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Abstract: A cosmology of Poincaré gauge theory is developed, where several properties

of universe corresponding to the cosmological equations with the pseudoscalar torsion func-

tion are investigated. The cosmological constant is found to be the intrinsic torsion and

curvature of the vacuum universe and is derived from the theory naturally rather than

added artificially, i.e. the dark energy originates from geometry and includes the cosmo-

logical constant but differs from it. The cosmological constant puzzle, the coincidence and

fine tuning problem are relieved naturally at the same time. By solving the cosmological

equations, the analytic cosmological solution is obtained and can be compared with the

ΛCDM model. In addition, the expressions of density parameters of the matter and the

geometric dark energy are derived, and it is shown that the evolution of state equations

for the geometric dark energy agrees with the current observational data. At last, the full

equations of linear cosmological perturbations and the solutions are obtained.

Keywords: Cosmology of Theories beyond the SM, Classical Theories of Gravity

ArXiv ePrint: 1601.03943

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2016)024

mailto:lvjianbo819@163.com
mailto:qgy8475@sina.com
http://arxiv.org/abs/1601.03943
http://dx.doi.org/10.1007/JHEP05(2016)024


J
H
E
P
0
5
(
2
0
1
6
)
0
2
4

Contents

1 Introduction 1

2 Cosmological equations 3

3 The state equation of the geometrical dark energy 8

4 An exact analytic solution of cosmological equation 10

5 Perturbation theory 13

5.1 Cosmological perturbations of gravitational potentials and the torsion 13

5.2 Equation of the structure growth and its solution 17

6 Conclusions 19

A The growth of structures in linear perturbation theory 19

1 Introduction

The discovery of the accelerated expansion of the universe motivates a large variety of theo-

retical works to explain it. In order to account for the acceleration the Einstein equation has

to be modified and then two approaches are developed. One is to introduce “dark energy”

in the right-hand side in the framework of general relativity (see [1–10] for recent reviews).

The another is to modify the left-hand side of the equation, called modified gravitational

theories, e.g., f(R) gravity (see [11–20] for recent reviews). A large amount of literature

in every approach has been accumulated in the past years. However, none of them offers

a convincing explanation of the observed results, and most of them were introduced to

explain the acceleration phenomenologically, rather than emerging naturally out of funda-

mental physics principles. The most popular model in the fist approach is the Λ cold dark

matter (ΛCDM) model which is plagued by the cosmological constant problem and the

coincidence and fine tuning problem. Meanwhile, there is not the enough evidence on the

validity of this model. It is shown that the thermal and mechanical stability requirement

provides an evidence against the dark energy hypothesis [21]. Adding dark energy to the

content of the Universe may not be the answer to the cosmic acceleration problem. In the

second approach the Einstein-Hilbert Lagrangian is usually generalized to a function f of

the Ricci scalar R. However, at present there are no fully realized and empirically viable f

(R) theories that explain the observed level of cosmic acceleration. Furthermore, the f (R)

theories suffer from a long-standing controversy about which frame (Einstein or Jordan) is

the physical one [22–26]. It should be noted that although we have strong observational

evidence for accelerated cosmic expansion but no compelling evidence that the cause of this
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acceleration is really a new energy component. At the same time we do not have enough

independent data yet to clarify the nature of dark energy. This provides further motiva-

tion for a deeper investigation of the nature of dark energy or the origin of the accelerated

cosmic expansion. In the framework of f(R) gravity, the field equation can be written

as the Einstein equation with an effective energy-momentum tensor that contains all the

modifications and the energy-momentum tensor of matter fields. The contributions of the

modifications of gravity can be identified with some kind of geometric dark energy. This is

specially advantageous since one can define an equation of state associated with such dark

energy and compare it with the ΛCDM model [27–29]. However, the function f(R) is not

known a priori, none introduces a new fundamental principle that can be used as a guiding

line, it is usually constructed by trial and error. In fact, as a geometric theory a modified

gravity should be formulated in a gauge theoretical framework. A famous example is the

Poincaré gauge theory of Gravity [30–37]. Some works have been done to develop a model

of geometric dark energy in the Poincaré gauge theory framework [38–56]. In [38–43] the

effect of torsion is to introduce an extra-term into matter density and pressure which gives

rise to an accelerated behavior of the universe. However, the torsion contributes only a

constant density, it is not possible to solve the coincidence and fine tuning problem. The

torsion model in [44–48] contributes an oscillating aspect to the expansion rate of the

universe and displays features similar to those of only the presently observed accelerating

universe. In [49–56] the Lagrangian involves too many terms and indefinite parameters,

which make the field equations complicated and difficult to solve and the role of each term

obscure. In order to simplify the field equations, some restrictions on indefinite parameters

have to be imposed. Under these restrictions, especially, all the higher derivatives of the

scale factor are excluded from the cosmological equations.

In fact, starting from a well behaved Lagrangian 1
2R + αR2 + βRµνR

µν in quadratic

gravity [57–63] and string theory [64] and adding a quadratic term of torsion γTµ
νρTµ

νρ a

good toy model can be obtained [65], where we derive to give the gravitational field equation

and the cosmological evolutional equations. When the macroscopic spacetime average of the

spin vanishes, the cosmological equations are found to split into two families. Each of them

is related with only one torsion function, the scalar or the pseudoscalar torsion function. It

has been argued [44–48] that only these two scalar torsion modes are physically acceptable

and no-ghosts. This model has a free-ghost dynamics. It has a well posed initial value

problem without any ghost or tachyonic propagation. Also, the field equations are allowed

to contain higher derivatives in [65], which is different from [49–56], where some restrictions

on indefinite parameters are imposed in order to exclude higher order derivatives. In

addition, for the first family we solve the cosmological equations corresponding to the scalar

torsion function by using the dynamical system approach in ref. [65]. In this paper, we

study the second-family cosmological equations corresponding to the pseudoscalar torsion

function in detail, with using a totally different way. Some meaningful consequences can

be inferred, such as the geometrical interpretation of cosmological constant is investigated,

the cosmological constant problem and the coincidence and fine tuning problem are solved

naturally, the state equation of the geometrical dark energy is derived and its evolution

is consistent with the current observations, the analytic solution a = a(t) in cosmology is

obtained and the perturbation analysis is given, etc.
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In section 2, starting from the Poincaré gauge principle and the simple Lagrangian
1
2R+αR2+βRµνR

µν+γTµ
νρTµ

νρ, which is the sum of the Starobinsky Lagrangian [66] and

Yang-Mills type terms of the local rotation and translation field strength, we introduce the

main equations in this Poincaré gauge cosmology, including the gravitational field equations

and the cosmological equations, etc. In order to evade any unnecessary discussion regarding

frames (i.e. Einstein vs. Jordan) the theory is treated using the original variables instead

of transforming to a scalar-tensor theory in contrast to f(R) theories. Furthermore, a set

of cosmological equations corresponding to the pseudoscalar torsion function are discussed,

where it is found that although we do not introduce a cosmology constant in the action it

automatically emerges in the derivation of the cosmological equations and then is endowed

with intrinsic character. The dark energy is identified with the geometry of the spacetime

and is a function of the density and the pressure of the matter. It includes the cosmological

constant but can not be identified with it. It is nothing but the intrinsic torsion or curvature

of the vacuum universe. In section 3, the analytic expressions of the state equation and

the density parameters of the matter and the geometric dark energy are derived and used

to determine the values of α, β and γ. Then a theoretical value of the cosmological

constant is computed and compared with the observed datum. The cosmological constant

problem and the coincidence and fine tuning problem are solved naturally. In section 4 an

analytic integral of the cosmological equation is obtained and used to evaluate the age of

the universe which can be compared with observed data. In section 5 the full equations of

linear cosmological perturbations and the solutions are obtained. In addition, the behavior

of perturbations for the sub-horizon modes relevant to large-scale structures is discussed.

