceptional sections, and thus Cartan divisors, as

follows35

(α1, α2, α3, α4, α5, α6, α0) ↔ (ζ4, ζ6, ζ7, ζ5, ζ2, ζ1, ζ0) . (B.15)

With this ordering, the intersections with c4(Y5) are

c4(Y5) ·D1 = 538c1M
3
G − 758c2

1M
2
G − 8c2M

2
G + 360c3

1MG + 14c1c2MG − 128M4
G

c4(Y5) ·D2 = 35c1M
3
G − 50c2

1M
2
G − 2c2M

2
G + 24c3

1MG + 4c1c2MG − 8M4
G

c4(Y5) ·D3 = −4c1M
3
G + 2c2

1M
2
G + 2c2M

2
G − 2c1c2MG + 2M4

G

c4(Y5) ·D4 = 35c1M
3
G − 50c2

1M
2
G − 2c2M

2
G + 24c3

1MG + 4c1c2MG − 8M4
G

c4(Y5) ·D5 = −3c1M
3
G + 2c2

1M
2
G + 2c2M

2
G + 2M4

G

c4(Y5) ·D6 = −4c1M
3
G + 2c2

1M
2
G + 2c2M

2
G − 2c1c2MG + 2M4

G .

(B.16)

These are matched with the chiralities in (11.44).

35Note that in this resolution ζ1 = 0 implies ζ3 = 0, so these are not independent divisors.
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C Type IIB orientifolds on four-folds with D7 and D3-branes

In this appendix we describe the weak coupling Type IIB orientifold limit of the 2-dimen-

sional F-theory compactifications considered in the bulk of this work. In particular we

will uncover a rich structure of Green-Schwarz-type couplings emanating from the Chern-

Simons couplings of the branes. Much of the discussion in this appendix parallels the

analysis in [107, 157] for 4-dimensional Type IIB compactifications on Calabi-Yau three-

folds. We refer to this work and references therein for generalities on Type IIB orientifold

compactifications with 7-branes.

Consider therefore a Type IIB orientifold compactification on a Calabi-Yau four-fold

X4, endowed with a holomorphic involution σ : X4 → X4. Its fix-point locus is given

by an O7-plane wrapping a holomorphic divisor, i.e. a complex three-cycle, DO7 ⊂ X4.

For simplicity we assume the absence of O3-planes, which would wrap holomorphic curves

on X4; these are easily included into the framework. A stack of n coincident D7-branes

branes wrapping a divisor Di at generic position relative to the orientifold plane carries

a U(n) gauge group. By generic we mean that Di 6= D′i with D′i = σ(Di) the orientifold

image divisor. Invariant branes give rise to gauge groups of type Sp(n) or SO(n). Divisors

wrapped by single branes invariant under σ as a whole, but not pointwise, are of Whitney

umbrella type and exhibit a codimension one locus of double point singularities at the

intersection with the O7-plane [107].

The singularity modifies the naive result for the Ramond-Ramond charges of such

singular branes as detailed in [107] for divisors on Calabi-Yau three-folds, where the locus

of double point singularities is a curve. This computation must be generalized to divisors

on four-folds, where now the higher-dimensional nature of the singularities along a surface

as opposed to a curve must be taken into account. For simplicity we avoid this technical

complication by focusing on non-invariant brane divisors Di 6= D′i, which are assumed to

be smooth.

The induced brane charges of this setup are computed by expanding the Chern-Simons

action for the D7-branes and the O7-plane,

SD7 = 2π

∫
D7

tr e
1

2π
F
∑
2p

C2p

√
Â(TD7)

Â(ND7)
,

SO7 = −16π

∫
O7

∑
2p

C2p

√
L(1

4TO7)

L(1
4NO7)

.

