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Abstract: We consider four-dimensional gravity in the presence of a dilatonic scalar

field and an Abelian gauge field. This theory corresponds to the bosonic sector of a

Kaluza-Klein reduction of eleven-dimensional supergravity which induces a specific self-

interacting potential for the scalar field. We compute the conserved charges and carry

out the thermodynamics of an anti-de Sitter (AdS) dyonic black hole solution that was

proposed recently. The charges coming from symmetries of the action are computed using

the Regge-Teitelboim Hamiltonian approach. They correspond to the mass, which acquires

contributions from the scalar field, and the electric charge. We introduce integrability con-

ditions because the scalar field leads to non-integrable terms in the variation of the mass.

These conditions are generically solved by introducing boundary conditions that relate the

leading and subleading terms of the scalar field fall-off. The Hamiltonian Euclidean action,

computed in the grand canonical ensemble, is obtained by demanding the action to have

an extremum. Its value is given by a radial boundary term plus an additional polar angle

boundary term due to the presence of a magnetic monopole. Remarkably, the magnetic

charge can be identified from the variation of the additional polar angle boundary term,

confirming that the first law of black hole thermodynamics is a consequence of having a

well-defined and finite Hamiltonian action principle, even if the charge does not come from

a symmetry of the action. The temperature and electrostatic potential are determined by

demanding regularity of the black hole solution, whereas the value of the magnetic potential

is determined by the variation of the additional polar angle boundary term. Consequently,

the first law of black hole thermodynamics is identically satisfied by construction.
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1 Introduction

It has been recently conjectured that additional terms that are interpreted as scalar charges

for a new class of dyonic black holes introduced in [1, 2], are needed in the first law of

black hole thermodynamics. This black hole is asymptotically AdS, provided the system

is endowed with a self-interacting potential. The theory is described by the action of the

bosonic sector coming from a consistent truncation of a S7 reduction of eleven-dimensional

supergravity [3]. In the thermodynamic analysis of [1], the authors claimed that the first

law is not satisfied unless one adds a term which is interpreted as a scalar charge [1, 2].

However, this argument conflicts with the fact that there is no gauge symmetry related to

the presence of a single scalar field in this Lagrangian, i.e., there is no Noether charge (nor

a topological charge as is the case for the magnetic charge). Moreover, it has been clearly

identified that the scalar field generically contributes to the mass with non-integrable terms.

This has been shown with general asymptotic conditions through Hamiltonian [4–6] and

other methods [7, 8], and even with an explicit black hole example in the presence of

gauge fields in three dimensions [9]. In this context [10] presented a new class of dyonic

AdS black hole solutions of four-dimensional N = 8 SO(8) gauged supergravity where the

AdS4 dyonic dilatonic black hole of [1] is included. It was found, in fact, that the missing

term, supposedly related to a scalar charge, contributes to the variation of the mass. It

was also pointed out in [10] that the non-integrability of this term leads to an ill-defined

mass with independent electric and magnetic charges. However, as it will be shown in this

manuscript, it is possible to impose general integrability conditions. One can impose some

physical condition through suitable boundary conditions, which determines the arbitrary

functions coming from the integrability conditions. One possible condition is to demand

the preservation of the AdS symmetry of the scalar field fall-off [4–6, 11]. Then the scalar

field contribution is cancelled by a term coming from the gravitational contribution to

the mass.
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Another motivation for studying the black hole solution presented in [1] has to do

with the computation of its Gibbs free energy. To do so, one has to have a well-defined

action and also to present other thermodynamic features, e.g. to match all the charges of

the solution with their respective chemical potentials. The Gibbs free energy presented

in [1] fails to do that since it cannot recover the magnetic contribution to the Euclidean

action, not even if one includes the additional scalar charge. The value of the action in [1]

was obtained through the holographic renormalization method described in [12], by adding

counterterms, which only include radial surface terms, to get a finite action principle. As we

will show below, it is necessary to add an additional polar angle boundary term to obtain

the magnetic contribution to the Euclidean action. To prove the latter, we formulate a

well-defined and finite Hamiltonian action principle for the system and we prove that this

additional boundary term comes from a total derivative in the polar angle which appears

due to existence of a magnetic monopole.

The aim of this paper is to compute the conserved charges of the AdS4 dyonic black hole

and to formulate a well-defined and finite Hamiltonian action principle which enables one

to obtain the value of the Hamiltonian Euclidean action. By imposing the grand canonical

ensemble, the Gibbs free energy is chosen as our thermodynamic potential which, unlike

the free energy computed in [1], exhibits all the conserved charges of the solution, i.e., the

mass (with its respective scalar field contribution), the electric charge and the magnetic

charge. The plan of this manuscript is the following, in the section 2 we present the