It is shown that our model can be distinguished from others by considering the evolution

of matter perturbations and gravitational potentials. Section 6 is devoted to conclusions.

2 Cosmological equations

The discussion in this paper are entirely classical. We consider a Poincaré gauge theory of

gravity [30–56], in which there are two sets of local gauge potentials, the orthonormal frame

field (tetrad) eI
µ and the metric-compatible connection ΓIJ

µ associated with the translation

and the Lorentz subgroups of the Poincaré gauge group, respectively. We use the Greek

alphabet (µ, ν, ρ, . . . = 0, 1, 2, 3) to denote (holonomic) indices related to spacetime, and

the Latin alphabet (I, J,K, . . . = 0, 1, 2, 3) to denote algebraic (anholonomic) indices, which

are raised and lowered with the Minkowski metric ηIJ = diag (−1,+1,+1,+1). The field

strengths associated with the tetrad and connection are the torsion T λ
µν and the curvature

Rµν
λτ . We use the geometrized system of units in which 8πG = 1, c = 1, and start from

the action

S =

∫

d4x
√−g

[(

1

2
R+ αR2 + βRµνR

µν + γTµ
νρTµ

νρ

)

+ Lm

]

, (2.1)

where Lm denotes the Lagrangian of the source matter including baryonic matter, cold

dark matter and radiation, α and β are two parameters with the dimension of [L]2, γ is a

dimensionless parameter. The vales of α, β and γ can be determined by experiment and
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observational data. The terms 1
2R and γTµ

νρTµ
νρ represent weak gravity, while αR2 and

βRµνR
µν represent strong gravity with the dimensionless strong gravity constant α and β

according to Hehl et al. [30–37].

The variational principle yields the field equations for the tetrad eI = eI
µ∂µ and the

connection ΓIJ = ΓIJ
µdx

µ [30–37]:

DHI − T(g)I = TI (first),

DHIJ − s(g)IJ = sIJ (second),

with the covariant derivatives (D) of the translation excitation HI and the Lorentz excita-

tion HIJ , the gauge currents of energy-momentum T(g)I and spin s(g)IJ and the canonical

matter currents of energy-momentum TI and spin (angular momentum) sIJ . The reduced

explicit form of these field equations are [65]:

Rνµ − 1

2
gνµR = Tνµ + T(g)νµ, (2.2)

and

T ν
τνδ

µ
λ − T ν

λνδ
µ
τ + Tµ

ντδ
ν
λ = eIλe

J
τ

(

sIJ
µ + s(g)IJ

µ
)

, (2.3)

where T νµ := eIµ∂ (
√−gLm) /∂eI

ν and sIJ
µ := ∂ (

√−gLm) /∂ΓIJ
µ are energy-momentum

tensor and spin tensor of the source matter, respectively, while

T(g)νµ =−α (4Rνµ − gνµR)R− β (2Rρ
νRρµ + 2RρσRνρµσ − gνµRρσR

ρσ)

+γ
(

4∂τe
Iλ (eIνTµλ

τ− eIλTµν
τ ) + 4∂τTµν

τ + gνµT
λ
ρσT λ

ρσ− 4T λ
ντT λµ

τ
)

, (2.4)

and

s(g)IJ
µ =−4α

(

e[I
νeJ ]

τΓµ
ντR+ e[J

µeI]
ν
(

Γλ
λνR− ∂νR

)

+ e[I
νeJ ]

µReKτ∂νeK
τ
)

−4βeJ
λ
(

eI
[µ∂νRλ

ν] + eI
[νRλ

µ]eKτ∂νeK
τ + eI

τΓ[ν
ντRλ

µ] + eI
[νRτ

µ]Γτ
νλ

)

−4γeIνeJ
τT νµ

τ , (2.5)

are the energy-momentum and the spin of this kind of “geometric dark energy” correspond-

ing to the terms αR2 + βRµνR
µν + γTµ

νρTµ
νρ in (2.1). Note that the energy-momentum

tensor T νµ of type (0, 2) should not be confused with the torsion tensor T λ
µν of type

(1, 2). If α = β = γ = 0, these equations become the field equations of Einstein-Cartan-

Sciama-Kibble theory. Furthermore, for T λ
µν = 0 we come back to General Relativity. The

eqs. (2.2)–(2.5) can be rewritten in terms of the covariant derivative. Here given that they

are convenient in the concrete calculation for deriving the following cosmological equations,

we exhibit these expressions (2.2)–(2.5) directly.

For the spatially flat Friedmann-Robertson-Walker (FRW) metric

gµν = diag
(

−1, a (t)2 , a (t)2 , a (t)2
)

, (2.6)

the non-vanishing torsion components with holonomic indices are given by two functions,

the scalar torsion h and the pseudoscalar torsion f [44–48, 67–69]:

Tij0 = a2hδij , Tijk = 2a3fǫijk, i, j, k, . . . = 1, 2, 3. (2.7)

– 4 –



J
H
E
P
0
5
(
2
0
1
6
)
0
2
4

The equations (2.2) and (2.3) yields the cosmological equations [65]1

H2 =
1

3
(ρ+ ρg) , (2.8)

2
·
H +3H2 = − (p+ pg) , (2.9)

(β + 6α)
( ··
H +

··
h
)

+ 6 (β + 4α) (H + h)
·
H +(5β + 18α) (H + h)

·
h −4 (β + 3α) f

·
f

+3 (β + 4α)hH2 + (5β + 18α)h2H + 2 (β + 3α)h3 − 2 (β + 3α)hf2 +
1

4
h+

1

2
s01

1 = 0,

(2.10)

and

f{2 (β + 6α)
( ·
H +

·
h
)

+ 6 (β + 4α)H2 + 2 (5β + 18α)Hh

+(β + 3α)
(

4h2 − 4f2
)