(C.1)

Here TD7 and ND7 denote the tangent and normal space to the D7-brane (and similarly

for the O7-plane) and F = F + ι∗B2 in terms of the field strength F of the D7-brane and

the pullback of the B-field. We are working in conventions where `s = 1. The relevant

terms in the A-roof genus and the Hirzebruch L-genus are

Â(TD) = 1− 1

24
p1(TD) + . . . = 1− 1

24
(c2

1(TD)− 2c2(TD)) + . . . ,

L(TD) = 1 +
1

3
p1(TD) + . . . = 1 +

1

3
(c2

1(TD)− 2c2(TD)) + . . . ,

(C.2)

– 89 –



J
H
E
P
0
5
(
2
0
1
6
)
0
5
9

together with analogous terms for the normal bundles. As a result of the adjunction formula

c1(TD) = −c1(ND) for a holomorphic divisor D on a Calabi-Yau four-fold X4 and the fact

that c2(ND) = 0 the curvature terms follow as√
Â(TD7)

Â(ND7)
= 1 +

1

24
c2(D7),

√
L(1

4TO7)

L(1
4NO7)

= 1− 1

48
c2(O7) , (C.3)

where all omitted terms are forms of degree 8 or higher. Under the orientifold action the

field strength on each brane is mapped to its cousin on the orientifold image brane

Fi → −F ′i = −σ∗Fi , (C.4)

where the minus sign is due to the worldsheet parity action. Furthermore, recall that B2,

C2 and C6 are orientifold odd, while C0, C4 and C8 are orientifold even.

In general the compactification also includes a number of D3-branes filling R1,1 and

wrapping holomorphic curves CΞ on X4. The D3-brane action takes a similar form

SD3 = −2π

∫
D3

tr e
1

2π
F
∑
2p

C2p

√
Â(TD3)

Â(ND3)
, (C.5)

where the relative minus sign is crucial. For a D3-brane wrapping a complex curve on X4

the geometric curvature terms vanish for dimensional reasons.

C.1 Tadpoles and Green-Schwarz terms

Let us now systematically reduce the Chern-Simons interactions to 2 dimensions. From

the coupling of C8 one deduces the standard condition for cancellation of the

D7− tadpole :
∑
i

ni(Di +D′i)
!

= 8DO7 . (C.6)

Next reduce the orientifold-odd 6-form C6 in terms of a basis {ω(4,−)
A } of H4

−(X4) and

{ω(6,−)
M } of H6

−(X4) as

C6 = cA2 ∧ ω
(4,−)
A + cM0 ω

(6,−)
M , (C.7)

where cA2 and cM0 are the associated 2-forms and axionic scalar fields in the 2-dimensional

field theory. Inserted into the Chern-Simons actions, this ansatz results in two types of

terms, one of which is a tadpole for cA2 . In order for the compactification to describe a

consistent vacuum we must require the cancellation of this

D5− tadpole :
∑
i

(∫
Di

trFi ∧ ω(4,−)
A −

∫
D′i

trF ′i ∧ ω
(4,−)
A

)
!

= 0 . (C.8)

As in compactifications to 4 dimensions, the D5-tadpole constrains the choice of consistent

gauge fluxes in Type IIB orientifolds, while it is automatically satisfied in the F/M-theory

description of G4-fluxes as elements of H4(Y5). The second type of terms couple the axions
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cM0 via Green-Schwarz-Stückelberg type interactions to the abelian part of the 7-brane

gauge field strengths Fi along R1,1,

S
(1)
GS =

∑
M,i

∫
R1,1

QMi c
M
0 trFi, QMi =

∫
Di

ω
(6,−)
M −

∫
D′i

ω
(6,−)
M . (C.9)

These terms are the 2-dimensional analogue of the geometric Stückelberg mass terms whose

uplift to F-theory has been studied in detail in [121] for compactifications to 4 spacetime

dimensions. Note that these couplings can be non-zero only if Di 6= D′i in homology.

A similar expansion of the self-dual, orientifold even 4-form C4 involves a basis {w(2,+)
a }

of H2
+(X4) and {w(4,+)

k } of H4
+(X4),

C4 =
∑
a

ca2 ∧ w(2,+)
a +

∑
k

ck0 w
(4,+)
k . (C.10)

The tadpole for ca2 receives contributions from all D7-branes, D3-branes and the O7-plane.

The total class C =
∑

ΞCΞ of all curves wrapped by the D3-branes is thus determined by

requiring cancellation of this

D3− tadpole : C + C ′
!