Lagrangian and the AdS4 dyonic dilatonic black hole solution of [1]. Section 3 focuses

on the Hamiltonian analysis and the corresponding conserved charges. The mass and the

electric charge are computed using the Regge-Teitelboim Hamiltonian approach. There are

two contributions in the variation of the mass, the gravitational part and the scalar field

part (already identified in [10]). Integrability conditions have to be imposed because the

presence of the scalar field leads to a non-integrable term. Suitable boundary conditions

are chosen in order to preserve the AdS symmetry of the scalar field fall-off. This implies a

precise relation among the coefficients of the leading and subleading terms of the scalar field,

as was noted in [6]. In section 4 we perform the thermodynamic analysis of the solution and

introduce the Hamiltonian Euclidean action. For simplicity the calculations are done in a

suitable Euclidean minisuperspace. To obtain the Gibbs free energy we compute the value

of the Euclidean Hamiltonian action endowed with a suitable radial boundary term and an

additional polar angle boundary term. These terms have to be added in order to have a

well-defined and finite Hamiltonian action principle. It is possible to identify the variation

of the Hamiltonian conserved charges of the system from the variation of the boundary term

at infinity, which are the mass and the electric charge. On the other hand, the variation

of the magnetic charge comes from the additional polar boundary term. This boundary

term has to be considered due to the presence of a magnetic monopole. The chemical

potentials associated to the Noether charges are the Lagrange multipliers of the system at

infinity. Unlike the magnetic potential, they are obtained through regularity conditions at

the horizon. Remarkably, the magnetic potential is already determined by the variation of

the boundary term, together with the magnetic charge. It is worth noting that the first

law of black hole thermodynamics is satisfied independently of the integrability conditions

– 2 –



J
H
E
P
0
5
(
2
0
1
6
)
0
0
1

on the mass, since the relation only involves the variation of the conserved charges. Once

the Gibbs free energy is obtained the value of the mass, the electric charge, the magnetic

charge and the entropy are verified using the known thermodynamic relations. Finally,

section 5 is devoted to some concluding remarks.

2 AdS4 dyonic black hole solution

We consider four-dimensional gravity with negative cosmological constant in the presence

of an Abelian gauge field and a dilatonic scalar field with a self-interacting potential. The

action reads

I[gµν , Aµ, φ] =

ˆ
d4x
√
−g
(
R

2κ
− 1

2
gµν∂µφ∂νφ−

1

4
e−
√

3φFµνFµν − V (φ)

)
. (2.1)

Hereafter the gravitational constant is chosen as κ = 1/2.1 The self-interacting potential

of the scalar field is given by

V (φ) = −6g2 cosh

(
φ√
3

)
, (2.2)

where the coupling constant g determines the AdS radius as `2 = g−2. The theory given

by (2.1) corresponds to the bosonic sector of two possible dimensional reductions, which

depend on the coupling constant g in the following way. In the case of vanishing g the action

is obtained after a S1 reduction of five-dimensional pure gravity. On the other hand, if

g 6= 0 the action can be obtained after a S7 reduction of eleven-dimensional supergravity [3].

The gravitational field equations for the action (2.1) are

Gµν = T φµν + TAµν , (2.3)

where the contributions to the energy-momentum tensor of the dilatonic scalar field and

the gauge field are given by

T φµν =
1

2
∂µφ∂νφ−

1

4
gµν∂

λφ∂λφ+
1

2
gµνV (φ), (2.4)

TAµν =
1

2
e−
√

3φ

(
F λ
µ Fνλ −

1

4
gµνF

λρFλρ

)
, (2.5)

respectively. The equation for the scalar field is

�φ+

√
3

4
e−
√

3φFµνFµν −
dV

dφ
= 0, (2.6)

and the equation for the gauge field reads

∇µ
(
e−
√

3φFµν
)

= 0. (2.7)

1The vacuum permeability constant located in front of the Maxwell-like action in (2.1) turns out to be

normalized to one after the dimensional reduction.
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This system admits an AdS dyonic black hole which is static and spherically symmet-

ric [1]. The line element of this configuration can be written as

ds2 = − (H1H2)−1/2 fdt2 +
dr2

(H1H2)−1/2 f
+ (H1H2)1/2 r2

(
dθ2 + sin2 (θ) dϕ2

)
, (2.8)

where the functions H1, H2 and f are given by

f (r) = f0 (r) + g2r2H1 (r)H2 (r) , f0 (r) = 1− 2µ

r
, (2.9)

H1 (r) = γ−1
1

(
1− 2β1f0 (r) + β1β2f0 (r)2

)
, H2 (r) = γ−1

2

(
1− 2β2f0 (r) + β1β2f0 (r)2

)
,

(2.10)

with γ1 = 1− 2β1 + β1β2, and γ2 = 1− 2β2 + β1β2. The dilatonic scalar field is given by

φ (r) =

√
3

2
log

(
H2 (r)

H1 (r)

)
, (2.11)

whereas the one-form gauge field has the following form

A = At(r)dt+Aϕ(θ)dϕ. (2.12)

The time component of (2.12) is

At (r) =

√
2 (1−H1 (r)− β1 (f0 −H1 (r)))√

β1γ2H1 (r)
, (2.13)

while the definition of the angular component of the gauge potential depends on the hemi-

sphere, in order to avoid the Dirac string [13]. Hence,

Aϕ (θ) =

p(1 + cos (θ)) , 0 ≤ θ < π
2 − δ,

p (−1 + cos (θ)) , π
2 + δ < θ ≤ π,

(2.14)

where p = 2
√

2µγ−1
2

√
β2γ1 and δ → 0 (Wu-Yang monopole [14, 15]). In this solution the

coordinate ranges are 0 < r < ∞, −∞ < t < ∞, 0 ≤ θ < π and 0 ≤ ϕ < 2π. All the

integration constants (µ, β1, β2 , γ1, γ2) are restricted to be positive.