− 4γ +
1

2
} − 1

2
s12

3 = 0, (2.11)

where H =
·
a (t) /a (t) is the Hubble parameter,

·
H= dH/dt, while

ρg = −6Hh− 3h2 + 3f2

+12 (3α+ β)
( ·
H +

·
h −Hh− h2 + f2

)( ·
H +

·
h +2H2 + 3Hh+ h2 − f2

)

−2γ
(

3h2 + 4f2
)

, (2.12)

and

pg = 4Hh+ h2 − f2 + 2ḣ

+4 (3α+ β)
( ·
H +

·
h −Hh− h2 + f2

)( ·
H +

·
h +2H2 + 3Hh+ h2 − f2

)

−2γ
(

2
·
h +8Hh+ h2 + 4f2

)

, i = 1, 2, 3, (2.13)

are the density and the pressure of the geometric dark energy. Eqs. (2.12) and (2.13)

indicate that the geometric dark energy is just the gravitational field itself described by h,

H and f . The source matter is a fluid characterized by the energy density ρ = T00, the

pressure p = Tij (i = j) and the spin sIJ
µ. Eqs. (2.8) and (2.9) lead to

··
a

a
= −1

6
(ρ+ ρg + 3p+ 3pg) . (2.14)

It is easy to see that when α = β = γ = 0 and h = f = 0, (2.8), (2.9) and (2.14) reduce to

the Friedmann cosmology. Eqs. (2.8) and (2.9) correspond to the Friedmann equation and

1It can be seen that the symbol of p (denotes pressure) in eq. (2.9) is opposite to the one in eq. (15) of

ref. [65]. The reason is that there is a error on symbol of p in [65]. The wrong symbol on p in eq. (15) of

ref. [65] results that p (or ṗ or w = p/ρ) in all formulas of ref. [65] should be corrected to −p (or −ṗ or

−w). However, the main results and conclusions of ref. [65] remain unaffected, since the main discussions

are performed in vacuum universe in ref. [65]. This wrong sign of p has been corrected in this paper. Also,

the corrected equations can be found in the errata regarding ref. [65].
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the Raychaudhuri equation respectively, while (2.14) is the acceleration equation, which

represent the Einstein frame of the theory.

Since the spin orientation of particles for ordinary matter is random, the macroscopic

spacetime average of the spin vanishes, we suppose sIJ
λ = 0, henceforth. Then, the

equation (2.11) has the solutions

f = 0, (2.15)

and

f2 =
(β + 6α)

2 (β + 3α)

( ·
H +

·
h
)

+
3 (β + 4α)

2 (β + 3α)
H2 +

(5β + 18α)

2 (β + 3α)
Hh+ h2

− γ

(β + 3α)
+

1

8 (β + 3α)
. (2.16)

The solution (2.15) has been investigated in [65]. We concentrate on the equation (2.16)

now. Differentiating (2.16) gives

f
·
f=

β + 6α

4 (β + 3α)

( ··
H +

··
h
)

+
3 (β + 4α)

2 (β + 3α)
H

·
H +

5β + 18α

4 (β + 3α)

·
H h+

5β + 18α

4 (β + 3α)
H

·
h +h

·
h .

Substituting it and (2.16) into (2.10) gives (when s01
1 = 0)

2hγ = 0,

and then

h = 0. (2.17)

In this case (2.8), (2.9), (2.12), (2.13) and (2.16) lead to

12 (3α+ β)
( ·
H +f2

)( ·
H +2H2 − f2

)

− 3H2 + 3f2 − 24γf2 + ρ = 0,

4 (3α+ β)
( ·
H +f2

)( ·
H +2H2 − f2

)

+ 2
·
H +3H2 − f2 − 8γf2 + p = 0,

(β + 6α)
·
H +3 (β + 4α)H2 − 2 (β + 3α) f2 − 2γ +

1

4
= 0,

which further give

f2 =
Λ

24γ
+

ρ

24γ
+

3 (4α+ β)− 16γ (3α+ β)

48βγ
(ρ− 3p) +

(3α+ β) (4α+ β)

24γβ
(ρ− 3p)2 ,

(2.18)

H2 =
(1− 8γ)

24γ
Λ +

ρ

24γ
− (8γ − 1) (4α+ β)

16γβ
(ρ− 3p) +

(3α+ β) (4α+ β)

24γβ
(ρ− 3p)2 ,

(2.19)

·
H =

16γ − 1

24γ
Λ− ρ

24γ

− 3 (4α+ β)− 8γ (18α+ 5β)

48βγ
(ρ− 3p)− (3α+ β) (4α+ β)

24γβ
(ρ− 3p)2 , (2.20)

where

Λ =
3 (1− 8γ)

4β
, (2.21)

– 6 –
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is the geometric cosmological constant coming from the terms βRµνR
µν + γTµ

νρTµ
νρ

in (2.1). It is easy to see that the higher order derivative
··
H and

·
f in (2.10) disappear.

We also note that although we do not introduce a cosmological constant Λ in the ac-

tion (2.1), it automatically emerges in these equations. In (2.18) the pseudoscalar torsion

f is a function of ρ and p rather than a constant, in contrast to [27–29]. It should be

noted that although (2.8) and (2.9) have the same form as the Friedmann equations, the

solutions (2.19) and (2.20) are different. The reason is that in (2.8) and (2.9) ρg and pg

are functions of H,
·
H, h,

·
h, and f as indicated by (2.12) an (2.13). In other words, this is

a different model from the ΛCDM model essentially.

Eqs. (2.12) and (2.13) become now

ρg =
(1− 8γ)

8γ
Λ +

(1− 8γ) ρ

8γ
+

3 (1− 8γ) (4α+ β)

16βγ
(ρ− 3p) +

(3α+ β) (4α+ β)

8βγ
(ρ− 3p)2 ,

(2.22)

pg =−(1+ 8γ)

24γ
Λ− (8γ+1) ρ

24γ
− 3 (4α+ β)− 8βγ

48βγ
(ρ− 3p)− (3α+ β) (4α+ β)

24βγ
(ρ− 3p)2 ,

(2.23)

which mean that the geometrical dark energy includes the cosmological constant Λ but can

not be identified with it. The cosmological constant Λ is really a constant determined by

β and γ as indicated by (2.20) while the geometrical dark energy ρg is a function of the

density ρ and the pressure p of the matter. The cosmological constant problem and the

coincidence and fine tuning problem are relieved naturally, as shown in the next section.

Substituting (2.22) and (2.23) into (2.14) yields

··
a

a
=

Λ

3
+

3α+ β

3β
(ρ− 3p) . (2.24)

Furthermore, (2.18), (2.19), (2.20) and (2.24) mean that the vacuum universe has the

torsion

f2
vac =

Λ

24γ
, (2.25)

the curvature

Rvac = 6
·
H +12H2 − 3f2 =

Λ

8γ
. (2.26)

and the acceleration
( ··
a

a

)

vac

=
Λ

3
. (2.27)

This means that the cosmological constant is nothing but the intrinsic torsion or curvature

of the vacuum universe.

