
J
H
E
P
0
5
(
2
0
1
6
)
0
4
9

Published for SISSA by Springer

Received: March 14, 2016

Accepted: May 1, 2016

Published: May 10, 2016

UV (in)sensitivity of Higgs inflation

Jacopo Fumagalli and Marieke Postma

Nikhef,

Science Park 105, 1098 XG Amsterdam, The Netherlands

E-mail: jacopof@nikhef.nl, mpostma@nikhef.nl

Abstract: The predictions of Standard Model Higgs inflation are in excellent agreement

with the Planck data, without the need for new fields. However, consistency of the theory

requires the presence of (unknown) threshold corrections. These modify the running of

the couplings, and thereby change the shape of the inflationary potential. This raises the

question how sensitive the CMB parameters are to the UV completion. We show that, due

to a precise cancellation, the inflationary predictions are almost unaffected. This implies in

general that one cannot relate the spectral index and tensor-to-scalar ratio to the precise

top and Higgs mass measurements at the LHC, nor can one probe effects of UV physics on

the running.

Keywords: Cosmology of Theories beyond the SM, Higgs Physics, Renormalization

Group, Effective field theories

ArXiv ePrint: 1602.07234

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2016)049

mailto:jacopof@nikhef.nl
mailto:mpostma@nikhef.nl
http://arxiv.org/abs/1602.07234
http://dx.doi.org/10.1007/JHEP05(2016)049


J
H
E
P
0
5
(
2
0
1
6
)
0
4
9

Contents

1 Introduction 1

2 Effective action for Higgs inflation 3

2.1 Higgs inflation in Einstein frame 3

2.2 UV completion and threshold corrections 4

2.3 Renormalization prescription 6

2.4 Renormalization group equations 9

3 Inflation 11

3.1 Inflation on the flat plateau 11

3.2 Inflation near the maximum 15

4 Conclusions 19

A Effective action and renormalization group improvement 20

A.1 Canonical kinetic sector 21

A.2 Non canonical kinetic sector 23

B CMB parameters at higher order in δ 24

1 Introduction

Standard Model Higgs inflation [1–4] has attracted much attention over the last years. This

is not surprising, as the model has many appealing features — at least, at the classical

level. With the Higgs field as inflaton the model is firmly embedded in the Standard Model

(SM). Only one new interaction is needed, a non-minimal coupling of the Higgs field to the

Ricci tensor, making the set-up minimal. And finally, the predictions for the inflationary

observables are in excellent agreement with the latest Planck data [5]

Although this minimal approach is attractive, it is not clear whether Higgs inflation

is fully consistent as a quantum theory. First, including the running of couplings, the

potential may become unstable at energy scales below the inflationary scale. For the best

fit values of the top and Higgs mass this indeed happens, but it should be noted that

vacuum stability of the SM up to the Planck scale is only excluded at the 2-3σ level [6–12].

Furthermore, with extra matter, e.g. a dark matter particle, the instability bound can be

evaded [13–15].

A second issue with quantum Higgs inflation is the unitarity bound [16–23]. Tree

level unitarity is lost at energies well below the Planck scale, and new degrees of free-

dom [24, 25] or strong dynamics [26, 27]) should become important at this scale. Although
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the energy scale of the inflationary potential is always below the field-dependent unitarity

cutoff [20, 21, 28, 29], which makes the semiclassical approximation meaningful, this is not

so for the field value. To forbid non-renormalizable operators that spoil the inflationary

potential already at the classical level, an (approximate) shift symmetry has to be assumed.

This is no different from chaotic inflation.

Thirdly, the theory is not renormalizable over the full field range. It has been shown

that for small, mid and large field values Higgs inflation is renormalizable in the usual

effective field theory (EFT) sense [30] (see also earlier work [31–39]). However, these EFTs

need to be patched together at the boundaries of the different field regimes, and it is here

that we expect non-renormalizable operators to become important. We will also refer to

these higher order operators as threshold corrections, and more generically, speak about

threshold corrections to the renormalization group equations (RGEs) or to the inflationary

observables, meaning the effect of the higher order operators on these quantities.

Thus for a consistent quantum field theory, new physics is needed below the Planck

scale. This begs the question: how sensitive is Higgs inflation to the unknown UV

physics [22, 40]? If the model predictions demanded a particular UV completion it would

mean that the simplicity of the set-up, to which it owes much of its success, would be

completely spoiled. In this paper we will show that as long as the UV corrections do not

affect the inflaton potential at tree level, but only enter at loop level via corrections to

the renormalization group equations, the inflationary predictions are to a very good ap-

proximation unaffected. Indeed, whatever the exact running of the couplings, the spectral

index ns and tensor-to-scalar ratio r have at leading order in the slow roll expansion a

universal value:1

ns = 1− 2

N?
+O(N−2

? ) ' 0.967, r =
12

N2
?

+O(N−3
? , ξ−1) ' 0.003 (1.1)

with N? ≈ 60 the number of efolds of observable inflation, and ξ � 1 the non-minimal

coupling. We can rephrase our statement as follows: as long as the non-minimally coupled

Higgs is a viable inflaton candidate — no large tree-level UV corrections to the potential,

and no RGE induced instability of the potential — the predictions are extremely robust

and to high precision are equal to the tree level results, in excellent agreement with the

Planck data on the CMB [5].

This paper is organized as follows. In the next section we first describe the full quantum

action for Higgs inflation. To set the notation, in section 2.1 we introduce the classical

action. In section 2.2 we discuss the UV completion of the theory. Following [22] we

introduce a set of threshold corrections, which we will use in our numerical results. The

particular set of non-renormalizable operators can be motivated in two ways, either by

assuming an approximate shift symmetry, or by demanding that UV physics only enters

where needed for the consistency of the theory, namely at the boundary of the small and

1This is for inflation on the flat plateau of the potential, as is usually meant by “Higgs inflation” (and

at tree level is the only possibility). For some fine-tuned values of the couplings, inflation near a maximum

or inflection point of the potential is possible; in this latter case, the predictions are sensitive to the details

of the potential, and thus to the unknown UV physics.
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mid field regimes. We stress, however, that the universal results for ns and r as given

in (1.1) do not depend on this choice. There has been some debate in the literature on

frame dependence and the choice of renormalization scale [31–37]. In section 2.3 we will

argue that this choice is unambiguously defined [38, 41]. To end this section, in 2.4 we

shortly discuss the renormalization group equations (RGEs) and also give details on the

numerical implementation.

In section 3 we then turn to the predictions for inflation. In 3.1 we calculate the infla-

tionary observables for Higgs inflation, using the RGE improved potential which includes

the effects of running couplings. We show analytically that the spectral index and scalar-

to-tensor ratio are to first order in an 1/N? expansion insensitive to the running of the

couplings. To investigate the possibility of hilltop inflation, inflation near a maximum of

the potential, we turn to our numerical results. As discussed in section 3.2, we find that

for fine-tuned boundary conditions (the top/Higgs mass values at the electroweak scale,

and the Wilson coefficients of the non-renormalizable operators) hilltop inflation is pos-

sible. Since the potential near the maximum is tuned to be flat enough for 60 efolds of

inflation, it comes as no surprise that this tuning depends very sensitively on the details

of the potential, and thus also on the running of the couplings.

We end in 4 with some concluding remarks.

Our sign convention for the metric is mostly positive (−,+,+,+). The dependence on

the Planck mass is kept explicitly only in the first part where we introduce the model and

discuss the unitary cutoff, in the rest of the paper we set the reduced Planck mass to unity

mP = (
√

8πG)−1 = 1.

2 Effective action for Higgs inflation

In this section we discuss the effective action for Higgs inflation; in section 3 we then

calculate the inflationary observables for this action.

The loop corrections can be incorporated in an RGE improved action with running

couplings. We include a class of threshold corrections (coming from the UV completion)

which only enter the inflationary physics via their effect on the renormalization group

equations (RGEs). Finally, we discuss the choice of renormalization scale.

2.1 Higgs inflation in Einstein frame

To set the notation, let’s start with defining the classical action for Higgs inflation in the

Jordan frame:

LJ =
√
−gJ

[
1

2
m2

P

(
1 +

2ξΦ†Φ

m2
P

)
R[gJ ] + LSM

]
. (2.1)

with Φ the standard model Higgs doublet and ξ the non-minimal coupling to gravity. The

gravitational action can be brought in Einstein-Hilbert form by a conformal transformation

gµν = Ω2gJµν with conformal factor

Ω2 =

(
1 +

2ξΦ†Φ

m2
P

)
. (2.2)
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The resulting Einstein frame action is

LE =
√
−g
[

1

2
m2

PR[g]− 1

Ω2
(∂µΦ)†(∂µΦ)− 3ξ2

m2
PΩ4

∂µ(Φ†Φ)∂µ(Φ†Φ)− VJ
Ω4

+ . . .