In the case of β1 = β2, the dilatonic scalar field is decoupled and the solution turns

out to be an AdS dyonic Reissner-Nordström black hole where the electric and magnetic

charges have the same value. If β1 = 0 the solution is purely magnetic and in the case of

β2 = 0 the configuration becomes purely electric. If µ = 0 the solution turns out to be

AdS spacetime.

3 Hamiltonian generator and surface integrals

The Hamiltonian generator for the Lagrangian (2.1) reads

H
[
ξ, ξA

]
=

ˆ
d3x

(
ξ⊥H⊥ + ξiHi − ξAG

)
+Q

[
ξ, ξA

]
, (3.1)

– 4 –



J
H
E
P
0
5
(
2
0
1
6
)
0
0
1

where the boundary term Q
[
ξ, ξA

]
, which corresponds to the conserved charges in the

Regge-Teitelboim approach, ensures that the Hamiltonian generator has well-defined func-

tional derivatives [16]. The bulk term appearing in (3.1) is a linear combination of the

constraints H⊥, Hi and G, where the first two are the energy and momentum densities

and the last one corresponds to the Gauss constraint associated to the Abelian gauge field.

The asymptotic surface deformations of the spacetime are given by the vector ξ =
(
ξ⊥, ξi

)
and ξA is the gauge parameter of the Abelian symmetry. The constraints are explicitly

given by

H⊥ =
1
√
γ

(
πijπij −

1

2

(
πii
)2)−√γR

+
π2
φ

2
√
γ

+
√
γ

(
1

2
∂iφ∂iφ+ V (φ)

)
+ e
√

3φ π
iπi

2
√
γ

+
1

4

√
γe−

√
3φF ijFij , (3.2)

Hi = 2∇jπji + πφ∂iφ+ πjFij , (3.3)

G = ∂iπ
i. (3.4)

The dynamical variables of the system are the spatial components of the fields {γij , Ai, φ},
where γij is the spatial metric of the ADM decomposition. Here R stands for the scalar

curvature of the three-dimensional spatial metric γij and the self-interacting potential of

the scalar field V (φ) is defined in eq. (2.2). The momentum conjugated to the three-

dimensional metric γij is

πij = −√γ
(
Kij − γijK

)
, (3.5)

where the extrinsic curvature is given by

Kij =
1

2N⊥
(∇iNj +∇jNi − γ̇ij) . (3.6)

The momentum for the dilatonic field φ reads

πφ =

√
γ

N⊥

(
φ̇−N i∂iφ

)
, (3.7)

and for the gauge field Ai,

πi = −
√
γe−

√
3φ

N⊥

(
−γijF0j +N jγikFjk

)
. (3.8)

The variation of the surface term gets different contributions according to the field

content of the theory, such that

δQ
[
ξ, ξA

]
= δQG

[
ξ, ξA

]
+ δQφ

[
ξ, ξA

]
+ δQA

[
ξ, ξA

]
, (3.9)
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where δQ was obtained after demanding that δH = 0 on the constraint surface. The

explicit expressions for the surface integrals are given by

δQG =

ˆ
dSlG

ijkl
(
ξ⊥∇kδγij − ∂kξ⊥δγij

)
+

ˆ
dSl

[
2ξkδπ

kl +
(

2ξkπjl − ξlπkj
)
δγjk

]
,

(3.10)

δQφ = −
ˆ
dSi

(
ξ⊥
√
γ∂iφδφ+ ξiπφδφ

)
, (3.11)

δQA = −
ˆ
dSi

[
ξ⊥
√
γe−

√
3φF ijδAj +

(
ξiπj − πjξi

)
δAj − ξAδπi

]
, (3.12)

with

Gijkl =
1

2

√
γ
(
γikγjl + γilγjk − 2γijγkl

)
. (3.13)

Note that δQ in (3.9) stands for the surface term after taking the functional derivatives

with respect to the canonical variables in the phase space of the Hamiltonian generator H.

This surface term determines the conserved charges in the Regge-Teitelboim approach [16].

A priori, for a generic configuration δQ is a non-integrable quantity and one must then

also provide the asymptotic behaviour of the fields representing the space of solutions at

infinity. In some cases the latter is not enough for integrating δQ and some additional

integrability conditions must be imposed on the phase space (for all practical purposes,

on the integration constants of the solution). Indeed, this is the case for the mass of the

AdS4 dyonic black hole analyzed in this manuscript. This will be shown in detail in the

next subsection.