– 7 –
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3 The state equation of the geometrical dark energy

Eqs. (2.22) and (2.23) gives the state equation of the dark energy:

wg =
pg
ρg

(3.1)

=
−2 (1+8γ)βΛ−2 (8γ+1)βρ−(3 (4α+β)−8βγ) (ρ−3p)−2 (3α+β) (4α+β) (ρ−3p)2

6 (1−8γ)βΛ+6 (1−8γ)βρ+9 (1−8γ) (4α+β) (ρ−3p)+6 (3α+β) (4α+β) (ρ−3p)2
.

The source matter includes ordinary baryon matter, dark matter and radiation:

ρ = ρm + ρr, pm = 0, p =
1

3
ρr . (3.2)

The equation (2.8) can be written as

Ω = Ωr +Ωm +Ωg = 1,

where

Ωm :=
ρm
3H2

,Ωr :=
ρr
3H2

,Ωg :=
ρg
3H2

, (3.3)

are the dimensionless density parameters of the matter, the radiation and the geometrical

dark energy, respectively.

Suppose

α = −β

2
. (3.4)

Eqs. (2.22), (2.23) and (2.24) become

ρg =
1− 8γ

8γ
Λ +

(1− 8γ) ρr

8γ
− 1− 8γ

16γ
ρm +

β

16γ
ρ2m, (3.5)

pg = −1 + 8γ

24γ
Λ− (1 + 8γ) ρr

24γ
+

1− 8γ

48γ
ρm − β

48γ
ρ2m, (3.6)

wg =
pg
ρg

=
−2 (1 + 8γ) Λ− 2 (1 + 8γ) ρr + (1− 8γ) ρm − βρ2m
6 (1− 8γ) Λ + 6 (1− 8γ) ρr − 3 (1− 8γ) ρm + 3βρ2m

, (3.7)

and
··
a

a
=

Λ

3
− 1

6
(ρ− 3p) =

Λ

3
− 1

6
ρm. (3.8)

Eqs. (3.3) and (2.19) give

Ωm =
16γρm

2 (1− 8γ) Λ + 2ρr + (24γ − 1) ρm + βρ2m
, (3.9)

Ωg =
2 (1− 8γ) Λ + 2 (1− 8γ) ρr − (1− 8γ) ρm + βρ2m

2 (1− 8γ) Λ + 2ρr + (24γ − 1) ρm + βρ2m
. (3.10)

From the observed data

ρcrit = 1.88h2 × 10−29gcm−3 = 7. 2402× 10−58cm−2,

Ωm = 0.3,Ωr = 1. 8035× 10−4Ωm (3.11)

wg = −1, (3.12)
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using (3.4), (3.7) and (3.9) we can determine the parameters

α = −4. 1969× 1056cm2,

β = 8. 3937× 1056cm2,

γ = 0.0 576. (3.13)

Then (2.21), (2.25), (2.26) and (2.27) give

Λ = 4. 8179× 10−58cm−2, (3.14)

f2
vac = 3. 4852× 10−58cm−2, (3.15)

Rvac = 1. 0456× 10−57cm−2, (3.16)

and
( ··
a

a

)

vac

= 1. 606× 10−58cm−2 = 1. 4425× 10−37s−2. (3.17)

The value given by (3.14) can be compared with the observed datum

Λ(obs) = 8πGρ
(obs)
Λ = 8πG

(

10−12GeV
)4 ∼ 8πG×2×10−10erg/cm3 = 4. 1574×10−58cm−2.

Since

ρr =
ρr
a4

, ρr = ρr,a=1,ρm =
ρm
a3

, ρm = ρm,a=1,

using (3.13) and

ρm = 0.3ρcrit, ρr = 1. 8035× 10−4ρm

the state equation of the dark energy (3.7) can be written as

wg (a) =
pg
ρg

=
−0. 78766− 6. 4044× 10−5a−4 + 6. 5538× 10−2a−3 − 2.216× 10−2a−6

0. 87221 + 7. 0919× 10−5a−4 − 0. 19661a−3 + 6. 6481× 10−2a−6
,

(3.18)

or

wg (z) =
−0. 78766−6. 4044×10−5 (1+z)4+6. 5538×10−2 (1+z)3 − 2.216×10−2 (1+z)6

0. 87221 + 7. 0919×10−5 (1+z)4 − 0. 19661 (1+z)3 + 6. 6481×10−2 (1+z)6
.

(3.19)

Figure 1 plots the evolution history of wg(a) given by (3.18).

In observation and experiments it is conventional to phrase constraints or projected

constraints on w(z) in terms of a linear evolutional model [70]:

w(a) = w0 + wa(1− a) = wp + wa (ap − a) ,

where w0 is the value of w at z = 0 (a = 1), and wp is the value of w at a “pivot” redshift

zp. For typical data combinations, zp ≈ 0.5. To this end we give the linear approximation

of (3.18). When a = 1,

wg0 = −1,

and
dwg

da
|a=1 = 0. 19936, (3.20)
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Figure 1. The evolution of wg(a).

so we have

wg (a) = wg0 +
dwg

da
|a=1 (a− 1) = −1− 0. 19936 (1− a) . (3.21)

When zp = 0.5, a = 2
3 ,

wgp = −0. 84781, (3.22)

and
dwg

da
|a= 2

3
= −0. 7653, (3.23)

then we have

wgp (a) = wgp +
dwg

da
|p
(

a− 2

3

)

= −0. 8478 + 0. 7653

(

2

3
− a

)

. (3.24)

Using (3.8) and ρm = ρm/a
3, one finds that when

a = atrans =

(

2βρm
3 (1− 8γ)

) 1
3

= 0. 60859, (3.25)

ztrans = 0.64314, (3.26)

the expansion of the universe transforms from deceleration to acceleration. Using (3.10)

one can compute that when

a = 0. 75817, z = 0. 31897, Ωg = 0.5, (3.27)

the universe transforms from the matter dominating phase into the dark energy dominating

phase. In a flat ΛCDM universe with ( Ωm, ΩΛ) = (0.3, 0.7) acceleration begins at z = 0.67,

while dark energy doesn’t dominate the energy density of the universe until z = 0.33 [71].

