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1 Introduction

Constructing the S-matrix of a 4D gauge theory, even in the planar limit, is one of the

central challenges of theoretical physics. In the case of N = 4 supersymmetric Yang-

Mills (SYM) theory, dual conformal symmetry [1, 2] uniquely fixes the form of scattering

amplitudes of up to 5 external gluons to coincide with the BDS ansatz [3]. But it allows for

an additional finite part that can depend on 3n− 15 conformal cross ratios for amplitudes

with n ≥ 6 gluons. Impressive progress towards the determination of the latter quantity has

been made, in particular for n = 6 external gluons. In this case, there exists an all-loop

formula which determines the remainder function for general kinematics [4]. A number

of complementary approaches paved the way for this important result. These included

perturbative studies in special kinematic regions, such as the collinear and the Regge limit,

see [5–7] and [8–10] for early contributions. Their findings provided essential boundary

conditions into the amplitude bootstrap for fixed-order calculations in general kinematics

that was initiated in [11] (see also [12] for a recent overview and more references). In a

series of papers [4, 13–17], Basso et al. then developed the non-perturbative Wilson loop

OPE, and showed that it could accommodate all previous results on hexagon amplitudes

and even correctly interpolate to strong coupling where string theory takes over [18–22].

While some partial results are known in particular for n = 7, see e.g. [23–27] and

references therein, the scattering problem of N = 4 SYM theory with more than six gluons

has not been solved. In pushing the entire program to higher numbers of external gluons

and uncovering universal patterns, the multi-Regge limit of high-energy gluon scattering is

expected to play an important role. Similar to the Wilson loop OPE, the expansion around
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multi-Regge kinematics is based on elementary building blocks, such as BFKL eigenvalues,

impact factors and production vertices. These are subject to powerful constraints from in-

tegrability which have been partially worked out, see e.g. [28]. In addition, the multi-Regge

limit was shown [29] to correspond to the infrared limit of the auxiliary one-dimensional

integrable system that controls the strongly coupled theory [20]. In this regime, the quan-

tum fluctuations of the auxiliary system are suppressed, which turns the original system

of coupled non-linear integral equations into much simpler algebraic equations for Bethe

roots.

Turning to the amplitude bootstrap, we recall that it relies on the observation that

L-loop amplitudes of certain helicity are expressed in terms of multiple polylogarithm

functions [30] of transcendental weight 2L (see [31] for a review). This is backed by the

“dlog” representation of the all-loop integrand [32], as well as the perturbative analysis of

the OPE expansion [33–35]. However, except for six and seven particles [36], to date we

know of no principle that would motivate from which set of “letters” (or “alphabet”) these

multiple polylogarithms can draw their arguments. The multi-Regge limit could serve as a

stepping stone in this direction, since the kinematical dependence simplifies considerably,

and the experience from the six-gluon analysis suggests that amplitudes inherit special

analytic properties in this limit [37]. These properties are also expected to make the

evaluation of the integral formulas describing the amplitude in the limit much simpler than

the ones arising in the OPE approach around collinear kinematics, where the question of

resummation at weak and strong coupling represents a formidable task [15, 34, 38, 39].

With these goals in mind, we will focus on the multi-Regge limit of the simplest,

Maximally Helicity Violating (MHV) n-gluon amplitudes with all but two of the helicities

being the same. For these amplitudes, the finite part not fixed by dual conformal symmetry

is a single remainder function Rn. Although the multi-Regge limit of the latter vanishes in

the Euclidean region where all Mandelstam invariants are spacelike [40, 41], it possesses a

rich set of branch cuts. Exploring the branch structure through analytic continuation in the

Mandelstam invariants leads to various Mandelstam regions with non-trivial multi-Regge

limit. The number of different regions increases exponentially with the particle number,

hence it is natural to ask for the simplest subset of regions that contains all the independent

“boundary data” to be used for constructing the amplitude in general kinematics.

In this note we consider the 2→ (n−2) multi-Regge limit in 2n−4 different Mandelstam

regions, which are reached by analytic continuation in the momenta of any combination

of (n − 4) adjacent external particles from positive energy (in the Euclidean region) to

negative energy. Our starting point is the known two-loop n-point MHV symbol [42].

Symbols [31, 43–45] capture the most complicated part of the amplitude with the highest

functional transcendental weight in a way that trivializes all identities among (multiple)

polylogarithms. The investigation of the multi-Regge limit of two-loop symbol was initi-

ated in [46], restricted to the leading term in the multi-Regge limit (leading logarithmic

approximation, or LLA), and for a single Mandelstam region. Our analysis extends both

aspects: we consider all 2n−4 Mandelstam regions, and we include the first subleading

term in the multi-Regge limit (NLLA). As results, we shall find that (i) all independent

information is contained in a subset of only (n− 4)(n− 5)/2 regions and (ii) in all regions
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the multi-Regge limit of the symbol decomposes into two basic building blocks f and g,

naturally associated to the n = 6 and n = 7 symbols, respectively. The first building block

f was already discussed in [9, 46] to LLA, and here we identify it to NLLA. The second ob-

ject g, which receives contributions only from NLLA, is entirely new. Apart from spelling

it out explicitly, we also find a functional representative for it, belonging to the class of

two-dimensional harmonic polylogarithms (2dHPLs) [47]. We complete the construction

through a prescription for how to build the two-loop symbol in the multi-Regge limit of

2n−4 Mandelstam regions for any number of external gluons from the building blocks f

and g.

This article is organized as follows. In section 2 we briefly review some basic facts

about iterated integrals, symbols and their discontinuities. We apply these in section 3

to obtain the form of the two-loop n-point symbol in the different Mandelstam regions,

after also discussing how these can be reached by analytically continuing the kinematical

invariants. In section 4 we take the multi-Regge limit of the symbol, and show how the

answer in any region may be reconstructed from the simplest regions in which only a

single branch cut contributes to the multi-Regge limit. One of the main results of the

paper, the decomposition of the symbol into the two building blocks for these regions, is

the subject of section 5. Section 6 deals with the uplift of the newly found seven-gluon

building block to a function, whereby we uniquely fix the maximal transcendental part,

and further constrain the possible terms of lower transcendentality by symmetry. Section 7

contains our conclusions. In appendix A, we present a particular parametrization of the

kinematics in terms of momentum twistors that we found very useful for our analysis.

Computer-readable files with our results accompany our article on the arXiv. This

data constitutes an important step towards determining the new quantity appearing in the

Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach for R7 known as the central emission

vertex, that so far has only been computed to LLA [23, 26]. Furthermore, the decompo-

sition we have discovered is suggestive of a factorization structure that may impose new

constraints on the analogous BFKL quantities also appearing at higher points.

