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1 Introduction

There are three types of unified groups (simple groups containing the Standard Model gauge

group) that admit chiral representations for fermions: SU(N) for N ≥ 3 [1], SO(4N+2) for

N ≥ 2 and E6 [2]. The first two have been thoroughly studied in many versions, renormal-

izable as well as non-renormalizable, with and without supersymmetry. Strange enough,

E6, the only exceptional group which contains chiral representations, has been mainly ig-

nored over the last forty years. Apart from a few exceptions where symmetry breaking

was analyzed (via renormalizable potential with 78 and two 27s in ref. [3] and via renor-

malizable superpotential with 78, 27 and 27 in ref. [4]), only the Yukawa sectors have been

touched upon without using explicit constraints arising from symmetry breaking [5–10].

Recently, two of us have tried to fill this gap by suggesting a possible minimal renor-

malizable supersymmetric E6 model [11]. The Higgs sector is composed of pairs of fun-

damental 27 + 27 and the two-index symmetric 351′ + 351′ representations. Much to our
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surprise we found that, although successful in the symmetry breaking pattern to the Stan-

dard Model (SM) gauge group, this sector is unable to provide two light Higgs doublets of

the minimal supersymmetric Standard Model (MSSM), or technically said, to perform the

doublet-triplet (DT) splitting. The impossibility of DT splitting was due to the identical

nature of the expressions for a massless doublet and for a massless triplet; this result was

obtained by an explicit computation, and we are not aware of a shortcut explanation of this

unusual feature.1 To put this result in perspective, consider the minimal renormalizable

supersymmetric breaking sectors (able to break to the SM group) for other groups. In the

minimal renormalizable SU(5) superpotential (consisting of the adjoint 24), there are no

SM doublets. In the corresponding minimal SO(10) case (made out of 210, 126 and 126)

one has in principle enough doublets, but only one (in 126) is coupled to fermions. In a

minimal E6 case with 27+ 27+ 351′ +351′, there are many more doublets which couple to

fermions, yet the naive DT splitting fails (a completely different approach to DT splitting

in E6 can be found in [12]). We thus proposed in [11] to add another 27 + 27 pair. In this

way, the Yukawa sector consisted of three Yukawa matrices: the matter fields (3 copies

of 27F ) have one coupling to the 351′ and a coupling to each of the two Higgs-like 27s.

Though we did not perform it explicitly, we strongly believe that in this model a realistic

fit of the Yukawa sector is possible to obtain, but the model is essentially not predictive

due to the large number of free parameters in the three Yukawa matrices.

The purpose of this paper is to find an E6 theory with only two Yukawa matrices and

thus a simpler Yukawa sector than the model in [11], while keeping the symmetry breaking

sector as simple as possible. The idea is to add to the minimal breaking sector (instead of

the extra 27 + 27 pair) another multiplet, which preferably has the following properties:

1. It does not couple to the matter bilinears (and so is not a 27, 351 or 351′).

2. It contributes to the symmetry breaking vacuum.

3. It increases the size of the mass matrices for weak doublets and/or color triplets.

The minimal such multiplet is the adjoint representation 78, for which all of the above

properties hold true. We will see that its inclusion is enough to allow the doublet-triplet

splitting in the theory, thus leading to a theory with the correct (SM) vacuum and the

correct (MSSM) low energy field theory.

The Yukawa sector in this model consists of two matrices only. Assuming 3 generations,

the down quark and charged lepton sectors have 3 extra vector-like fields, while the neutrino

sector has 3 extra vector-like lepton doublet-antidoublet pairs, as well as 6 SM singlets,

all coming from the extra fields in the decomposition of the fundamental 27 into the SM

subgroup. The projection of all these fields into the usual 3 light generations will be

performed explicitly and shown, in the simplified case of only two generations, to provide

a realistic fit of the masses and mixing angles.

Special attention needs to be paid to the overall neutrino mass scale. In minimal

SO(10) [13–15] this scale poses a serious problem and eventually rules out the low-energy

1The sparsity of SU(5) breaking vacuum expectation values in the respective mass matrices is likely to

be the fundamental origin of this problem.
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supersymmetry scenario [16–19]: a too low SU(2)R breaking is disallowed by unification

constraints and/or D = 6 proton decay [20], while a too large breaking scale makes the

right-handed neutrinos too heavy and thus the seesaw mechanism ineffective to produce

a large enough scale for the light neutrinos. In our model this conclusion is avoidable

because there are many possible fields that can break SU(2)R. While the neutrino mass

scale can be adjusted by choosing the vacuum expectation value (VEV) of the (1, 3, 10) of

the Pati-Salam (PS) SU(2)L × SU(2)R × SU(4)C , located in the 126 of SO(10), which in

turn is found in the 351′ of E6, all other fields’ masses depend also on several other VEVs.