3.1 Conserved charges of the AdS4 dyonic black hole

In order to obtain the above surface integrals let us consider a static and spherically sym-

metric minisuperspace in which the AdS4 dyonic black hole (2.8) is included. For simplicity

we perform the following change of variable in the radial coordinate

ρ2 =
√
H1 (r)H2 (r)r2. (3.14)

The line element then reads

ds2 = −N⊥ (ρ)2 dt2 +
dρ2

F (ρ)
+ ρ2

(
dθ2 + sin2 (θ) dϕ2

)
. (3.15)

The gauge field ansatz is given by

A = At (ρ) dt+Aϕ (θ) dϕ, (3.16)

and the scalar field also depends on the radial coordinate φ = φ(ρ). Taking this into con-

sideration the only nonvanishing momentum in the minisuperspace is the radial component

of the electromagnetic one, where πρ = pρ (ρ, θ). Therefore, the value of the Hamiltonian

charges, computed on the sphere S2 of infinite radius, is given by

δQ =

[
− ξt

(
8πρN⊥δF√

F
+ 4π

√
FN⊥ρ2∂ρφδφ

+π

[(ˆ
N⊥e−

√
3φ

√
Fρ2

dρ

)
csc(θ)δAϕ∂θAϕ

]θ=π
θ=0

)
+ 2πξA

ˆ π

0
δpρdθ

]
ρ→∞

. (3.17)

– 6 –
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Here, we have applied the definition of the deformation vectors ξ⊥ and ξi in terms of the

Killing vectors ξt and ξ̄i, which read

ξ⊥ = N⊥ξt, (3.18)

ξi = ξ̄i +N iξt. (3.19)

In order to compute and perform a proper analysis of the charges, we must give suitable

asymptotic conditions that determine the behavior of the fields at infinity. These conditions

are specified up to the orders that contribute to the charges, such that

F (ρ) = g2ρ2 + 1 + F0 +
F1

ρ
+O

(
1

ρ2

)
, (3.20)

N⊥ (ρ) = gρ+O
(

1

ρ

)
, (3.21)

φ (ρ) =
φ1

ρ
+
φ2

ρ2
+O

(
1

ρ3

)
, (3.22)

pρ (ρ, θ) = p0 sin (θ) +O
(

1

ρ1

)
, (3.23)

ξA = ξA0 +O
(

1

ρ

)
. (3.24)

The coefficients in the expansions given above are parameters that depend on the integra-

tion constants of the corresponding solution. The variation of the charge obtained after

inserting the proposed asymptotic behavior in (3.17) is given by2

δQ = ξt
[
−8πδF1 + 4πg2 (2φ2δφ1 + φ1δφ2)

]
+ 4πξA0 δp0. (3.25)

The mass is the conserved charge associated to time translations, which in this approach

is obtained from δM = δQ
[
ξt
]
, while the electric charge is the charge associated to the

Abelian gauge transformations, where δQe = δQ
[
ξA
]
. Then, the variations of the mass

and the electric charge read

δM = −8πδF1 + 4πg2 (2φ2δφ1 + φ1δφ2) , (3.26)

δQe = 4πδp0. (3.27)

The electric charge can be directly integrated for the AdS4 dyonic black hole, which in

terms of the integration constants of the solution is written as

Qe =
16π
√

2µ
√
β1γ2

γ1
. (3.28)

In contrast, the mass is generically non-integrable and its variation is explicitly given by

δM = δ

(
16π (1 + β1) (1− β2) (1− β1β2)µ

γ1γ2
+

64πg2µ3 (1− β1β2) (β1 − β2)2 γ

γ3
1γ

3
2

)
+ Φ,

(3.29)

2It has to be noted that a divergent term appears in the variation of the charge but it vanishes once it is

evaluated on the solution. This is because the divergent part of the gravitational contribution is cancelled

by the divergent part of the scalar field contribution by virtue of the relation δF0 = g2

2
φ1δφ1.
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with

γ = β1 + β2 − 8β1β2 + 6β2
1β2 + 6β1β

2
2 − 8β2

1β
2
2 + β3

1β
2
2 + β2

1β
2
2 . (3.30)

Note that the variation of the mass coincides with the one computed in [10], which has the

non-integrable term Φ that comes from the scalar field part of the energy density. This

term is given by

Φ = 4πg2 (2φ2δφ1 + φ1δφ2) , (3.31)

where the leading and subleading terms of the scalar field fall-off are respectively

φ1 =
2
√

3
(
β2

(
1 + β1

2
)
− β1

(
1 + β2

2
))
µ

γ1γ2
, (3.32)

φ2 =
2
√

3
(
−β2

2

(
1− β4

1

)
− 2β1β

2
2(−4 + 3β2)− 2β3

1β2(−3 + 4β2)− β1
2
(
−1 + 8β2 − 8β3

2 + β4
2

))
µ2

γ2
1γ

2
2

. (3.33)

The presence of a non-integrable term Φ in the variation of the mass (3.26) forces us

to impose relations among the fall-off coefficients of the scalar field. If the variations are

treated as exterior derivatives, the condition δ2M = 0 is a sufficient condition to ensure the

existence of M . Indeed, this condition is equivalent to requiring that the second derivatives

of the functional M with respect to the integration constants commute. Then,

δ2M = δΦ (3.34)

= 4πg2 (2δφ2 ∧ δφ1 + δφ1 ∧ δφ2) (3.35)

= 4πg2δφ2 ∧ δφ1 ≡ 0 . (3.36)

This implies the functional relation φ2 = φ2 (φ1). Hence, the mass generically takes

the form

M = −8πF1 + 4πg2

ˆ (
2φ2 + φ1

dφ2

dφ1

)
dφ1. (3.37)

At this point it is necessary to impose a boundary condition that fixes a precise relation be-

tween the leading and subleading terms of the scalar field behavior at infinity. One possible

condition is to demand preservation of the AdS symmetry of the scalar field’s asymptotic

fall-off, which can be done since the AdS4 dyonic dilatonic black hole of [1] is within the

asymptotic conditions for AdS spacetimes analyzed in [5, 6, 11]. These references construct

a set of boundary conditions for having well-defined and finite Hamiltonian generators for

all the elements of the AdS algebra in the case of gravity minimally coupled to scalar fields.