2 Symbols and discontinuities

Let us consider the (3n−15)-dimensional space X of independent dual conformal invariant

cross ratios for an n-gluon scattering process, and a curve γ : [0, 1] → X in the space

of kinematic invariants. It starts at the base point γ(0) ∈ X and can run to any point

x = γ(1) ∈ X . At two loops, the remainder function is a sum of iterated integrals [48] of

the form

R(x) ∼
∫

0≤t1≤···≤t4≤1

dlog(Xa1(t1)) . . . dlog(Xa4(t4)) , (2.1)

where Xa is some set of functions on X , indexed by some finite index set, i.e. a = 1, . . . , $,

which depend on the parameter t ∈ [0, 1] through the curve γ. In order to keep nota-

tions simple we have only displayed a single summand. The symbol ∼ should remind

us of the fact that the true remainder function R is composed from a finite sum of such
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integral contributions. All of them contain four integrations, i.e. they possess the same

transcendentality degree, or weight.

In order for the integral to be well-defined, we should avoid curves γ which pass

through the set Z of zeros and singularities of Xa. Consequently, R(x) is only defined for

x ∈ Y ≡ X \ Z. There exists an integrability condition, which insures that an iterated

integral depends only on the base point γ(0) and the homotopy class [γ] of γ in Y [48].

Provided the integrability condition holds, and given a base point γ(0), the integral R

defines a multivalued function on Y. It has branch cuts Bν which end at the zeros and

singularities of the entries Xa. The discontinuities Discν along the branch cuts are given by

Discν(R(x)) ∼∑4

j=1

∫
0≤s1≤···≤sj≤1

dlog(Xa1(s1)) . . . dlog(Xaj (sj))

∫
0≤tj+1≤···≤t4≤1

dlog(Xaj+1(tj+1)) . . . dlog(Xa4(t4)) . (2.2)

In this expression, the parameters ti are mapped into the space Y of kinematic invariants

through the curve γ, as before, while si are sent to Y through a closed curve ην = ην(s)

which starts and ends at γ(0), winds around the branch point Bν once, and avoids winding

around all other Bµ, ν 6= µ. Consequently, the integral on the left in the above equation

evaluates to a number, i.e. it does not depend on the endpoint x of the curve γ. All

dependence on x comes in through the iterated integrals on the right. In order to derive this

expression, one moves the base point γ(0) along the closed curve ην . The iterated integral

along the concatenation γ ◦ η decomposes into a sum of products of iterated integrals of

lower functional transcendentality. By definition, the discontinuity is the difference between

the integral for γ ◦ η and the original γ. It is a linear combinations of iterated integrals of

functional transcendentality degree less or equal to three.

The symbol S[R] is a linear map on the space of iterated integrals which is defined

such that [43]

S[R(x)] ∼ (Xa1 ⊗ · · · ⊗Xa4) . (2.3)

Note that the symbol forgets all information encoded in the choice of the base point and

path. Hence, it determines the original iterated integral R only up to certain functions of

lower transcendentality. On the other hand, it knows about the endpoints of branch cuts

and allows to determine the symbol of the corresponding discontinuities,

S[Discν(R(x))] ∼
[∮

ην

dlog(Xa1)

]
(Xa2 ⊗ · · · ⊗Xa4) , (2.4)

From the right hand side, we can reconstruct the discontinuity up to certain functions of

transcendentality degree less or equal to two.

Before we conclude this section, let us make one more comment. The discontinuities

across branch cuts provide a representation of the homotopy group π1(Y). On the other

hand, commutators of elements in the homotopy group are related to double discontinuities,

and hence these are expressed through iterated integrals of transcendentality at most two.

Such integrals do not show up in a symbol of length three and hence we will be able to

safely ignore the difference between homotopy and homology in the following analysis.
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3 Mandelstam regions and cuts

A relatively simple expression for the two-loop remainder functions has been found for

n = 6 in [44]. The two-loop remainder function was also determined for n = 7 in [24],

but the expressions are quite complex already. On the other hand, the symbol of the

two-loop remainder function is actually known for any number n of gluons [42]. As we

have just recalled, this symbol determines the finite remainder R
(2)
n up to functions of

transcendentality at most three. Our goal is to analyze this symbol, and in particular the

symbol of its discontinuities, in the multi-Regge limit.

As we reviewed above, to leading transcendental order the remainder function has

branch cuts that end at the zeros and infinities of those functions Xa that appear as a

first entry of the symbol. The positions of these branch cuts are dictated by unitarity to

coincide with thresholds where an intermediate particle goes on shell. For planar massless

theories, this can only happen when a sum of cyclically adjacent external momenta becomes

null [7]. Since dual conformal invariance additionally constrains the remainder function to

only depend on conformal invariant combinations of Mandelstam invariants, from these

considerations we deduce that the first entries of the symbol can only be cross ratios of

the form

Uij =
x2
i+1,jx

2
i,j+1

x2
ijx

2
i+1,j+1

. (3.1)

These are defined for i, j = 1, 2, . . . n and 3 ≤ |i− j| ≤ n− 2 in terms of the distances

x2
ij = (xi − xj)2 (3.2)

between the cusps xi of the usual light-like polygon that encodes the kinematics of the

scattering event through pi = xi − xi−1. Our conventions concerning the enumeration

of gluons are shown in figure 1. The black dots on the right hand side depict the cusps.

Counting the different possibilities in eq. (3.1) we see that we can have a total of n(n−5)/2

distinct cross ratios. While (n− 4)(n− 5)/2 of them are given by the cross ratios

uij = Uij with i = 2, . . . , n− 4, j = i+ 3, . . . , n− 1 , (3.3)

it turns out convenient to use 2(n−5) products and quotients of the remaining cross ratios

U1j and Uj−1,n,

ũj := U1jU
−1
j−1,n , εj := U1jUj−1,n (3.4)

where j = 4, . . . , n − 2. Of course, the usual rules of the symbol calculus allow to pass

easily from ũj and εj to the more conventional first entries U1j and Uj−1,n.

Our goal is to analyze the discontinuities along the cuts that end at points where one of

the kinematic invariants u, ũ, or ε vanish. We will restrict attention to those discontinuities

that are picked up while we continue the kinematic invariants into so-called Mandelstam

regions, i.e. into regions in which some of the s-like variables si are negative, see figure 1.

These regions are reached by continuing the energies p0
j of outgoing particles with indices

j ∈ I ⊂ {4, . . . , n − 1} to negative values. The choice of the subset I labels the different

Mandelstam regions.
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p2 p3

p4

p5

pn−1

pnp1

t1

tn−3

s1

sn−3

s2t2

xn−1

xn

x1

x2

x3

x4

Figure 1. Kinematics of the scattering process 2 → n − 2. On the right-hand side we show a

graphical representation of the dual variables xi.

To each such Mandelstam region I we associate an n-component object ρI = (%Ij )

such that

%Ij =


−1 if j ∈ I
0 if j ∈ {1 ≡ n+ 1, 2}
+1 otherwise.