]
, (2.3)

with VJ =λ(Φ†Φ− v2/2)2. The Lagrangian for the classical background field Φ= 1√
2

(
0

φ

)
is

LE =
√
−g
[

1

2
m2

PR[g]− 1

2
γφφ(φ)(∂φ)2 − λ(φ2 − v2)2

4Ω4

]
. (2.4)

In the large field limit φ2 � m2
P/ξ the potential approaches a constant value developing a

flat plateau that can support a period of slow roll inflation. The classical Higgs field can

be canonically normalized via

1

2
γφφ(φ)(∂φ)2 =

1

2Ω2

(
1 +

6ξ2

m2
PΩ2

φ2

)
(∂φ)2 =

1

2
(∂h)2, (2.5)

with Ω2(φ) = 1 + ξφ2/m2
P evaluated on the classical background.

The v2-term in the Higgs potential plays no role during inflation, and we set it to zero

in the following.

2.2 UV completion and threshold corrections

We only consider higher order operators that change the inflationary potential at loop level.

This can be motivated independently in two ways. Either assume that the UV completion

respects an approximate shift symmetry, which forbids the most dangerous operators that

already change the potential at tree level. Or adopt a minimal approach to UV corrections,

only adding higher dimensional operators that are really necessary for consistency of the

theory. The result in both cases is that the unknown UV physics only enters the inflationary

potential via their effect on the renormalization group equations and thus on the running of

the couplings. As we will show analytically in the next section, the inflationary predictions

are universal, and all dependence on the running, and thus on the threshold corrections,

drops out.

Below we will motivate our choice of higher dimensional operators that we add, and

that we will use in our numerical computations. We would like to stress, though, that

this choice is not critical to our results, and other parameterizations can be chosen and

additional corrections can be added. As long as inflation is possible at all — no large

corrections to the tree level potential and UV physics only enters via the RGE equations—

the inflationary predictions are robust.

It is well known that for a large non-minimal coupling ξ � 1, as needed for Higgs

inflation, unitarity of tree level scattering breaks down well below the Planck scale. The

unitarity cutoff — the momentum scale at which tree-level unitarity is violated — depends

on the field value of the Higgs field, and is given by [20–22]:

Λ ∼
{
mP

ξ
, φ,

mP√
ξ

}
, (2.6)
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in respectively the small, mid, and large field regimes, defined via

small field : φ <
mP

ξ
, mid field :

mP

ξ
< φ <

mP√
ξ
, large field :

mP√
ξ
< φ. (2.7)

The field dependence of the cutoff may be understood from integrating out heavy fields with

a field dependent mass. In the case that the cutoff signals the onset of strong dynamics,

the field dependence also may arise naturally.

Over the whole field region the typical energy in the Higgs potential is below the cutoff

V (φ)1/4 < Λ(φ). Nevertheless, the field value during inflation exceeds the unitarity cutoff.

Following the usual effective field theory approach, and adding all operators that respect

the symmetries of theory, the model is extremely sensitive to UV physics. Indeed, all

higher operators of the form (Φ†Φ)n+2/Λn will completely spoil the inflationary potential.

Also operators of the form (Φ†Φ)nO4/Λn should be forbidden during inflation; here O4 is

a dimension four operator made up of standard model fields, e.g. O4 = FµνFµν and Fµν
the SU(2) field strength tensor. Indeed, during inflation these operators will give rise to

effective couplings that are non-perturbatively large, and thus spoil the predictiveness of

the model. In this sense the situation in Higgs inflation is not different from chaotic models

of inflation. In the latter case the cutoff is the Planck scale and inflation takes place at

superplanckian field values, and thus also chaotic inflation is highly sensitive to operators

of the above form.

To avoid the dangerous operators discussed in the previous paragraph, we assume that

the UV completion respects the approximate shift symmetry of the action in the inflationary

regime, which is only broken by a non-zero (but small) Higgs mass. This implies that at

dimension six, which are the leading corrections, only operators of the form [22]2

L ⊃
∑
i

ci
m2
h

Λ2
O4
i (2.8)

are allowed. Here ci are unknown Wilson coefficients, and the sum is over all dimension four

operators invariant under the SM symmetries. The cutoff is chosen as the field dependent

unitarity bound, which is an additional (but natural) assumption. Using the explicit form

of the Higgs mass (see (2.10) below) and unitarity bound (2.6), it can be seen that these

operators are only unsuppressed around the scale (we set mP = 1 from now on) φ ∼ 1/ξ.

As a result, operators of the form (2.8) do not affect the tree level inflaton potential. They

can, however, affect the inflationary potential at the quantum level, as these operators give

corrections to the RGE equations [22, 42]. Running the SM couplings from the electroweak

scale, where they are measured, to the inflationary scale, one has to pass the region where

the normalization scale is µ ∼ 1/ξ and the threshold corrections — if large enough —

cannot be neglected.

We can arrive at the same conclusion, i.e. threshold corrections that are important

only at φ ∼ 1/ξ, from a different perspective. Namely: take the minimalistic approach

to add new physics only when really necessary for the consistency of the theory. For this

2In the small field regime m2
h ∝ H†H and the operators (2.8) reduce to the six dimensional operators

listed in [42].
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purpose we do not need, for the reasons we are going to explain in a moment, higher

dimensional operators that become important at the large field values during inflation,

only corrections around the scale φ ∼ 1/ξ are necessary. First of all, although V 1/4 < Λ

at all field values, these scales become of the same order at φ ∼ 1/ξ and corrections to the

Higgs inflation action are unsuppressed. Secondly, the counterterms introduced to absorb

the UV divergencies of the quantum corrections make a jump at the scale φ ∼ 1/ξ [30, 43],

which signals that new physics should enter at this scale. Let us explain this second point

in more detail.

The one-loop effective potential for the classical field φ is given by the tree level po-

tential plus the Coleman-Weinberg potential [44]. Explicitly

Veff = Vtree +
1

64π2

∑
i

(−1)FiSim
4
i (φ)

[
ln

(
m2
i (φ)

µ2

)
− ci

]
(2.9)

in the MS renormalization scheme. Here µ is the normalization scale, Fi = 0 (1) for a boson

(fermion) field, Si counts the degrees of freedom of each particle with mass mi, and ci = 3/2

for fermions and scalars and ci = 5/6 for gauge bosons. The gauge boson, top quark, Higgs

and (three) Goldstone boson (GB) masses are given (in Landau gauge) by [30, 43]

m2
Ai =

g2
i φ

2

2Ω2
, m2

t =
y2
t φ

2

2Ω2
, m2

h = 3λφ2 1 + 4ξ2φ2 − 4ξ3φ4

Ω4(1 + 6ξ2φ3)2
, m2

θi =
λφ2

Ω4(1 + 6ξ2φ2)
, (2.10)

with gi = {g2,
√
g2

1 + g2
2} for the W and Z bosons with g1, g2 the hypercharge U(1)Y and

and SU(2) couplings respectively, and yt the top Yukawa. The loop contribution from the

gauge bosons and top quark has the same field dependence as the tree level potential, and

the divergencies can be absorbed in the whole field range. However, that is not the case

for the Higgs and GB masses. The theory is not renormalizable over the full field range.

It has been shown in [30] that nevertheless in the small, mid and large field regimes (2.7)

a renormalizable EFT can be constructed. That is, when the Lagrangian is expanded in a

small parameter that defines the given regime, all divergencies can be absorbed order by

order in a finite number of counter terms; no new operators beyond those already present

in the tree level Lagrangian are needed. The EFTs are valid only within the given regime,

and for energies below the (field-dependent) unitarity cutoff (2.6). The renormalization

group equations in the small field regime are those of the Standard Model. The RGEs in

the mid and large field regimes are the same, and differ from the SM RGEs because of the

non-minimal coupling. The EFTs need to be patched together at the boundaries. As is

clear, at least at the border between the small and mid field regime, which is at φ ∼ 1/ξ,

threshold corrections are needed as it is here that the RG equations change.

2.3 Renormalization prescription

Higgs inflation can be analyzed, and loop corrections can be calculated in both the Jor-

dan (2.1) and Einstein frame (2.4). Even if the frames are merely related by a field transfor-

mation it is not universally accepted that they describe the same physics. The equivalence

of the Jordan and Einstein frame [45–47] can be made explicit by rewriting the action

– 6 –
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in terms of dimensionless quantities which are invariant under a conformal transforma-

tion [41, 48]. The equivalence can also be checked on a case-by-case basis. For example,

in [49–53] it was shown that both frames give the same result for the curvature pertur-

bation during inflation, [54] uses a covariant approach to show that both frames gives the

same (on-shell) effective action, and in [28] the same covariant approach was used to show

that the RGE equation for ξ is the same in both frames. Finally, in [30] it was shown

that the Coleman-Weinberg potential and the renormalization procedure is one-to-one in

both frames.

Despite all this there remains confusion in the literature on the frame dependence of the

results, and in particular on the choice of renormalization scale. Here we review that if the

renormalization prescription is done carefully no such ambiguity arises, more details can be

found in [30]. Another way to arrive at the same conclusion is to do the one-loop analysis

using dimensionless quantities invariant under a conformal transformation, the approach

advocated in [41, 48] (which trivially corresponds to the Einstein frame analysis).