=
∑
i

ni
24

(
Di ∧ c2(Di) +D′i ∧ c2(D′i)

)
+

1

6
DO7 ∧ c2(DO7)

+
∑
i

1

8π2

(
Di ∧ trF2

i +D′i ∧ trF ′i
2
)
. (C.11)

Furthermore we observe a flux-induced Green-Schwarz-Stückelberg term for the abelian

part of the 7-brane field strengths Fi along R1,1 of the form

S
(2)
GS =

∑
k,i

∫
R1,1

Qki c
k
0 trFi, Qki =

1

4π

(∫
Di

trFi ∧ w(4,+)
k +

∫
D′i

trF ′i ∧ w
(4,+)
k

)
. (C.12)

Note that H4(X4) contains both a (3, 1) and (1, 3) subspace and a (2, 2) subspace. Since

BPS conditions exclude internal gauge fields of (2, 0) and (0, 2) Hodge type, only the terms

associated with

w
(4,+)
k ∈ H2,2

+ (X4) (C.13)

contribute to (C.12) in a supersymmetric vacuum.

From expansion of C2 in terms of a basis {ω(2,−)
p } of H2

−(X4),

C2 =
∑
p

cp0 ω
2,−
p , (C.14)

we receive first another contribution to the Green-Schwarz-Stückelberg coupling of the

7-brane U(1) fields,

S
(3)
GS =

∑
p,i

∫
R1,1

Qpi c
p
0 trFi, (C.15)

Qpi =

∫
Di

(
1

24π2
trF2

i +
1

24
c2(Di)

)
∧ ω(2,−)

p −
∫
D′i

(
1

24π2
trF ′2i +

1

24
c2(D′i)

)
∧ ω(2,−)

p
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The curvature induced terms are non-zero only if Di 6= D′i in homology, in which case (C.15)

contributes to the geometric Stückelberg mass terms for Fi in addition to (C.9). For the

flux-induced part to be non-vanishing we need either Di 6= D′i or Fi 6= F ′i in homology.36

There is also a geometric Green-Schwarz-Stückelberg term for the U(1) gauge fields origi-

nating from the D3-branes,

S
(1)
GS,D3 =

∑
Ξ,i

∫
R1,1

QΞp trFΞ, QΞp =
1

2π

(∫
CΞ

ω(2,−)
p −

∫
C′Ξ

ω(2,−)
p

)
, (C.16)

which is non-zero for CΞ 6= C ′Ξ in homology.

It is worthwhile noting that there can be no F1 or D1-brane tadpole induced because B2

and C2 are orientifold-odd and thus their 2-form components along R1,1 are projected out.

Finally, the zero-form C0 yields another contribution to the Green-Schwarz terms of

the 7-brane gauge fields,

S
(4)
GS =

∑
i

∫
R1,1

Q0iC0 trFi (C.17)

Q0i =

∫
Di

(
1

24(2π)3
trF3

i +
1

48(2π)
trFic2(Di)

)
+

∫
D′i

(
1

24(2π)3
trF ′3i +

1

48(2π)
trF ′ic2(D′i)

)
,

and of the D3-brane U(1) fields,

S
(2)
GS,D3 =

∑
Ξ

∫
R1,1

Q0ΞC0 trFΞ Q0Ξ = −
∫
CΞ

1

4π
trFΞ −

∫
C′Ξ

1

4π
trF ′Ξ . (C.18)

However, a non-trivial gauge flux on the D3-brane necessarily induces a D-term. For vanish-

ing VEVs of the localised charged matter states, this is not consistent with supersymmetry.

More information on the D3-brane system will be provided in [31].

C.2 Anomaly cancellation in a prototypical example

In the remainder of this section we restrict ourselves to a simple example of a brane

setup with n 7-branes along a divisor W and one extra D7-brane along the divisor D,

each accompanied by their orientifold images. The 7-brane tadpole cancellation condition

requires that

n(W +W ′) + (D +D′) = 8DO7. (C.19)

We assume that all divisors can be chosen to be smooth, which must be verified in concrete

examples. Modulo Stückelberg masses for the abelian gauge group factors, the gauge

group from the 7-brane sector is now U(n)× U(1). The uplift of such models to F-theory

contains either massless or Stückelberg massive U(1) factors in addition to an SU(n) gauge

group [114].