4 An exact analytic solution of cosmological equation

The equation (2.19) can be solved in two cases as follows. In the radiation dominated era

ρr =
ρr
a4

, ρr = ρr,a=1 = const, pr =
1

3
ρr,

Eq. (2.19) reads

H2 =
(1− 8γ)2

32γβ
+

ρr
24γa4

, (4.1)
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and can be rewritten

da

dt
= a

√

(1− 8γ)2

32γβ
+

ρr
24γa4

. (4.2)

Its integration gives

ln

(

a2 +

√

a4 +
4βρr

3 (1− 8γ)2

)

− ln

√

4βρr

3 (1− 8γ)2
=

(1− 8γ)

2
√
2γβ

t, (4.3)

or

a =

(

βρr

3 (1− 8γ)2

) 1
4

√

(

e
(1−8γ)

2
√

2γβ
t − e

− (1−8γ)

2
√

2γβ
t

)

=

(

βρr

3 (1− 8γ)2

) 1
4

√

2 sinh
(1− 8γ)

2
√
2γβ

t. (4.4)

In the matter dominated era

ρm =
ρm
a3

, ρm = ρm,a=1 = const, p = 0,

eq. (2.19) reads

H2 =
(1− 8γ)2

32γβ
+

12α+ 5β − 24γ (4α+ β)

48γβ

ρm
a3

+
(3α+ β) (4α+ β)

24γβ

ρ2m
a6

, (4.5)

and then

da

dt
= a

√

(1− 8γ)2

32γβ
+

12α+ 5β − 24γ (4α+ β)

48γβ

ρm
a3

+
(3α+ β) (4α+ β)

24γβ

ρ2m
a6

. (4.6)

Its integration gives

ln

(√

a6 + 2
12α+ 5β − 24γ (4α+ β)

3 (1− 8γ)2
ρma

3 +
4 (3α+ β) (4α+ β)

3 (1− 8γ)2
ρ2m + a3

+
12α+ 5β − 24γ (4α+ β)

3 (1− 8γ)2
ρm

)

− ln

(√

4 (3α+ β) (4α+ β)

3 (1− 8γ)2
ρ2m +

12α+ 5β − 24γ (4α+ β)

3 (1− 8γ)2
ρm

)

= 3
(1− 8γ)√

32γβ
t, (4.7)
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and then

a =

{

1

2

(√

4 (3α+ β) (4α+ β)

3 (1− 8γ)2
ρ2m +

12α+ 5β − 24γ (4α+ β)

3 (1− 8γ)2
ρm

)

e
3(1−8γ)

4
√

2γβ
t

−12α+ 5β − 24γ (4α+ β)

3 (1− 8γ)2
ρm

+
36α+ 13β − 48γ (1 + 4γ) (4α+ β)

18 (1− 8γ)4
βρm

×
(√

4 (3α+ β) (4α+ β)

3 (1− 8γ)2
+

12α+ 5β − 24γ (4α+ β)

3 (1− 8γ)2

)−1

e
− 3(1−8γ)

4
√

2γβ
t

} 1
3

. (4.8)

In the case (3.13), equations (4.4) and (4.8) become

a = 0. 67617
√

2 sinh 2. 7417× 10−29t, (4.9)

and

a =
(

0. 17801e4. 1125×10−29t − 9. 8074× 10−2e−4. 1125×10−29t − 7. 9934× 10−2
) 1

3
, (4.10)

where the time t is in cm. This is a new exact analytic cosmological solution which resembles

but differs from the ΛCDM solution [72].

Now we can evaluate the age of the universe using (3.13), (4.3) and (4.7). In the

radiation dominating era z & 3000 [72], we have the equation

ln

(

a2 +

√

a4 +
4βρ

3 (1− 8γ)2

)

− ln

√

4βρ

3 (1− 8γ)2
=

(1− 8γ)

2
√
2γβ

t.

Choosing z = 3000, then a = 1/3001, this equation gives

t = 3. 298× 1023cm = 3. 4895× 105Y ears. (4.11)

In the matter dominating era z . 3000, we have the equation

ln

(√

1 + 2
(24γ − 1)

3 (1− 8γ)2
βρa32 +

2

3 (1− 8γ)2
(βρ)2 + a32 +

(24γ − 1)

3 (1− 8γ)2
βρ

)

− ln

(√

1 + 2
(24γ − 1)

3 (1− 8γ)2
βρa31 +

2

3 (1− 8γ)2
(βρ)2 + a31 +

(24γ − 1)

3 (1− 8γ)2
βρ

)

= 3
(1− 8γ)√

32γβ
(t2 − t1) ,

Choosing

z1 = 3000, a1 =
1

3001
,

z2 = 0, a2 = 1,

we have

t2 − t1 = 1. 6383× 1028cm = 1. 7334× 1010Y ears = 17.334Gy. (4.12)
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5 Perturbation theory

In order to discriminate lots of dark energy models, it is interested to seek the additional

information other than the background expansion history of the universe [73–76]. Now we

discuss the dynamics of linear perturbations and the structure growth of universe.

5.1 Cosmological perturbations of gravitational potentials and the torsion

The perturbed equations can be derived by straightforward and tedious calculations, fol-

lowing the approach of [77–82]. The computer software Maple has been applied to work

out the lengthy calculations. We focus on the scalar perturbations, since they are sufficient

to reveal the basic features of the theory, allowing for a discussion of the growth of matter

overdensities. The perturbed vierbein reads

e0µ = δ0µ (1 + φ) , eaµ = aδaµ (1− ψ) ,

eµ0 = δµ0 (1− φ) , eµa =
1

a
δµa (1 + ψ) . (5.1)

in which we have introduced the scalar modes φ and ψ as functions of t. This induces a

metric perturbation of the known form, namely

ds2 = a2(η)[−(1 + 2φ)dη2 + (1− 2ψ)γijdx
idxj ], (5.2)

in the longitudinal gauge and the conformal time η.

In order to preserve the global homogeneity and isotropy of the spacetime the pertur-

bations are assumed to be small. It has been argued [44–48] that only two scalar torsion

modes h and f are physically acceptable and no-ghosts. On the basis of the above theoret-

ical tests (e.g., “no-ghosts” or ”no-tachyons”), we use (2.7) to give the linear perturbation

of the nonvanishing torsion components

δTij0 = δija
2δh, δTijk = 2ǫijka

3δf, i, j, k, . . . = 1, 2, 3.

In the case (2.16), h = 0, we have

δTij0 = 0, δTijk = 2ǫijka
3ξ, i, j, k, . . . = 1, 2, 3. (5.3)

where ξ = δf .

The unperturbed field equation (2.2) can be written as

Gµ
ν = Tµ

ν + T(g)
µ
ν ,

where Gµ
ν is the Einstein tensor, Tµ

ν is the energy-momentum of the ordinary matter

and the radiation, T(g)
µ
ν is the energy-momentum of the “geometric dark energy” given

by (2.4). The equations of motion for small perturbations linearized on the background

metric are

δGµ
ν = δTµ

ν + δT(g)
µ
ν . (5.4)

For scalar type metric perturbations with a line element given in (5.2) (in conformal time),

the perturbed field equations can be obtained following the approach of [77–82].
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The cosmic fluid includes radiation, baryonic matter and dark matter, ρm = ρb + ρd,

we have

ρ = ρm + ρr = ρb + ρd + ρr, p = pr =
1

3
ρr. (5.5)

Since

ρb ∝
1

a3
, ρr ∝

1

a4
, (5.6)

we suppose

ρd ∝ 1

an
. (5.7)

Then we have

ρr = rρb, ρd = vρb, (5.8)

where

r ∝ a−1, v ∝ a3−n. (5.9)

The equation

δG0
0 = −δρ− δρg (5.10)

takes the form

2a−2
(

3H
(

Hφ+ ψ′)−∇2ψ
)

(5.11)

+

(

3 (1− 8γ)

16βγ
+

12α+ 5β − 16γ (3α+ β)

8βγ
(1 + v) ρb +

(3α+ β) (4α+ β)

4γβ
(1 + v)2 ρ2b

)

ψ

=−1 + r + v

3γ
ρbδ −

12α+ 5β − 72αγ − 20βγ

8βγ
(1+v) ρbδ −

(3α+ β) (4α+ β)

2βγ
(1+v)2 ρ2bδ,

where the growth of the baryonic matter density perturbation δ := δρb/ρb, H := a′/a = aH,

prime denotes derivative with respect to the conformal time η.