(3.5)

In order to reach a region ρ = (%a), the curve in the space of kinematic invariants has to

wind around the endpoints of some of our branch cuts. For the points uij = 0, the winding

numbers are [27]

nij(ρ) =
1

4
(%i+1 − %i+2)(%j+1 − %j) . (3.6)

From the formulas in [27] one can also conclude that the points εj = 0 possess trivial

winding for all Mandelstam regions ρ while for ũj one finds

nj(ρ) =
1

2
(%j − %j+1) . (3.7)

With these basics set up, our next aim is to establish a number of relations between the

winding numbers for different Mandelstam regions ρ. The simplest winding numbers appear

for the Mandelstam regions ρ[k,l] that are associated with sets I = [k, l] = {k, k+ 1, . . . , l−
1, l} with 4 ≤ k ≤ l ≤ n − 1. For these regions, the winding numbers around the branch

points in uij are

nij(ρ
[k,l]) = δi,k−2δj,l . (3.8)

while for the branch points in ũj one finds

nj(ρ
[k,l]) = δj,k−1 − δj,l . (3.9)

Note that any such region with k 6= l is associated with a unique cross ratio uk−2,l that

winds during the continuation into the Mandelstam region ρ[k,l]. Let us point out that the

above formulas can also be applied to regions ρk = ρ{k} associated with a single sign flip

by setting k = l. In this case the winding numbers nij vanish, while nj(ρ
k) = δj,k−1 − δj,k.
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The winding numbers nij around the branch points uij = 0 obey two interesting

relations that will become important later on. It is not difficult to see that

nij(ρ
I) =

∑
{k,l}⊂I

nij(ρ
{k,l}) (3.10)

and

nij(ρ
{k,l}) = nij(ρ

[k,l])− nij(ρ[k+1,l])− nij(ρ[k,l−1]) + nij(ρ
[k+1,l−1]) . (3.11)

Let us stress that these relations are not to be read as equalities in homology, since they do

not hold for the winding numbers nj . Given the symbol for the 2-loop n-gluon remainder

function,

S[R] =
∑

uij ⊗ Sij +
∑(

ũj ⊗ Sj + εj ⊗ S̃j
)

(3.12)

we can associate a symbol of length three

S[R]ρ ≡ −2πi
∑

nij(ρ)Sij − 2πi
∑

nj(ρ)Sj . (3.13)

to every Mandelstam region. Here we have used that none of our curves winds around

the branch points in εj = 0. Like the original symbol, the symbols Sij and Sj of the cut

contributions are a bit complicated. What matters to us is that they can be worked out

from the formula for S[R].

4 Multi-Regge limit and relations

The multi-Regge limit is a scaling limit in which the pairwise subenergies sj−3 = (pj−1+pj)
2

for j = 4, . . . , n−1 are sent to infinity while keeping the t-like variables in figure 1 along the

so-called Toller angles finite, see [29] for details. One can show that this limiting procedure

is equivalent to sending

εj → 0 (4.1)

while keeping ũj and (1 − uj−2,j+1)2ε−1
j finite for j = 4, . . . , n − 2. The entries X of the

symbol are functions of the kinematic invariants. For each of them there exists a unique

monomial XMRL in the variables εj such that

lim
|εj |→0

X/XMRL = 1 . (4.2)

The coefficient factor in XMRL still depends on 2n − 10 kinematic invariants wj , w̄j , see

below.

In order to compute the multi-Regge limit of the symbol of the discontinuities, we

parametrize the entries in terms of a natural set of 3(n − 5) variables similar to the ones

used in the computation of the OPE for polygon Wilson loops [5–7, 13, 49], see appendix A.

For the following general discussion, it will be sufficient to know the multi-Regge limit of

the first entry. This is given by [29]

uMRL
ij = 1, ũMRL

j = wjw̄j , εMRL
j = εj . (4.3)
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Note that we have introduced waw̄a, a = 1, . . . , n − 5 through the multi-Regge limit of

ũj . In order to determine the complex variables wa and w̄a themselves, rather than their

products only, we need to consider further combinations of kinematic invariants, namely[
(1− uj−2,j+1)U−1

j−1,n

]MRL
= (1 + wj)(1 + w̄j) . (4.4)

Now that we have defined the multi-Regge limit, let us return to the remainder function and

determine the multi-Regge limit of its symbol. Let us recall that the remainder function

Rn on the Euclidean sheet, where all the si > 0, vanishes in the multi-Regge limit. This

implies that also its symbol must vanish. If we apply our construction of SMRL to the

symbol (3.12) we find that

0 = S[R]MRL =
∑(

wjw̄j ⊗ SMRL
j + εj ⊗ S̃MRL

j

)
. (4.5)

Here we have dropped all terms containing Sij since 1 ⊗ SMRL
ij ≡ 0. From the previous

equation we conclude that SMRL
j = 0 = S̃MRL

j . If we insert this into our expressions (3.13)

for the cut contributions we obtain1

S[R]MRL
ρ = −2πi

∑
nij(ρ)SMRL

ij . (4.6)

Before we draw further conclusions from here, let us comment that our result SMRL
j = 0

is fully consistent with the well-known fact that there are no non-trivial cut contributions

to the continuation into Mandelstam regions ρk associated with a single sign flip [50]

(reviewed in [26]). As we saw before, while we continue into these Mandelstam regions,

only the variables ũj with j = k, k−1 wind around ũj = 0. In order for the cut contribution

to cancel we must have SMRL
k = SMRL

k−1 , i.e. all these symbols must be identical, which is

consistent with the stronger statement SMRL
j = 0 we derived above.

The result (4.6) says that the multi-Regge limit of the symbol for any region ρ only

depends on the winding numbers nij . Consequently, the two relations (3.10) and (3.11)

translate into relations for the symbol

S[Rn]MRL
I =

∑
{k,l}⊂I

S[Rn]MRL
{k,l} . (4.7)

and

S[Rn]MRL
{k,l} = S[Rn]MRL

[k,l] − S[Rn]MRL
[k,l−1] − S[Rn]MRL

[k+1,l] + S[Rn]MRL
[k+1,l−1] . (4.8)

These relations imply that we can reconstruct the symbol of all Mandelstam regions from

the symbol of those (n − 4)(n − 5)/2 regions that are associated with (any number of)

adjacent flips. Let us note that the relations in this and the preceding section are indepen-

dent of the loop order, as long as we restrict to the contributions of maximal functional

transcendentality. In the case of n = 7 external gluons, such relations between different

multi-Regge regions were first explored in [26], see e.g. formulas (6.1)–(6.8) in the conclud-

ing section of that paper. The last formula of that list, for instance, correspondents to

our equation (4.8) with n = 7, k = 4 and l = 6, keeping in mind that S[Rn]MRL
[5,5] vanishes.

Our results extend such relations to arbitary numbers of gluons, at least for the terms of

maximal functional transcendentality which are captured by the symbol.