We are allowed to impose certain relations on the leading and subleading terms of the scalar

field fall-off provided the scalar field does not break the AdS symmetry at infinity. These

boundary conditions are (φ1 = 0, φ2 6= 0), (φ1 6= 0, φ2 = 0) and φ2 = cφ2
1, where c is

not allowed to vary. In terms of the integration constants the relation φ2 = cφ2
1 becomes

− 2(β1 − β2)µ2
[
−
(√

3 + 6c
)
β2 −

(√
3− 6c

)
β1

3β2
2

− β1

(√
3− 6c− 8

√
3β2 + 6

(√
3− 2c

)
β2

2
)

−β1
2β2

(
6
(√

3 + 2c
)
− 8
√

3β2 +
(√

3 + 6c
)
β2

2
)]

= 0. (3.38)
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From eq. (3.38) we observe three cases, two of them being nontrivial. When µ = 0 the

mass, the electric charge and the magnetic charge vanish giving rise to the vacuum solution

which turns out to be AdS4 spacetime. The other two cases imply that β1 = β1 (β2) in such

a way, that they force the terms in (3.29) that are proportional to g2 to vanish. Hence, the

mass becomes the AMD mass [17, 18] obtained in [1],

M =
16π (1− β1) (1− β2) (1− β1β2)µ

γ1γ2
. (3.39)

This fact is in agreement with [19], where it was pointed out that some holographic pre-

scriptions are suitable for computing the mass for hairy spacetimes when the scalar field

respects the AdS invariance at infinity. In this context, different kinds of boundary condi-

tions were considered in [20–22].

4 Thermodynamics of the AdS4 dyonic black hole

The thermodynamic analysis of the AdS4 dyonic dilatonic black hole is performed in this

section. We define the Euclidean Hamiltonian action of the theory including a surface term

and an additional polar boundary term to have a finite action principle. The presence of

the latter is due to the existence of a magnetic monopole in the solution. For simplicity, we

take a minisuperspace in which the AdS4 dyonic black hole is included. The variation of

the Euclidean Hamiltonian action is computed in the grand canonical ensemble, where the

chemical potentials are fixed. Remarkably, the magnetic charge emerges from the additional

polar boundary term accompanied by its respective chemical potential. The value of the

temperature and the electric potential, on the other hand, are fixed by imposing regularity

conditions. When the variations of the additional surface and polar boundary terms are

determined, as was mentioned above, integrability conditions are needed to be imposed to

determine the value of the Euclidean Hamiltonian action leading to the Gibbs free energy.

4.1 Hamiltonian action and Euclidean minisuperspace

Let us consider spacetimes with a manifold of topology R2 × S2. The plane R2 is centered

at the event horizon r+ and is parametrized by the periodic Euclidean time τ and the

radial coordinate r. These plane coordinates range as

0 ≤ τ < β, (4.1)

r+ ≤ r <∞, (4.2)

with β the inverse of the Hawking temperature and the 2-sphere S2 stands for the topology

of the base manifold. The Hamiltonian Euclidean action for the system is given by

IE =

ˆ β

0
dτ

ˆ
Σ
d3x

[
γ̇ijπ

ij + Ȧiπ
i + φ̇πφ −

(
N⊥H⊥ +N iHi −AτG

)]
+B, (4.3)

where Σ = R× S2 is the spatial section of the manifold. Note that the additional term B

in (4.3) needs to be added to the action in order to have a well-defined variational principle,

and it is crucial for determining the value of the action for stationary configurations.
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The Euclidean continuation of the AdS4 dyonic black hole (2.8) is considered. The line

element reads

ds2 = N⊥ (r)2 dτ2 +
dr2

F (r)
+H(r)

(
dθ2 + sin2 (θ) dϕ2

)
, (4.4)

where the gauge field ansatz and the scalar field are given by

A = Aτ (r) dτ +Aϕ (θ) dϕ, (4.5)

φ = φ(r). (4.6)

The radial component of the electromagnetic field momentum is πr = pr (r, θ) (all the other

momenta of the fields vanish). Hence, it is possible to obtain the following reduced action

IE = −2πβ

ˆ ∞
r+

dr

ˆ π

0
dθ
(
N⊥ (r)H⊥ −Aτ (r)G

)
+B, (4.7)

from (4.3), where the reduced constraints take the form

H⊥ = −e
−
√

3φ sin(θ)

2
√
FH

[
− csc2(θ) (∂θAϕ)2 − 2e

√
3φH

(
∂rF∂rH + 2F∂2

rH − 2
)

(4.8)

+e
√

3φH2

(
12g2 cosh

(
φ√
3

)
− F (∂rφ)2

)
+ e
√

3φF (∂rH)2 + csc2(θ)e2
√

3φ (pr)2

]
,

G = ∂rp
r. (4.9)

The variation of the reduced action (4.7) with respect to the Lagrange multipliers N⊥ and