We can thus arrange a lighter VEV of this (1, 3, 10) still avoiding dramatic changes in the

renormalization group (RG) gauge running.

We arrange the paper in the following way: we define the model and specify the terms

in the superpotential in section 2. We find a suitable vacuum solution, which breaks E6 into

the SM group in section 3, perform the doublet-triplet splitting in section 4 and compute

the mass matrices in the Yukawa sector and identify the low energy content of the theory

in section 5. We then use the obtained results to perform a 2 generation fit of the masses

and mixing angles in section 6. We finish with a discussion in section 7. Five different

appendices collect various definitions and technical results. All explicit computation in E6

has been performed using methods from [21] and [11]; also, [22–24] might also prove useful

to the reader.

For ease of use we stick to the following color convention in this paper: red denotes

VEVs coming from the spontaneous symmetry breaking of the unified theory at the scale

MGUT, while blue denotes VEVs coming from electroweak (EW) symmetry breaking at

the scale mEW.

2 Defining the model

The renormalizable E6 SUSY GUT that we consider here is an alternative to the model

in [11]. It is motivated by the fact that the minimal Higgs sector in a renormalizable SUSY

E6 model, which can break E6 to the Standard Model, is 351′+351′+27+27. This minimal

breaking sector cannot accommodate doublet-triplet splitting, however, and therefore needs

to be extended to get a realistic model. One possible extension is an addition of a 27 + 27

pair, which was analyzed in [11], while an alternative, taken in this paper, is to extend it

by the representation 78 instead. The Yukawa sector in the present model will consist of

only two matrices, unlike that in [11], which has three matrices.

Our renormalizable E6 model thus contains the following:

• The “fermionic sector” of three copies of a chiral supermultiplet 27, denoted by 27iF ,

with i = 1, 2, 3. Also, we assume a Z2 matter parity, under which the 27F are −1, and

the remaining chiral superfields are +1. With this symmetry, the ansatz 〈27F 〉 = 0

is consistent with the equations of motion, which we shall adopt.

• The “breaking sector” consisting of 351′ + 351′ + 27 + 27 + 78.

The model under consideration is supersymmetric. The problem of SUSY breaking

will not be considered, since it is (usually) an orthogonal problem to breaking the gauge

– 3 –
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group. One can imagine however, that whatever the detailed mechanism of SUSY breaking

might be, we get soft SUSY breaking terms at energies not far above mEW, such that we

get automatic unification of gauge couplings at MGUT assuming no extra particle states up

to the unification scale. The effective low energy theory of our model will thus be MSSM.

The soft SUSY breaking terms do not give contributions to the fermion masses at tree level.

A fit to fermion masses and mixings can then be done without specifying the details of

SUSY breaking, although the RG evolution of these parameters does depend on the SUSY

scale (which we assume is of order few TeV).

The full superpotential of our model is

Wfull = m27 27 27 + m351′ 351
′ 351′ + m78 78 78

+ λ1 351
′3 + λ2 351′

3
+ λ3 27

2 351′ + λ4 27
2
351′

+ λ5 27
3 + λ6 27

3
+ λ7 27 78 27 + λ8 351′ 78 351′

+
1

2
Y ij
27 27iF 27jF 27 +

1

2
Y ij

351′
27iF 27jF 351′. (2.1)

Note that the definitions of 351′ and 351′ used here are switched compared to Slansky’s

defintions [25].

3 Spontaneous symmetry breaking

3.1 Equations of motion

The Higgs sector 351′ + 351′ + 27 + 27 + 78 forms a realistic Higgs sector, which is able

to break the gauge group from E6 to SU(3)C × SU(2)L × U(1)Y . We provide just such a

vacuum below.

First, note the decompositions of 27, 78 and 351′ under SO(10)×U(1):

27 = 16(1) + 10(−2) + 1(4), (3.1)

78 = 45(0) + 16(−3) + 16(3) + 1(0), (3.2)

351′ = 1(8) + 10(2) + 16(5) + 54(−4) + 126(2) + 144(−1). (3.3)

The representation 351′ contains 5 SM singlets, 3 of which are SU(5) singlets (in 1,

16 and 126 of SO(10)), and 2 are part of a 24 under SU(5) (in 54 and 144 of SO(10)).