1We thank James Drummond for discussions around this point.
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5 Building blocks of the symbol

Having found all these relations between the Mandelstam regions we want to finally describe

the multi-Regge limit of the symbol for the regions ρ[k,l], in which the adjacent particles

k, k + 1, . . . , l have their energy signs flipped. From these symbols, we will be able to

construct the symbols in all other regions ρ = ρI as linear combinations, following the

relations (4.7) and (4.8). For the regions ρ[k,l], we find

S[Rn]MRL
[k,l]

2πi
=

l−1∑
i=k

(
f(vi) log εi + f̃(vi)

)
+

l−2∑
i=k

g(vi, vi+1) , (5.1)

where the terms in the first sum are obtained from the two-loop remainder function for

n = 6 external gluons as

f(v4) log ε4 + f̃(v4) =
S[R6]MRL

[4,5]

2πi
, (5.2)

and the symbol g that appears in the second sum is related to the two-loop remainder

function for n = 7 external gluons through

g(v4, v5) =
S[R7]MRL

[4,6]

2πi
−
∑
i=4,5

(
f(vi) log εi + f̃(vi)

)
. (5.3)

In order to recycle this data from n = 6 and n = 7 for the symbol of the two-loop remainder

function for any number n of external gluons, as described in equation (5.1), we introduced

a new set of variables vi, i = k, . . . , l − 1 that are related to the kinematic variables wi by

wj =
(vj − vj−1)(1 + vj+1)

(vj+1 − vj)(1 + vj−1)
, j ∈ {k, . . . , l − 1} , (5.4)

with the boundary conditions vk−1 = 0, vl = ∞. Let us stress that this map between

the vi and wj depends on the Mandelstam region ρ[k,l] we consider, and let us mention a

few examples for concreteness: in the ρ[4,5] region relevant for R6 in (5.2) we simply have

w4 ≡ w = v4, whereas in the ρ[4,6] region relevant for R7 in (5.3) we have

w4 =
v4 (1 + v5)

v5 − v4
, w5 =

v5 − v4

1 + v4
. (5.5)

For completeness, the inversion of (5.4) reads

vj =
(1 + (1 + (. . . (1 + wk)wk+1) . . . )wj−1)wjwj+1 . . . wl−1

1 + (1 + (. . . (1 + wj+1)wj+2) . . . )wl−1
, j ∈ {k, . . . , l− 1} . (5.6)

In order to fully describe the symbol for all Mandelstam regions, it remains to spell

out formulas for the symbols f , f̃ and g. The expression for f is known [46], it reads

f(w) =
1

2

(
(1+w)(1+w̄)⊗ (1 + w)(1 + w̄)

ww̄

)
+

1

2

(
(1 + w)(1 + w̄)

ww̄
⊗(1+w)(1+w̄)

)
. (5.7)
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Similar expressions for f̃ and g can be found in the Mathematica file SR2MRL.m accom-

panying this publication. Let us only mention that the letters of the symbol g(−1/y,−x)

are x, y, (1 − x), (1 − y), (1 − xy), and their complex conjugates. Leaving the complex

conjugate letters aside for a moment, functions with this five-letter symbol alphabet belong

to the class of 2-dimensional harmonic polylogarithms (2dHPLs) [47], and in particular to

the same subset which was found to describe the contribution of all single-particle gluonic

bound states in the OPE expansion of the six-point remainder function [35].

Before concluding this section, let us summarize how the result (5.1)–(5.4) was ob-

tained. Our starting point, the n-point two-loop MHV symbol in general kinematics has

been derived in [42], by extending the duality between MHV amplitudes and bosonic Wil-

son loops [18, 51, 52] to the supersymmetric case. The result, which is also contained in a

Mathematica file accompanying the arXiv submission of the aforementioned article, en-

codes the kinematical dependence through momentum twistors Zi, and in particular their

scalar products, known as four-brackets,

〈ZiZjZkZ`〉 ≡ εabcdZai ZbjZckZd` ≡ 〈ijkl〉 , (5.8)

and their bilinears

〈ij(abc) ∩ (def)〉 ≡ 〈iabc〉〈jdef〉 − 〈jabc〉〈idef〉 , (5.9)

〈i(ab)(cd)(ef)〉 ≡ 〈aicd〉〈bief〉 − 〈aief〉〈bicd〉 . (5.10)

We evaluate these expressions in any convenient set of variables, for example the one

described in appendix A, and Taylor expand the symbol entries around the multi-Regge

limit (in this case Ti → 0, with Si/Ti fixed, for i = 1, . . . , n − 5), keeping only the first

term in the expansion of each entry. We may then trade the expansion parameters for

the kinematic parameters εi we defined in eq. (3.4) that also become small in multi-Regge

kinematics, see eq. (4.1), and the surviving 2(n− 5) kinematical parameters for the wi, w̄i
variables defined in eqs. (4.3), (4.4). After that, we factor the symbol entries and then

expand the factors according to the symbol property,

A⊗ (XaXb)⊗B = A⊗Xa ⊗B +A⊗Xb ⊗B , (5.11)

which in particular also implies

A⊗Xm ⊗B = m (A⊗X ⊗B) . (5.12)

These stem from the definition (2.1), (2.3), where it is evident that the symbol behaves as

a tensor product of differentials of logarithms. Thus it also obeys the property

A⊗ c⊗B = 0 (5.13)

for any nonzero constant c, allowing us to discard terms of this form.

Furthermore, we need to extract the divergent logarithms in the variables εi. In general,

the structure of the limit is such that, at loop order L, divergences of degree logL−1 appear.

At two loops, we will thus have at most single logarithms, which come from symbols with
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one of the εi in one entry. We may extract the divergent logarithms by virtue of the shuffle

identity

εi ⊗X ⊗ Y = log εi (X ⊗ Y )− (X ⊗ εi ⊗ Y )− (X ⊗ Y ⊗ εi) , (5.14)

which follows from writing log εi as an iterated integral and nesting its integration range

with the (X ⊗ Y ) integral it multiplies.

Finally, we have worked out the transformation (5.4), relating the multi-Regge variables

wi, w̄i most commonly defined in terms of the cross ratios (4.3), (4.4), to a generalization

of the variables used previously [9, 46]. Expanding once more the different factors in the

symbol entries as in eq. (5.11), we observe the structure (5.1) up to n = 10 points, and

conjecture it to hold for all multiplicities.

6 From symbols to functions

Of course it is of interest to lift the symbols f, f̃ and g to functions. For f and f̃ the answer

is well-known even beyond the NLLA since the six gluon remainder function is known

explicitly to very high loop order in multi-Regge kinematics [35, 37, 53], and implicitly also

to all orders [4, 16]. For completeness, let us quote here the relevant two-loop result [8] in

our conventions (5.2), where by slight abuse of notation f , f̃ now denote functions rather

than symbols,2

f(w) =
1

2
log |1 + w|2 log

|1 + w|2

|w|2
,

f̃(w) = −4Li3(−w)− 4Li3(−w̄) + 2 log |w|2(Li2(−w) + Li2(−w̄)) (6.1)

+
1

3
log2 |1 + w|2 log

|w|6

|1 + w|4
− 1

2
log |1 + w|2 log

|1 + w|2

|w|2
log

|w|2

|1 + w|4
,

with |w|2 = ww̄ and |1 + w|2 = (1 + w)(1 + w̄).

