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1 Introduction

One of the most remarkable concepts in theoretical physics is duality — the fact that the

same physical theory admits more than one description in terms of different degrees of

freedom. Arguably, one of the most interesting examples of duality is bosonization in two

dimensions which evolved from an equivalence of the quantum perturbative expansions [1],

to include the solitonic sector of the theory [2], to a more algebraic understanding of

the equivalence in terms of currents [3]. As a path integral equivalence, two-dimensional

bosonization was completely formulated in [4, 5] wherein through a set of transformations

the fermionic partition function was mapped into the bosonic partition function. These

serve as one of the very few examples where a duality between two theories can be proved as

an equivalence of partition functions using a series of transformations in the path integral

rather that making a conjecture and checking some of its implications.

For many physically important consequences the conjecture and check approach is

completely satisfactory as the AdS/CFT correspondence abundantly shows. However,

conceptually this approach lacks some clarity and finality. Some of these path-integral

techniques used to establish two-dimensional bosonization have also been applied to three

dimensional systems. In particular, equivalence, in a certain limit, between very massive

fermions and a Chern-Simons theory was established [6, 7].

Recently, renewed attention has been paid to three dimensional vector models, that

is models with matter fields in the fundamental representation of U(N). This interest is

largely motivated by the Higher Spin/Vector Model duality (for a review see [8]). In a very

precise sense this duality is a baby version of the more established AdS/CFT correspon-

dence stating the equivalence between strings in AdS5 × S5 and N = 4 super Yang Mills

in four dimensions. Independently of the original motivation for the renewed interest in

3D vector models, some important properties and relationships among these models have

been established or conjectured using purely field theoretical tools.

One such example is a new generalized level/rank duality for Chern-Simons theories

coupled to bosonic or fermionic matter fields relating U(N) level k Chern-Simons coupled

to critical bosons to U(k) level N Chern-Simons coupled to free fermions [9–11]. This

interesting conjecture was preceded or accompanied by important work, such as, [12–15];

it has naturally motivated investigations into various cleanly defined field theoretic question

for vector models coupled to Chern-Simons theories [16–21]

In this manuscript we revisit duality transformations in 3D fermionic and bosonic

vector models following prescriptions formulated and applied in, for example, [6] using the

large N approximation. In section 2 we review duality as a bosonization of 3D fermions, we

also comment on some extensions and generalizations to more elaborate fermionic theories.

In section 3 we apply the dualization techniques to fermions by gauging a U(N) global

symmetry. Section 4 applies similar techniques to bosonic vector models with scalars in

the fundamental representation of U(N). In section 5, we compare the dual actions and

verify that they respect the level/rank equivalence of Chern-Simons theories coupled to

vector matter fields in the large N limit. In sections 6 and 7 we present a discussion of the

effective actions beyond the large N limit and find that the duality does not generically hold
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at this level. We conclude in section 8 highlighting a number of interesting open problems

that we hope dualization might shed some light on. Some technical considerations are

presented in a series of appendices.

2 Review of duality transformations for 3D fermions

In this section we review the duality algorithm in the case of 3D fermions [6]. Our aim

is to set up the stage for the algorithms and some of the techniques we will apply and

extend in this paper. The starting point is the action of a massive fermion coupled to an

external field:

Sψ =

∫

d3xψ̄
(

/∂ +m+ JµMµ

)

ψ, (2.1)

where Jµ is a collection of external fields and Mµ is a collection of appropriate Dirac matri-

ces, e.g., JµM
µ = iaµγ

µ. The corresponding quantum theory is defined via its Euclidean

path integral

Zψ =

∫

Dψ̄Dψ exp(−Sψ). (2.2)

To dualize the above theory one takes the following steps:

1. Enlarge the fermion theory by gauging the global U(1) symmetry ψ → eiθψ using a

gauge field Aµ.

2. Constrain the field strength of the corresponding gauge potential, Aµ, to vanish by

introducing a Lagrange multiplier, Λµ.

This procedure leads to the following extended action

LG = Lψ + iψ̄γµψAµ + ǫµνρ∂µAνΛρ, (2.3)

where Λρ is the Lagrange multiplier enforcing the vanishing of the field strength. The

main statement of the duality transformation is that the extended master action (2.3) is

equivalent to the original one (2.1)and also leads to the dual action:

• The original action is recovered by integrating out the Lagrange multiplier which

implies that Aµ is pure gauge. Integrating over Aµ which is gauge equivalent to zero

amounts to choosing a gauge where Aµ is zero leading to the original action.

• To obtain the dual theory (the bosonized action) one needs to first integrate out the

fields ψ and Aµ. The theory that corresponds to Λµ is the dual theory.

One subtlety in the above dualization procedure resides in global aspects as there

might be flat connections that are not smoothly connected to the trivial connection [22];

this obstruction is characterized by the first fundamental group of spacetime. For example,

for applications to duality among field theories at finite temperature the above prescription

will be insufficient. In this manuscript we restrict ourselves to situations where this subtlety

can be neglected.
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The central object is the dual field Λµ whose effective action is defined as

exp (iSΛ(Λ, J)) =

∫

Dψ̄DψDAµ exp (iSG(ψ,Λ, J, A)) . (2.4)

The main result of [6] consists on evaluating the above integral fairly explicitly. The

limit discussed in [6] corresponds to an expansion in the inverse fermion mass, 1/m. The

leading term in the 1/m expansion is

exp (iΓF (A)) =

∫

[dψ] exp

(

−i

∫

d3xψ̄γµ(∂µ − iAµ +m)ψ

)

= exp

(

i

2
k

∫

d3x ǫµλνAµ∂λAν + . . .

)

, (2.5)

where k = sign(m)/(8π)2 and the ellipsis stands for terms that vanish in the infinite mass

m limit, e. g., 1
|m|FµνF

µν . Note that we only write explicitly the lowest dimension operator

in the action. The last step is integrating with respect to Aµ. Let us consider Jµ = aµ, as

done in [6] to emphasized that we are referring to an applied electromagnetic field. The

integration over the field Aµ becomes algebraic and the final results is:

exp (iSΛ(Λ, a)) =

∫

[dAµ] exp

(

iΓF (a+A) + i

∫

d3xǫµνρ∂µAνΛρ

)

,

SΛ(Λ, a) = −
∫

d3xǫµλν
(

1

2k
Λµ∂λΛν + aµ∂λΛν

)

. (2.6)

Thus, the dual theory, which can also be interpreted as the bosonized version of the original

fermionic theory, turns our to be an Abelian Chern-Simons theory coupled to an external

field aµ. It is, therefore, established that for distances long compared with its Compton

wavelength the fermionic theory is dual/equivalent to a Chern-Simons theory. Note that

as a result of the algebraic integration of the gauge field Aµ the Chern-Simons level of the

effective theory appears as 1/k with respect to the result of integrating out the fermions.

We will pay particular attention to the Chern-Simons level in more general cases.

2.1 Comments and extensions of fermionic duality in 3D

There are several refinements and extensions of the duality transformation presented above,

we recall some which will be useful in subsequent sections. Fradkin and Schaposnik con-

sidered the massive Thirring model, i.e., massive fermions with a four-fermion interaction.

Using similar techniques they established a duality, to leading order in 1/m, between the

massive Thirring model and Maxwell-Chern-Simons theory [7]. The main technical ingre-

dient that allows to treat the four fermion interaction is its representation as a Gaussian

integration over a vector field. The corresponding identity is a rewriting of the four fermion

interaction (Jµ = ψ̄γµψ) as:

exp

(

g2

2

∫

d3xJµJµ

)

=

∫

DAµ exp

(

−
∫

d3
(

1

2
AµAµ + gJµAµ

))

. (2.7)

A similar ‘un-completing the square’ identity was used to treat the duality of the 2d Thirring

model in [4].
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An extension of these dualities to the case of massless fermions was discussed in [23].

The issues of non-locality can not be avoided in this case. Namely, the effective action

obtained by integrating out the fermions leads to a series of inverse powers of (/∂)−1 with

no mass to regulated those terms [23]. There is no natural way to separate scales and

therefore terms like Fµν(−�)−1/2Fµν are not suppressed.

With the hope of clarifying the relevance of the large mass limit, it is also worth

pointing out an important perspective in the integration over massless fermions and the

appearance of a Chern-Simons theory just like in the infinite mass case [24, 25]. To evaluate

the effective action (integration over fermionic degrees of freedom) at zero fermion mass

one requires a regularization because of ultraviolet divergences. The regularization could

be taken to be Pauli-Villars Sreg
eff [A,m = 0] = Seff [A,m = 0]− lim

M→∞
Seff [A,M ]. The Pauli-

Villars regularization respects gauge invariance. In the M → ∞ limit the second term

leads to the induced Chern-Simon action. Basically, similarly to the situation with the

chiral anomaly in four dimensions, maintaining gauge invariance leads to parity breaking.

Thus, the appearance of a Chern-Simons term in the context of integrating out massless

fermions seems generic. There are many physical applications where the manipulations we

describe are central. Recently, for example, they have been applied in the hope of finding

an effective field theory for topological insulators [26].

The extension of the duality transformation to higher dimensions was also described

in [6]. Technically, the path integral can be explicitly performed in the large fermion mass

limit and the obtained bosonic theory is found to be that of a rank (d− 1) antisymmetric

Kalb-Ramond-type gauge potential. In 3d, as we have shown, the result is the Chern-

Simons action; in dimensions higher than three the action is non-local.

Another important extension of the duality transformation reviewed at the beginning

of this section is its generalization to the non-Abelian case. Namely, in [27], following

steps analogous to those of [7], the dual of the massive SU(N) Thirring model was con-

structed. The result, up to 1/m corrections, is a complicated action which becomes level

k = 1, SU(N) Chern-Simons theory only in the limit of vanishing four-fermion coupling.

3 Duality in U(N) fermionic vector model

Given the global U(N) symmetry of the fermionic vector model we follow the steps outlined

above to construct a dual theory. Namely, we gauge the symmetry; impose that the gauge

field has vanishing curvature and then eliminate the gauge field and the original funda-

mental fermion writing an action only for the Lagrange multiplier which is, by definition,

the dual action.

The starting point is the action of a single fermion in the fundamental representation

of U(N)

S =

∫

d3x

(

ψ̄ /∂ψ + V (ψ̄ψ)

)

. (3.1)

We now gauge the global U(N) symmetry and add a Lagrange multiplier, Λa
ρ, imposing

– 5 –
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the vanishing of the field strength, F a
µν . The resulting action takes the following form:

S̃G =

∫

d3x

(

ψ̄(γµ∂µ − iAa
µT

aγµ)ψ + V (ψ̄ψ) + ǫµνρF a
µνΛ

a
ρ

)

. (3.2)

Let us now explain a modification with which we shall work. The Higher Spin/Vector

Model dualities such as those originally proposed in [28, 29] focused on the singlet sector

of vector models. One natural way to zoom in on the singlet sector is through coupling to

a gauge field whose dynamics is governed by a Chern-Simons term. Moreover, there is a

number of exciting new results in the studies of vector models coupled to Chern-Simons.