Similarly, the representation 78 also has 5 singlets, with one being a 24 under SU(5) (the

one in 45 of SO(10)), while the remaining ones are singlets under SU(5) (the 1, 16 and 16

of SO(10), as well as another one in the 45). The Higgs sector 351′ + 351′ + 27 + 27 + 78

therefore contains 5 + 5 + 2 + 2 + 5 = 19 singlets in total. We list their VEVs2 in table 1.

2Notice that the Standard Model singlet VEVs have been denoted by u1, u2, v, w and y. The notation

from [4] is changed due to the states now being those which have well defined transformation properties

under the SU(5) and SO(10) subgroups of E6. The connection between the two notations is u1 ∝ a1,

u2 ∝ a2, w ∝ a3 − b3, v ∝ −
√
3a3 + 2a4 −

√
3b3, y ∝ a3 +

√
3a4 + b3, with the usual normalization

〈78ij78∗i j〉 = |u1|2 + |u2|2 + |v|2 + |w|2 + |y|2.
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label ⊆ PS ⊆ SU(5) ⊆ SO(10) ⊆ E6 label ⊆ PS ⊆ SU(5) ⊆ SO(10) ⊆ E6

c1 (1, 1, 1) 1 1 27 d1 (1, 1, 1) 1 1 27

c2 (1, 2, 4) 1 16 27 d2 (1, 2, 4) 1 16 27

e1 (1, 3, 10) 1 126 351′ f1 (1, 3, 10) 1 126 351′

e2 (1, 2, 4) 1 16 351′ f2 (1, 2, 4) 1 16 351′

e3 (1, 1, 1) 1 1 351′ f3 (1, 1, 1) 1 1 351′

e4 (1, 1, 1) 24 54 351′ f4 (1, 1, 1) 24 54 351′

e5 (1, 2, 4) 24 144 351′ f5 (1, 2, 4) 24 144 351′

u1 (1, 2, 4) 1 16 78

u2 (1, 2, 4) 1 16 78

w (1, 1, 1) 1 1 78

v / 1 45 78

y / 24 45 78

Table 1. SM singlet VEVs in our Higgs sector.

With the ansatz 〈27F 〉 = 0, the breaking part of the superpotential is

W = m351′ I351′×351′
+m27 I27×27 +m78 I78×78

+ λ1 I351′3 + λ2 I351′3 + λ3 I272×351′
+ λ4 I272×351′

+ λ5 I273 + λ6 I273 + λ7 I27×78×27 + λ8 I351′×78×351′
. (3.4)

Explicit computation yields the following expressions for the superpotential invariants

(VEV terms only):

I351′×351′ = 351′µν 351µν = e1f1 + e2f2 + e3f3 + e4f4 + e5f5, (3.5)

I27×27 = 27µ 27µ = c1d1 + c2d2, (3.6)

I78×78 = 78µν 78νµ = 2u1u2 + w2 + v2 + y2, (3.7)

I351′3 = 351′µα 351′νβ 351′λγ dαβγdµνλ = 3
(

e3e4
2 + e1e5

2 −
√
2e2e4e5

)

, (3.8)

I
351′

3 = 351′µα 351′νβ 351′λγ dαβγ dµνλ = 3
(

f3f4
2 + f1f5

2 −
√
2f2f4f5

)

, (3.9)

I
272×351′

= 351′µν 27µ 27ν = c2
2f1 +

√
2c1c2f2 + c1

2f3, (3.10)

I
27

2×351′
= 351′µν 27µ 27ν = d2

2e1 +
√
2d1d2e2 + d1

2e3, (3.11)

I273 = 27µ 27ν 27λ dµνλ = 0, (3.12)

I
27

3 = 27µ 27ν 27λ dµνλ = 0, (3.13)

I27×78×27 = 27µ 78µν 27ν

=
1√
6
u1c1d2 +

1√
6
u2c2d1 −

1

6
√
2
w (4c1d1 + c2d2)−

1

2

√

5

6
vc2d2, (3.14)
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I351′×78×351′ = 351′µν 78νκ 351′κµ =

=
1

2
√
6
u1

(√
2e2f1 +

√
2e3f2 + e5f4

)

+
1

2
√
6
u2

(√
2e1f2 +

√
2e2f3 + e4f5

)

+
1

12
√
2
w (−2e1f1 − 5e2f2 − 8e3f3 + 4e4f4 + e5f5)