For the function associated to g, while it could in principle be obtained from the

formula for the two-loop heptagon remainder function presented in [24], the latter is only

valid in a subspace of the Euclidean region known as the positive region, thus rendering

the analytic continuation relevant for the multi-Regge limit quite intricate.

Instead, in this section we will construct a prototype function whose symbol equals g

by directly comparing it against a basis of functions having the same alphabet. That is, we

first construct an ansatz for the function, which is a linear combination with undetermined

coefficients, of all independent functions of transcendentality m = 0, 1, 2, 3, multiplied by

transcendental constants such as (iπ)k or (multiple) zeta values ζk, so that each term has

uniform total transcendentality m + k = 3. Equating the symbol of the ansatz with g

then fixes the coefficients of all terms with m = 3. We further reduce the ambiguity of the

remaining terms with lower functional transcendentality by imposing simple constraints

from symmetry, ending up with a prototype function with 25 undetermined parameters.

2Our expressions have an extra factor of 4 compared to [8] due to the use of λ/(4π)2 as expansion

parameter, as in [42]. In addition, here we have replaced the large logarithm by log(1 − u1) → 1
2
log ε4 −

1
2
log |w|2

|1+w|4 .
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We start by noting that a basis spanning the subset of 2dHPLs with the five-letter

(unbarred) alphabet mentioned below (5.7) can be generated from

G =
{
G(~a; y)|ai ∈ {0, 1}

}
∪
{
G(~a;x)|ai ∈ {0, 1, 1/y}

}
, (6.2)

where

G(a1, . . . , an; z) ≡


1
n! logn z if a1 = . . . = an = 0∫ z
0

dt1
t1−a1G(a2, . . . , an; t1) otherwise,

(6.3)

with G(; z) = 1, are iterated integrals over a particular curve, known as Goncharov or

multiple polylogarithms (MPLs). The basis (6.2) is in turn the part of the hexagon function

basis considered in [54] (before imposing branch cut conditions) that is independent of one

of the three so-called y-variables. From the recursive definition of the symbol of MPLs,

S[G(an−1, . . . , a1; an)] =
n−1∑
i=1

[
S[G(an−1, . . . , âi, . . . , a1; an)]⊗ (ai − ai+1)

− S[G(an−1, . . . , âi, . . . , a1; an)]⊗ (ai − ai−1)
]
, (6.4)

where a0 = 0 and hatted indices are omitted, it is straightforward to see that the 2dHPLs

in eq. (6.2) indeed yield the five-letter alphabet mentioned below eq. (5.7).

In fact, allowing the entries of the singularity vector ~a ≡ (a1, . . . , an) to take any value

within the prescribed set in the basis (6.2) yields an overcomplete system, because of shuffle

identities such as

G(a; z)G(b; z) = G(a, b; z) +G(b, a; z), (6.5)

which follow from the definition (6.3) by nesting the integration range of the integrals on

the left-hand side. According to Radford’s theorem [55], we may solve these identities and

obtain a linearly independent set of functions by only keeping the singularity vectors that

form Lyndon words. That is, if we consider all words made of letters of a given alphabet,

the latter also defining a particular ordering between the letters, then Lyndon words are

those words that no matter how we split them into two substrings, the left substring is

always lexicographically smaller than the right substring.

For example, all Lyndon words up to length three of the alphabet 0 < 1 < 2 are

0, 1, 2, 01, 02, 12, 001, 002, 011, 012, 021, 022, 112, 122, (6.6)

and from this example we may obtain all irreducible 2dHPLs of eq. (6.2) as follows:3

replacing 2 → 1/y yields the singularity vectors ~a of all irreducible 2dHPLs on the right

hand side of eq. (6.2), and discarding all words with the letter 2 yields the respective ones

on the left-hand side of the latter formula. Let us call the Lyndon basis of G(~a; y), G(~a;x),

with singularity vectors as obtained by the aforementioned two operations, as GL ⊂ G.

So far we have constructed irreducible functions with only half of the ten-letter alphabet

appearing in the symbol g. Clearly, functions for the other half of the alphabet may be

3Namely, those 2dHPLs which cannot be written as a product of lower-weight 2dHPLs.
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obtained by the complex conjugate of GL, GL. Now it turns out that as a consequence of

the local path independence of iterated integrals, also known as the integrability condition,

and the fact that no letter mixes barred and unbarred variables (for example, we don’t

encounter letters of the form 1 + ww̄), there exist no other irreducible functions whose

symbol entries span the entire ten-letter alphabet in question.

In summary, all irreducible functions with the same alphabet as g are given by GL∪GL,

and to obtain a complete basis at a given weight, one needs to add to the latter all distinct

products of lower-weight functions from the same set, and with the same total weight. In

this manner, we obtain a basis of dimension 1, 10, 63, and 320 at weights 0 (i.e. G[; z] = 1),

1, 2, and 3, respectively. Forming a linear combination of functions at weight 3 with

arbitrary coefficients, taking its symbol with the help of eq. (6.4) and equating the result

with the symbol g, we uniquely determine the 320 coefficients. In particular, we find that

(exceptionally, g here denotes the function rather than the symbol)

2g(−1/y,−x) = G(1, x)G(1, y)G (0, x̄) +G(1, x)G(1, y)G (0, ȳ) +G(0, x)G(1, y)G (1, x̄)

+G(0, y)G(1, y)G (1, x̄)− 2G(1, x)G(1, y)G (1, x̄)

−G(1, y)G (0, ȳ)G (1/y, x) +G(0, y)G(1, y)G (1/ȳ, x̄)

+G(0, x)G(1, x)G (1, ȳ) +G(1, x)G(0, y)G (1, ȳ)

−G(1, x)G (0, x̄)G (1/y, x) +G(0, x)G (1, x̄)G (1/y, x)

+G(0, y)G (1, ȳ)G (1/y, x) +G(0, x)G(1, x)G (1/ȳ, x̄)

− 2G(0, 1, x)G (1/ȳ, x̄)− 2G(0, 1, y)G (1/ȳ, x̄)− 2G (1, x̄)G (0, 1/y, x)

+ 2G (1, x̄)G (1, 1/y, x)− 2G (1, ȳ)G (1, 1/y, x)− 2G(0, x)G(1, x)G (1, x̄)

+ 2G(0, 1, x)G (0, x̄) + 2G(0, 1, x)G (1, x̄)− 2G(0, y)G(1, y)G (1, ȳ)

+ 2G(0, 1, y)G (0, ȳ) + 2G(0, 1, y)G (1, ȳ) +G(0, x)G(1, x)G(1, y)

+G(1, x)G(0, y)G(1, y)−G(0, y)G(1, y)G (1/y, x)− 2G(1, y)G (1, 1/y, x)

−G(0, x)G(1, x)G (1/y, x) + 2G(0, 1, x)G (1/y, x) + 2G(0, 1, y)G (1/y, x)

+ 2G(1, x)G (0, 1/y, x) + 2G(1, x)G (1, 1/y, x)− 4G (0, 1, 1/y, x)

− 4G (0, 1/y, 1, x)− 4G (1, 1, 1/y, x)

+ 2G(0, x)G(0, 1, x)− 2G(1, x)G(0, 1, x)− 4G(0, 0, 1, x) + 4G(0, 1, 1, x)

− 2G(0, 1, y)G(1, y) + 2G(0, y)G(0, 1, y)− 4G(0, 0, 1, y) + 4G(0, 1, 1, y)

+ (x↔ x̄, y ↔ ȳ) + lower-weight functions.