For example, they have been solved in the large N ’t Hooft limit in [12] (see also [10]

and [15]).

Therefore, we now consider a theory of a fundamental fermion interacting with U(N)

level k Chern-Simons theory. From the point of view of duality one could think of this

situation as having a fermion with global U(N) symmetry that one wishes to dualize.

Following the standard recipe one would gauge that symmetry and demand that the gauge

field have vanishing curvature; the new ingredient would be that one adds a kinetic term

in the form of the Chern-Simons action for this gauge field. The complete action we wish

to study is, in either perspective:

SG =

∫

d3x

[

ψ̄γµDµψ+V (ψ̄ψ)+ǫµνρF a
µνΛ

a
ρ+

ik

4π
ǫµνρTr

(

Aµ∂νAρ −
2i

3
AµAνAρ

)]

. (3.3)

If we integrate out the Lagrange multiplier Λa
µ first we simply have that the gauge field

is pure gauge and then we can simply fix the gauge that leaves us with the initial action

of fermions with U(N) global symmetry. Modulo topological subtleties which we avoid

by considering a space with no boundary where the Chern-Simons theory might become

dynamical.

We now consider integrating in a different order, namely we would like to integrate in

the path integral the fermions and gauge fields and consider the remaining theory of the

Lagrange multiplier as the dual theory to the fermionic vector model.

The master theory is defined as:

ZF =

∫

DAa
µDψ̄DψDΛµ exp

(

−
∫

d3x

[

ψ̄(γµ∂µ − iAa
µT

aγµ)ψ + V (ψ̄ψ) + ǫµνρF a
µνΛ

a
ρ

+
ik

4π
ǫµνρTr

(

Aµ∂νAρ −
2i

3
AµAνAρ

)])

=

∫

DΛµZ
F [Λ]. (3.4)

In what follows we will describe approximations to the above path integral with the

hope of developing a clear intuition into the properties of ZF [Λ].

3.1 Large mass limit: an insight into the dual theory

To build up our intuition about the type of dual answer we can get it is instructive to

consider the particular case of massive fermions, where the potential V (ψ̄ψ) just leads to

– 6 –
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a mass term. Let us consider integrating over the fermionic degrees of freedom before we

integrate out the gauge field. In the large mass limit we have:

ZF [Λa
µ]m→∞ =

∫

DAa
µDψ̄Dψ exp

[
∫

d3x
(

ψ̄(i/∂ +m+ i /A)ψ + ǫµνρF a
µνΛ

a
ρ

)

− SCS
k

]

≈
∫

DAa
µ exp

(

SCS
∆k (A) +

∫

d3xǫµνρF a
µνΛρ

)

, (3.5)

where the Chern-Simons level is ∆k = k1 − k with k1 = NTr12 = 2N , where 12 is the

identity matrix in the space of Dirac gamma matrices. We have used that in the large mass

limit the integration over fermions leads to a Chern-Simons action for the corresponding

gauge field. This is a fairly standard computation which can be found, for example, in [30].

We provide a brief review of the calculation in appendix A for self-completeness and to fix

out notation.

The next step is to integrate over the gauge field. With this aim, we find it convenient

to take the light cone gauge

A− =
1√
2
(A1 +A2) = 0. (3.6)

In the line-cone gauge the gluon self-energy vanishes and the Chern-Simons actions becomes

SCS
k =

k

4π

∫

d3xAa
+∂−A

a
3. (3.7)

The path integral takes the following form:

ZF [Λa
µ]m→∞ =

∫

DAa
+DAa

3 (3.8)

· exp
[
∫

d3x

(

Aa
+

(

∆k

2π
δab∂− − fab

cΛ
c
−

)

Ab
3 +Aa

+Fa
−3 +Aa

3Fa
+−

)]

,

where

Fa
µν = ∂µΛ

a
ν − ∂νΛ

a
µ. (3.9)

The integration of Aa
+ leads to the following equation for Aa

3:

(

∆k

2π
δab∂− − fab

cΛ
c
−

)

Ab
3 + Fa

−3 = 0. (3.10)

Denoting Nab the inverse of the operator multiplying Ab
3 in the equation above, i.e.,

(

∆k

2π
δac∂− − fac

dΛ
d
−

)

Ncb = δab , (3.11)

the final result for the partition function of the dual theory in this limit is:

ZF [Λa
µ]m→∞ =

∫

DAa
µ exp

(

SCS
∆k (A) + ǫµνρF a

µνΛρ

)

, (3.12)

=

∫

DAa
+DAa

3 exp

(

Aa
+

(

∆k

2π
δab∂− − fab

cΛ
c
−

)

Ab
3 +Aa

+Fa
−3 +Aa

3Fa
+−

)

– 7 –
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The partition function turns out to be

ZF [Λµ]m→∞ =

∫

DΛµ

(

det

(

∆k

2π
δab∂− − fab

cΛ
c
−

))−1

exp

(

−
∫

d3xNabFa
−3Fb

+−

)

.

(3.13)

A few comments about this answer are in order. The above expression has been

obtained in the large mass limit and therefore it is expected to capture phenomena in the

long wave length range. One might object that the action does not look appropriately non

Abelian, in the sense that Fa
µν = ∂µΛ

a
ν − ∂νΛ

a
µ does not contain the expected commutator

term. The answer to this seeming puzzle is simply that the natural object to dualize the

action would be a Kalb-Ramond 2-form field (F a
µνΛ

aµν) we are simply rewriting the action

in terms of the dual field Λa
ρ = ǫρ

µνΛa
µν .

3.2 Light-cone gauge and the large-N limit

We now consider integrating the fermionic degrees of freedom in the large N limit. First,

we implement the integration over the gauge fields using the light-cone gauge: A− = 0.

The action reduces to

S =

∫

d3x

[

ψ̄γµ∂µψ +Aa
+J

a
− +Aa

3J
a
3 +

k

2π
Aa

+∂−A
a
3 + V (ψ̄ψ)

+Aa
+∂−Λ

a
3 −Aa

3∂−Λ
a
+ −Aa

+∂3Λ
a
− +Aa

3∂−Λ
a
− + fabcA

b
3A

c
+Λ

a
−

]

,

=

∫

d3x

[

ψ̄γµ∂µψ + V (ψ̄ψ) +Aa
+

(

Ja
− +

k

2π
Aa

+Fa
−3 + fabcΛ

b
−A

c
3

)

+Aa
3(J

a
3 + Fa

+−)

]

, (3.14)

where

Ja
µ = −iψ̄γµT

aψ. (3.15)

The action is linear in A+ (it is also linear in A3) and we will integrate it out by using

its equation of motion:

k

2π
∂−A

a
3 + Ja

− + ∂−Λ
a
3 − ∂3Λ

a
− + fabcΛ

b
−A

c
3 = 0. (3.16)

One limit of this equation (Λ ≡ 0) was treated in [14] we will return to this limit repeatedly

as a source of technical and conceptual intuition. We rewrite the equation as:

(

k

2π
δab∂− − fab

cΛ
c
−

)

Ab
3 = Ja

− + Fa
−3. (3.17)

Let us formally define the solution to be

Aa
3 = Nab(Jb

− + Fb
−3), (3.18)

– 8 –
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where Nab is the same tensor that appeared already in eq. (3.11) with the small difference

of the Chern-Simons level. Substituting in the action we arrive at

S =

∫

d3x

[

ψ̄
(

γµ∂µ − iNabFb
−3γ3T

a + iNabFa
−+γ−T

b
)

ψ + V (ψ̄ψ)

−Nabψ̄γ−T
bψψ̄γ3T

aψ −NabFa
−+Fb

−3

]

(3.19)

The dual theory takes the following form:

ZF [Λa
µ] =

∫

Dψ̄Dψ det

(

k

4π
δab∂− − fab

cΛ
c
−

)−1

exp
(

ψ̄ /∂ψ + V (ψ̄ψ) +Aa
3(J

a
3 + Fa

+−)
)

=

∫

Dψ̄Dψ exp

(

ψ̄
(

γµ∂µ − iNabFb
−3γ3T

a + iNabFa
−+γ−T

b
)

ψ + V (ψ̄ψ)

−Nabψ̄γ−T
bψψ̄γ3T

aψ

)

× det

(

k

4π
δab∂− − fab

cΛ
c
−

)−1

exp
(

−NabFa
−+Fb

−3

)

.

(3.20)

Before proceeding to integrate over fermions we already notice the appearance, in the last

line in (3.20), of part of the structure that showed up in the large mass limit. In particular,

the last line is proving to be a recurrent structure of the effective action for the field Λa
µ in

various limits.

We have a formal expression for the dual action in eq. (3.20), to achieve a better

understanding and to prepare the groundwork for the large N limit, it is convenient to

study in more detail the group structure for the operator Nab as follows. The natural

decomposition of any algebra valued two-tensor should be:

Nab = δabN0 + ifabcN c
1 + dabcN c

2 . (3.21)

Using the fact that

Nab

(

k

2π
δbd∂− − f bdcΛc

−

)

Ad
3 = Aa

3 (3.22)

we find

N0 =
2π

k

1

∂−
− 1

N

2π

k

1

∂−
iN a

1 Λ
a
− (3.23)

Using the identity

fdanfabcf bde = Nfnce, (3.24)

we find coupled system of equations for N a
1 ,N a

2 ,

ikN e
1 ∂−

2π
− ifelcΛc

−N l
1 = N0Λ

e
− + delcΛc

−N l
2, (3.25)

k(N2 − 4)N e
2 ∂−

2πN2
− felcΛc

−N l
2 = idelcΛc

−N l
1. (3.26)

– 9 –
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These equations should be taken in the formal sense due to the presence of ∂− . We

will discuss other aspects of Nab, or equivalentely of the integro-differential equation for

Aa
3(Λ) in appendix C. Now, in this basis the quartic fermion term in the previous action

eq. (3.19) becomes:

S =

∫

d3x

[

ψ̄

(

γµ∂µ − i(δabN0 + ifabcN c
1 + dabcN c

2 )(Fb
−3γ3T

a + Fa
−+γ−T

b)

)

ψ + V (ψ̄ψ)

−(δabN0 + ifabcN c
1 + dabcN c

2 )(ψ̄γ−T
bψψ̄γ3T

aψ −Fa
−+Fb

−3)

]

(3.27)

where N2 = N a
2 T

a,N1 = N a
1 T

a.

First, observe that the terms which have explicit coefficient of 1
N vanish in the N → ∞

limit. Next, we exploit the fact that N0 ∼ O( 1k ). We also observe that from the coupled

equations for N1 and N2 it follows that N1 is suppressed by powers of 1
k2

or higher powers

of 1
k , and that N2 is suppressed by 1

k3
or higher powers of 1

k . Therefore, all the terms in the

actions involving Λa
µ, except the universal term NabFa

−+Fb
−3, are subleading in the limit

N → ∞, k → ∞, with N
k fixed. This universal term remains untouched because we are not

integrating over Λa
µ.