Aτ indicates that the constraints have to vanish

H⊥ = 0, G = 0. (4.10)

These equations define the constraint surface. On the other hand, the variation of (4.7)

with respect to the independent functions of the dynamical fields in the minisuperspace

leads to the field equations. The field equations related to F (r) and H (r) are given by

e−
√

3φ sin(θ)

4F 3/2H

(
N⊥

(
− csc2(θ) (∂θAϕ)2 − F (∂rH)2 e

√
3φ + csc2(θ)e2

√
3φ (pr)2

)
+H2N⊥e

√
3φ

(
F (∂rφ)2 + 12g2 cosh

(
φ√
3

))
+ 4He

√
3φ
(
N⊥ − F∂rH∂rN⊥

))
= 0,

(4.11)

e−
√

3φ sin(θ)

2
√
FH2

(
N⊥

(
− csc2(θ) (∂θAϕ)2 − F (∂rH)2 e

√
3φ + csc2(θ)e2

√
3φ (pr)2

)
−H2e

√
3φ

(
N⊥

(
12g2 cosh

(
φ√
3

)
− F (∂rφ)2

)
− 2

(
∂rF∂rN

⊥ + 2F∂2
rN
⊥
))

+He
√

3φ
(
N⊥

(
∂rF∂rH + 2F∂2

rH
)

+ 2F∂rH∂rN
⊥
))

= 0, (4.12)

respectively. The field equations associated to Aϕ (r, θ) and pr (r, θ) are

N⊥e−
√

3φ csc(θ)√
F (r, s)H(r, s)

(
∂θAϕ cot(θ)− ∂2

θAϕ
)

= 0, ∂rAτ +
csc(θ)N⊥e

√
3φpr√

FH
= 0, (4.13)
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and finally the scalar field equation reads

− e−
√

3φ sin(θ)

2
√
FH

(
N⊥
(√

3 csc2(θ) (∂θAϕ)2 + 2FHe
√

3φ∂rH∂rφ

+H2e
√

3φ

(
∂rF∂rφ+ 2F∂2

rφ+ 4
√

3g2 sinh

(
φ√
3

))
(4.14)

+
√

3 csc2(θ)e2
√

3φ (pr)2

)
+ 2FH2e

√
3φ∂rφ∂rN

⊥
)

= 0.

Then, the variation of the reduced action (4.7) on the constraint surface, evaluated on-shell

(i.e. eqs. (4.11) to (4.14) have to be satisfied), becomes

δIE
∣∣∣
on−shell

= −2πβ

ˆ π

0
dθ

[
N⊥ sin (θ)

(
∂rHδF + ∂rFδH√

F
−
√
F∂rHδH

H

+

√
FH∂rφδφ

2
+2
√
F∂rδH

)
−∂r

(
2N⊥ sin (θ)

√
F
)
δH −Aτδpr

]∞
r+

−2πβ

ˆ ∞
r+

dr

[
N⊥e−

√
3φ

H
√
F sin θ

∂θAϕδAϕ

]π
0

+ δB. (4.15)

If we demand that the action has an extremum, i.e., δIE
∣∣∣
on−shell

= 0, the variation of the

additional term δB must necessarily be given by

δB = 2πβ

ˆ π

0
dθ

[
N⊥ sin (θ)

(
∂rHδF + ∂rFδH√

F
−
√
F∂rHδH

H

+

√
FH∂rφδφ

2
+ 2
√
F∂rδH

)
− ∂r

(
2N⊥ sin (θ)

√
F
)
δH −Aτδpr

]∞
r+

+2πβ

ˆ ∞
r+

dr

[
N⊥e−

√
3φ

H
√
F sin (θ)

∂θAϕδAϕ

]π
0

. (4.16)

It is possible to recognize two kinds of terms in this expression. The surface term comes

from a total derivative in the radial coordinate and a boundary term that comes from a total

derivative in the polar angle. The latter is clearly not vanishing because of the presence

of an angular component depending on the polar angle in the gauge field. The analysis of

the variation of the term B and the evaluation on the AdS4 dyonic black hole (4.16) will

be performed in the following subsection.

4.2 Gibbs free energy and first law

From (4.16) we can identify different contributions, depending on whether the term comes

from a total derivative in the radial coordinate, or whether the term comes from a total

derivative in the polar angle, which will be identified as a polar boundary term. The

surface term evaluated at infinity will be denoted by δB (∞) while δB(r+) will stand for
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the surface term at the horizon. The polar boundary term will be denoted by δBθ. Hence,

the variation of B, see (4.16), can be written as

δB = δB(∞) + δB(r+) + δBθ, (4.17)

where the surface term at infinity is given by

δB(∞) = 2πβ

ˆ π

0
dθ

[
N⊥ sin (θ)

(
∂rHδF + ∂rFδH√

F
−
√
F∂rHδH

H

+

√
FH∂rφδφ

2
+ 2
√
F∂rδH

)
− ∂r

(
2N⊥ sin (θ)

√
F
)
δH −Aτδpr

]
∞

,

(4.18)

the surface term at the horizon is

δB(r+) = −2πβ

ˆ π

0
dθ

[
N⊥ sin (θ)