The equation

δGi
j = (δpr + δpg) δ

i
j , (5.12)

reads

−2a−2

{[

(

2H′ +H2
)

φ+Hφ′ + ψ′′ + 2Hψ′ +
1

2
∇2 (φ− ψ)

]

δij −
1

2
∂i∂j (φ− ψ)

}

+2
(

f2ψ + fξ
)

δij

=

{

1

3
rρbδ −

(8γ + 1) (1 + r + v)

24γ
ρbδ +

8βγ − 3 (4α+ β)

48βγ
(1 + v) ρbδ

−(3α+ β) (4α+ β)

12βγ
(1 + v)2 ρ2bδ

}

δij , (5.13)

where i = 1, 2, 3.

The equation

G0
i = R0

i

= T 0
i − 4αR0

iR− β
(

2Rρ0Rρi + 2RρσR0
ρiσ

)

+γ
(

4eI
0∂ν

(

eIλT iλ
ν
)

− 4eKτT i
0ν∂νeK

τ − 4T λ0
τT λi

τ
)

, (5.14)
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yields

2a−2
[

Hφ+ ψ′]

,i
− a−1 (8γ − 1− 4α (1 + r + v) ρb)ψ

′
,i − 2a−1

(

1 +
4

3
r + v

)

ρbV,i

−4βa−1{(8γ − 1) (4γ + 1)

16βγ
− 12α+ 5β − 8γ (3α+ 2β)

24βγ
(1 + v) ρb

−(3α+ β) (4α+ β)

12γβ
(1 + v)2 ρ2b}Hφ,i + 8βa−1Hf2ψ,i + 8a−1Hfξ,i

= 0. (5.15)

In commoving orthogonal coordinates, the three-velocity of baryonic matter vanishes,

V i
b = 0 [83]. For the potential V of the three-velocity field of the dark matter, the perturbed

conservation law

δ (∇µT
µ
ν +∇µTg

µ
ν) = 0, (5.16)

leads to the equation

·
V ,i +

(

4
3

·
r +

·
v

1 + 4
3r + v

+H

)

V,i = 0, 83 (5.17)

when ν = i.

In the case (2.15) and (2.16), using (5.1) and (5.3) we obtain the perturbation of the

equation (2.3)

2fξ=

(

1+r+v

24γ
+

3 (4α+β)−16γ (3α+β)

48βγ
(1+v) +

(3α+β) (4α+β)

12γβ
(1+v)2 ρb

)

ρbδ.

(5.18)

In the Fourier space k, from (5.11) and (5.13) we obtain the equations of φ and ψ,

2a−2
(

3H
(

Hφ+ ψ′)+ k2ψ
)

(5.19)

+

(

3 (1− 8γ)

16βγ
+

12α+ 5β − 16γ (3α+ β)

8βγ
(1 + v) ρb + (3α+ β)

4α+ β

4γβ
(1 + v)2 ρ2b

)

ψ

= −1+r+v

3γ
ρbδ −

12α+ 5β − 72αγ − 20βγ

8βγ
(1 + v) ρbδ −

(3α+ β) (4α+ β)

2βγ
(1+v)2 ρ2bδ,

and

−2a−2

{[

(

2H′ +H2
)

φ+Hφ′ + ψ′′ + 2Hψ′ − 1

2
k2 (φ− ψ)

]

δij −
1

2
∂i∂j (φ− ψ)

}

+2
(

f2ψ + fξ
)

δij

=

{

1

3
rρbδ −

(8γ + 1) (1 + r + v)

24γ
ρbδ +

8βγ − 3 (4α+ β)

48βγ
(1 + v) ρbδ

−(3α+ β) (4α+ β)

12βγ
(1 + v)2 ρ2bδ

}

δij . (5.20)

When i 6= j, (5.20) leads to

φ = ψ, (5.21)
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agreeing with GR but in contrast to f(R) theory [84]. Then we have the equations of ψ:

2a−2
(

3H
(

Hψ + ψ′)+ k2ψ
)

(5.22)

+

(

3 (1− 8γ)

16βγ
+

12α+ 5β − 16γ (3α+ β)

8βγ
(1 + v) ρb + (3α+ β)

4α+ β

4γβ
(1+v)2 ρ2b

)

ψ

= −1+r+v

3γ
ρbδ −

12α+ 5β − 72αγ − 20βγ

8βγ
(1+v) ρbδ −

(3α+ β) (4α+ β)

2βγ
(1+v)2 ρ2bδ,

−2a−2
[(

2H′ +H2
)

ψ + ψ′′ + 3Hψ′]+ 2
(

f2ψ + fξ
)

=
1

3
rρbδ −

(8γ + 1) (1 + r + v)

24γ
ρbδ +

8βγ − 3 (4α+ β)

48βγ
(1 + v) ρbδ

−(3α+ β) (4α+ β)

12βγ
(1 + v)2 ρ2bδ. (5.23)

One of the methods to measure the cosmic growth rate is redshift-space distortion that

appears in clustering pattern of galaxies in galaxy redshift surveys. In order to confront

the models with galaxy clustering surveys, we are interested in the modes deep inside the

Hubble radius. In this case we can employ the quasistatic approximation on sub-horizon

scales, under which, ∂/∂η ∼ H ≪ k. Then the perturbation equations (5.22), (5.23) give

(

2a−2k2− 3 (1−8γ)

16βγ
− 12α+5β−16γ (3α+β)

8βγ
(1+v) ρb−(3α+β)

4α+β

4γβ
(1+v)2 ρ2b

)

ψ

=

(

1+r+v

3γ
ρb+

12α+5β−72αγ−20βγ

8βγ
(1+v) ρb+

(3α+β) (4α+β)

2βγ
(1+v)2 ρ2b

)

δ, (5.24)

and

−2a−2
[(

2H′ +H2
)

ψ + ψ′′ + 3Hψ′]+ 2
(

f2ψ + fξ
)

=
1

3
rρbδ −

(8γ + 1) (1 + r + v)

24γ
ρbδ +

8βγ − 3 (4α+ β)

48βγ
(1 + v) ρbδ

−(3α+ β) (4α+ β)

12βγ
(1 + v)2 ρ2bδ. (5.25)

The equation (5.24) gives the expression of gravitational potential ψ. In the case

α = −β
2 , if

a−2k2 ≫ ρb, |αρb| ≫ 1, (5.26)

it reduces to the Poisson equation

k2

a2
ψ = −4πGeffρbδ, (5.27)

where

Geff =
1

16πγ
(1 + v)2 αρb (5.28)

is the effective gravitational coupling constant. In the framework of GR, Geff is equivalent

to the gravitational constant G = 1.
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5.2 Equation of the structure growth and its solution

Since different theoretical models can achieve the same expansion history of universe, sev-

eral methods should be used to discriminate the different models. The study on the growth

of matter density perturbations may become the useful tool due to that theories with the

same expansion history can have a different cosmic growth history. The perturbation

quantities can be easily related to the cosmic observations [85–88].