The main obstruction to a full integration of the fermionic fields remains the term

quartic in fermions. The starting identity in the large-N integration is a simple extension of

the Hubbard-Stratonovich identity [14]. Here we assume the bi-local structure ψ̄i(x)ψi(y)

as discussed in detail in [14] which highlights the connection to higher spin fields [31];

we also do not write explicitly integration over spacetime variables. However, we assume

both implicitly.

1 =

∫

Dα0Dα−δ

(

α0 −
1

2N
ψ̄ψ

)

δ

(

α− − 1

2N
ψ̄γ−ψ

)

(3.28)

=

∫

Dα0Dα−Dµ0Dµ+ exp

(

2iµ0

(

α0 −
1

2N
ψ̄ψ

)

+ 2iµ+

(

α− − 1

2N
ψ̄γ−ψ)

))

.

The partition function is given by

Z =

∫

Dψ̄Dψe−Tr log( k
4π

δab∂−−fab
cΛc

−
) exp

[
∫

d3q

(2π)3
ψ̄(−q)γµqµψ(q)

+N

∫

d3P

(2π)3
d3p1
(2π)3

d3p2
(2π)3

8πiN

k(p1 − p2)−
ξ−(P, p1)ξI(−P, p2)

]

(3.29)

Inserting the identity back in the partition function it becomes

Z =

∫

Dα0Dα−Dµ0Dµ+ exp

(

i

∫

(2µ+.α− + 2µ0.α0)

)

×

× exp

(

−N

∫

d3P

(2π)3
d3p1
(2π)3

d3p2
(2π)3

8πiN

k(p1 − p2)−
α−(P, p1)α0(−P, p2)

)

×

×
∫

Dψ̄Dψ exp

(

−Tr log

(

k

4π
δab∂− − fab

cΛ
c
−

))

× (3.30)

× exp

(
∫

d3qd3P

(2π)6
ψ̄

(

− P

2
− q

)(

iγµqµ(2π)
3δ3(P )− i

γ−µ+

N
− iµ0

N

−i
γ−F+−

kP−
− i

γ3F−3

kP−

)

ψ

(

− P

2
+ q

))
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rescaling

µ0 = Nµ̃0, µ̃+ = Nµ+ (3.31)

In the large N limit the path integral is dominated by the saddle point solutions and

assuming Poincare invariance on these saddle point solutions we get

〈α0(P, p1)〉 =(2π)3δ3(P )α0(p1), 〈α−(P, p1)〉 =(2π)3δ3(P )α−(p1)

〈iµ0(P, p1)〉 =(2π)3δ3(P )Σ0(p1), 〈iµ−(P, p1)〉 =(2π)3δ3(P )Σ−(p1) (3.32)

At this vacuum configuration of the singlet fields the partition function becomes

Z =

∫

Dα0Dα−Dµ0Dµ+ exp

(

i

∫

(2µ+.α− + 2µ0.α0)

)

×

× exp

(

− V N

∫

d3p1
(2π)3

d3p2
(2π)3

8πiN

k(p1 − p2)−
α−(p1)α0(p2)

)

× e−Tr log( k
4π

δab∂−−fab
cΛc

−
) ×

× exp

(

−
∫

d3qd3P

(2π)6
ψ̄(−P

2
− q)(iγµqµ + γ−Σ+ +Σ0)(2π)

3δ3(P )ψ(−P

2
+ q)

)

=

∫

Dα0Dα−Dµ0Dµ+ exp

(

i

∫

(2µ+.α− + 2µ0.α0)

)

×

× exp

(

− V N

∫

d3p1
(2π)3

d3p2
(2π)3

8πiN

k(p1 − p2)−
α−(p1)α0(p2)

)

× e−Tr log( k
4π

δab∂−−fab
cΛc

−
) ×

× exp

(

− V N

∫

d3q

(2π)3
log det(iγµqµ + γ−Σ+ +Σ0

)

(3.33)

and

−i

∫

µ̃.α = V

∫

d3q

(2π)3

(

− 2Σ+(q)α−(q)− 2Σ0(q)α0(q)

)

(3.34)

Where V ≡ (2π)3δ3(0) and we have used the following identity for fermionic Gaussian

integration
∫

DψDψ̄e
−

∫
d3p

(2π)3
ψ̄(−p)A(p)ψ(p)

= e
V

∫
d3p

(2π)3
log detA(p)

(3.35)

.

All these pieces combine to give the effective action

Seff = NV

(

−
∫

d3q

(2π)3
log det(iγµqµ + γ−Σ+ +Σ0)

+

∫

d3p1
(2π)3

d3p2
(2π)3

8πiN

k(p1 − p2)−
α−(p1)α0(p2))

+

∫

d3q

(2π)3
(−2Σ+(q)α−(q)− 2Σ0(q)α0(q))

)

(3.36)

Varying Seff action with respect to α−, α0 and putting the resulting equations back we

get the following gap equations

ΣF,+(p) = −2πiλ

∫

d3q

(2π)3
1

(p− q)−
Tr

(

1

iγµqµ +ΣF (q)

)

ΣF,I(p) = 2πiλ

∫

d3q

(2π)3
1

(p− q)−
Tr

(

γ−
iγµqµ +ΣF (q)

)

(3.37)
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and the full dual effective action

Seff [Λ] = NV

[
∫

d3q

(2π)3

{

− log det(iγµqµ +ΣF (q)) +
1

2

TrΣF (q)

iγµqµ +ΣF (q)

}]

+ S[Λ] (3.38)

where

S[Λ] = −
∫

d3xNabFa
−+Fb

−3 − Tr log

(

k

4π
δab∂− − fab

cΛ
c
−

)

(3.39)

which does not contribute to the gap equations in the Large N limit.

The precise evaluation of the first line in eq. (3.38) which is the planar free energy has

been the main result of a series of works starting with [12] and elaborated upon in, for

example, [11, 14–16]. The main conclusion is that ΣF (q) can be computed exactly in the

large N limit and it corresponds to the self-energy of the fermions. The large-N approach

that we have followed here has also been corroborated by a Schwinger-Dyson equation

perspective in some of the works cited above.

It is worth noting that the large mass limit of the previous subsection can be recovered

here as well before integrating out the gauge field. The gap equation for α0 shows that µ0

becomes the mass as read off from the potential. A diagrammatic argument leads to the

action for µ+, µ3 to be a Chern-Simons action. The other gap equations identify A+, A3

with µ+ and µ3. We thus recover precisely the same result as in the previous subsection.

4 Duality for bosonic vector models

We begin with the following action corresponding to a single fundamental boson

Sφ =

∫

d3x

(

1

2
∂µφ̄∂

µφ+ U(φ̄φ)

)

. (4.1)

We proceed to gauge the global U(N) symmetry by introducing a gauge field Aµ and adding

a Lagrange multiplier Λ to the action that enforces the vanishing of the field strength

S =

∫

d3x

(

Dµφ̄D
µφ+ U(φ̄φ) + ǫµνρFµνΛρ

)

, (4.2)

where

Dµφ = ∂µφ
m − iAa

µTaφ, Dµφ̄ = ∂µφ̄
m + iAa

µTaφ̄. (4.3)

With the same motivation of the previous section we add a Chern-Simons term, the full

starting action becomes

S =

∫

d3x

[

∂µφ̄∂
µφ+Aa

µJ
a
µ +Aa

µA
b
µφ̄T

aT bφ+ ǫµνρFµνΛρ + U(φ̄φ)

+
ik

4π
ǫµνρTr

(

Aµ∂νAρ −
2i

3
AµAνAρ

)]

. (4.4)

where

Ja
µ = i(φ̄T a∂µφ− (∂µφ̄)T

aφ). (4.5)

– 12 –
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As in the previous sections our aim is to integrate out the bosonic field φ and the gauge

field Aa
µ leaving a dual action for Λa

µ. We first proceed to integrate out the gauge field.

The most efficient way is using the light-cone gauge (A− = 0). In the light-cone gauge the

action becomes

S =

∫

d3x

[

− φ̄
(

2∂+∂− + ∂2
3

)

φ+Aa
+J

a
− +Aa

3J
a
3 +Aa

3A
b
3φ̄T

aT bφ− ∂−A
a
+Λ

a
3

+∂−A
a
3Λ

a
+ + (∂3A

a
+ − ∂+A

a
3 + fabcA

b
3A

c
+)Λ

a
− +

k

2π
Aa

+∂−A
a
3

]

(4.6)

where

Ja
µ = i(φ̄T a∂µφ− (∂µφ̄)T

aφ). (4.7)

The action is linear in Aa
+ whose corresponding equation of motion leads to

(

k

2π
δab∂− − fab

cΛ
c
−

)

Ab
3 + Ja

− + Fa
−3 = 0. (4.8)

We assume that the solution of this equation is of the form

Aa
3 = Nab(Jb

− + Fb
−3), (4.9)

where Nab is the, by now ubiquotous, formal tensor which appeared in eqs. (3.11)

and (3.17). Note that in this case the Chern-Simons level enters exactly as in the case

of as in eq. (3.17). Substituting this solution into the action one arrives at

S = −φ̄
(

2∂+∂− + ∂2
3

)

φ

+Nab(Jb
− + Fb

−3)(J
a
3 + Fa

+−)

+NacN bd(Jc
− + Fc

−3)(J
d
− + Fd

−3)φ̄T
aT bφ (4.10)

Similar to the fermionic case, to gain intuition into the dual action we expand the tensorial

structures in Nab by substituting

Nab = δabN0 + ifabcN c
1 + dabcN c

2 . (4.11)

to get

S = −φ̄
(

2∂+∂− + ∂2
3

)

φ

+(δabN0 + ifabcN c
1 + dabcN c

2 )(J
b
− + Fb

−3)(J
a
3 + Fa

+−)

+(δacN0 + ifacc1N c1
1 + dacc1N c1

2 )(δbdN0 + if bdd1N d1
1 + dbdd1N d1

2 )

×(Jc
− + Fc

−3)(J
d
− + Fd

−3)φ̄T
aT bφ (4.12)

It is possible to integrate the bosons in the large N limit by using an extended version

of Hubbard-Stratonovich. We implement the Hubbard-Stratonovich identity at the level

of path integral as

1 =

∫

DµDα exp

(

iµ

(

α− 1

N
φ̄φ

))

. (4.13)
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Here we assume the bi-local structure φ̄i(x)φi(y) as discussed in detail in [14] which high-

lights the connection to higher spin fields [31]; we simply do not write explicitly the de-

pendence in the coordinates.

After repeating the steps we did for fermonic action we get the following result for the

gap equation for the bosonic theory.