(
∂rHδF + ∂rFδH√

F
−
√
F∂rHδH

H

+

√
FH∂rφδφ

2
+ 2
√
F∂rδH

)
− ∂r

(
2N⊥ sin (θ)

√
F
)
δH −Aτδpr

]
r+

,

(4.19)

and the polar boundary term reads

δBθ = 2πβ

ˆ ∞
r+

dr

[
N⊥e−

√
3φ

H
√
F sin (θ)

∂θAϕδAϕ

]π
0

. (4.20)

Once the different contributions to the variation of B are identified one can analyze

their physical content. It is possible to find the variation of the charges coming from

symmetries of the action together with their respective chemical potentials from the surface

term at infinity δB (∞). The chemical potentials correspond to the Lagrange multipliers

of the respective symmetry at infinity (as was shown in section 3). This is because at the

end of the day the term (4.18) is obtained from the boundary term of the Hamiltonian,

which ensures that the canonical generators have well-defined functional derivatives [16].

The variations of the mass and the electric charge of the AdS4 dyonic dilatonic black hole

will be identified from δB (∞). The entropy of the black hole, which corresponds to the

Bekenstein-Hawking entropy, will be obtained from the surface term at the horizon δB (r+).

Finally, the contribution of the topological charge of the system, leading to the variation of

the magnetic charge multiplied by the magnetic potential, can be identified from the polar

boundary term δBθ .

Let us introduce the Euclidean continuation of the AdS4 dyonic dilatonic black hole

that satisfies the field equations (4.11)–(4.14) and the constraints (4.10). This is obtained

after performing the identifications t → −iτ and β1 → −β1 in the Lorentzian solution.

Then the black hole functions take the form

H1 (r) = γ−1
1

(
1+2β1f0 (r)−β1β2f0 (r)2

)
, H2 (r) = γ−1

2

(
1−2β2f0 (r)−β1β2f0 (r)2

)
,

(4.21)
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where γ1 = 1 + 2β1 − β1β2 and γ2 = 1− 2β2 − β1β2. The functions F (r) and H (r) in the

line element (4.4) are

F (r) =
f (r)√

H1 (r)H2 (r)
, H (r) =

√
H1 (r)H2 (r)r2, (4.22)

where the function f (r) is the same as the one given in (2.9). The lapse function is

N⊥ (r) =
√
F (r). The scalar field is defined in (2.11) and the temporal component of the

gauge field is given by

Aτ (r) = −
√

2 (1−H1 (r) + β1 (f0 (r)−H1 (r)))√
β1γ2H1 (r)

+ Φe. (4.23)

Note that the possibility of adding a constant Φe allows one to have a regular gauge field at

the horizon. This constant is related to the electrostatic potential of the solution when the

regularity conditions on the black hole horizon are established. The angular component of

the gauge field takes the same definition as given in (2.14).

Inserting the Euclidean continuation of the AdS4 dyonic dilatonic black hole in the

surface term at infinity δB (∞), given in eq. (4.18), we get

δB (∞) = −βδM − βΦeδQe, (4.24)

where the variations of the mass and the electric charge are given by

δM = δ

(
16π (1 + β1) (1− β2) (1 + β1β2)µ

γ1γ2

)
+ Θ, (4.25)

δQe = 4πδ

(
2
√

2µ
√
β1γ2

γ1

)
. (4.26)

The above variations coincide with the values computed in (3.29) and (3.28). In the

variation of the mass we clearly obtain a contribution

Θ =
64πg2µ3 (1 + β1β2) (β1 + β2)2 γ

γ3
1γ

3
2

+ ΦE

= −32πg2µ3 (β1 + β2)

γ2
1γ

2
2

(β2 (1−2β1−2β2+β1β2) δβ1 − β1 (1+2β1+2β2+β1β2) δβ2) ,

(4.27)

where ΦE is the Euclidean continuation of Φ. Here Θ corresponds to the new scalar charge

term in the context of [1].

The inverse of the temperature β and the electrostatic potential Φe are determined

through the regularity conditions at the horizon. Indeed, we find

β =
4π
√
H1 (r+)H2 (r+)

f ′ (r+)
, Φe = −

√
2

β1γ2

(
1 + β1 −

1 + β1f0 (r+)

H1 (r+)

)
. (4.28)

The value of the temperature is obtained by demanding absence of conical singularities

around the event horizon, while the electrostatic potential comes from the trivial holonomy
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condition of the gauge field around a temporal cycle on the plane r−τ at the event horizon.

Inserting the values of the chemical potentials (4.28) into the surface term at the horizon

δB (r+), we get that this term exactly coincides with the Bekenstein-Hawking entropy

δB (r+) = δ
(

16π2
√
H1 (r+)H2 (r+)r2

+

)
= δS. (4.29)

The polar boundary term δBθ has to be carefully computed using the definition of the

angular component of the gauge field given in (2.14). Then,

δBθ = 2πβ

(ˆ ∞
r+

dr
e−
√

3φ

H

)([
∂θAϕδAϕ

sin (θ)

]π/2−δ
0

+

[
∂θAϕδAϕ

sin (θ)

]π
π/2+δ

)
δ→0

= −2πβ

(ˆ ∞
r+

dr
e−
√

3φ

H

)(
[pδp (1 + cos (θ))]