To include the (one-loop) correction one could proceed in two ways:3

1. First go to the Einstein frame and then add the quantum correction to VE .

VE1 = V
(0)
E (φ) + V

(1)
E =

V
(0)
J

Ω4
+ V

(1)
E , (2.11)

where the superscript (0) and (1) refer to the tree level and one-loop Coleman-

Weinberg potential respectively.

2. Add the CW corrections to the Jordan frame potential and only after transform to

the Einstein frame

V
(0)
J (φ) + V

(1)
J

E−→ VE2 =
V

(0)
J (φ)

Ω4
+
V

(1)
J

Ω4
. (2.12)

As can be seen in the above equations, but this is general, all mass scales are rescaled by

the conformal transformation

mJ
E−→ mE =

mJ

Ω
. (2.13)

If one does not consider the back reaction from gravity, following one of the two paths

leads to different results in the Higgs-gravity sector. This is understandable since degrees

of freedom considered frozen in one frame are dynamical in the other and vice versa.4 Since

the main contribution to the CW potential comes from the top quark and gauge boson

loops — the Higgs and GB loops are suppressed — we do not have to worry about this.

Let’s consider then the contribution of the top quark to the Coleman-Weinberg poten-

tial in the Einstein frame, following procedure 1

VE1 =
(λ+ δλ)φ4

4Ω4
+

1

8π2
m4
t,E ln

(
Λ2
E

m2
t,E

)
, (2.14)

3In both cases we want to end up in the Einstein frame where slow roll inflation is most easily studied.
4For example, the Sasaki-Mukhanov variable is a different combination of the scalar metric degree of

freedom and the Higgs in the two frames. To leading order in the slow roll approximation, one can treat

gravity classically in the Einstein frame as the effects from back reaction are suppressed [30]; however, this

is not the case for the Jordan frame, and care should be taken when considering the Higgs and GB loops.
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where cutoff regularization has been used; δλ is the counter term, and the Einstein frame

top mass has been defined in (2.10). Choosing the counterterm δλ = − y4

(4π2)
ln
(

Λ2
E

µ2
E

)
gives

VE1 =
φ4

4Ω4

(
λ+

y4

8π2
ln

(
µ2
E

m2
t,E

))
. (2.15)

The log will be minimized for µE = mt,E ; in the RG improved action this will then

minimize the error, see appendix A. This choice of renormalization scale is often referred

to as “prescription 1”. For Higgs inflation it corresponds to the usual prescription that the

renormalization scale is chosen to be the typical energy scale involved in the process.

Procedure 2 gives

VJ =
(λ+ δλ)φ4

4
+

1

8π2
m4
t,J ln

(
Λ2
J

m2
t,J

)
=
λφ4

4
+

1

8π2
m4
t,J ln

(
µ2
J

m2
t,J

)
(2.16)

where mt,J = Ωmt,E is the top mass in the Jordan frame. In the second expression we

set the counterterm δλ = − y4

4π2 ln
(

Λ2
J

µ2
J

)
. At this stage the log in the potential will be

minimized for µJ(t) ∼ mt,J . This choice is often referred to as “prescription 2”. However,

this expression is still in Jordan frame units. Expressing the renormalization scale in

Planck units
µJ
mpl,J

=
mt,J

mpl,J
=

mt,E

mpl,E
=

µE
mpl,E

, (2.17)

we see it is exactly the same prescription as in the Einstein frame. Here it should be noted

that all mass scales, including the Planck mass, cutoff scale and renormalization scale, are

rescaled as in (2.13) under a conformal transformation.5 Finally, transforming the Jordan

frame potential to the Einstein frame we retrieve VE2 = VE1 .There is no ambiguity in the

renormalization scale, which is correctly given by prescription 1. For definiteness, we will

use in the next section

µE =
φ

Ω(φ, ξ)
. (2.18)

Although different renormalization prescriptions do not arise from frame dependence,

one could still argue that they encode different UV completions of the theory. As discussed

around (2.9) no counterterms can be defined that absorb the (subdominant) Higgs and GB

contributions over the whole field range. Consider then field dependent counterterms of

the form δλ = − y4

4π2 ln
(

Λ2

µ2 f(φ)
)

. The Einstein frame potential becomes

VE =
λφ4

4Ω4
+

1

8π2
m4
t ln

(
m2
t

µ2
f(φ)

)
. (2.19)

5The situation is completely analogue to going from a conformal FLRW metric to a Minkowksi metric by

doing a conformal transformation with Ω = a(t) the scale factor. All masses are rescaled by the scale factor,

cf. the physical momentum (the canonical momentum in the FLRW metric) and comoving momentum (the

canonical momentum in the Minkowski metric) are related by kcom = kphys/a. Spurious factors of a(t) (the

scale factor is by definition unobservable) only appear when comoving scales are erroneously compared to

physical mass scales [55].
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The choice f(φ) = Ω2 corresponds to prescription 2, as µ = f(φ)mt will minimize the log.

Note however, that a field dependent counterterm implies adding new operators to the

action. Indeed the above expression could only have come from a potential of the form

Veff =
(λ+ δλ)

4Ω4
φ4 +

1

8π2
m4
τ ln

(
Λ2

m2
τ

)
+

1

8π2
m4
τ ln (f(φ)) . (2.20)

Therefore, a non-trivial choice of f(φ) implies that the potential is already changed at the

classical level! The simple form of the action in the Jordan frame (2.1), with just a single

new parameter compared to the SM Lagrangian, can no longer be used as a motivation for

the model. Moreover, allowing for any UV completion possible, i.e. for any choice of f(φ),

all predictivity is lost as literally any potential can be constructed. Fortunately, that is not

needed. The choice f(φ) = 1 is the natural choice as no new operators and counterterms be-

yond those present in standard Higgs inflation (2.4) are needed in the large field regime. As

has been shown in [30] for f(φ) = 1 a renormalizable EFT can be constructed in the small,

mid and large field regime. On the boundaries of these regimes, and as discussed in sec-

tion 2.2, especially between the small and mid field regime, threshold corrections are needed.

But for consistency alone, adding new corrections in the large field regime is not demanded.

Let us stress a crucial point about this way of parametrizing the renormalization scale.

We have already seen that the cutoff depends on the Higgs vev. In the low field regime

Λlow field ≡ 1/ξ. If one is interested in the RG flow at energy scales beyond 1/ξ it might seem

it is not possible to say anything without knowing exactly the form of the UV completion.

Consider the analogy with the Fermi effective theory of beta decay. At energy values

below the W -boson mass the Fermi effective action can be used to compute the beta

functions etc. However, for energies above the cutoff (W mass) the knowledge of the

full electroweak Lagrangian is needed. The situation here is considerably different. The

“prescription 1” choice of the renormalization scale automatically takes in account that

when µ(φ) > Λlow field the field is no longer in the low field region and the unitary bound

is still larger than µ.6 Thus the full form of the UV completion is not needed and one can

consistently parametrize it with a series of higher order operators suppressed by the scale

given by the field dependent cutoff.7 From the physical point of view the difference between

the two situations can be understood from the fact that here the increase in energy is due

to a displacement of the Higgs vev.

2.4 Renormalization group equations

In the next section we will calculate the inflationary observables taking into account the

running of all couplings. In particular, we consider the RG improved action (2.4) with

6Prescription 1 gives µ(φ) < Λ(φ) for all field values. For prescription 2, on the other hand µ(φ) > Λ(φ)

for large field values, and the RGE evolution can no longer be described in the EFT setting, the full UV

completion is required.
7If a constant cutoff Λlow field is chosen you would need for instance an extra degree of freedom to restore

the unitarity of the model till the Planck scale [24, 25]. These UV completions modify the inflaton potential

already at tree level, and thus they are different from the ones discussed in this paper.
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potential and field space metric (from now on we set Veff ≡ V )

V =
λ(t)φ4

4(1 + ξ(t)φ2)2
, γ =

1 + ξ(t)φ2(1 + 6ξ(t))

(1 + ξ(t)φ2)2
, (2.21)

with

t = ln(µ/mt) (2.22)

and mt the EW scale top mass. In addition, the renormalization scale (2.18) depends on

the running couplings

µ =
φ√

(1 + ξ(t)φ2)
. (2.23)

For more details see the discussion in appendix A.

The running of the couplings is governed by the RG equations. In the small field

regime these are just the SM RGEs, we use the two-loop result and the EW boundary

conditions defined in [37, 56]. The one-loop RGEs for the mid and large field regime have

been derived by different groups [31–39], with small differences. We use the recent result

of [30]. Our main conclusions will not depend on this choice, only the exact numerical

values of parameters might differ slightly. We set the boundary condition for ξ0 at the

boundary of the mid-field regime ξ(1/ξ) = ξ0.