ΣB(p) =

∫

d3q1
(2π)3

d3q2
(2π)3

[

C2(p, q1, q2) + C2(q1, p, q2) + C2(q1, q2, p)

]

×

× 1

q21 +ΣB(q1)

1

q22 +ΣB(q2)
(4.14)

where

C2(p1, p2, p3) = 4π2λ2

(

(p1 + p3)−(p2 + p3)−
(p1 − p3)−(p2 − p3)−

+ (coupling[(φ̄φ)3])

)

(4.15)

and the effective action

Seff [Λ] = NV

[
∫

d3q

(2π)3

{

log(q2s + q23 +ΣB(q))−
2

3

ΣB(q)

q2s + q23 +ΣB(q)

}]

+ S[Λ] (4.16)

where

S[Λ] = −
∫

d3xNabFa
−+Fb

−3 − Tr log

(

k

4π
δab∂− − fab

cΛ
c
−

)

(4.17)

Which is identical to (3.39). Again the S[Λ] does not contribute to the gap equations at

leading order in N in the large-N limit. The first line in eq. (4.16), that is, the free energy

of the scalar plus Chern-Simons theory has been discussed in the literature extensively [9,

11, 14, 16].

5 Comments on level/rank duality with matter

Let us briefly recall in a schematic way the two dual theories

ZF [Λ] =

∫

Dψ̄Dψ detNab exp

[
∫

d3x
(

ψ̄ /∂ψ + V (ψ̄ψ) +Aa
3(J

a
3 + Fa

+−)
)

]

(5.1)

=

∫

Dψ̄Dψ detNab exp

[
∫

d3x
(

ψ̄ /∂ψ + V (ψ̄ψ) +Nab(Jb
− + Fb

−3)(J
a
3 + Fa

+−)
)

]

ZB[Λ] =

∫

Dφ̄Dφ detNab exp

[
∫

d3x
(

−φ̄∇2φ+V (ψ̄ψ)+Aa
3(J

a
3 +Fa

+−)+Aa
3A

b
3φ̄T

aT bφ
)

]

=

∫

Dφ̄Dφ detNab exp

[
∫

d3x
(

−φ̄∇2φ+ V (ψ̄ψ) +Nab(Jb
− + Fb

−3)(J
a
3 + Fa

+−)

+ NacN bd(Jc
− + Fc

−3)(J
d
− + Fd

−3)φ̄T
aT bφ

)

]

(5.2)

Since the path integral above can not be performed rigorously we now consider various

approximations leading to or enriching the intuition of level/rank duality

– 14 –
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5.1 ’t Hooft limit

In this subsection we consider the ’t Hooft limit: N, k → ∞ with λ = N/k held fixed.

In the previous sections we have discussed the dual theory in the ’t Hooft limit and we

have found that it simplifies to the duality that has been discussed before plus an effective

theory for the field Λa
µ. The level/rank duality with matter is simply a consequence of

the part independent of the field Λa
µ which has been discussed extensively in the literature

plus, the form in which the tensor Nab enters in the action for Λa
µ . Namely, given that the

level of the Chern-Simons action enters, in the large-N limit as Nab ∼ δab(∂−)
−1/k + . . .

we conclude that level/rank, at this level simply exchanges k ↔ N .

5.2 Small field approximation

Level/rank duality with matter translate to a relation between the theories ZF [Λ] and

ZB[Λ]. In the large-N limit we simply reduce the duality to the statements present in the

literature. We now discuss a small field expansion in Λ; this is, a priori, different from

the large N limit approximation. Since there is a lot of evidence about this duality in the

case of zero Lagrange multiplier field Λ = 0, it makes sense to explore a perturbative, in

Λ, approach. If we formally take Λ → 0 in the above expressions we simply recover the

Nab =

(

k

2π
δab∂−

)−1

. (5.3)

Consequently, its determinant becomes a field-independent (Λ-independent) factor which

we drop.

ZF [Λ → 0] =

∫

Dψ̄Dψ exp

[
∫

d3p

(

ψ̄/pψ + V (ψ̄ψ)
2π

k

1

p−
Ja
−J

a
3

)]

(5.4)

ZB[Λ → 0] =

∫

Dφ̄Dφ exp

[
∫

d3p

(

− φ̄p2φ+ V (φ̄φ)

+
2π

k

1

p−
Ja
−J

a
3 +

(

2π

k

)2 1

p−

1

(p− q)−
Ja
−J

b
−φ̄T

aT bφ

)]

(5.5)

These vector models have been extensively studied and the level/rank duality with

matter has been verified in observables following from these models including the finite

temperature free energies [11, 12, 16]. It is worth highlighting a key conceptual novelty

of the actions in eqs. (5.4) and (5.5). Namely, their mild non-locality as witnessed by the

powers of inverse momenta: 1/p−. This is similar to the nonlocality that appears in the

dual theories where one schematically has, at leading order, Fa
−3Fa

+−/p−.

The momentum space equation for Aa
3(p) takes a similar form in the fermionic eq. (3.16)

or bosonic case eq. (4.8):

k

2π
δab ip−Ab

3(p)− fab
c

∫

d3q

(2π)3
Λ−(q)

cAb
3(p− q) + Ja

−(p)−Fa
−3(p) = 0. (5.6)

In appendix C, we solve this equation as an expansion in Λ. The main result is that

before taking the large N limit there is a hierarchy pointing to an equivalence between the
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fermionic and bosonic theory. We do not pursue this analysis in this manuscript but it

lays the foundation for a possible comparison at finite N between the dual effective actions

ZF [Λ] and ZB[Λ].

6 Comments on 1

N
corrections

The discussion of 1
N corrections for the case Λa(x) = 0 is the standard one, i.e. one

first integrates out the matter and gets an effective action in terms of the auxiliary fields

Σ, α [14]. The saddle points are computed from this effective action and finally the effective

action for the auxiliary fields is evaluated around the saddle points. By discarding the terms

in this expansion which are higher order in 1
N one gets the non-local kinetic term for the

auxiliary fields. The propagator for the auxiliary field is then used to perform the full path

integral upto order 1
N .

For our framework where Λa
µ(x) 6= 0, we do not want to integrate out everything,

rather we want an effective action in terms of the dual field Λa
µ(x). This effective action

can be expanded diagrammatically with Λa
µ(x) vertices generating external lines for various

n−point amplitudes. These amplitudes will cary group theory factors which will generate

their N -dependence. It is in this sense that expansion of the effective action in powers of

Λa
µ(x) can be considered a 1

Nλ expansion with λ = 0, 1, . . ..

As a first step towards computing 1
N corrections, the large-N saddle points are com-

puted for µ, α’s from equations (3.36), (4.14). In the next step the integrand of the original

path integral is expanded in power series in 1
N around the large-N saddle points.

6.1 Bosonic effective action

We start by considering the bosonic case

Lφ =

∫

d3p

(2π)3

[

φ̄(−p)(p2s + p23)φ(p) +
2πi

kp−
(ja−(p)Fa

+−(−p) + ja3 (−p)Fa
−3(p))

+
2πi

kp−
(δabja−(p)j

b
3(−p) +NabFa

−3(p)Fb
+−(−p))

+

∫

d3q

(2π)3

∫

d3r

(2π)3
(
(2πi)2

k2p−q−
ja−(p)j

b
−(q)

+
(2πi)2

k2p−q−
Fa
−3(p)Fb

−3(q))φ̄(r)T
aT bφ(−p− q − r)

]

(6.1)

The above action explicitly contains 1
N corrections which are made manifest by also

introducing α and Σ through Hubbard-Stratonovich transformation by the identi-

ties (3.28), (4.13). Writing out everything explicitly upto 1
N corrections

Sφ =

∫

d3P1

(2π)3

[

φ̄(−P1)((P1)
2
s + (P1)

2
3)φ(P1)

+
2πλi

N(P1)−

∫

d3P2

(2π)3

(

− 1

2
(2P2 + P1)−φ̄(−P2)F+−(−P1)φ(P2 + P1)

+(2P2 + P1)3φ̄(−P2)F−3(P1)φ(P2 − P1)

)]
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+Nπiλ

∫

d3P1

(2π)3
d3q1
(2π)3

d3q2
(2π)3

(

(−P1 + q1 + q2)−(P1 + q1 + q2)3
(−q1 + q2)−

− 1

N

4(q1)−(q2)3
(P1)−

)

α(P, q1)α(−P, q2)

+

∫

d3P1

(2π)3
Nab(P1)Fa

−3(P1)Fb
+−(−P1)

+N(2πi)2λ2

∫

d3P1

(2π)3
d3P2

(2π)3
d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

×
(

(P1 − P2 − 2(q1 + q2))−(2P1 + P2 + 2(q1 + q3))−
(P1 + P2 − 2q1 + 2q2)−(P2 − 2q1 + 2q3)−

− 1

N

−2(q1)−(P1 + 2(P2 + q2 + q3))−
(P1)−(P1 − 2q2 + 2q3)−

− 1

N

2(P1 − P2 − 2(q1 + q2))−(q3)−
(P1 + P2)−(P1 + P2 − 2q1 + 2q2)−

)

×α(P1, q1)α(P2, q2)α(−P1 − P2, q3)

+N(2πi)2λ2

∫

d3P1

(2π)3
d3P2

(2π)3
d3q1
(2π)3

1

(P1)−(−P1 − P2)−

×α(P2, q1)

N

Fa
−3(P1)Fa

−3(−P1 − P2)

N2
(6.2)

6.2 Fermionic effective action

The fermonic starting point is

Sψ =

∫

d3p

(2π)3
ψ̄(−p)γµqµψ(p)

+
2πi

kp−
(ja−(p)Fa

+−(−p) + ja3 (−p)Fa
−3(p))

+
2πi

kp−
δab(ja−(p)j

b
3(−p) + Fa

−3(p)Fb
+−(−p)) (6.3)

It is crucial to highlight that in terms of currents we already see a difference with respect

to the bosonic case, namely the 3rd line in equation (6.1). Using the auxiliary field α for

the fermonic case gives upto 1
N corrections

Sψ =

∫

d3P1

(2π)3

[

ψ̄(−P1)γ
µ(P1)µψ(P1)

+
2πλ

N(P1)−

∫

d3P2

(2π)3
(ψ̄(−P2)F+−(−p)γ−ψ(P2+P1)+ψ̄(−P2)F−3γ3(P1)ψ(P2−P1))

+N2πiλ

∫

d3q1
(2π)3

d3q2
(2π)3

(

1

(q1 − q2)−
α−(P1, q1)α(−P1, q2)

− 1

N

1

(P1)−
α−(P1, q1)α3(P1, q2)

)]

+

∫

d3P1

(2π)3
Nab(P1)Fa

−3(P1)Fb
+−(−P1) (6.4)
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6.3 Saddle points

Our strategy consists in constructing the effective actions as an expansion around the

large−N saddle points.