− 1

4

√

5

6
v (2e1f1 + e2f2 − e5f5) . (3.15)

The general formula for D-terms in our case yields

DA = (27†)µ (t̂A 27)µ + (27
†
)µ (t̂A 27)µ + (78†)νµ (t̂A 78)µν

+ (351′†)µν (t̂A 351′)µν + (351′
†
)µν (t̂A 351′)µν . (3.16)

Of the 78 D-terms, 5 vanish non-trivially, corresponding to the following generators of

the SU(3)C × SU(3)L × SU(3)R subgroup of E6: t
8
L, t

3
R, t

6
R, t

7
R, t

8
R, given explicitly by

D8
L =

1√
3

(

|c1|2 + |c2|2 + 2|e1|2 + 2|e2|2 + 2|e3|2 − |e4|2 − |e5|2

−|d1|2 − |d2|2 − 2|f1|2 − 2|f2|2 − 2|f3|2 + |f4|2 + |f5|2
)

, (3.17)

D3
R =

1

6

(

−3|c2|2 − 6|e1|2 − 3|e2|2 + 3|e5|2 − |u1|2

+3|d2|2 + 6|f1|2 + 3|f2|2 − 3|f5|2 + |u2|2
)

, (3.18)

D6
R =

1

12

(

6c2c1
∗ + 6c1c2

∗ −
√
3u1w

∗ −
√
3wu1

∗ +
√
5u1v

∗ +
√
5vu1

∗

−6d2d1
∗ − 6d1d2

∗ +
√
3u2w

∗ +
√
3wu2

∗ −
√
5u2v

∗ −
√
5vu2

∗

+6
√
2e1e2

∗ + 6
√
2e2e1

∗ + 6
√
2e2e3

∗ + 6
√
2e3e2

∗ + 6e4e5
∗ + 6e5e4

∗

−6
√
2f1f2

∗ − 6
√
2f2f1

∗ − 6
√
2f2f3

∗ − 6
√
2f3f2

∗ − 6f4f5
∗ − 6f5f4

∗
)

, (3.19)

D7
R =

i

12

(

6c2c1
∗ − 6c1c2

∗ −
√
3u1w

∗ +
√
3wu1

∗ +
√
5u1v

∗ −
√
5vu1

∗

+6d2d1
∗ − 6d1d2

∗ −
√
3u2w

∗ +
√
3wu2

∗ +
√
5u2v

∗ −
√
5vu2

∗

+6
√
2e1e2

∗ − 6
√
2e2e1

∗ + 6
√
2e2e3

∗ − 6
√
2e3e2

∗ + 6e4e5
∗ − 6e5e4

∗

+6
√
2f1f2

∗ − 6
√
2f2f1

∗ + 6
√
2f2f3

∗ − 6
√
2f3f2

∗ + 6f4f5
∗ − 6f5f4

∗
)

, (3.20)

D8
R =

1

2
√
3

(

−2|c1|2 + |c2|2 + 2|e1|2 − |e2|2 − 4|e3|2 + 2|e4|2 − |e5|2 + |u1|2

+2|d1|2 − |d2|2 − 2|f1|2 + |f2|2 + 4|f3|2 − 2|f4|2 + |f5|2 − |u2|2
)

. (3.21)

They can be rewritten into 3 independent D-terms:

DI= |c1|2− |d1|2+ |e2|2− |f2|2+ 2|e3|2− 2|f3|2− |e4|2 + |f4|2 −
1

3
|u1|2 +

1

3
|u2|2, (3.22)

DII= |c2|2− |d2|2+ |e2|2− |f2|2+ 2|e1|2 − 2|f1|2− |e5|2+ |f5|2 −
1

3
|u2|2 +

1

3
|u1|2, (3.23)

DIII = +c1c2
∗ −

√
3

6
wu1

∗ +

√
5

6
vu1

∗ +
√
2e2e1

∗ +
√
2e3e2

∗ + e5e4
∗

− d2d1
∗ +

√
3

6
u2w

∗ −
√
5

6
u2v

∗ −
√
2f1f2

∗ −
√
2f2f3

∗ − f4f5
∗, (3.24)
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via the definitions DI :=
√
3D8

L+2D3
R, D

II := −2D3
R and DIII := D6

R + iD7
R, where D

III

now forms a complex equation. The other independent combinationDY = D8
L+

√
3D3

R+D8
R

is trivially zero, as it should be, since this D-term corresponds to the unbroken generator

of U(1)Y .