In [22, 42] the corrections to the β functions due to the higher dimensional opera-

tors (2.8) were calculated. The corrections depend on unknown Wilson coefficients ci, the

Higgs mass which is given in (2.10), and the cutoff scale that we choose

Λ =
(1 + ξ(t)2φ2)

ξ(t)2(1 + ξ(t)φ2)
, (2.24)

which reduces to the unitarity cutoff in the three regimes (2.6). Since the operators are

peaked at 1/ξ, only around this scale the corrections to the running are appreciable. For

inflationary purposes the effect is that threshold corrections may give a “kick” to λ, i.e.

change λ(µ ∼ 1/ξ) by some amount compared to the SM running. Since λ � 1 this kick

may be appreciable for Wilson coefficients ci ∼ O(10) (such that the threshold and SM

contribution to the RGEs are of comparable size δβ ∼ βSM at the scale µ = 1/ξ). The

relative kick to other SM parameters is very small. For our numerical results we choose

the Wilson coefficients, defined in the appendix B of [22], randomly in the interval

ci = Random[−cmax, cmax]. (2.25)

In our numerics, we choose boundary conditions at the EW scale, ξ0 at the intermediate

scale, and a set of Wilson coefficients ci, and then run all couplings to the large field regime.

We then determine tend and t?, i.e. the normalization scale (2.22) at the end and N? efolds

before the end of inflation, and finally the power spectrum for the perturbations. We

reiterate this procedure, adjusting the value of ξ0 till the right COBE normalization (3.17)

is obtained. It may happen that for some or all ξ0-values inflation with more than N?

efolds is impossible. For definiteness, we take N? = 60. In the next section we discuss the

calculation of the perturbations during inflation in detail.
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3 Inflation

In this section we compute the spectral index and tensor-to-scalar ratio taking into account

the running of the couplings. We will show analytically in the next subsection that for

inflation on a flat plateau, as it is usually assumed in Higgs inflation, all dependence on the

beta-functions drops out, and the inflationary observables are the same as for the classical

potential. With running included, it is possible for a limited range of parameters that

the potential develops a maximum. As discussed in subsection 3.2 for hilltop inflation,

i.e. inflation near the maximum, the results depend sensitively on the running, and thus

on the UV completion (entering via the beta-functions). We present numerical results for

this case.

3.1 Inflation on the flat plateau

Higgs inflation takes place in the large field regime (2.7), where the action can be expanded

in the small parameter

δ = 1/(ξφ2)� 1. (3.1)

As follows from (3.7), (3.13) below, the δ-expansion is equivalent to an expansion in slow

roll parameters, and is also equivalent to an 1/N? expansion.

In order to include the effects of running couplings on the inflationary observables

we work with the renormalization group improved action. The potential and field space

metric (2.21) can be rewritten as

V =
λ(t)

4ξ(t)2

1

(1 + δ(t))2
, γφφ =

δ(t)(1 + δ(t) + 6ξ(t))

(1 + δ(t))2
, δ(t) =

1

ξ(t)φ2
, (3.2)

with t = ln(µ/mt), mt the EW scale top mass, and µ the renormalization scale (2.23)

µ =
1√

ξ(t)(1 + δ(t))
, (3.3)

which is proportional to the top and gauge boson mass. This choice minimizes the logs

in the Coleman-Weinberg expansion, as already discussed in section 2.3. For δ � 1 the

potential reduces to a constant plus (exponentially) small corrections, and inflation takes

place on a flat plateau. The running of the couplings may slightly tilt the plateau, and

thus change the expressions for the observables.

To calculate the slow roll parameters the first and second derivatives of the potential

with respect to the canonically normalized field h, defined in (2.5), are needed. Let’s start

with the slope first. Using the chain rule gives

Vh =
1
√
γφφ

(
∂V

∂φ
+
∂V

∂λ
λφ +

∂V

∂ξ
ξφ

)
, (3.4)

with

λφ = βλ
dt

dφ
, ξφ = βξ

dt

dφ
,

dt

dφ
=

δ3/2ξ1/2

1 + δ +
βξ
2ξ

, (3.5)
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where we used the definitions βλ = ∂λ/∂t and βξ = ∂ξ/∂t. The last expresson follows from

the explicit form of normalization scale (3.3). Putting it all together gives

Vh
V

=

√
8

3

δ(1 + δ)√
1 + (1+δ)

6ξ

(
1 + βλ

4λ

)
(

1 + δ +
βξ
2ξ

) . (3.6)

This result is still exact, no δ-expansion or other approximation has been done. In a similar

way the 2nd derivative of the potential can be computed. The slow roll parameters become

ε ≡ 1

2

(
Vh
V

)2

=
4

3
δ2F 2

(
1 +

1

6ξ

)
+O(δ3), η ≡ Vhh

V
= −4

3
δF +O(δ2), (3.7)

with

F =

(
1 + 1

4
βλ
λ

)
(

1 + 1
2
βξ
ξ

)(
1 + 1

6ξ

) . (3.8)

Turning off the running of the couplings βλ = βξ = 0, we retrieve the standard classical

results (which are often expressed in the large ξ limit where F = 1 +O(1/ξ)).

The RGEs for SM Higgs inflation have been calculated in the literature. In the large

field regime they differ from the SM ones; we quote the recent results [30]

βλ
λ

=
1

8π2

(
3g4 − y4

λ
− 2y2

)
,

βξ
ξ

=
1

8π2
y2. (3.9)

Note that in the inflationary regime the contribution from threshold corrections to the beta

functions can be neglected since for our choice their contribution is important only around

the scale µ = 1/ξ. The main point is that βξ/ξ < 1 is always perturbatively small and the

denominator of F is always positive. The top contribution dominates and βλ < 0 at the

inflationary scale. This means that F can go through zero and become large and negative

in the λ→ 0 limit. When

F = 0 ⇔ λmax = −βλ
4
, (3.10)

to the lowest order in the δ-expansion the slow roll parameters vanish. As can be seen

from (3.6) this corresponds to an extremum of the potential, and ε = 0 at all orders. For

SM Higgs inflation λmax ∼ 5× 10−5. For energies well below the Planck scale the quartic

coupling λ(t) is a monotonically decreasing function, and there is at most one extremum

which is a maximum as8

η
∣∣
λ=λmax

= −8

3

δ2(1 + δ)2
(

1 +
β′
λ

4βλ

)
(

1 + 1+δ
6ξ

)(
1 + δ +

βξ
2ξ

)2 < 0. (3.11)

If the potential develops a maximum in the inflationary regime, 60 efolds of inflation may

still occur if the potential near the maximum is flat enough. We will refer to this possibility

8Close to the Planck scale there is the possibility of a second extremum, a minimum, in the potential.

This opens the possibility for inflation near an inflection point. We comment on this in section 3.2.

– 12 –



J
H
E
P
0
5
(
2
0
1
6
)
0
4
9

as “hilltop inflation”. To end up in the electroweak vacuum of the Higgs potential, this

should happen for field values φ < φmax where φmax is the field value at the maximum (this

possibility thus constrains the initial field values); this corresponds to the region where

F > 0 is positive. Note that the δ-expansion breaks down close to the maximum, when

F ≈
(

1 +
1

4

βλ
λ

)
∼ δ

(
1 +

β′λ
4βλ

)
, (3.12)

and the first order term of η in (3.7) becomes comparable to the δ2 term in (3.11) (we took

the ξ � 1 limit).

Introduce the notation that the subscript ? denotes the value of the parameters when

observable scales leave the horizon, N? number of efolds before the end of inflation. We

distinguish three possibilities.

1. If F? & δ? inflation takes place on a flat plateau, and there is no maximum.9 This is

the case for coupling values λ? & 5× 10−5.

2. If F? . δ? there is a maximum in the potential. If the maximum is flat enough,

hilltop inflation takes place close to the maximum at field values φ < φmax. This is

the case for coupling values λ? ∼ 5× 10−5.

3. The potential near the maximum is too steep to support N? = 60 efolds of inflation.

In this section we will discuss case 1, inflation on the flat plateau. The discussion of case

2, hilltop inflation, is postponed till the next section.10 The value F? ∼ δ? divides the

two regimes, as follows from (3.12); this is in agreement with our numerical results, which

are presented in 3.2. The slow roll parameters (3.7) are affected by the running of the

couplings, and corrections may become sizeable for small λ. However, to calculate the

inflationary observables, the slow roll parameters are to be evaluated at the field value

φ? at which the observable scales leave the horizon. This field value also gets corrected

by the running, and as we will show now, these corrections exactly cancel, such that the

inflationary predictions are to leading order in the δ-expansion not affected by the running

of the couplings.

Let’s thus compute the number of efolds N? before the end of inflation, which is given by

N? '
∫ h?

dh
1√
2ε
'

√
3

|F?|
√

8
(

1 + 1
6ξ?

) ∫ h?

dh δ−1 =
1

δ?|F?|
3

4
. (3.13)

On the flat plateau F > 0 and we can drop the absolute signs. Here we assumed that F

and ξ is to first approximation field-independent and we have taken it out of the integral.