π/2−δ
0 + [pδp (−1 + cos (θ))]ππ/2+δ

)
δ→0

= 4πβ

(ˆ ∞
r+

dr
e−
√

3φ

H

)
pδp. (4.30)

This term can be conveniently written as

δBθ = −βΦmδQm, (4.31)

where we can identify the magnetic potential

Φm = −
√

2

β2γ1

(
1− β2 −

1− β2f0 (r+)

H2 (r+)

)
, (4.32)

and also the value of variation of the magnetic charge

δQm = 4πδ

(
2
√

2µ
√
β2γ1

γ2

)
. (4.33)

As a consequence, the variation of the boundary term B is given by

δB = δS − βδM − βΦeδQe − βΦmδQm. (4.34)

Note that once this term is integrated, the value of B corresponds to the Euclidean Hamil-

tonian action IE evaluated on stationary configurations and on the constraint surface. In

the grand canonical ensemble IE is related to the Gibbs free energy by IE = −βG. It is

also worth to point out that since the first law of black hole thermodynamics,

δM = TδS − ΦeδQe − ΦmδQm, (4.35)

is a consequence of the Euclidean action having an extremum, (4.35) is identically satisfied

independently of the boundary conditions on the mass. This is because (4.35) is a relation

that only involves the variation of the conserved charges. This can be shown explicitly

by introducing the value for the charge variations (4.25), (4.26), (4.33) and the chemical

potentials obtained by using the regularity conditions (4.28) into (4.35).
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Once the mass is integrated using arbitrary boundary conditions (see section 3), it is

possible to find the value of the Gibbs free energy which is equivalent to the Euclidean

Hamiltonian action evaluated on-shell,

IE = S − βM − βΦeQe − βΦmQm. (4.36)

Recalling that we have chosen the grand canonical ensemble and taking the Euclidean

action as our thermodynamic potential, the values of the extensive quantities, the mass,

the electric charge, the magnetic charge and the entropy are obtained through the following

thermodynamic relations

M = −
(
∂IE

∂β

)
Φe,Φm

+
Φe

β

(
∂IE

∂Φe

)
β,Φm

+
Φm

β

(
∂IE

∂Φm

)
β,Φe

, (4.37)

Qe = − 1

β

(
∂IE

∂Φe

)
β,Φm

, (4.38)

Qm = − 1

β

(
∂IE

∂Φm

)
β,Φe

, (4.39)

S = IE − β
(
∂IE

∂β

)
Φe,Φm

. (4.40)

The values of the charges and the entropy computed above coincide

with (3.37), (3.28), (4.33) and (4.29), respectively.

5 Concluding remarks

We have carried out the thermodynamic analysis of a new class of AdS4 dyonic dilatonic

black holes recently proposed in [1], which are solutions of the bosonic sector of a Kaluza-

Klein reduction of eleven-dimensional supergravity. The conserved Noether charges were

computed using the Regge-Teitelboim Hamiltonian approach. These correspond to the

mass, which acquires contributions from the scalar field and the electric charge. It was

also shown that the mass acquires non-integrable contributions from the scalar field, in

which case it was necessary to impose integrability conditions to have a definite mass.

These conditions are generically solved by imposing boundary conditions that relate the

leading and subleading terms of the scalar field fall-off. A possible physical condition to

establish the arbitrary functions coming from the integrability condition is to preserve

the AdS symmetry of the scalar field behavior at infinity as was established in [4–6, 11].

The Hamiltonian Euclidean action was computed by demanding that the action has an

extremum, where its value was given by the corresponding radial boundary term plus an

additional polar angle boundary term, because of the presence of a magnetic monopole.

The computation was performed in the grand canonical ensemble. The conserved charges

were identified from the thermodynamic analysis. The Noether charges, the mass and the

electric charge, were obtained from the radial boundary term at infinity, unlike the magnetic

charge. The latter one comes from the additional polar angle boundary term. Remarkably,

the magnetic potential appeared already in the variation of the boundary term, unlike the

– 15 –



J
H
E
P
0
5
(
2
0
1
6
)
0
0
1

chemical potentials associated to the Noether charges which are the Lagrange multipliers

of the system at infinity. They are obtained by imposing regularity conditions at the

horizon. Considering the above, it is possible to verify that the first law of black hole

thermodynamics is identically satisfied. This is a consequence of having a well-defined and

finite Hamiltonian action principle.

A different way to deal with the thermodynamics of dyonic black holes is to consider

a manifestly duality invariant action that involves two U(1) symmetries, producing the

appearance of electric and magnetic Gauss constraints [23]. The dyonic Reissner-Nordström

black hole is a solution of the system proposed in [23], however in that case the magnetic

and the electric fields appear as Coulomb potentials, hence the solution is devoid of stringy

singularities. In this case, all the conserved charges that appear in the first law come from

symmetries of the action.

It would be interesting to analyze the existence of phase transitions between the dyonic

dilatonic black hole solution and the dyonic Reissner-Nordström black hole, i.e. studying

the probability that below a critical temperature the dyonic Reissner-Nordström black hole

spontaneously changes to a state that is dressed with a dilaton scalar field. This kind of

results have been reproduced, for instance, in the case of four-dimensional topological black

holes dressed with a scalar field in [24].
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