Using (4.5), the equations (2.8) and (2.9) can be rewritten as

H2 =
1

3
(ρb + ρother) , (5.29)

·
H = −1

2
(ρb + ρother + pother) , (5.30)

where

ρother = ρr + ρd + ρg,

pother = pr + pg. (5.31)

We introduce the perturbations of ρb, ρother, pother and H [89–96]:

ρb −→ (1 + δ) ρb, ρother −→ ρother + δρother,

pother −→ pother + δpother, H −→ H + δH,

with

δH ≡ 1

3a
∇ · u, u = ∇V. (5.32)

Following the approach of [89–96] and [77–82], using (5.29), (5.30) and the perturbed

conservation law

δ (∇µT
µ
ν +∇µTg

µ
ν) = 0, (5.33)

we obtain the equation for the growth of the baryonic matter density perturbation δ:

ρb
··
δ +

·
ρb ρother − ρb

·
ρother +

·
ρb pother − ρb

·
pother

ρb + ρother + pother

·
δ

−
(

··
ρother −

3

2
ρbρb − 3 (ρother + pother) ρb −

3

2
(ρother + pother)

2

)

δ

+
2

·
ρb +2

·
ρother

ρb + ρother + pother

·
pother δ +

2
·
ρb +2

·
ρother

ρb + ρother + pother

·
ρother δ

−

( ·
ρb +

·
ρother

)2
+
( ·
ρb +

·
ρother

) ·
pother

(ρb + ρother + pother)
2 (ρother + pother) δ

+
··
δρother −

2
·
ρb +2

·
ρother +

·
pother

ρb + ρother + pother

·
δρother −

·
ρb +

·
ρother

ρb + ρother + pother

·
δpother

−






3 (ρb+ρother+pother)−

( ·
ρb +

·
ρother

)2

(ρb+ρother + pother)
2 −

( ·
ρb +

·
ρother

) ·
pother

(ρb+ρother+pother)
2






(δρother+δpother)

= 0. (5.34)
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Up to now, the complete set of equations that describes the general linear perturbations

has been obtained. It provides enough information about the behaviors of the perturbation

and can be compared with the results of the ΛCDM model.

Eqs. (5.5), (5.8) and (5.9) yield

·
ρb = −3Hρb,

·
ρr= −4Hρr,

·
ρd= −nHρd,

·
pr = −4

3
Hρr,

·
r = −rH,

·
v= (3− n) vH, (5.35)

and then (5.31), (2.22) and (2.23) give

ρother =
3 (8γ − 1)2

32βγ
+

(

r + v − (8γ − 1) (1 + r + v)

8γ
− 3 (8γ − 1) (4α+ β)

16βγ
(1 + v)

)

ρb

+
(3α+ β) (4α+ β)

8βγ
(1 + v)2 ρ2b , (5.36)

pother =
64γ2 − 1

32βγ
+

(

1

3
r − (8γ + 1) (1 + r + v)

24γ
+

8βγ − 3 (4α+ β)

48βγ
(1 + v)

)

ρb

−(3α+ β) (4α+ β)

24βγ
(1 + v)2 ρ2b , (5.37)

Using (5.36) and (5.37), by straightforward and tedious calculations, the equation (5.34)

can be written as

(1 + r + v +A+Dρb) ρb
··
δ +M (r, v, ρb)H

·
δ +N (r, v, ρb)H

2δ +Q (r, v, ρb) δ = 0, (5.38)

where A, D, M (r, v, ρb), N (r, v, ρb), and Q (r, v, ρb) are given in appendix A.

Supposing

n = 3, (5.39)

in the case (3.4) and (5.26), i.e. when ρd ∝ a−3, β = −2α, and |αρb| ≫ 1, the equation (5.38)

becomes
··
δ −22H

·
δ +3H2δ = 0. (5.40)

Introduce the logarithmic time variable

N = ln a. (5.41)

Eq. (5.40) takes the form
d2δ

dN2
− 23

dδ

dN
+ 3δ = 0,

and gives the solution

δ = δ0+a
1
2(23+

√
517) + δ0−a

1
2(23−

√
517)

≈ δ0+a
22. 869 + δ0−a

0. 13118, (5.42)

which can be compared with the result in GR [97].
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6 Conclusions

A cosmology of Poincaré gauge theory has been developed. We focus on the case including

a pseudoscalar scalar torsion function f as suggested by Baekler, Hehl and Nester [98]. The

gravitational field equation and the two-family cosmological equations has been obtained

in ref. [65]. In this paper, we focus on studying the second family cosmological equations

corresponding to the pseudoscalar torsion function. It is found that although we do not

introduce a cosmological constant in the action it automatically emerges in the derivation of

the cosmological equations and then is endowed with intrinsic character. It is nothing but

the intrinsic torsion and curvature of the vacuum universe. The dark energy is identified

with the geometry of the spacetime. Now we are returning to the original idea of Einstein

and Wheeler: gravity is a geometry [99, 100]. The cosmological constant puzzle and the

coincidence and fine tuning problem are solved naturally. The point is that the dark energy

is the functions of the density and pressure of the cosmic fluid and includes the cosmological

constant but can not be identified with it. The analytic expressions of the state equation

and the density parameters of the matter and the geometric dark energy are derived and

used to determine the values of α , β and γ. Then a theoretical value of the cosmological

constant is computed and compared with the observed datum. An analytic integral of the

cosmological equation is obtained and used to evaluate the age of the universe which can be

compared with observed data. The full equations of linear cosmological perturbations and

the solutions are obtained. In addition, the behavior of perturbations for the sub-horizon

modes relevant to large-scale structures is discussed. This model can be distinguished from

others by considering the evolution of matter perturbations and gravitational potentials.
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A The growth of structures in linear perturbation theory

In the following, we give the derivation of the equation (5.38):

Letting

A = −(8γ − 1) (1 + r + v)