µ(q)φ = 0, α(q) =
1

q2

µ(q)ψ = λ
√

2q+q−, µ+(q)
ψ = −iλ2q+

α−(q)
ψ = −Tr

γ−
iγµqµ − iλ2q+

, α(q)ψ = −Tr
1

iγµqµ + λ
√
2q+q−

(6.5)

and the propagator for bosonic theory after including large−N corrections

αB(p) =
1

p2
(6.6)

For the fermonic propagator after including large N corrections

αF (p) =
−i

(

γ−(p)+(1− λ2) + (p)−γ+ + (p)3γ3
)

+ λ(2p+p−)
1
2

p2
(6.7)

6.4 1-loop contribution to subleading order in 1

N

Reminding ourselves of the gap equations for fermionic theory

ΣF,+(p) = −2πiλ

∫

d3x
1

∂−
Tr

(

1

γµ∂µ +ΣF + 2π
k∂−

(Fb
+−T

bγ− + Fb
−3T

bγ3)

)

,

ΣF,I(p) = 2πiλ

∫

d3x
1

∂−
Tr

(

γ−

γµ∂µ +ΣF + 2π
k∂−

(Fb
+−T

bγ− + Fb
−3T

bγ3)

)

, (6.8)

with ΣF = Σ+γ− +Σ0 and for bosonic theory

ΣB(p) =

∫

d3q1
(2π)3

d3q2
(2π)3

[

C2(p, q1, q2) + C2(q1, p, q2) + C2(q1, q2, p)

]

αB(q1)αB(q2),

(6.9)

where in position space αB can be written as

αB = Tr
1

∂2 +ΣB + 2π
k∂−

(Fb
+−T

bγ− + Fb
−3T

bγ3) +
(2π)2

(k∂−)2
Fa
−3Fb

−3T
aT b

, (6.10)

where now the Tr is a trace on both the position space and color space.

Next making the shifts around the saddle points (6.5)

Σ+ → Σ+ − iλ2q+, Σ0 → Σ0 + λqs, (6.11)

where now Σ+,Σ0 are of order O( 1
N )

Sψ
eff = NV

(

−
∫

d3x log det

(

γµ∂µ − iλ2∂+γ− + λ∂s

− 2π

k∂−
(Fb

+−T
bγ− + Fb

−3T
bγ3) + γ−Σ+ +Σ0

)
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+

∫

d3p1
(2π)3

d3p2
(2π)3

8πiN

k(p1 − p2)−
α−(p1)α0(p2))

+

∫

d3q

(2π)3
(−2(Σ+(q)− iλ2q+)α−(q)− 2(Σ0(q) + λqs)α0(q))

)

(6.12)

So the fermion effective action evaluated at the large−N (N → ∞) saddle points becomes

Sψ
eff |saddle = NV

(

−
∫

d3x log det

(

γµ∂µ − iλ2∂+γ−+λ∂s−
2π

k∂−
(Fb

+−T
bγ−+Fb

−3T
bγ3)

)

+

∫

d3p1
(2π)3

d3p2
(2π)3

8πiN

k(p1 − p2)−
α−(p1)α0(p2))

+

∫

d3q

(2π)3
(2iλ2q+α−(q)− 2λqsα0(q))

)

. (6.13)

Similarly, expanding around the large N saddle point of bosonic auxiliary field ΣB

Sφ
eff = NV

[
∫

d3xTr log

(

∂2
s + ∂2

3 +ΣB +
2π

k∂−
(Fb

+−T
bγ− + Fb

−3T
bγ3)

+
(2π)2

(k∂−)2
Fa
−3Fb

−3T
aT b

)

+

∫

d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

C2(q1, q2, q3)αB(q1)αB(q2)αB(q3)

−
∫

d3q

(2π)3
ΣB(q)αB(q)

]

, (6.14)

where ΣB is of order O( 1
N ). Now at the large N (N → ∞) saddle point ΣB = 0

Sφ
eff |saddle = NV

[
∫

d3xTr log

(

∂2
s + ∂2

3 +
2π

k∂−
(Fb

+−T
bγ− + Fb

−3T
bγ3)

+
(2π)2

(k∂−)2
Fa
−3Fb

−3T
aT b

)

+

∫

d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

C2(q1, q2, q3)αB(q1)αB(q2)αB(q3)

]

. (6.15)

6.5 A small digression to functional determinants

The functional determinants arising in QFT calculations can be expanded in terms of

Feynman diagrams. For example the differential operator for a massive Dirac field in the

background of auxiliary field φ(x) can be written as

Z(φ) = Det(−i∂µγ
µ +m− gφ(x)) = e−

∑
∞

n=1
1
n
TrGn

(6.16)

upto a factor which is independent of the background field φ(x). Where

TrGn = gn
∫

d3x1d
3x2 . . . d

3xntr(S(x1 − x2)φ(x2) . . . S(xn − x1)φ(x1)) (6.17)

where S is the free field Dirac propagator S(p) = 1
iγµpµ+m .

This is precisely the diagrammatic approach we develop in appendix D as adapted to

our case.
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7 Evaluation of the effective actions at the saddle points

It is obvious from the saddle point solutions (6.5) that the fermonic saddle point depends on

the large N ’t Hooft coupling constant λ = N
k , whereas the bosonic saddle point is trivial.

As a consequence when the fermonic effective action Sψ
eff is evaluated at the saddle point

and one tries to get the effective interactions for the dual field Λ by evaluating 1− point,

2− point. . .n− point functions, certain extra interactions are generated which depend on

the various powers of the coupling constant λ. However, it can be shown that these extra

Feynman integrals vanish.

To elaborate let us consider Sψ
eff

Sψ
eff |saddle = NV

(

−
∫

d3xTr log(γµ∂µ − iλ2∂+γ− + λ∂s)

+Tr log

(

1− 1

(γµ∂µ − iλ2∂+γ− + λ∂s)

2π

k∂−
(Fb

+−T
bγ− + Fb

−3T
bγ3)

)

+

∫

d3p1
(2π)3

d3p2
(2π)3

8πiN

k(p1 − p2)−
α−(p1)α0(p2)

+

∫

d3q

(2π)3
(2iλ2q+α−(q)− 2λqsα0(q)) +O

(

1

N

)

terms

)

. (7.1)

Now, the second line in eq. (7.1) can be evaluated by Feynman diagram technique to

find n − point function of the dual field Λ and obviously these diagrams will contain λ

dependence arising from the full fermonic propagator. However, the claim made above is

that at least to order O( 1
N ) in the diagrammatic expansion this fermonic propagator can

be replaced by the free propagator in the second line.

Sψ
eff |saddle = NV

(

−
∫

d3xTr log(γµ∂µ − iλ2∂+γ− + λ∂s)

+Tr log

(

1− 1

(γµ∂µ)

2π

k∂−
(Fb

+−T
bγ− + Fb

−3T
bγ3)

)

+

∫

d3p1
(2π)3

d3p2
(2π)3

8πiN

k(p1 − p2)−
α−(p1)α0(p2)

+

∫

d3q

(2π)3
(2iλ2q+α−(q)− 2λqsα0(q)) +O

(

1

N

)

terms

)

(7.2)

Now we write the bosonic action to make a comparison

Sφ
eff |saddle = NV

[
∫

d3xTr log(∂2
s + ∂2

3)

+Tr log

(

1 +
1

∂2
s + ∂2

3

(

2π

k∂−
(Fb

+−T
bγ− + Fb

−3T
bγ3)

+
(2π)2

(k∂−)2
Fa
−3Fb

−3T
aT b

))

(7.3)

+

∫

d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

C2(q1, q2, q3)αB(q1)αB(q2)αB(q3)+O
(

1

N

)

terms

]
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It is clear that the two effective actions for Λ differ in the term (2π)2

(k∂−)2
Fa
−3Fb

−3T
aT b This

term to leading order in large N generates a tadpole diagram which gives zero contribution

in the Dimensional regularization scheme which we use. However, from next to leading

order in the large N expansion this vertex generates Feynman diagrams which have no

counter part in the fermonic theory. Therefore the theories start deviating from duality at

this order.

There is an important and rather crucial point here. When the vertex
(2π)2

(k∂−)2
Fa
−3Fb

−3T
aT b is not present, the set of diagrams generated might match. One could

argue that this is indeed what happens for the critical theory because the origin of this

vertex is the same as that of (φ̄φ)2 coupling which arises from integrating out the Chern

Simons gauge field Aa
µ(x) in the bosonic action. It will be interesting to analyze this issue

in more detail but it goes beyond our interests.

8 Conclusions

In this manuscript we have used a constructive approach to investigate connections among

3D vector theories. We have, in particular, addressed some aspects of bosonization in

three dimensions and the level/rank duality. We have considered integration in various

limits but most prominently the large N limit employing some of the standard techniques.

Besides defining formally the dual theories to the fermionic and scalar U(N) vector models

we were able to identify the two dual theories and show that they agree in the large N

limit exhibiting explicitly a level/rank duality for these systems. This provides a concrete

evidence for the validity of the conjectured duality among the different vector models in

the large N limit.

There are a number of questions that would be interesting to pursue. The large N limit

always raises the question of 1/N corrections. We have shown that the large N limit is well

defined. A deeper study of 1/N corrections, for which our work is a first step, is particularly

pressing given the claims that the level/rank duality with matter might extend to finite

N [10, 16]. In sections 6 and 7 we present an admittedly scant approach to the effective

actions beyond the leading order in N . We find that, generically, the effective fermionic

and bosonic actions do differ at this level. The main culprit being the contribution of

a particular vertex in the diagrammatic approach as elaborated in appendix D. We have

provided a scant evidence that the duality fails to hold beyond the large N leading order.

Given that one of the strongest evidence for level/rank duality with matter consists

in the matching of the corresponding finite temperature free energies [11, 12, 16], it would

be interesting to consider the path integral dualization procedure used here for finite tem-

perature backgrounds. It was pointed almost two decades ago [22, 32] that the dualization

procedure in non-contractible spaces, where pure gauge connections are not necessarily

trivial, need a careful treatment. This pertains, in particular, for spaces with π1(X) 6= 0

which is precisely the case with the thermal circle. We hope to return to this interesting

question in the near future.

Lastly, even though our approach is consistent with the vector model/higher spin

duality, it does not directly address this duality. One important question would be to
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identify the role of the extra dimension in Vasiliev’s theory under these dualities. There

are some tantalizing hints connecting the non-local aspects of the duality with a higher

dimensional theory. It would be very interesting to pursue this line. Although a more

covariant approach, than the one presented here and rooted in the light-cone gauge, would

arguably be required.
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A Integrating fermions and Chern-Simons theory

The integral over fermions in 3d is a fairly standard computation, see for example [30]. We

reproduce part of it here just to render the manuscript more self-contained and to clarify

our normalizations.

Seff [A,m] = Nf ln det(i/∂ + /A+m)

= Nf ln det
[

(i/∂ +m)(1 + (i/∂ +m)−1 /A)
]

= Nf ln det(i/∂ +m) +Nf log det(1 + (i/∂ +m)−1 /A)

∼ Nf ln det(1 + (i/∂ +m)−1 /A), (A.1)

where the first term in the penultimate line can be neglected because it is A independent

and we are looking for an effective theory of A. Expanding the determinant:

Seff [A,m] = NfTr ln(1 + (i/∂ +m)−1 /A)

≈ NfTr

(

1

i/∂ +m
/A

)

− 1

2
NfTr

(

1

i/∂ +m
/A

1

i/∂ +m
/A

)

+ . . . (A.2)

The first term corresponds to a tadpole, the second term contributes to

Squadratic
eff [A,m] =

1

2
Nf

∫

d3p

(2π)3
Aµ(−p)Γµν(p,m)Aν(p),

Γµν(p,m) =

∫

d3k

(2π)3
Trγµ

/p+ /k −m

(p+ k)2 +m2
γν

/k −m

k2 +m2
. (A.3)

The parity odd part can be computed exactly in the large mass (m → ∞), long wavelength

limit (p → 0).