36Here we view the class Fi as a class on X4 pulled back to Di. This is justified because the part of Fi
which is not in the image of the pullback map does not contribute to (C.15).
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The total class of all wrapped spacetime-filling D3-branes is determined by (C.11),

which becomes

C + C ′ = Qgeom +Qgauge,

Qgeom =
1

24

(
n
(
c2(W ) ∧W + c2(W ′) ∧W ′

)
+
(
c2(D) ∧D + c2(D′) ∧D′

))
+

1

6
c2(DO7) ∧DO7,

Qgauge = n
(
ch2(LW ) ∧W + ch2(L′W ) ∧W ′

)
+ ch2(LD) ∧D + ch2(L′D) ∧D′.

(C.20)

Here we have introduced the line bundle LW with curvature c1(LW ) = 1
2π trFi (and likewise

for LD). For simplicity we are again assuming vanishing closed string 3-form flux and

absence of O3-planes. It is convenient to organise the D3-brane curve class and its image as

C =
1

24
(n c2(W ) ∧W + c2(D) ∧D + 2c2(DO7) ∧DO7) + ch2(LW ) ∧W + ch2(LD) ∧D,

C ′ =
1

24

(
n c2(W ′) ∧W ′+c2(D′) ∧D′+2c2(DO7) ∧DO7

)
+ch2(L′W ) ∧W ′+ ch2(L′D) ∧D′.

(C.21)

To compute the spectrum in the D7-D7-brane sector, we work in the upstairs geometry

prior to orientifolding. The analysis of sections 3 and 4.1, especially the results (3.16)

and (4.5), carry over immediately. Alternatively at weak coupling an explicit analysis of

open string vertex operators along the lines of [158] can be performed. The contributions

of the bulk and surface matter to the SU(n) gauge anomalies are:

Locus Representation SU(n) - anomaly contribution

W Adj0,0 −nχ(W )

W ′ Adj0,0 −nχ(W )

W ∩D n̄−1,1
1
2 χ(W ∩D)

W ∩D′ n̄−1,−1
1
2 χ(W ∩D′)

W ′ ∩D n1,1
1
2 χ(W ′ ∩D)

W ′ ∩D′ n1,−1
1
2 χ(W ′ ∩D′)

W ∩W ′ Λ2n2,0 2× n−2
2 χ(W ∩W ′)

(C.22)

The subscripts denote the charge under U(1) ⊂ U(n) and the U(1) gauge group on D. The

first two lines denote the bulk spectrum on the SU(n) D7-branes and their image, which we

count as independent since we are working upstairs prior to taking the orientifold quotient.

Independent fundamental matter is localised at W ∩D and W ∩D′. This matter is mapped

to the matter at W ′ ∩ D′ and W ′ ∩ D under the orientifold action. Furthermore we are

assuming for simplicity that the intersection of W with W ′ is entirely contained inside the

orientifold plane and therefore carries antisymmetric matter only.37 In order to make this

37More generally, W ∩ W ′ = W ∩ O7 + Crest. The locus Crest, which is not contained inside the O7-

plane, gives rise to matter in the symmetric and the antisymmetric representation of U(n). This matter

locus uplifts to a self-intersection of the In discriminant locus in F-theory and is thus absent in generic

Tate models.
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assumption we impose that W W ′ −W O7 = 0 ∈ H4(X4). This constraint decomposes

into two independent relations to be satisfied by the orientifold even and odd components

W± ∈ H2
±(X4) of W . Decomposing W = W+ + W−, W ′ = W+ − W− and using that

W− ∧O7 = 0 in homology since orientifold odd classes pull back trivially to the O7-plane

(see e.g. [157] in the present context), we arrive at the two constraints

1

4
(W +W ′)(W +W ′)− 1

2
(W +W ′)O7 = 0 ∈ H4(X4),

1

4
(W −W ′)(W −W ′) = 0 ∈ H4(X4),

(C.23)

to be imposed in all expressions that follow. Since we are working upstairs and counting

the adjoint and the fundamental matter twice, we must do the same for the anti-symmetric

matter. The group theoretic factors are the ones given in (9.11). The relevant chiral indices

are given in (3.17) and (4.6). For instance, for vanishing gauge flux F = 0 the expressions

reduce to

χ(W ) =
1

24

∫
W
c1(W )c2(W ), (C.24)

χ(W ∩D) =

∫
W∩D

1

12
(c2

1(W ∩D)+c2(W ∩D))+
1

2
c1(W ∩D)c1(K

−1/2
W∩D)+

1

2
c2

1(K
−1/2
W∩D).