9Note that limφ→∞ µ2 = 1/ξ approaches a constant, and the running comes to a halt. For F? > δ? the

asymptotic value of limφ→∞ λ(t) exceeds the critical value (3.10).
10It may happen that threshold corrections kill Higgs inflation, in that the corrections to the RGEs bring

the model from case 1 to case 3. The statement we want to make in this paper is that when inflation

happens, the predictions are robust and insensitive to UV corrections (except for some possible fine-tuned

parameters that allow for hilltop/inflection point inflation).
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This gives the leading term in the δ-expansion, as we now quickly explain. The efolds

integral can be rewritten as follows

N? =
3

2

∫ φ?

dφ
ξ

|F |
φ+O(

√
δ) =

3

2

∫ φ?

dφφ

(
D? +

dD

dφ

∣∣
φ=φ?

(φ− φ?) + ..

)
. (3.14)

In the first step we used the field space metric to express the integral in terms of the (non-

canonical) field φ (2.5), in the second step we defined D(βi, λ, ξ) ≡ ξ|F |−1 and expanded the

integrand around φ?. The first term in the expansion is the only one considered in (3.13).

It gives a contribution of the form∫ ?

dφφD? ∝ φ2
? ∝ O(δ−1

? ). (3.15)

The second term in the expansion takes the form (fi ≡ {λ, ξ, βλ, βξ}),∫ φ?

dφ
dD

dφ

∣∣∣∣
?

φ(φ− φ?) =

∫ ?

dφφ(φ− φ?)
(
dD

dfi

dfi
dt

dt

dφ

) ∣∣∣∣
?

∝ φ3
?δ

3
2
? ∝ O(δ0

?), (3.16)

where we used dt/dφ|? ∝ δ
3
2
? from (3.5). It is higher order in the δ expansion and can be

neglected. We also neglected the lower bound of the integral; this correction is likewise

higher order in 1/N? ∼ δ?. Using (3.13) from the COBE normalization we get [5](
V

ε

)
?

=
4

3

λ

ξ2N2
?

= (0.027)4 ⇒ ξ(t?)√
λ(t?)

= 5× 104. (3.17)

Plugging (3.13) in the expressions (3.7) gives the spectral index and tensor-to-scalar ratio

ns = 1 + 2η +O(δ2) = 1− 2

N?
+O(δ2) (3.18)

and

r = 16ε =
12

N2
?

(
1 +

1

6ξ

)
+O(δ3) (3.19)

The COBE normalization can always be fit by choosing the non-minimal coupling appro-

priately. All parameters in the model are then fixed. For the large non-minimal couplings

needed (ξ? > 102), the spectral index and tensor-to-scalar ratio only depend on the number

of efolds. All dependence on the beta-function has cancelled in the final expression, and

the results are identical to those for classical Higgs inflation. This means that the results

for plateau inflation are very robust: they are independent from the running, and thus in-

sensitive to UV physics that change the running, and also independent of the electroweak

boundary conditions on the couplings.

At next order in the δ expansion the beta-function do enter, see appendix B, but this

is too small an effect to be measured.
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3.2 Inflation near the maximum

As discussed previously, for F? > δ? inflation takes place on the flat part of the potential

and the inflationary observables are insensitive to the running of the couplings, to first order

they depend only on the number of efolds. Here we discuss the case F? < δ?. When F = 0

the potential develops a maximum. Requiring the Higgs field to end up in the electroweak

vacuum, inflation should take place at field values before the maximum, where F > 0.

We expect Hilltop inflation to be highly sensitive to the form of the potential and thus

to the details of EW boundary conditions and to threshold corrections. Unfortunately,

because of this sensitivity, it is hard to obtain analytical expressions, and we will only

present numerical results. We point out that even though hilltop inflation is sensitive

to the UV completion, it only occurs for very fine-tuned boundary conditions. Thus the

numerical results presented in this section confirm our statement that the predictions for

Higgs inflation are remarkably robust, and they verify the analytical result of section 3.1.

For more details on our numerical implementation see section 2 and in particular 2.4.

Let’s start by considering just the SM running, and turn off all threshold corrections.

We can tune F small by adjusting the boundary conditions at the electroweak scale. We

choose to decrease the Higgs mass, while keeping the top mass and gauge couplings fixed.11

Our results are summarized in table 1. They agree with the discussion above. For large

enough Higgs mass values, inflation takes place on the flat plateau, and ns and r are

independent on the running. In some fine-tuned range of Higgs mass values, inflation can

happen near a maximum; in this case the inflationary results depend sensitively on the

EW boundary conditions. For an even smaller Higgs mass the maximum is too steep and

60 efolds of inflation is not possible. In figure 1 we show an example potential for inflation

on the plateau and for inflation near the maximum,12 the parameters corresponding to

the first and last line of table 1. Our numerical results agree with similar studies in the

literature [32, 37].

Now turn on the threshold corrections. We choose mt=171 GeV, mh=125.5 GeV and

did 500 simulations with Wilson coefficients randomly chosen between ci=Random[−10, 10].

We found 382 times that inflation takes place on the flat plateau, and the other 118 times

there was no inflationary solution. Hilltop inflation does not happen. The spread in spec-

tral index, tensor-to-scalar ratio, ξ0 and kick ∆λ for the successful models are shown in

figure 2. The kick in λ is defined with respect to the reference set-up without threshold

corrections, corresponding to the highlighted line in table 1. Define (λSM
? , tSM

? , ξSM
0 ) =

(9.0× 10−4, 33.55, 1417) for this model, with t = ln(µ/mt) and ξ0 the boundary condition

ξ(1/ξ) = ξ0. We then define the kick in λ for the models with threshold corrections as

∆λ = λ(tSM
? )− λSM

? , for ξ0 = ξSM
0 . (3.20)

For our run of 500 simulations, the average kick is upwards 〈∆λ〉 = 1.5×10−3 with standard

deviation σ = 3.9× 10−3; the average absolute kick size is 〈|∆λ|〉 = 2.3× 10−3. If the kick

11We choose mt = 171GeV which is about 2σ below its central value, to avoid that the quartic coupling

becomes negative before inflation.
12For these plots we numerically inverted t(φ). This inversion is not needed to calculate ns and r, which

is done with t as the clock variable.
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Figure 1. Top left the potential V (φ) for inflation with mt = 171GeV and mh = 125.5 GeV; the

grey vertical lines correspond to φ? and φend respectively (i.e. the beginning and end of inflation).

Bottom left shows |η| (red), ε (blue), δ (green) and F (cyan) respectively for the same top mass.

Right top and bottom, same plots but for mt = 171 GeV and mh = 125.245 GeV.

mh(GeV) h? λ? ξ? F? δ? ns r

127 0.15 6.3× 10−3 3863 0.99 0.01 0.968 3.0× 10−3

126 0.18 2.7× 10−3 2505 0.98 0.01 0.968 3.0× 10−3

125.5 0.24 9.0× 10−4 1451 0.96 0.01 0.968 3.0× 10−3

125.3 0.33 1.9× 10−4 667 0.84 0.01 0.968 2.9× 10−3

125.26 0.34 4.2× 10−5 344 0.42 0.03 0.970 2.4× 10−3

125.255 0.20 3.1× 10−5 451 0.12 0.06 0.968 9.5× 10−4

125.253 0.13 3.3× 10−5 730 0.05 0.08 0.958 3.7× 10−4

125.25 0.09 3.7× 10−5 1314 0.07 0.12 0.941 1.2× 10−4

125.245 0.05 4.3× 10−5 2678 0.01 0.12 0.917 3.4× 10−5

Table 1. Inflationary parameters for different Higgs mass while mt = 171GeV is kept fixed, in the

absence of threshold corrections. Above the double line the potential has a flat plateau, below the

line the potential develops a maximum. For mh < 125.245 no inflationary solutions with N? = 60

efolds exists.

is upwards, or downwards but not so large, plateau inflation is still possible. The value ξ0,

which is a free parameter, has to be adjusted with respect to the reference model, to fit the

power spectrum (3.17). However for large kicks downwards this is no longer possible, and

the potential is too steep for all ξ-values. The critical kick dividing the successful models
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Figure 2. The spread in spectral index ns, tensor-to-scalar ratio r, ξ0 and ∆λ as a function of λ?
for the 382 succesfull models with threshold corrections ci = Random[−10, 10].

from the unsuccessful ones is

∆λcrit = −1.1× 10−3 ⇒ λSM
? + ∆λcrit = −1.7× 10−4 (3.21)

As mentioned, we do not find any examples of hilltop inflation in our 500 simulations

with threshold corrections, in contrast to the pure SM running. One can either generate

a kick, with respect to the reference model, by changing the boundary conditions at the

electroweak scale (e.g. changing the EW top/Higgs mass) or by turning on threshold correc-

tions. Adding thus a kick to the reference model, the CMB power spectrum constraint is no

longer satisfied; we retune ξ0 to fit the CMB data. Figure 3 shows the result, it plots ξ0 for

downwards kicks ∆λ < 0. The reference model is again mt = 171 GeV, mh = 125.5 GeV,

that is the highlighted line in table 1. In this plot the green line correspond to pure SM

running and different values of the EW top mass, the red line for SM running and different

values of the EW Higgs mass (corresponding to the results in table 1), and the blue line for

fixed top and Higgs mass but a kick generated by threshold corrections. Inflation near the

maximum only happens in the first two cases for the small kick interval where ξ0 increases

again (i.e. where the red and blue line increase).