Γµν(p,m) ∼ ǫµνρpρ
1

4π

m

|m| +O
(

p2

m2

)

. (A.4)

The three gluon diagram leads to

Scubic
eff [A,m] =

Nf

3

∫

d3p1d
3p2

(2π)6
Aµ(p1)Aν(p2)Aρ(−p1 − p2)Γ

µνρ(p1, p2,m), (A.5)

Γµνρ(p1, p2,m) =

∫

d3k

(2π)3
Trγµ

/p1 + /k −m

(p1 + k)2 +m2
γν

/p1 + /p2 + /k −m

(p1 + p2 + k)2 +m2
γρ

/k −m

k2 +m2
,

– 22 –



J
H
E
P
0
5
(
2
0
1
6
)
0
4
5

The relevant odd component, in the large mass limit (m ≫ p1, p2):

Γµνρ
odd (p1, p2,m) ∼ −i

1

4π

m

|m|ǫ
µνρ +O

(

p2

m2

)

. (A.6)

B Functional integration and an obstruction

Schematically the integrals that are being computed are often of the form:
∫

DAa
+DAa

3 exp
(

Aa
+(f

abcΛc
−A

b
3 + Ja

− + Fa
−3) +Aa

3(J
a
3 + Fa

+−)
)

=

∫

DAa
3δ(f

abcΛc
−A

b
3 + Ja

− + Fa
−3) exp

(

Aa
3(J

a
3 + Fa

+−)
)

=
(

det(fab
cΛ

c
−)

)−1
exp

(

Mab(Ja
− + Fa

−3)(J
a
3 + Fa

+−

)

. (B.1)

Note that the last integration over Aa
3 requires that we solve the argument of the delta

function but then the results will contain det−1(fab
cΛ

c
−). Note that this contribution to

the measure is reinterpreted in two-dimensions as a dilaton shift. Namely,

Φ 7→ Φ− 1

2
ln detMab. (B.2)

B.1 Fermions: a singularity for light-cone integration without Chern-Simons

When treating gauge fields in three dimensions there are usually significant simplifica-

tions in the light-cone gauge; this can be seen in the Yang-Mills case [33] but also in the

Chern-Simons coupled to matter context that we are interested in [12]. Here we consider

a fermionic action without Chern-Simons coupling (k → 0). Given the expected simpli-

fications it is tempting to attempt to first of all integrate the gauge field in the master

action (3.4). In the light-cone gauge, A− = 0, the action takes the form (k = 0):

S = ψ̄ /∂ψ + V (ψ̄ψ) +Aa
+

(

Ja
− + Fa

−3 + fabc Λ
b
−A

c
3

)

+Aa
3

(

Ja
3 + Fa

+−

)

, (B.3)

where Ja
µ = −iψ̄γµT

aψ and Fa
µν = ∂µΛ

a
ν − ∂νΛ

a
µ. The resulting action is linear in A+ and

we could consider integrating it out as in the previous subsection which would yield

Fa
−3 + Ja

− − fa
bcA

b
3Λ

c
− = 0. (B.4)

However, the matrix fab = fabcΛ
c
− is not invertible. One can check that its determinant

vanishes.1 Similar structures with the corresponding determinants appear in the context

of non-Abelian T-duaity in string theory [22, 34, 35].

The obstruction above, nevertheless, teaches us an important lesson about the inter-

mediate structure of the dual theory. If we were able to solve eq. (B.4) we would obtain

that Aa
3 ∼ Ja

− + Fa
−3; substituting this back into the action would lead to four-fermion

interactions. The singularity also teaches us that (k 6= 0), that is, coupling to a Chern-

Simons term precisely provides the regularization we seek that allows to invert eq. (B.4)

and that, indeed, eliminating the gauge field leads to an intermediate action containing

four-fermion interactions arising as the product of fermionic currents.

1We thank Y. Lozano for important comments regarding gauge invariance on this point.
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B.2 Bosons: a singularity for light-cone integration without Chern-Simons

Let us show that, as in the fermionic case, there is an obstruction to using the light-cone

gauge and integrating the gauge field degrees of freedom in the absence of a Chern-Simons

term (k → 0). One might have expected that perhaps the difference in couplings could

have ameliorated this problem. In the light-cone gauge the action becomes (k = 0):

S =

∫

d3x
[

− φ̄
(

2∂+∂− + ∂2
3

)

φ+Aa
+J

a
− +Aa

3J
a
3 +Aa

3A
b
3φ̄T

aT bφ

−∂−A
a
+Λ

a
3 + ∂−A

a
3Λ

a
+ + (∂3A

a
+ − ∂+A

a
3 + fabcA

b
3A

c
+)Λ

a
−

]

. (B.5)

where Ja
µ was defined above in eq. (4.5).

The action is linear in Aa
+ whose equation of motion leads to

Fa
−3 + Ja

− − fa
bcA

b
3Λ

c
− = 0. (B.6)

This equation is similar to eq. (B.4), the only difference is the construction the current

which was fermionic in the case of eq. (B.4) and it is bosonic here. The problem is, as

before, that fab = fabcΛ
c
− is not invertible. Note that the presence of quadratic in Aa

3 terms

which are absent in the fermionic case do not modify the above statement as it relies only

in integration over Aa
+.

We speculate that this singular limit, k → 0, is teaching us about the scalings for

which the theory can ultimately be well defined. It would be particularly interesting to

return to this question in the face of claims that the level/rank duality with matter holds

for finite N [11, 12, 16]. Clearly, the scaling of k becomes an important issue.

C Momentum space actions

We consider the presentation of various actions in momentum space. We use:

Φ(x) =

∫

d3p

(2π)3
eipxΦ(p). (C.1)

The action in momentum space following from a fundamental fermion coupled to U(N)

level k Chern-Simons action in the light-cone gauge was discussed in [14] in a slightly more

general setup of supersymmetric theories.

S =

∫

d3x
(

ψ̄ /∂ψ +Aa
3J

a
3

)

, (C.2)

where Aa
3 satisfies the equation

k

2π
∂−A

a
3 + Ja

− = 0. (C.3)

In momentum space the above equation is solved by

Aa
3(p) =

2πi

k p−
Ja
−(p). (C.4)
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Plugging this expression in the above action, it can be rewritten as:

S =

∫

d3q

(2π)3
ψ̄(−q)/qψ(q)

+Tr

∫

d3p

(2π)3
d3r

(2π)3
d3s

(2π)3
−2πi

kp−
ψ̄(−r)γ−T

aψ(p+ r)ψ̄(−s)γ3T
aψ(−p+ s). (C.5)

The full action that we consider in the main text is:

S =

∫

d3x

[

ik

4π
ǫµνρTr

(

Aµ∂νAρ −
2i

3
AµAνAρ

)

+ψ̄
(

/∂ − iAa
µT

aγµ +m
)

ψ + V (ψ̄ψ) + ǫµνρTr(FµνΛρ)

]

. (C.6)

The momentum space equation for Aa
3(p) is

k

2π
δab ip−Ab

3(p)− fab
c

∫

d3q

(2π)3
Λ−(q)

cAb
3(p− q) + Ja

−(p)−Fa
−3(p) = 0. (C.7)

C.1 Perturbative solution in Λ

Assuming that the zeroth oder solution, that is, the solution without Λ is known: Aa
3(p) =

2πiJa
−(p)/(k p−) . Then, the Neumann series solution of the above integral equations for

Aa
3(p),upto third order in 1

k (where k is the Chern-Simons level), will be

A3(p)
a =

2πi

k p−
Ja
−(p)

+
2πi

k p−
Fa
3−(p)−

2πi

k p−
fa

bc

∫

d3q

(2π)3
Λc
−(q)

2πi

k (p− q)−
Jb
−(p− q)

− 2πi

k p−
fa

bc

∫

d3q

(2π)3
Λc
−(q)

2πi

k (p− q)−
Fb
3−(p− q))

+
2πi

kp−
faa1a2fa1a3a4

∫

d3p1
(2π)3

d3p2
(2π)3

Λa2
− (p1)Λ

a4
− (p2)

× 2πi

k (p− p1)−

2πi

k (p− p1 − p2)−
Ja3
− (p− p1 − p2))

+
2πi

kp−
faa1a2fa1a3a4

∫

d3p1
(2π)3

d3p2
(2π)3

Λa2
− (p1)Λ

a4
− (p2)

× 2πi

k (p− p1)−

2πi

k (p− p1 − p2)−
Fa3
3−(p− p1 − p2) (C.8)

Note that in the above equation, the first line is the zeroth (no factors of Λ) order solution.

The first line contains one power of Λ while the second and third contain two powers of

Λ. The third line contains three powers of Λ; this way of organizing the expansion teaches

us the general form in which powers of Λ can appear, including when they appear only

through F3−.

A schematic form of the solution for A3 is as follows:

A3(p) =
1

kp−
J−

+
1

kp−
F3− +

1

k2
f

∫

Λ−J−
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+
1

k2
f

∫

Λ−F3− +
1

k3
f2

∫

(Λ−)
2J−

+
1

k3
f2

∫

(Λ−)
2F3− +

1

k4
f3

∫

(Λ−)
3J−

+ . . .+ . . .

+
1

kn
fn−1

∫

(Λ−)
n−1F3− +

1

kn+1
fn

∫

(Λ−)
nJ− (C.9)

After plugging the solution given by eq. (C.8) back into the action we will analyze the

terms of order 1
k2

and 1
k3

and show that they are subleasing in the Large-N limit in the

singlet sector of the theory. The key identity we will use repeatedly is

(T a)ij(T
b)kl =

δab

N2 − 1

(

δilδ
k
j − 1

N
δijδ

k
l

)

+
N

2(N2 − 4)
dabc(T c)ilδ

k
j

+
N

2(N2 − 4)
dabc(T c)kj δ

i
l −

1

N2 − 4
dabc(T c)ijδ

k
l − 1

N2 − 4
dabc(T c)kl δ

i
j

+
i

2N
fabc(T c)ilδ

k
j − i

2N
fabc(T c)kj δ

i
l (C.10)

Before writing out the result of plugging the expression for A3 in eq. (C.8) in the action

let us first describe, schematically, the possible terms:

S = S(A) + S(B)

= Aa
3J

a
3 +A3φ̄A3φ (C.11)

with

S(A) =
1

k
J−J3

+
1

k
F3−J3 +

1

k2
fΛ−J−J3

+
1

k2
fΛ−F3−J3 +

1

k3
f2(Λ−)

2J−J3

+ . . .