These formulae assume are valid for smooth three-cycle W and matter loci W ∩D, W ∩D′,
where the standard form of the Hirzebruch-Riemann-Roch index theorem is valid. In the

presence of singularities correction terms may become necessary.

The D3-branes wrapping the curve class C and the image D3-branes intersect each

of the 7-branes in a set of points. At each point a Fermi multiplet in the fundamental

representation of the D7-brane gauge group is localised. In the upstairs geometry we thus

find the following charged matter in the D3-D7 sector, where the subscripts denote the

charges under U(1) ⊂ U(n) and under the U(1) gauge group realized on the D3-branes

(assuming that the latter come as single branes as opposed to stacks):

Locus Representation SU(n) anomaly contribution

W ∩ C n̄−1,1 −1
2

∫
X4
C ∧W

W ∩ C ′ n̄−1,−1 −1
2

∫
X4
C ′ ∧W

W ′ ∩ C n1,1 −1
2

∫
X4
C ∧W ′

W ′ ∩ C ′ n1,−1 −1
2

∫
X4
C ′ ∧W ′

(C.25)

The anomaly contributions from all sources of matter sum up to zero if we impose

the D7-brane tadpole cancellation condition (C.19) as well as the two constraints (C.23)

underlying the spectrum (C.22).

Likewise one systematically check anomaly cancellation in the presence of gauge flux.

In general, unless W = W ′ and D = D′ in homology, the gauge flux is subject to the D5

-tadpole cancellation condition (C.8) and this constraint is crucial in order for the spectrum

to be free of anomalies. Consider as the simplest example a setup where W = W ′ and

D = D′ in homology together with a line bundle LD on D whose first Chern class is the
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pullback of some divisor class on X4. The extra contribution due this gauge flux is first

from the change of the chiral index counting matter localised on W ∩D and W ∩D′ (plus

images), see (4.6), and second due to the change in the D3-brane tadpole (C.21) and the

resulting extra number of charged multiplets in the D7-D3-brane sector. Both effects are

found to precisely cancel,

∆A = +
1

2
ch2(LD)

(
WD +WD′ +W ′D +W ′D′

)
+ (C.26)

+

(
−1

2

)
ch2(LD)

(
DW +DW ′ +D′W ′ +D′W

)
= 0 . (C.27)

Generalisations to other flux configurations along these lines are immediate.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[41] M. Cvetič, T.W. Grimm and D. Klevers, Anomaly Cancellation And Abelian Gauge

Symmetries In F-theory, JHEP 02 (2013) 101 [arXiv:1210.6034] [INSPIRE].

[42] R. Donagi and E. Sharpe, GLSM’s for partial flag manifolds, J. Geom. Phys. 58 (2008)

1662 [arXiv:0704.1761] [INSPIRE].

[43] H. Jockers, V. Kumar, J.M. Lapan, D.R. Morrison and M. Romo, Nonabelian 2D Gauge

Theories for Determinantal Calabi-Yau Varieties, JHEP 11 (2012) 166 [arXiv:1205.3192]

[INSPIRE].

[44] J. Halverson, V. Kumar and D.R. Morrison, New Methods for Characterizing Phases of 2D

Supersymmetric Gauge Theories, JHEP 09 (2013) 143 [arXiv:1305.3278] [INSPIRE].

[45] S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-Branes and Monodromy, JHEP 07

(2011) 030 [arXiv:1010.5780] [INSPIRE].

[46] R. Donagi and M. Wijnholt, Gluing Branes, I, JHEP 05 (2013) 068 [arXiv:1104.2610]

[INSPIRE].