(6.7)

In order to fix the function completely, we need to address the coefficients of the remaining

lower-weight functions multiplying the independent transcendental constants (iπ), ζ2, (iπ)3

and ζ3, so that the total weight is 3, which thus sum up to 75.

We have explained before that this information on contributions of lower weight is

invisible to the symbol. However we may further constrain these terms by examining the

symmetries of the problem. MHV amplitudes are invariant under parity (spatial reflection),

which in the multi-Regge limit amounts to the transformation wi ↔ w̄i [46]. Imposing this

condition on our ansatz leaves 2, 5, and 34 undetermined parameters multiplying functions

of weight 0, 1, and 2, respectively.
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Furthermore, we have target-projectile symmetry, corresponding to an invariance under

exchange of the incoming momenta, or equivalently under wk → 1/wn−4−k, see e.g. [27]. For

g(v1, v2) as defined in eqs. (5.3)–(5.4), and given that f(v) = f(1/v) [46] and similarly for f̃ ,

this amounts to symmetry under v1 ↔ 1/v2 (or x↔ y), which further reduces the number

of unknowns to 2, 3, and 20, by order of increasing functional transcendentality. The only

additional subtlety when imposing this symmetry comes from mapping the transformed

functions back into the basis. For all but one, this can be done immediately due to the

following property of MPLs,

G(a1, . . . , ak; z) = G(xa1, . . . , xak;xz) . (6.8)

for ak 6= 0 and x ∈ C∗. And for the one left, we may use the identity

G(1, 1/x; y) = G(1;x)G(1, y) +G(0, 1/y;x)−G(1, 1/y;x) , (6.9)

which follows from the quasi-shuffle algebra of MPLs, see for example [31].

This concludes the discussion on the use of symmetry in constraining the terms of

lower functional transcendentality. The final result for the 25-parameter functional repre-

sentative for g (also including the functions for f, f̃), or equivalently the two-loop seven-

point remainder function in multi-Regge kinematics, is included in the Mathematica file

gfunction.m attached to this publication. It would be interesting to fix the function com-

pletely, by further exploiting its expected analytic properties [37], overlap with the collinear

limit [16, 35], or better yet by constructing the seven-point remainder function with proper

branch cuts in general kinematics, and taking its limit. We leave these exciting questions

for future work.

7 Conclusions

Let us comment a bit more on the three main results of this paper. At the end of section 4

we found a set of relations that determine the multi-Regge limit of the symbol of all

Mandelstam regions from the regions I = [k, l] with adjacent flips. The argument we

presented is actually not restricted to the two-loop remainder function; in fact, it can

easily be seen that it extends to all loops. This does not imply, however, that the multi-

Regge limit of the remainder function itself satisfies similar relations. While the relations

hold for the terms of maximal functional transcendentality, they are well known to receive

additional contributions from lower transcendentality, such as double cut contributions. It

would be interesting to study these modifications in more detail.

Thereby, one should also be able to resolve the observed discrepancy between the weak

and strong coupling results for n = 7 external gluons in the Mandelstam region 4, 6 in which

the signs are flipped for the outgoing particles in position 4 and 6. In this case, the multi-

Regge limit of the remainder function was shown to be non-trivial at weak coupling, in

full agreement with our analysis of the two loop symbol, while the continuation at strong

coupling produced a vanishing result [27]. Our investigation of the symbol suggests that

the issue is related to the choice of the curve along which the kinematic invariants are
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continued in the strongly coupled theory. The curve selected in [27] possesses the desired

winding numbers around uij = 0 but does not seem to belong to the right homotopy class.

This issue certainly deserves further attention.

The second outcome of our analysis concerns the building blocks f and g of the multi-

Regge limit. We found that, in multi-Regge kinematics, the symbol of the two loop remain-

der function can be built from terms that are entirely determined from the expressions with

n = 6 and n = 7 external gluons. This result is a consequence of the low loop order. Gener-

alizing arguments that were presented in [9], one can show that the multi-Regge limit of the

L-loop remainder function is determined by L different building blocks g(ν), ν = 1, . . . , L.

The first two of these are g(1) ≡ f and g(2) = g. The remaining ones may be reconstructed

from processes involving up to n = L+ 5 external gluons. They receive their leading con-

tribution at Nν−1LLA. In going to higher loop orders, the building blocks g(ν) themselves

pick up higher order terms from the expansion in large logarithms. For g(1) = f , for exam-

ple, our two loop analysis only allowed to determine LLA and NLLA terms. In order to

find g(1) to N2LLA accuracy, we need to analyze the known three loop symbol for n = 6

external gluons.

Let us finally mention that our results also impose strong constraints on the production

vertex that appears in the multi-Regge limit for n = 7 external gluons. In particular, by

transforming the prototype function for g, we could fix this vertex in NLLA, up to 25

parameters. In LLA, the relevant production vertex was actually computed by Bartels

et al. [26]. It would be interesting to reproduce their result from our expressions, and to

extract its NLLA corrections. This could in turn be used as a seed in order to compute

the n = 7 remainder function to NLLA in principle at any loop order from the BFKL

formula of [26], thus providing potentially useful boundary data for the amplitude bootstrap

program [11, 12, 25, 54, 56, 57]. More generally, the integrability of N = 4 SYM theory

raises the hope that all power-suppressed terms can be obtained to all loops also for any

of points, similarly to the n = 6 case [16].
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A Parametrization of the multi-Regge limit

We seek a good parametrization of the multi-Regge limit of (dual) conformally inequivalent

null polygons. Natural variables for such polygons arose in the construction of the OPE for
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null polygon Wilson loops [5–7, 13, 49]. We will describe a slightly modified parametrization

that features a canonical multi-Regge limit for any number of edges.

Just as for the Wilson loop OPE, we will start an arbitrary fixed reference null n-gon

that we tessellate into a sequence of (n − 5) internal null tetragons and two boundary

tetragons. Each null tetragon is stabilized by three conformal transformations. For each

internal tetragon, we act with its stabilizing conformal transformations on all cusps of

the polygon that lie “below” the internal tetragon. In this way, we generate a 3(n − 5)-

dimensional family of conformally inequivalent null polygons. Our parametrization differs

from the parametrization for the Wilson loop OPE [5–7, 13, 49] by the specific choice of

tessellation, which in our case is tailored to the multi-Regge limit.