+
1

kn
fn−1(Λ−)

n−1F3−J3 +
1

kn+1
fn (Λ−)

nJ−J3 (C.12)

This structure follows immediately from the structure of the solution of A3 in eq. (C.9).

Also

S
(B)
0,1,2 =

1

k2
J−φ̄J−φ

+
1

k2
F3−φ̄J−φ+

1

k2
F3−φ̄F3−φ+

1

k3
fΛ−J−φ̄J−φ

+
1

k3
F3−φ̄fΛ−J−φ+

1

k3
fΛ−F3−φ̄J−φ+

1

k4
f2(Λ−)

2J−φ̄J−φ (C.13)

The above expression contains the zeroth, first and second order corresponding to each

line. Terms begin to proliferate starting at third order where we have contribution from
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products of first and second order terms in addition to intrinsically third order terms in A3:

S
(B)
3 =

1

k4
f2(Λ−)

2F3−φ̄J−φ+
1

k5
f3(Λ−)

3J−φ̄J−φ

+
1

k3
F3−φ̄fΛ−F3−φ+

1

k4
F3−φ̄f

2(Λ−)
2J−φ

+
1

k4
f Λ−J−φ̄fΛ−F3−φ+

1

k5
fΛ−J−φ̄f

2(Λ−)
2J−φ (C.14)

Let us now present the explicit form of some of the schematic terms above with all the

indices and momentum factors:
1

k3
fΛ−J−φ̄J−φ =⇒

1

4

∫

d3pd3qd3rd3p1d
3ω1d

3ω2

(2π)18
2πi

kp−

2πi

kq−

2πi

k(p− p1)−
(2ω1 + p− p1)−(2ω2 + q)−

[φ̄(r)φ(ω1 + p− p1)][φ̄(−ω1)Λ(p1)φ(ω2 + q)][φ̄(−ω2)φ(−p− q − r)]

−1

4

∫

d3pd3qd3rd3p1d
3ω1d

3ω2

(2π)18
2πi

kp−

2πi

kq−

2πi

k(p− p1)−
(2ω1 + p− p1)−(2ω2 + q)−

[φ̄(−ω1)φ(ω2 + q)][φ̄(r)Λ(p1)φ(ω1 + p− p1)][φ̄(−ω2)φ(−p− q − r)]

1

k2
F3−φ̄J−φ =⇒

−1

2

∫

d3pd3qd3rd3ω1

(2π)12
2πi

kp−

2πi

kq−
(2ω1 + p)−

[φ̄(−ω1)F3−(q)φ(−p− q − r)][φ̄(r)φ(ω1 + p)]

−1

2

∫

d3pd3qd3rd3ω1

(2π)12
2πi

kp−

2πi

kq−
(2ω1 + q)−

[φ̄(r)F3−(p)φ(ω1 + q)][φ̄(−ω1)φ(−p− q − r)] (C.15)

Also:
1

k3
F3−φ̄fΛ−J−φ+

1

k3
fΛ−F3−φ̄J−φ =⇒

1

2

∫

d3pd3qd3rd3p1d
3ω1

(2π)15
2πi

kp−

2πi

kq−

2πi

k(p− p1)−
(2ω1 + p− p1)

[φ̄(r)φ(ω1 + p− p1)][φ̄(−ω1)Λ(p1)F3−(q)φ(−p− q − r)]

+
1

2

∫

d3pd3qd3rd3p1d
3ω1

(2π)15
2πi

kp−

2πi

kq−

2πi

k(p− p1)−
(2ω1 + q)

[φ̄(−ω1)φ(−p− q − r)][φ̄(r)F3−(p− p1)Λ(p1)φ(ω1 + q]

−1

2

∫

d3pd3qd3rd3p1d
3ω1

(2π)15
2πi

kp−

2πi

kq−

2πi

k(p− p1)−
(2ω1 + p− p1)

[φ̄(r)Λ(p1)φ(ω1 + p− p1)][φ̄(−ω1)F3−(q)φ(−p− q − r)] (C.16)

−1

2

∫

d3pd3qd3rd3p1d
3ω1

(2π)15
2πi

kp−

2πi

kq−

2πi

k(p− p1)−
(2ω1 + q)

[φ̄(−ω1)φ(−p− q − r)][φ̄(r)Λ(p1)F3−(p− p1)φ(ω1 + q)]
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1

4

∫

d3pd3qd3rd3q1d
3ω1d

3ω2

(2π)18
2πi

kp−

2πi

kq−

2πi

k(q − q1)−
(2ω1 + p)(2ω2 + q − q1)

[φ̄(r)φ(ω1 + p)][φ̄(−ω2)Λ(q1)φ(−p− q − r)][φ̄(−ω1)φ(ω2 + q − q1)]

+
1

2

∫

d3pd3qd3rd3q1d
3ω1

(2π)15
2πi

kp−

2πi

kq−

2πi

k(q − q1)−

(2ω1 + p)[φ̄(r)φ(ω1 + p)][φ̄(−ω1)F3−(q − q1)Λ(q1)φ(−p− q − r)] + . . .

When we plug in the perturbative solution for Aa
3(p) in the action for the fundamental

bosons and fermions, we observe that at nth order the types of terms involving Lagrange

multiplier field Λ are exhausted by the following combinations in momentum space (Note

that we will use Einstein summation convention):

For the fundamental boson action:

[φ̄T a1T a2T a3 . . . T anφΛa1Λa2Λa3 . . .Λan ] (C.17)

[φ̄T a1T a2T a3 . . . T anφΛa1Λa2Λa3 . . .Λan ](φ̄φ)

[φ̄T a1T a2T a3 . . . T an−mφΛa1Λa2Λa3 . . .Λan−m ][φ̄T an−m+1 . . . T anφΛan−m+1 . . .Λan ] (C.18)

[φ̄T a1T a2T a3 . . . T anφΛa1Λa2Λa3 . . .Λan ](φ̄φ)(φ̄φ)

[φ̄T a1T a2T a3 . . . T an−mφΛa1Λa2Λa3 . . .Λan−m ][φ̄T an−m+1 . . . T anφΛan−m+1 . . .Λan ](φ̄φ)

[φ̄T a1T a2T a3 . . . T an−lφΛa1Λa2Λa3 . . .Λan−l ][φ̄T an−l+1 . . . T anφΛan−l+1 . . .Λam ]×
[φ̄T am+1 . . . T anφΛam+1 . . .Λan ] (C.19)

For the fundamental fermion action:

[ψ̄γ3T
a1T a2T a3 . . . T anψΛa1Λa2Λa3 . . .Λan ] (C.20)

[ψ̄γ−T
a1T a2T a3 . . . T anφΛa1Λa2Λa3 . . .Λan ](ψ̄ψ)

[ψ̄γ−T
a1T a2T a3 . . . T an−mψΛa1Λa2Λa3 . . .Λan−m ][ψ̄T an−m+1 . . . T anψΛan−m+1 . . .Λan ]

[ψ̄γ−T
a1T a2T a3 . . . T an−mψΛa1Λa2Λa3 . . .Λan−m ][ψ̄γ3T

an−m+1 . . . T anψΛan−m+1 . . .Λan ]

(C.21)

where T a is the generator of SU(N) in the fundamental representation.

The universal piece:

1

k
F3−F+− (C.22)

C.2 Large N analysis

First we prove the following identity

(T a1T a2T a3 . . . T an) = O
(

1

N

)

+ F a1a2b1F b1a3b2F b2a4b3 . . . F bn−1anbnT bn (C.23)

where a1, . . . ., an, b1, . . . , bn run from 1 to N2 − 1 , F abc ≡ 1
2(d

abc + ifabc) with dabc, fabc

being structure constants of SU(N) Lie algebra.
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Proof. First few cases are manifestly true

T a1T a2 =
δa1a2

N
+ F a1a2b1T b1

T a1T a2T a3 =
δa1a2T a3

N
+

F a1a2a3

N
+ F a1a2b1F b1a3b2T b2

T a1T a2T a3T a4 =
δa1a2δa3a4

N2
+

δa1a2F a3a4b3T b3

N
+

F a1a2a3T a4

N
+

F a1a2b1F b1a3a4

N

+ F a1a2b1F b1a3b2F b2a4b3T b3 (C.24)

Odd n: assume that the assertion is true for T a1T a2T a3 . . . T an−1 i.e.

T a1T a2T a3 . . . T an−1 = O
(

1

N
n−1
2

)

+O
(

1

N
n−1
2

−1

)

+ . . .+O
(

1

N

)

+F a1a2b1F b1a3b2F b2a4b3 . . . F bn−2an−1bn−1T bn−1 (C.25)

then

T a1T a2T a3 . . . T an = [(T a1T a2T a3 . . . T an−1T an)]

=

([

O
(

1

N
n−1
2

)

+O
(

1

N
n−1
2

−1

)

+ . . .+O
(

1

N

)

+F a1a2b1F b1a3b2F b2a4b3 . . . F bn−2an−1bn−1T bn−1

]

T an

)

= O
(

1

N
n−1
2

)

+O
(

1

N
n−1
2

−1

)

+ . . .+O
(

1

N

)

+F a1a2b1F b1a3b2F b2a4b3 . . . F bn−1anbnT bn (C.26)

where in going from second to third line we used the special case n = 2 of the assertion.

Even n: assume that the assertion is true for T a1T a2T a3 . . . T an−1 i.e.

T a1T a2T a3 . . . T an−1 = O
(

1

N
n−2
2

)

T an−1 +O
(

1

N
n−1
2

−1

)

+ . . .+O
(

1

N

)

+F a1a2b1F b1a3b2F b2a4b3 . . . F bn−2an−1bn−1T bn−1 (C.27)

then

T a1T a2T a3 . . . T an = [(T a1T a2T a3 . . . T an−1T an)]

=

([

O
(

1

N
n−2
2

)

T an−1 +O
(

1

N
n−1
2

−1

)

+ . . .+O
(

1

N

)

+F a1a2b1F b1a3b2F b2a4b3 . . . F bn−2an−1bn−1T bn−1

]

T an

)

= O
(

1

N
n
2

)

+O
(

1

N
n
2
−1

)

+ . . .+O
(

1

N

)

+F a1a2b1F b1a3b2F b2a4b3 . . . F bn−1anbnT bn (C.28)

where in going from second to third line we again used the special case n = 2 of the

assertion
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This shows that in the large N limit

lim
N→∞

(T a1T a2T a3 . . . T an) = F a1a2b1F b1a3b2F b2a4b3 . . . F bn−1anbnT bn (C.29)

Now using this assertion we can see that

[φ̄T a1T a2T a3 . . . T anφΛa1Λa2Λa3 . . .Λan ] = φ̄T bnφ[(F a1a2b1F b1a3b2F b2a4b3 . . . F bn−2an−1bn−1

F bn−1anbnΛa1Λa2Λa3 . . .Λan)] (C.30)

but φ̄T bnφ does not belong to the singlet sector, hence this term is subleasing in the

large N -limit.