[47] R. Donagi and M. Wijnholt, Gluing Branes II: Flavour Physics and String Duality, JHEP

05 (2013) 092 [arXiv:1112.4854] [INSPIRE].
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[63] G. Curio and D. Lüst, New N = 1 supersymmetric three-dimensional superstring vacua

from U manifolds, Phys. Lett. B 428 (1998) 95 [hep-th/9802193] [INSPIRE].

[64] N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. 55

(1987) 59 [INSPIRE].

[65] H. Hayashi, R. Tatar, Y. Toda, T. Watari and M. Yamazaki, New Aspects of Heterotic-F

Theory Duality, Nucl. Phys. B 806 (2009) 224 [arXiv:0805.1057] [INSPIRE].

[66] R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-theory, Commun.

Math. Phys. 326 (2014) 287 [arXiv:0904.1218] [INSPIRE].
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[104] C. Lawrie and S. Schäfer-Nameki, The Tate Form on Steroids: Resolution and Higher

Codimension Fibers, JHEP 04 (2013) 061 [arXiv:1212.2949] [INSPIRE].

[105] L. Lin and T. Weigand, Towards the Standard Model in F-theory, Fortsch. Phys. 63 (2015)

55 [arXiv:1406.6071] [INSPIRE].

[106] L. Martucci and T. Weigand, Non-perturbative selection rules in F-theory, JHEP 09 (2015)

198 [arXiv:1506.06764] [INSPIRE].

[107] A. Collinucci, F. Denef and M. Esole, D-brane Deconstructions in IIB Orientifolds, JHEP

02 (2009) 005 [arXiv:0805.1573] [INSPIRE].

[108] M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa,

Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215

[hep-th/9605200] [INSPIRE].

– 100 –

http://dx.doi.org/10.1103/PhysRevD.88.046005
http://arxiv.org/abs/1303.5054
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5054
http://dx.doi.org/10.1007/JHEP06(2013)067
http://arxiv.org/abs/1303.6970
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6970
http://dx.doi.org/10.1007/JHEP12(2013)069
http://arxiv.org/abs/1306.0577
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0577
http://dx.doi.org/10.1007/JHEP04(2014)010
http://arxiv.org/abs/1306.3987
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.3987
http://dx.doi.org/10.1016/j.nuclphysb.2014.02.006
http://arxiv.org/abs/1307.2902
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2902
http://dx.doi.org/10.1007/JHEP12(2013)056
http://arxiv.org/abs/1307.6425
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6425
http://dx.doi.org/10.1007/JHEP03(2014)021
http://dx.doi.org/10.1007/JHEP03(2014)021
http://arxiv.org/abs/1310.0463
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.0463
http://dx.doi.org/10.1007/JHEP07(2014)028
http://arxiv.org/abs/1402.4054
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.4054
http://arxiv.org/abs/1406.5174
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.5174
http://dx.doi.org/10.1007/JHEP03(2015)055
http://dx.doi.org/10.1007/JHEP03(2015)055
http://arxiv.org/abs/1412.4125
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.4125
http://dx.doi.org/10.1007/JHEP11(2015)204
http://dx.doi.org/10.1007/JHEP11(2015)204
http://arxiv.org/abs/1507.05954
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.05954
http://dx.doi.org/10.1007/JHEP11(2015)008
http://arxiv.org/abs/1507.05961
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.05961
http://dx.doi.org/10.1007/JHEP04(2013)061
http://arxiv.org/abs/1212.2949
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2949
http://dx.doi.org/10.1002/prop.201400072
http://dx.doi.org/10.1002/prop.201400072
http://arxiv.org/abs/1406.6071
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6071
http://dx.doi.org/10.1007/JHEP09(2015)198
http://dx.doi.org/10.1007/JHEP09(2015)198
http://arxiv.org/abs/1506.06764
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06764
http://dx.doi.org/10.1088/1126-6708/2009/02/005
http://dx.doi.org/10.1088/1126-6708/2009/02/005
http://arxiv.org/abs/0805.1573
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.1573
http://dx.doi.org/10.1016/S0550-3213(96)90131-5
http://arxiv.org/abs/hep-th/9605200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605200


J
H
E
P
0
5
(
2
0
1
6
)
0
5
9
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