It matters whether the kick is produced by EW boundary conditions or by threshold

corrections. In the 2nd case, inflation is possible for larger kick values. This can be

understood as follows. For SM running without threshold corrections, changing ξ0 mainly

affects the size of the power spectrum, but it has only a small effect on the running. In
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Figure 3. The boundary value ξ0 for the non-minimal coupling vs. the kick |∆λ| for SM running

(green/red) and SM running with threshold corrections (blue). In the former case the kick is

from changing the top/Higgs mass at the electroweak scale, whereas in the latter it is due to the

threshold corrections. The kick is downwards ∆λ < 0. The vertical grey line corresponds to the

value λSM∗ + ∆λ = 0.

contrast, for the set-up with threshold corrections, changing ξ0 will both affect the power

spectrum and the running. Indeed, µ ∼ 1/ξ0 is the scale where the kick is produced. For

a smaller ξ0 this happens at a higher scale, where the value of λ(µ) is smaller and since

the size of the kick is proportional to λ(µ), this results in a smaller kick. Hilltop inflation

is only possible if the curvature near the maximum is tuned small. This depends on the

details of the potential. It is no surprise that this gives slightly different results for SM

running, and SM including threshold corrections, even for a similarly sized kick.

No matter what the exact form of the threshold corrections is, if the kick is not too

large (∆λ + λSM
∗ > 0) inflation takes place on the flat plateau with universal predictions

for the observables. The larger λSM
∗ is without threshold corrections, the larger kick is

needed to disrupt inflation, which is only possible for large Wilson coefficients of the non-

renormalizable operators. Consider for example the first line in table 1, with λSM
∗ =

6.3 × 10−3. Also for this case we did 500 simulations with random Wilson coefficients,

choosing cmax = 20 with ci = random[−cmax, cmax]. We found that 61 out of 500 times

the downwards kick was large, and inflation no longer possible; we found no examples of

hilltop inflation.

Choosing natural values for the Wilson coefficients cmax ∼ 1 the effect of the threshold

corrections on the running is small. Nevertheless, there might be additional sources of

threshold corrections. If they only affect the potential via modifications of the running, our

results apply: (except from some possible fine-tuned cases near a maximum) inflation takes

place on the plateau and the observables have universal values. Our choice of higher order

terms in the Lagrangian (2.8) with cmax ∼ 10 can be viewed as a (specific) parameterization

of the kick in λ due to all possible threshold corrections.

Finally we would like to comment on the possibility of Higgs inflation near an inflection

point, as has been discussed in the literature [57, 58]. Close to the Planck scale the potential

may develop a second minimum. For fine-tuned boundary conditions the maximum and

minimum merge into an inflection point with Vh = Vhh = 0, where inflation can take place.
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Such solutions only exist for relatively small non-minimal coupling ξ = O(10); this is

because the renormalization scale is bounded µ < 1/
√
ξ, and only for small ξ large enough

scales can be reached where the Landau pole becomes important. Because of the large

scales involved, inflection point inflation can give rise to a large gravitational wave signal

(these models were motivated by the BICEP results). In our numerics we did not search

for this possibility, and it is not included in our results.

4 Conclusions

In Higgs inflation the unitarity cutoff, signaling the breakdown of the effective theory,

is well below the Planck scale and introducing an UV completion is demanded by the

consistency of the theory. This raises the question how sensitive the CMB predictions are

to the UV completion above the cutoff scale. In this paper we have shown that as long as

the UV corrections do not affect the inflaton potential at tree level but only enter at loop

level via corrections to the renormalization group equations, the inflationary predictions

are (almost) unaffected. Indeed, as we proved analytically in section 3.1, to leading order

in the slow roll expansion all dependence on the running cancels, and thus the predictions

are insensitive to threshold corrections. The spectral index and tensor-to-scalar ratio are

exactly the same as for the classical, tree level potential, which is in excellent agreement

with data.

The inflationary predictions are universal if inflation takes place on the flat plateau

of the potential. However, it may happen that due to the running of the couplings the

potential develops a maximum. Inflation near the maximum will depend on the details

of the RGE evolution and thus on the UV completion. The perturbative expansion used

in section 3.1 does not capture this case, and we used a numerical analysis to also study

the possibility of hilltop inflation, where we parameterized the threshold corrections by

a specific set of higher order operators in the Lagrangian (2.8). Our numerical analysis

confirms our analytical results for inflation on the flat plateau of the potential. We further

found that hilltop inflation is a possibility, but it only happens for very fine-tuned boundary

conditions (the top/Higgs mass at the electroweak scale, and the Wilson coefficients of

the non-renormalizable operators). Indeed, for our run of 500 simulations with randomly

chosen Wilson coefficients (taken large enough, such that the effect on the running is

appreciable — see section 3.2 for more details), we found 382 times plateau inflation, and

118 times inflation was spoiled as the potential became unstable at low field values and the

corresponding maximum was too steep to support 60 efolds of inflation. In this run, we

did not find a single instance of hilltop inflation. We conclude that, apart from the very

fine-tuned case of inflation near the maximum, if inflation happens, the predictions are the

same as those derived from the classical potential (1.1).

A previous study of threshold correction to HI has been done in [22]. They concluded

that Higgs inflation is extremely sensitive to the UV completion, which was modelled

by the same set of higher order operators (2.8) [42]. We expect that the difference is

mainly due to the choice of the renormalization prescription. While [22] allows for both

prescription 1 and 2 in their numerical analysis, we showed analytically (and confirmed
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numerically) that for our choice of µ, which has been discussed extensively in (2.3),13 such

dependence does not arise in general. Furthermore, there are some slight differences in the

numerical implementation, for example the set of RGEs for the inflationary regime, and the

parameterization of the unitarity cutoff. However, the main conclusion that inflation on the

flat plateau of the potential is insensitive to UV physics, does not depend on these choices.

As mentioned above, we do find deviations from the universal predictions if inflation occurs

near a maximum of the potential. We studied numerically the fine-tuned parameter space

for hilltop inflation, which depends sensitively on the boundary conditions as well as on

the UV completion — and thus also on the specifics of the numerical implementation. For

standard model inflation, without threshold corrections, our numerical results agree with

earlier work [32, 37].

We conclude with a small remark. It is well known that for the central values of

the electroweak scale top and Higgs mass the Higgs potential becomes unstable at φ ∼
1010 GeV [6–12], well before the potential flattens in Higgs inflation. The top/Higgs mass

values separating a stable from an unstable Standard Model Higgs potential are close to

those separating Higgs inflation from models where inflation is not possible. There are

small differences with respect to SM running (without a non-minimal coupling), because

1) we include threshold effects, 2) we run until the inflationary scale and not the Planck

scale, and 3) the RGE equations get modified in the mid and large field regime. As expected

the measured Higgs and top masses [59] are surprisingly close to the border separating the

regions where the Higgs boson can or cannot be the inflaton.
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A Effective action and renormalization group improvement

In Higgs inflation the canonically normalized field h and the field φ appearing in the

Einstein frame action (2.4) are related by a non-trivial field space metric (2.5). Although

it is possible to write h(φ) in closed form [21, 60], this relation can only be inverted in certain

limits. Therefore, the potential in terms of the canonical field h can not be expressed in an

analytical form over the whole field domain, and it is often more convenient to work with

the φ-field (as we did, for example, in section 3).

The RG improved potential is usually defined in terms of the canonical field. In this

appendix we will show that the usual procedure of substituting each coupling with its

running counterpart can also be used for the non-canonical φ field, and the RG improved

13As argued in (2.3) and in (A), prescription 1 is the only consistent renormalization scale parametrization

to study the RG improved potential in the Einstein frame.
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potential is obtained as14

VE =
λφ4

(1 + ξφ2)2 −→
λ(t)φ4

(1 + ξ(t)φ2)2 . (A.1)

We first quickly review how the RG improved potential can be defined for canonical fields,

and then generalize to the case with non-trivial field space metric.

A.1 Canonical kinetic sector

Consider first the SM without the non-minimal coupling, the Higgs kinetic term is canon-

ical.

The effective action Γ[φcl] = W [J ]−
∫
Jφcl, with φcl = δW/δJ describes the quantum

corrected dynamics of the background field, since

δΓ[φcl]

δφcl

∣∣∣∣
φ̄cl

= 0, φ̄cl = 〈Ω|φ|Ω〉 ≡ 〈φ〉, (A.2)

i.e. the vacuum expectation value is given by minimizing the effective action. Γ[φcl] has

the following form

Γ[φcl] = Sr[φcl] + ∆Sc[φcl] + Γ1−loop + Γ2−loop + . . . (A.3)

The first term is the classical renormalized action, ∆Sc contains the counterterms and the

third term represent the one loop correction,15

Γ1−loop =
i

2

∫
d4x

∑
i

(−1)FiSiTr ln(Di +m2
i (φcl)) (A.4)

Si counts the degrees of freedom of each particle with mass mi, Fi is 1 for fermions and 0

for bosons. Γ is finite (physical amplitudes are derived from it), as the infinities from the

loop contributions are eliminated by the counterterms.