8γ
− 3 (8γ − 1) (4α+ β)

16βγ
(1 + v) ,

B = −(8γ + 1) (1 + r + v)

24γ
+

8βγ − 3 (4α+ β)

48βγ
(1 + v) ,

D =
(3α+ β) (4α+ β)

4βγ
(1 + v)2 . (A.1)

E = −(8γ − 1) ((3− n) v − r)

8γ
− 3 (8γ − 1) (4α+ β)

16βγ
(3− n) v,

F = −(8γ + 1) ((3− n) v − r)

24γ
+

8βγ − 3 (4α+ β)

48βγ
(3− n) v,
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K =
(3α+ β) (4α+ β)

2βγ
(1 + v) (3− n) v,

L =
(8γ − 1)

(

(3− n)2 v + r
)

8γ
+

3 (8γ − 1) (4α+ β)

16βγ
(3− n)2 v, (A.2)

Eqs. (5.23), (5.24) and (5.25) give

ρother =
3 (1− 8γ)2

32βγ
+ (r + v +A) ρb +

D

2
ρ2b ,

pother =
64γ2 − 1

32βγ
+

(

1

3
r +B

)

ρb −
D

6
ρ2b . (A.3)

Then we compute

·
ρother =− (vn+ 4r)Hρb + EHρb +

K

2
Hρ2b ,

·
pother =−4

3
rHρb + FHρb −

K

6
Hρ2b , (A.4)

··
ρother =

(

n2v + 16r − L− 3E
)

H2ρb

−1

2
(n+ 3)KH2ρ2b +

K

2

(3− n) v

(1 + v)
H2ρ2b

+(E − (vn+ 4r))
·
H ρb +

K

2

·
H ρ2b , (A.5)

δρother = (r + v +A) ρbδ +Dρ2bδ,

δpother =

(

1

3
r +B

)

ρbδ −
D

3
ρ2bδ, (A.6)

·
δρother =− (vn+4r)Hρbδ + (r+v) ρb

·
δ+Aρb

·
δ+Dρ2b

·
δ − (3A−E)Hρbδ− (2D−K)Hρ2bδ,

·
δpother =−4

3
rHρbδ +

1

3
rρb

·
δ +Bρb

·
δ −D

3
ρ2b

·
δ − (3B − F )Hρbδ +

(

2D − K

3

)

Hρ2bδ, (A.7)

and

··
δρother = (r + v + (A+Dρb)) ρb

··
δ

−2 [(nv + 4r)− 2 (E − 3A+ (K − 6D) ρb)]Hρb
·
δ

+

[

n2v + 16r + 9A− 6E − L+

(

36D − 12K +
1 + 2v

1 + v
K (3− n)

)

ρb

]

H2ρbδ

+(E − 3A− (vn+ 4r) + (K − 6D) ρb)
·
H ρbδ. (A.8)

Substituting these into (5.34) yields (5.38):

(1 + r + v +A+Dρb) ρb
··
δ +M (r, v, ρb)H

·
δ +N (r, v, ρb)H

2δ +Q (r, v, ρb) δ = 0, (A.9)
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where

M (r, v, ρb) =− (3 + 4r + 2vn− 3v + 9A− 3B − 4E) ρb + (4K − 22D) ρ2b

+

(

− (1 + r + v +A) ρb +Dρ2b
) (

−vn− 16
3 r + E + F − 3

)

(8γ−1)(16γ−1)
16βγ +

(

1 + 4
3r + v +A+B

)

ρb +
1
3Dρ2b

ρb

+
−1

3 (1 + r + v +A) ρb +
1
3Dρ2b

(8γ−1)(16γ−1)
16βγ +

(

1 + 4
3r + v +A+B

)

ρb +
1
3Dρ2b

Kρ2b , (A.10)

N (r, v, ρb) =−

·
3(8γ−1)(16γ−1)

16βγ +3Aρb +
(

D − K
2

)

ρ2b
(8γ−1)(16γ−1)

16βγ +
(

1+ 4
3r+v+A+B

)

ρb +
1
3Dρ2b

(

3 +
16

3
r + vn−E−F

)

ρb

+

(

−9B + 36Dρb − 3E +
1

2
(n− 19)K

)

ρb +
2 + 3v

2 (1 + v)
(3− n)Kρ2b

+

·
(8γ−1)(16γ−1)

16βγ +Aρb +
1
3

(

D − K
2

)

ρ2b
(8γ−1)(16γ−1)

16βγ +
(

1 + 4
3r + v +A+B

)

ρb +
1
3Dρ2b

Kρ2b , (A.11)

and

Q (r, v, ρb) =+
3

2

(

(8γ − 1) (16γ − 1)

16βγ

)2

− 3

2

(8γ − 1) (16γ − 1)

16βγ
ρb

−
(

(8γ−1) (16γ−1)

16βγ
D +

3

2

(

1+
4

3
r+v+A+B

)2

+
3

2

(

1+
4

3
r+v+A+B

)

)

ρ2b

−
(

2

(

1 +
4

3
r + v +A+B

)

+
1

2

)

Dρ3b −
1

2
D2ρ4b

−3A
·
H ρbδ +

(

K

2
− 6D

)

·
H ρ2b . (A.12)
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[47] F.-H. Ho and J.M. Nester, Poincaré Gauge Theory With Coupled Even And Odd Parity

Dynamic Spin-0 Modes: Dynamic Equations For Isotropic Bianchi Cosmologies,

Annalen Phys. 524 (2012) 97 [arXiv:1106.0711] [INSPIRE].

[48] F.-H. Ho, H. Chen, J.M. Nester and H.-J. Yo, General Poincaré Gauge Theory Cosmology,
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[69] P. Baekler, Exact solutions in the Poincaré gauge field theory of gravitation, Ph.D. Thesis,

University of Cologne, Cologne Germany (1986).

[70] M.J. Mortonson, D.H. Weinberg and M. White, Dark Energy: A Short Review,

arXiv:1401.0046 [INSPIRE].

[71] T.M. Davis, Cosmological constraints on dark energy, Gen. Rel. Grav. 46 (2014) 1731

[arXiv:1404.7266] [INSPIRE].

[72] J. Frieman, M. Turner and D. Huterer, Dark Energy and the Accelerating Universe,

Ann. Rev. Astron. Astrophys. 46 (2008) 385 [arXiv:0803.0982] [INSPIRE].

[73] D. Comelli, M. Crisostomi and L. Pilo, FRW Cosmological Perturbations in Massive

Bigravity, Phys. Rev. D 90 (2014) 084003 [arXiv:1403.5679] [INSPIRE].

[74] N.A. Lima and A.R. Liddle, Linear perturbations in viable f(R) theories,

Phys. Rev. D 88 (2013) 043521 [arXiv:1307.1613] [INSPIRE].

[75] F.G. Alvarenga, A. de la Cruz-Dombriz, M.J.S. Houndjo, M.E. Rodrigues and
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