Next the expression

[φ̄T a1T a2T a3 . . . T an−mφΛa1Λa2Λa3 . . .Λan−m ][φ̄T an−m+1 . . . T anφΛan−m+1 . . .Λan ] (C.31)

reduces in the limit N → ∞ to

F a1a2b1 . . . F bn−m−1an−mbn−mF an−m+1an−m+2bn−m+1 . . . F bn−1anbn φ̄T bn−mφφ̄T bnφ (C.32)

Using eq. (C.10) it is easy to see that

F a1a2b1 . . . F bn−m−1an−mbn−mF an−m+1an−m+2bn−m+1 . . . F bn−1anbn φ̄T bn−mφφ̄T bnφ

∼ O
(

1

N

)

+O
(

1

N2

)

(C.33)

This shows that expressions of the form

φ̄T a1 . . . T an−lφφ̄T an−l+1 . . . T an−mφφ̄T an−m . . . T anφ (C.34)

will be even more subleading in the large N limit.

The analysis of the fermionic terms similarly goes through.

Let us analyze S[Λ]

S[Λ] = −
∫

d3xNabFa
−+Fb

−3 − Tr log

(

k

4π
δab∂− − fab

cΛ
c
−

)

(C.35)

now suppressing the indices

Tr log

(

k

4π
δab∂− − fab

cΛ
c
−

)

= Tr log

(

k

4π
I∂− − fΛ−

)

= Tr log

(

4π

k∂−

)

+Tr log

(

I − 4πfΛ−

k∂−

)

(C.36)

and making a series expansion

Tr log

(

I − 4πfΛ−

k∂−

)

= −Tr
∞
∑

n=1

(−1)n(−4πfΛ−

k∂−
)n

n
(C.37)

We have analyzed terms of the form fnΛn/kn. For odd n, in the large N limit, their

contribution vanishes. For even n one can explicitly demonstrate that the answer is only a

function of λ = N/k. Therefore the N ↔ k symmetry is preserved in this expansion.
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D Diagramatic expansion of the effective actions upto O( 1

N
)

D.1 One point amplitude

It is important to keep in mind that there is an overall factor of N for each vertex, because

both and bosons and fermions are in the fundamental representations of U(N). This is

accounted for as an overall factor of N in the effective actions. Also the bosonic and

fermonic propagators are large N exact.

Bosonic theory:

�

= Tr(T a)
2π

k

∫

d3p

(2π)3
d3p1
(2π)3

1

p21p−

(

Fa
−3(p)(2(p1)3 + p3) +

1

2
Fa
+−(p)(2(p1)− + p−)

)

(D.1)

Fermionic theory:

�= −Tr(T a)
2π

k

∫

d3p

(2π)3
d3p1
(2π)3

1

p21p−

(

2Fa
−3(p)(p1)3 + 2Fa

+−(p)(p1)−

)

(D.2)

These amplitudes for Feynman diagrams corresponding to one-point functions vanish due

to symmetry properties of the integrands and the regularization scheme [12] we are using

in which
∫

d3p

(2π)3
1

p2
= 0 (D.3)

Scaling with number of colors N : if the Lagrange multiplier field Λa and the Chern

Simons gauge field Aa have the same large N scaling.

Under this scaling, the 1-point amplitudes for Λa are of O( 1
N ).

D.2 Two point amplitude

Bosonic theory:

�=
1

2

(2π)2

k2

∫

d3p

(2π)3
d3p1
(2π)3

1

p2−

1

(p1 + p)2p21

×Tr

[(

Fb
+−(p)T

b 1

2
(2p1 + p)− + Fb

−3(p)T
b(2p1 + p)3

)

×
(

Fa
+−(−p)T a(p1)− + Fa

−3(−p)T a(2p1)3

)]

(D.4)
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�

=
(2π)2

k2

∫

d3p

(2π)3
d3p1
(2π)3

1

p2−

1

p21
× Tr

[(

Fa
−3(p)Fb

−3(−p)T aT b

)]

(D.5)

This tadpole diagram evaluates to zero.

Fermionic theory:

�

= −1

2

(2π)2

k2

∫

d3p

(2π)3
d3p1
(2π)3

1

p2−

1

(p1 + p)2(p1)2
Tr

[(

Fb
+−(p)T

bγ− + Fb
−3(p)T

bγ3

)

×
(

− i(γ−(p1 + p)+(1− λ2) + (p1 + p)−γ+ + (p1 + p)3γ3) + λ(2(p1 + p)+(p1 + p)−)
1
2

)

×
(

Fa
+−(−p)T aγ− + Fa

−3(−p)T aγ3

)

×
(

− i(γ−(p1)+(1− λ2) + (p1)−γ+ + (p1)3γ3) + λ(2(p1)+(p1)−)
1
2

)]

(D.6)

Scaling with number of colors N : 2-point amplitudes of Λa are of O(1).

D.3 Three point amplitude

Bosonic theory:

�

=
1

3

(2π)3

k3

∫

d3p

(2π)3
d3q

(2π)3
d3p1
(2π)3

1

p−q−(−p− q)−

1

(p1 + p)2(p1 + p+ q)2(p1)2

×Tr

[(

Fb
+−(p)T

b 1

2
(2p1 + p)− + Fb

−3(p)T
b(2p1 + p)3

)

×
(

Fc
+−(q)T

c 1

2
(2p1 + p+ q)− + Fc

−3(q)T
c(2p1 + p+ q)3

)

×
(

Fa
+−(−p− q)T a(p1)− + Fa

−3(−p− q)T a(2p1)3

)]

(D.7)
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�

=
1

2

(2π)3

k3

∫

d3p

(2π)3
d3q

(2π)3
d3p1
(2π)3

1

p−q−(−p− q)−

1

(p1 + p+ q)2(p1)2

×Tr

[(

Fa
−3(p)Fb

−3(q)T
aT b

)

×
(

Fc
+−(−p− q)T c 1

2
(2p1 + p+ q)− + Fc

−3(−p− q)T c(2p1 + p+ q)3

)]

(D.8)

Fermionic theory:

�

= −1

3

(2π)3

k3

∫

d3p

(2π)3
d3q

(2π)3
d3p1
(2π)3

1

p−q−(−p− q)−

1

(p1 + p)2(p1 + p+ q)2(p1)2

×Tr

[(

Fa
+−(p)T

aγ− + Fa
−3(p)T

aγ3

)

×
(

− i(γ−(p1 + p)+(1− λ2) + (p1 + p)−γ+ + (p1 + p)3γ3) + λ(2(p1 + p)+(p1 + p)−)
1
2

)

×
(

Fb
+−(q)T

bγ− + Fb
−3(q)T

bγ3

)

×
(

− i(γ−(p1 + p+ q)+(1− λ2) + (p1 + p+ q)−γ+ + (p1 + p+ q)3γ3)

+λ(2(p1 + p+ q)+(p1 + p+ q)−)
1
2

)

×
(

Fc
+−(−p− q)T cγ− + Fc

−3(−p− q)T cγ3

)

×
(

− i(γ−(p1)+(1− λ2) + (p1)−γ+ + (p1)3γ3) + λ(2(p1)+(p1)−)
1
2

)]

(D.9)

Scaling with number of colors N : 3-point amplitudes are of O( 1
N ). Note that

Tr(T aT bT c) = ifabc + dabc and ΛaΛbΛcfabc will of order less than 1
N . Therefore in three

point functions only ΛaΛbΛcdabc will enter at O( 1
N ).
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D.4 Four point amplitude

Bosonic theory:

�

=
1

4

(2π)4

k4

∫

d3p

(2π)3
d3q

(2π)3
d3s

(2π)3
d3p1
(2π)3

1

p−q−s−(−p− q − s)−

1

(p1 + p)2(p1 + p+ q)2

× 1

(p1 + p+ q + s)2(p1)2

×Tr

[(

Fb
+−(p)T

b 1

2
(2p1 + p)− + Fb

−3(p)T
b(2p1 + p)3

)

×
(

Fb
+−(q)T

b 1

2
(2p1 + p+ q)− + Fb

−3(q)T
b(2p1 + p+ q)3

)

×
(

Fb
+−(s)T

b 1

2
(2p1 + p+ q + s)− + Fb

−3(q)T
b(2p1 + p+ q + s)3

)

×
(

Fa
+−(−p− q − s)T a(p1)− + Fa

−3(−p− q − s)T a(2p1)3

)]

(D.10)

�

=
1

3

(2π)4

k4

∫

d3p

(2π)3
d3q

(2π)3
d3s

(2π)3
d3p1
(2π)3

1

p−q−s−(−p− q − s)−

1

(p1 + p+ q)2

× 1

(p1 + p+ q + s)2(p1)2

×Tr

[(

Fa
−3(p)Fb

−3(q)T
aT b

)

×
(

Fc
+−(s)T

c 1

2
(2p1 + p+ q + s)− + Fc

−3(q)T
c(2p1 + p+ q + s)3

)

×
(

Fd
+−(−p− q − s)T d(p1)− + Fd

−3(−p− q − s)T d(2p1)3

)]

(D.11)
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�

=
1

2

(2π)4

k4

∫

d3p

(2π)3
d3q

(2π)3
d3s

(2π)3
d3p1
(2π)3

1

p−q−s−(−p− q − s)−

1

(p1 + s)2

× 1

(p1 + p+ q + s)2
× Tr

[(

Fc
−3(p)Fd

−3(q)T
cT d

)

×
(

Fa
−3(s)Fb

−3(−p− q − s)T aT b

)]

(D.12)

Fermionic theory:

�

= −1

4

(2π)4

k4

∫

d3p

(2π)3
d3q

(2π)3
d3s

(2π)3
d3p1
(2π)3

1

p−q−s−(−p− q − s)−

1

(p1 + p)2(p1 + p+ q)2

× 1

(p1 + p+ q + s)2(p1)2
Tr

[(

Fa
+−(p)T

aγ− + Fa
−3(p)T

aγ3

)

×
(

− i(γ−(p1 + p)+(1− λ2) + (p1 + p)−γ+ + (p1 + p)3γ3) + λ(2(p1 + p)+(p1 + p)−)
1
2

)

×
(

Fb
+−(q)T

bγ− + Fb
−3(q)T

bγ3

)

×
(

− i(γ−(p1 + p+ q)+(1− λ2) + (p1 + p+ q)−γ+ + (p1 + p+ q)3γ3)

+λ(2(p1 + p+ q)+(p1 + p+ q)−)
1
2

)

×
(

Fc
+−(s)T

cγ− + Fc
−3(s)T

cγ3

)

×
(

− i(γ−(p1 + p+ q + s)+(1− λ2) + (p1 + p+ q + s)−γ+ + (p1 + p+ q + s)3γ3)

+λ(2(p1 + p+ q + s)+(p1 + p+ q + s)−)
1
2

)

×
(

Fd
+−(−p− q − s)T dγ− + Fd

−3(−p− q − s)T dγ3

)

×
(

− i(γ−(p1)+(1− λ2) + (p1)−γ+ + (p1)3γ3) + λ(2(p1)+(p1)−)
1
2

)]

(D.13)

Scaling with number of colors N : 4-point amplitudes are also of O( 1
N ).
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