Usually one is interested in finding the space-time independent vacuum state. Thus

φcl is taken constant, and the one loop contribution to Γ can easily be computed since

the operators inside the log become diagonal in momentum representation. The effective

action for a constant background field reduces then to the effective potential given by the

tree level contribution plus the well known Coleman-Weinberg corrections [44]

Γ[φcl] = −
∫
d4xVeff [φcl]

= −
∫
d4x

[
Vtree(φcl) +

1

64π2

∑
i

(−1)FiSim
4
i (φcl)

[
ln

(
m2
i (φ)

µ2

)
− ci

]]
+ .. (A.5)

14That this is possible is not immediately obvious. In the large field regime φ = 1√
ξ
eh/

√
6; as this relation

depends explicitly on a coupling, the potential in terms of the canonical field has a different coupling

dependence (it only depends on the combination λ/ξ2), and at first sight it might seem that the prescription

of making all couplings running (A.1) differs when done in terms of h or φ. We also did the calculation of

the inflationary predictions in terms of the canonical field, and at leading order in the δ-expansion found

identical results to those presented in section 3.
15We only consider one-loop corrections in the inflationary regime.
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in the MS renormalization scheme. Here Vtree is the potential at tree level, µ is the nor-

malization scale, and ci = 3/2 for fermions and scalars and ci = 5/6 for gauge bosons.

Minimizing the effective potential gives the vev for a constant background scalar field.

The perturbative expansion breaks down when the logs in the CW potential become

large. This problem can be avoided by rewriting the effective action as a formal solution

of the RG equation. In fact, due to the invariance of the theory with respect to the

renormalization procedure Γ satisfies the Callan-Symanzik equation [61, 62](
µ
∂

∂µ
+ βi

∂

∂gi
− γ

∫
d4xφcl

δ

δφcl

)
Γ[φcl, gi, µ] = 0. (A.6)

The formal solution is given by straightforwardly applying the method of characteristics [63]

Veff(φcl, gi, µ) = Veff(φ(t), gi(t), µ(t)) ≡ V (t), (A.7)

with

φ(t) = ρ(t)φcl,
dgi(t)

dt
= βi(gj(t)), µ(t) = µet,

d ln ρ(t)

dt
= −γ(gj(t)). (A.8)

Here gi represent the generic couplings and γ is the anomalous dimension of the Higgs field.

We also assume the initial conditions ρ(0) = 1, gi(t) = gi, µ(0) = µ.

The power of the RG is the fact that we can choose the functional form of t = t(φ) in

such a way that the perturbation series for V (t) converges more rapidly than the one for

V (0). This can be made explicit by choosing µ(t) such that the logs in the CW potential

are minimized, i.e. µ(t)2 ∼ m2
i (φcl).

During inflation the background field is rolling down its potential, i.e. φcl(t) is not

constant. As a result the masses appearing in expressions like (A.4) are not constant

and the 1-loop contributions must be calculated in spacetime-dependent perturbation the-

ory [64–66]. The effective action assumes the generic form

Γ[φcl] = −
∫
d4x

[
1

2
Z(φcl)∂µφcl∂

µφcl + Veff [φcl] + . . .

]
(A.9)

where the dots are for higher derivatives terms ∼ Y (φcl)(∂φcl)
4+.. that we can safely neglect

in the slow roll approximation, and Z = Z(φcl, gi, µ). Applying the Callan-Symanzik

equation to the kinetic term gives, after some integrations by part, the following expression(
µ
∂

∂µ
+ β

∂

∂λ
− γ

(
2 + φcl

∂

∂φcl

))
Z(φcl, gi, µ) = 0. (A.10)

The formal solution can be written as

Z(φcl, gi, µ) = Z (φ(t), gi(t), µ(t)) ρ2(t) ≡ Zeff(t). (A.11)

where {φ(t), ρ(t), gi(t), µ(t)} are given in (A.8), with the same initial conditions. In the

leading order approximation16

Zeff(t) ≈ ρ2(t) = e−2
∫ t
0 γ(t′)dt′ (A.12)

16Since also Z depends on a series of logarithms, the best choice of t to minimize them in the effective

potential is to set Z to one at the leading order.
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and the improved effective action becomes

Γ = −1

2

∫ [
Zeff(t)(∂µφcl)

2 + V (t)
]
. (A.13)

As usual, it is convenient to use a canonical field redefinition, i.e. Z
1/2
eff dφcl = dφcan. This

is useful for two reasons: the equations become simpler and the gauge dependence in the

potential is significantly reduced (see the discussion in ref. [67]). Consider for example the

tree level potential Vtree = λφ4
cl/4. The improved effective action is

Γ =−
∫ [

Zeff(t)

2
(∂µφcl)

2 +
λ(t)

4
ρ4(t)φ4

cl + ..

]
=−

∫ [
1

2
(∂µφcan)2 +

λ(t)

4
φ4

can + ..

]
(A.14)

where in the last step we used (A.12). This explains why, with proper choice of the function

t (or equivalently µ(t)), the effect of the renormalization group can be summarized, from

an operative point of view, in taking the action and making the couplings running. In this

example λ(t) = dβλ(λ(t))/dt.

A.2 Non canonical kinetic sector

Let us now see how the previous discussion can be generalized to the non-minimal kinetic

terms in Higgs inflation. The Einstein frame effective action is

Γ[φcl] = −
∫
d4x

[
1

2
Z(φcl)γφφ(φcl, ξ)∂µφcl∂

µφcl + Veff [φcl] + h.o.

]
(A.15)

The fermion, gauge boson, Higgs and Goldstone boson masses are given in (2.10), and the

field space metric γφφ in (2.5). Even though the kinetic terms are non-canonical, one can

define the improved effective action as a formal solution of the RG equations. The result

now is that Z ′ ≡ Z(φcl)γφφ(φcl, ξ) satisfies an equation of the form (A.10) and its solution

can be rewritten, like in (A.11), as

Z ′eff(t) = Z (φ(t), gi(t), µ(t)) γφφ (φ(t), ξ(t)) ρ2(t) ≈ γφφ(t)ρ2(t). (A.16)

The improved effective action takes the form

Γ = −
∫
d4x

[
1
2ρ

2(t)γφφ(φ(t), ξ(t))(∂µφcl)
2 + Veff(φ(t), gi(t), µ(t)

]
, (A.17)

with gi labeling all SM model couplings plus the non-minimal coupling ξ. V (t) is the effec-

tive potential for Higgs inflation rewritten as a solution of the RG equation, i.e (A.7). Now

proceed exactly as before in order to rewrite the improved action in terms of a canonical

field. Let us do that in two steps. First use the following field redefinition

dφ̃can = ρ(t)dφcl. (A.18)

Then for φ(t) we obtain

φ(t) = ρ(t)φcl = exp

(
−
∫ t

0
γ(t)dt

)
ρ−1(t)φ̃can ≈ φ̃can, (A.19)
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and the effective lagrangian becomes (Γ ≡
∫
d4xLeff)

Leff = −1

2
γφφ

(
φ̃can, gi(t), µ(t)

)
(∂µφ̃can)2 − Veff

(
φ̃can, gi(t), µ(t)

)
. (A.20)

Then define the canonical field via

dφcan =
√
γφφdφ̃can. (A.21)

To connect to the notation of the rest of this paper set φ̃can ≡ φ and φcan = h. The

improved potential in (A.20) is the Higgs inflation quantum improved potential (eq. (A.7))

after the field redefinition (A.18), i.e.

Veff =
λ(t)φ4

(1 + ξ(t)φ)2
+

1

64π2

∑
i

Sim
4
i (φ, gi(t))

[
ln

(
m2
i (φ, gi(t))

µ(t)

)
− ci

]
. (A.22)

The optimal choice for the renormalization scale, which kills the (dominant) logs of the

top and gauge boson loop contributions in the CW potential, is given by

µ(t) = mt(µ ∼ EW )et ∼ φ

Ω(t)
=

φ√
1 + ξ(t)φ2

(A.23)

where mt(µ ∼ EW ) is the top mass measured at the Electroweak scale. This is (2.23),

which is our choice for the renormalization scale. It follows that the RG improved potential

becomes

Veff(φ) ' λ(t(φ))φ4

(1 + ξ(t(φ))φ2)2
, (A.24)

where φ = φ(h) through (A.21).

B CMB parameters at higher order in δ

In this appendix we compute the perturbation spectrum at second order in the slow roll

expansion. At this order the results do depend on the running. We check that there is no

accidental cancellations or terms blowing up, and that the leading order results are indeed

the dominant terms.