Momentum twistors. The two-loop symbol for MHV amplitudes [42] is expressed in

terms of conformally invariant combinations of momentum twistors [58]. We therefore need

a good parametrization of the n momentum twistors that parametrize the null n-gon (or

n-point amplitude). Let us note some key properties of momentum twistors that will be

relevant in the following. Points x in dual spacetime R1,3 are in one-to-one correspondence

with null rays X ∈ R2,4, X2 = 0, tX ∼= X [59]. When written as a bispinor, a null vector X

decomposes into a pair of spinors, Xab = Z [aZ̃b]. This is the usual map between spacetime

points x and lines (Z, Z̃) in twistor space. Points xi that are null separated translate to lines

in twistor space that intersect and thus share a common spinor (twistor). A null polygon

with n cusps xi is hence parametrized by n momentum twistors Zi, with xi ' (Zi, Zi+1).

Points that lie on a common null line in spacetime map to lines in twistor space that lie in

a common plane and intersect in a common point. By definition, momentum twistors are

SO(2, 4) spinors, hence conformal transformations act on them via (right) multiplication

by SL(4) matrices.

The hexagon. In a conformal theory, the simplest non-trivial null polygon is the hexa-

gon. All null tetragons are conformally equivalent; the same is true for null pentagons. To

parametrize an arbitrary fixed reference hexagon, pick six numerical momentum twistors

Z1,...,6. Each line (Zi, Zi+1) defines a cusp xi of the hexagon. Now tessellate the hexagon

by drawing the two (unique) null lines that connect the cusps x4 and x5 with the line

x12. These lines are characterized by points xint
4 , xint

5 on the line x12, or equivalently by

the momentum twistors Z int
4 , Z int

5 that mark the intersections of the lines (Z4, Z5) and

(Z5, Z6) with the plane (Z1, Z2, Z3), see figure 2. The cusps (x4, x5, x
int
5 , xint

4 ), or equiv-

alently the momentum twistors (Z5, Z
int
5 , Z2, Z

int
4 ) define the internal null tetragon. It

is preserved by three conformal transformations [5]: one rotation in the plane orthogo-

nal to the tetragon, parametrized by φ, and two non-compact conformal transformations

parametrized by σ and τ that move points along the horizontal and vertical directions of the

tetragon. In momentum-twistor space, these transformations are represented by an SL(4)

matrix M int(F, S, T ) that depends on the three parameters F = eiφ, S = eσ, T = e−τ . It

must preserve the four momentum twistors of the internal tetragon, and hence is uniquely

defined by its eigenvalues:(
Z5, Z2, Z

int
5 , Z int

4

)
.M int(F, S, T ) =

√
F diag

(
1/FS, S/F, T, 1/T

)
.
(
Z5, Z2, Z

int
5 , Z int

4

)
.

(A.1)
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Z1

Z2

Z3
Z4

Z int
4

Z5

Z int
5

Z6

←→

1

2

3

4

5

6

xint
5

xint
4

T→0−−−−−→
S/T fixed

1

2

3

4

5, 6

xint
4

U25 → 1
U36, U41 → 0

Figure 2. Illustration of the hexagon tessellation (center), its momentum-twistor picture (left),

and the 2→ 4 Regge limit (center to right).

A family of conformally inequivalent null hexagons is now obtained by acting with the

stabilizing matrix M int(F, S, T ) of the internal tetragon on the momentum twistors Z6, Z1

that parametrize points “below” the internal tetragon.

The 2→ 4 multi-Regge limit of the hexagon is characterized by the following behavior

of the three independent cross ratios:

U36 → 0 , U41/U36 and (1− U25)/U36 finite . (A.2)

In our parametrization, this limit is attained for T → 0 with S/T fixed,4 which can be

understood as follows: the limit T → 0 “flattens” the bottom of the hexagon, while the

simultaneous limit S → 0 moves the bottom cusp x6 towards x5, see figure 2. It is then

clear that U25 approaches 1, while x46 and x51 become lightlike, and therefore U36 and

U41 go to zero (all at the same rate). In the limit, we find the following relations between

the tessellation parameters F , S/T and the kinematic parameters w4, w̄4 introduced in

section 4:

F 2 = b
w̄4

w4
,

S2

T 2
=

c

w4w̄4
. (A.3)

Up to O(T 4), the three independent cross ratios then expand to

U25 = 1− (1 + w4)(1 + w̄4)

w4w̄4
a T 2 , U36 =

a T 2

w4w̄4
, U41 = a T 2 . (A.4)

The coefficients a, b, c are numerical constants whose values depend on the choice of

reference hexagon. Below, we will give an explicit example for which a = 1/4, b = 1, c = −1.

General polygons. The parametrization of the hexagon straightforwardly generalizes

to null polygons with any number of edges. Let Z1,...,n be numerical momentum twistors

that parametrize an arbitrary reference null n-gon. Tessellate the n-gon into (n − 5)

internal tetragons and two boundary tetragons by drawing the (unique) null lines from

cusps x4, . . . , xn−1 to line x12, see figure 3. These internal null lines are characterized

by intersection points xint
4,...,n−1 on line x12, or equivalently by the momentum twistors

4This is essentially the same limit as for the Wilson loop OPE parametrization [54, 60].
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6 Tn−5→ 0−−−−−−−→
Sn−5
Tn−5
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1
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3

4

5

n−1, n
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6
Ti→ 0 ∀i−−−−−−−→
Si/Ti fixed

1

2

3

4

5, . . . , n

Figure 3. Tessellation of the null n-gon that is tailored to the 2 → (n − 2) multi-Regge limit

(left), and systematics of the multi-Regge limit in the tessellation parameters (center and right).

When Tn−5 → 0, Sn−5/Tn−5 fixed (center), one can see that Uj,n−1 → 1 for j = 2, . . . , n − 4, and

Un−3,n, Un−2,1 → 0. Similarly, Ui+2,n, Ui+3,1 → 0, Uj,i+4 → 1 for j = 2, . . . , i + 1 when Ti → 0,

Si/Ti fixed. The right figure shows the full multi-Regge limit.

Z int
4,...,n−1 that mark the intersections of the twistor lines (Z4, Z5), . . . , (Zn−1, Zn) with the

twistor plane (Z1, Z2, Z3). Each internal tetragon is again stabilized by three conformal

transformations parametrized by Fj = eiφj , Sj = eσj , and Tj = e−τj , where j = 1, . . . , n−5

enumerates the internal tetragons. In momentum-twistor space, these transformations are

again realized by the unique SL(4) matrices M int
j satisfying(

Zj+4, Z2, Z
int
j+3, Z

int
j+4

)
.M int

j =
√
Fj diag

(
1/FjSj , Sj/Fj , Tj , 1/Tj

)
.
(
Zj+4, Z2, Z

int
j+3, Z

int
j+4

)
.

(A.5)

A family of conformally inequivalent null n-gons is now obtained by successively acting with

the stabilizing matrices M int
j , j = n− 5, . . . , 1 on the momentum twistors Zj+5, . . . , Zn, Z1

that parametrize cusps below the j’th internal tetragon.