In order to compute the CMB parameters (ns, r) at second order in δ = 1/(ξφ2) we

need the slow roll parameter η at 2nd order, and ε at 3rd order (as
√
ε enters the integral

for the number of efolds). Define

K ≡ Vh
V

=
1

hφ

Vφ
V

=

√
8

3

(
1 + βλ

4λ

)
δ(δ + 1)

( δ+1
6ξ + 1)

1
2

(
δ + 1 +

βξ
2ξ

) (B.1)

Then the slow roll parameters can be written as

ε =
1

2
K2 =

8

3

(
1 +

βλ
4λ

)
δ2(δ + 1)2

AB2
, (B.2)

η =
Vhh
V

=
1

V

d

dh
(KV ) = Kh +K2 =

1

hφ
Kφ + 2ε, (B.3)
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where we have defined

A =

(
δ + 1

6ξ
+ 1

)
, B =

(
1 +

βξ
2ξ

+ δ

)
. (B.4)

Now Kh = h−1
φ Kφ with hφ =

√
γφφ given in terms of the field space metric (2.5). Explicitly

Kh =
1

hφ

(
∂K
∂δ

δφ +
∂K
∂fj

dfj
dt

dt

dφ

)
, (B.5)

where fj ≡ {λ, βλ, ξ, βξ} and thus dfj/dt ≡ {βλ, β′λ, βξ, β′ξ}. The full non-expanded slow

roll parameters are given by (B.2) and17

η =
Vhh
V

=
4

3

(
1 +

βλ
4λ

)(
δ2(δ + 1)2

AB2

(
1 +

1

12ξ

B

A
+ 2

(
1 +

βλ
4λ

))
− δ(δ + 1)(2δ + 1)

AB2

)
+

2

3

(
β′λ
4λ
−

β2
λ

4λ2

)
δ2(δ + 1)2

AB2
+O

(
βξ
ξ2
,
β′ξ
ξ

)
(B.6)

For λmax = −βλ/4 or equivalently F = 0, ε reduces to zero (extremum of the potential)

while η reduces to (3.11).

In order to compute the number of efolds we expand ε at third order in δ, which means

we need to expand K at second order in δ,

K ≈ k1δ + k2δ
2 +O(δ3). (B.7)

Then ε is given by ε = ε0δ
2 + ε1δ

3 +O(δ4) with ε0 = k2
1/2 and ε1 = k1k2. N? becomes

N? =

∫ φ?

φend

1√
2(ε0δ2 + ε1δ3 + ..)

hφ dφ, (B.8)

with

ε ≈ 1

2
k2

1δ
2
end = 1 =⇒ φend ≈

(
4

3
(1 + 1

6ξ )

)1/4(Fend

ξend

)1/2

≈
(
Fend

ξend

)1/2

. (B.9)

To understand which terms are important we expand the integrand, i.e. N? ≡
∫
f , schemat-

ically as f ∼ O(1/
√
δ) + O(

√
δ) + O(δ) + . . ., where

∫
O(1/

√
δ) ∝ φ2

? ;
∫
O(
√
δ) ∝ ln(φ?);∫

O(δ) ∝ 1/ξφ?. The results can be written in term of δ? as18

N? ≈ a1
1

δ?
+ a2 ln δ? + C, (B.10)

with

a1 =
3

4F?
, a2 =

3

4F?

 1

1 + 1
6ξ?

+
βξ?

2ξ?(1 +
βξ?
2ξ?

)

, C = − 3

4F?
ξ?φ

2
end + a2ln(ξ?φ

2
end). (B.11)

17For completeness 1
3

(
1 + βλ

4λ

)
δ2(δ+1)2

AB3

[
βξ
ξ2

(
B
6A

+ βξ
)
− β′

ξ

ξ

]
≡ O

(
βξ
ξ2
,
β′
ξ

ξ

)
.

18Following the arguments below (3.14) we neglect the implicit φ dependence of the couplings and β-

functions.
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Now rewrite (B.10) as

δ? =
a1

N?
+
a2δ?lnδ?
N?

+
Cδ?
N?

, (B.12)

which can be solved iteratively. At leading order δ? = a1N
−1
? +O(N−2

? ) and plugging that

back in (B.12) gives

δ? =
a1

N?
+
a2a1

N2
?

ln

(
a1

N?

)
+
Ca1

N2
?

+O(N−3
? ). (B.13)

Then ε evaluated at horizon exit becomes at second order

ε? ≈
4

3

(
1 +

1

6ξ?

)
F 2
?

a2
1

N2
?

=
3

4

1

N2
?

(
1 +

1

6ξ?

)
(B.14)

Expanding (B.6) at second order in δ and using (B.13) (we set also ξ � 1 for simplicity

and we neglect O(βξ/ξ
2, β′ξ/ξ)) we obtain

η? ≈ −
1

N?
+

3

2N2
?

− 3

4N2
?

1

F?

(
1− 1

2F?

(
β′λ?
4λ?
−
β2
λ?

4λ2
?

)
− ln

(
ξend

ξ?

F?
Fend

N?

)
− ξ?
ξend

Fend

)
+O(N−3

? ). (B.15)

Therefore the CMB parameters are given by the expressions

ns = 1 + 2η? − 6ε?

≈ 1− 2

N?
− 3

2N2
?

− 3

2N2
?F?

(
1− 1

2F?

(
β′λ?
4λ?
−
β2
λ?

4λ2
?

)
− ln

(
ξend

ξ?

F?
Fend

N?

)
− ξ?
ξend

Fend

)
,

r = 16ε? ≈
12

N2
?

. (B.16)

Turning off the running F? = 1, βi = 0, the tree level result are recovered at second order

in N−1
? , i.e. ns = 1 − 2

N?
− 3

N2
?

+ . . .. The spectral index ns feels the effect of the running

only at second order. This dependence goes as F−1
? . Note, however, that for values of

F? close to zero the δ expansion breaks down, and we can no longer trust our analytical

results. This is exactly the case where the potential has a maximum and we study the

problem numerically.
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[60] J. Garćıa-Bellido, D.G. Figueroa and J. Rubio, Preheating in the Standard Model with the

Higgs-Inflaton coupled to gravity, Phys. Rev. D 79 (2009) 063531 [arXiv:0812.4624]

[INSPIRE].

[61] C.G. Callan Jr., Broken scale invariance in scalar field theory, Phys. Rev. D 2 (1970) 1541

[INSPIRE].

[62] K. Symanzik, Small distance behavior in field theory and power counting, Commun. Math.

Phys. 18 (1970) 227 [INSPIRE].

[63] C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The Effective potential and the

renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].

[64] C.M. Fraser, Calculation of Higher Derivative Terms in the One Loop Effective Lagrangian,

Z. Phys. C 28 (1985) 101 [INSPIRE].

[65] J. Iliopoulos, C. Itzykson and A. Martin, Functional Methods and Perturbation Theory, Rev.

Mod. Phys. 47 (1975) 165 [INSPIRE].

[66] S. Mooij and M. Postma, Goldstone bosons and a dynamical Higgs field, JCAP 09 (2011)

006 [arXiv:1104.4897] [INSPIRE].

[67] J.R. Espinosa et al., The cosmological Higgstory of the vacuum instability, JHEP 09 (2015)

174 [arXiv:1505.04825] [INSPIRE].

– 30 –

http://dx.doi.org/10.1103/PhysRevD.91.012006
http://arxiv.org/abs/1408.5191
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5191
http://dx.doi.org/10.1103/PhysRevD.79.063531
http://arxiv.org/abs/0812.4624
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.4624
http://dx.doi.org/10.1103/PhysRevD.2.1541
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D2,1541%22
http://dx.doi.org/10.1007/BF01649434
http://dx.doi.org/10.1007/BF01649434
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,18,227%22
http://dx.doi.org/10.1016/0550-3213(93)90206-5
http://arxiv.org/abs/hep-lat/9210033
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9210033
http://dx.doi.org/10.1007/BF01550255
http://inspirehep.net/search?p=find+J+%22Z.Physik,C28,101%22
http://dx.doi.org/10.1103/RevModPhys.47.165
http://dx.doi.org/10.1103/RevModPhys.47.165
http://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,47,165%22
http://dx.doi.org/10.1088/1475-7516/2011/09/006
http://dx.doi.org/10.1088/1475-7516/2011/09/006
http://arxiv.org/abs/1104.4897
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4897
http://dx.doi.org/10.1007/JHEP09(2015)174
http://dx.doi.org/10.1007/JHEP09(2015)174
http://arxiv.org/abs/1505.04825
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04825

	Introduction
	Effective action for Higgs inflation
	Higgs inflation in Einstein frame
	UV completion and threshold corrections
	Renormalization prescription
	Renormalization group equations

	Inflation
	Inflation on the flat plateau
	Inflation near the maximum

	Conclusions
	Effective action and renormalization group improvement
	Canonical kinetic sector
	Non canonical kinetic sector

	CMB parameters at higher order in delta