In section 4, the 2 → (n − 2) multi-Regge limit was defined by εj → 0, with ũj and

(1− uj−2,j+1)2/εj finite, for all j = 4, . . . , n− 2. This is equivalent to

Ui+2,n → 0 , Ui+3,1/Ui+2,n finite , (1− Ui+1,i+4)/Ui+2,n finite . (A.6)

In the above tessellation parameters, this limit is attained by Ti → 0, Si/Ti fixed, for all

i = 1, . . . , n−5. This can be understood in a similar fashion as for the hexagon, see figure 3:

first, letting Tn−5 → 0, Sn−5/Tn−5 fixed, takes xn → xn−1, which means Uj,n−1 → 1 for

j = 2, . . . , n − 4. At the same time, it implies that xn−2,n and xn−1,1 become lightlike,

which means Un−3,n and Un−2,1 go to zero. Subsequently letting Tn−6 → 0, Sn−6/Tn−6

fixed, takes xn−1 → xn−2, which implies Uj,n−2 → 1 for j = 2, . . . , n− 5, and Un−4,n → 0,

Un−3,1 → 0. This sequence continues: taking Ti → 0, Si/Ti fixed, implies xi+5 → xi+4,
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and thus Ui+2,n → 0, Ui+3,1 → 0, and Uj,i+4 → 1 (all at the same rate) for j = 2, . . . , i+ 1.

Taking all Ti → 0 with all Si/Ti fixed completes the full multi-Regge limit. We find the

following astonishingly simple relation between the tessellation parameters Fi, Si/Ti and

the multi-Regge kinematic variables wi, w̄i introduced in section 4:

F 2
i = bi

w̄i+3

wi+3
,

S2
i

T 2
i

=
ci

wi+3 w̄i+3
. (A.7)

Up to O(T 4
i ), the large and small cross ratios expand to

Ui+1,i+4 = 1− (1 + wi+3)(1 + w̄i+3)

wi+3 w̄i+3
ai T

2
i , Ui+2,n =

ai T
2
i

wi+3 w̄i+3
, Ui+3,1 = ai T

2
i , (A.8)

As for the hexagon, the coefficients ai, bi, and ci are numerical constants whose values

depend on the choice of reference n-gon. Experimentally, we find that one can always

construct a reference n-gon such that bi = 1, ci = −1 for all i = 1, . . . , n − 5 in the above

relations.

Explicit construction. The parametrization explained above can be based on arbitrary

reference polygons (for example parametrized by n random momentum twistors). How-

ever, it is computationally very advantageous to start with numerically simple reference

polygons. In the following, we outline how to construct such simple reference polygons.

Explicit parametrizations for up to ten particles can be found in the Mathematica file

mrlparam.m attached to this publication.

Conformally inequivalent null hexagons can be parametrized as follows (cf. figure 2):

Z1 = (1, 0, 4, 1).M1 , Z3 = (1, 0, 1, 1) , Z5 = (0, 1, 0, 0) , Z int
4 = (0, 0, 0, 1) ,

Z2 = (1, 0, 0, 0) , Z4 = (0,−1, 0, 1) , Z6 = (0, 1, 1, 0).M1 , Z int
5 = (0, 0, 1, 0) , (A.9)

where M1 stabilizes the internal tetragon {Z5, Z2, Z
int
4 , Z int

5 },

M1(F, S, T ) =
√
F diag

(
S/F, 1/(FS), 1/T, T

)
. (A.10)

The reference hexagon (the above hexagon for F = S = T = 1) can be obtained from an

arbitrary null hexagon by first picking a conformal frame in which {Z2, Z5, Z
int
4 , Z int

5 } take

the above values, then applying a conformal transformation that preserves the internal

triangle and that takes {Z3, Z4} to the above values, and finally choosing an origin for the

transformation M1 such that {Z6, Z1} take the above values. The 2→ 4 multi-Regge limit

is attained by letting T → 0 with S/T fixed. Setting

F =

√
w̄4√
w4

,
S

T
= − 1√

w4
√
w̄4

, (A.11)

the independent cross ratios up to O(T 4) expand to

U25 = 1− (1 + w4)(1 + w̄4)

w4 w̄4

T 2

4
, U36 =

1

w4 w̄4

T 2

4
, U41 =

T 2

4
, (A.12)

that is, (A.7), (A.8) is satisfied with a1 = 1/4, b1 = 1, c1 = −1.
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A convenient parametrization of the null heptagon can be obtained by extending the

above null hexagon such that the edge x61 of the hexagon becomes the internal null line

from cusp x6 to line x12 of the heptagon. That is, Z1 of the hexagon becomes Z int
6 of

the heptagon. To the configuration (A.9) one only needs to add a new momentum twistor

Z7 that lies on the line (Z6, Z
int
6 ), and a new momentum twistor Z1 that lies in the plane

(Z int
6 , Z2, Z3). This makes three new degrees of freedom, which can be mapped to the

parameters F2, S2, T2 of the new internal tetragon. A useful choice yields

Z1 = (3, 0, 12, 4).M2.M1 , Z5 = (0, 1, 0, 0) , Z int
4 = (0, 0, 0, 1) ,

Z2 = (1, 0, 0, 0) , Z6 = (0, 1, 1, 0).M1 , Z int
5 = (0, 0, 1, 0) ,

Z3 = (1, 0, 1, 1) , Z7 = (−1, 4, 0,−1).M2.M1 , Z int
6 = (1, 0, 4, 1).M1 ,

Z4 = (0,−1, 0, 1) , (A.13)

where M1 is the matrix (A.10), but with arguments F1, S1, T1, and

M2(F2, S2, T2) =
√
F2


S2/F2 0 0 0

0 1/(F2S2) 1/(F2S2)− T2 0

0 0 T2 0

(F2 − S2T2)/(F2T2) 0 4(1− T 2
2 )/T2 1/T2


(A.14)

stabilizes the new internal tetragon formed by {Z6, Z2, Z
int
5 , Z int

6 }
∣∣
M1=id

according to (A.5).

As described above, the 2 → 5 multi-Regge limit of the heptagon is obtained by letting

T1, T2 → 0 with S1/T1, S2/T2 fixed. Identifying

Fi =

√
w̄i+3√
wi+3

,
Si
Ti

= − 1
√
wi+3

√
w̄i+3

, i = 1, 2 (A.15)

yields for the independent cross ratios up to O(T 4
i ):

U25 = 1− (1 + w4)(1 + w̄4)

w4 w̄4

T 2
1

4
, U37 =

1

w4 w̄4

T 2
1

4
, U41 =

T 2
1

4
(A.16)

U36 = 1− (1 + w5)(1 + w̄5)

w5 w̄5

T 2
2

4
, U47 =

1

w5 w̄5

T 2
2

4
, U51 =

T 2
2

4
, (A.17)

that is, (A.7), (A.8) again is satisfied with ai = 1/4, bi = 1, ci = −1.

Iterating this procedure, one can obtain convenient parametrizations of null polygons

with any number of edges. In the Mathematica file mrlparam.m attached to this publica-

tion, we provide explicit parametrizations for which the multi-Regge limit (A.8) is attained

upon the identification (A.7) with ai = 1/4, bi = 1, ci = −1, for up to ten particles.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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