3.2 A specific vacuum solution

In this section, we obtain a vacuum solution which breaks the gauge group to the Standard

Model group SU(3)C × SU(2)L × U(1)Y . Due to the complexity of the equations we are

unable to provide a full classification of vacua; a short discussion on alternative vacua can

be found in appendix D.

The equations of motion in SUSY models are

Da = 0, (3.25)

Fφ = 0, (3.26)

with the usual definition of the F -term:

Fφ :=
∂W

∂φ
. (3.27)

In our case, there are 19 Standard Model singlets in the Higgs sector, giving 19 non-

trivial F -terms, which can be easily reconstructed from the superpotential in equation (3.4)

and the all-singlet terms of the invariants given by equations (3.5)–(3.15). The non-trivial

D-terms are given by equations (3.22)–(3.24).

To obtain a vacuum solution, we perform the following steps:

• First, we notice that Fy leads directly to y = 0 (y is present only in the mass term

782). By taking the self-consistent ansatz3

c1 = d1 = f5 = e5 = 0, (3.28)

u1 = u2 = e2 = f2 = 0, (3.29)

the system of equations is greatly simplified: Fc1 , Fd1 , Fe2 , Ff2 , Fe5 , Ff5 , Fu1 , Fu2 , Fy

and DIII are solved automatically.

• Solve Fe3 and Ff3 for f3 and e3, respectively to get

e3 = − 9λ2f4
2

3m351′ −
√
2λ8w

, f3 = − 9λ1e4
2

3m351′ −
√
2λ8w

. (3.30)

• Solve Fc2 and Fd2 for f1 and e1, respectively to get

e1 =
c2

24λ4d2

(√
2λ7

(√
15v + w

)

− 12m27

)

, (3.31)

f1 =
d2

24λ3c2

(√
2λ7

(√
15v + w

)

− 12m27

)

. (3.32)

3This ansatz is motivated by the ansatz used in the model with the 78 omitted [11], where a classification

of vacua is known. See appendix D for further discussion.
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• Simultaneously solve Fe4 and Ff4 for f4:

f4 =
(3
√
2m351′ − 2λ8w)(3

√
2m351′ + λ8w)

324e4λ1λ2

. (3.33)

• Simultaneously solve Fe1 and Ff1 for d2:

d2 =

(

6
√
2m27 − λ7(

√
15v + w)

)(

6
√
2m351′ − λ8(

√
15v + w)

)

144λ3λ4c2
. (3.34)

• It is now convenient to define a new quantity A :=
√
15v + w. We can now solve Fv

for v as a linear equation:

v =

√
10A2λ2

7λ8 − 8
√
5λ7A(m351′λ7 + 2m27λ8) + 24

√
10m27(2m351′λ7 +m27λ8)

768
√
3m78λ3λ4

.

(3.35)

• Three variables remain to be determined: A, c2 and e4. We are left with only one

unsolved F -term Fw, which is a polynomial in A:

0 = P0 + P1A+ P2A
2 + P3A

3 + P4A
4, (3.36)

P0 = −576m27 (2m351′λ7 +m27λ8)
(

25m27 (2m351′λ7 +m27λ8)λ
3
8

− 480m351′m78λ3λ4λ
2
8 + 110592m2

78λ1λ2λ3λ4

)

, (3.37)

P1 = 192
√
2
(

995328λ1λ2λ
2
3λ

2
4m

3
78

+ 4608λ3λ4

(

24m27λ1λ2λ7λ8 +m351′
(

12λ1λ2λ
2
7 − λ3λ4λ

2
8

))

m2
78

+ 240λ3λ4λ
2
8

(

−m2
351′λ

2
7 + 2m351′m27λ8λ7 + 2m2

27λ
2
8

)

m78

+ 25m27λ7λ
3
8

(

2m2
351′λ

2
7 + 5m351′m27λ8λ7 + 2m2

27λ
2
8

)

)

, (3.38)

P2 = −16
(

λ8

(

18432λ3λ4

(

9λ1λ2λ
2
7 + λ3λ4λ

2
8

)

m2
78

+240λ3λ4λ7λ
2
8 (5m351′λ7 + 16m27λ8)m78

+25λ2
7λ

2
8

(

2m2
351′λ

2
7 + 14m351′m27λ8λ7 + 11m2

27λ
2
8

))

)

, (3.39)

P3 = 40
√
2λ2

7λ
4
8 (96m78λ3λ4 + 5λ7 (m351′λ7 + 2m27λ8)) , (3.40)

P4 = −25λ4
7λ

5
8. (3.41)

Note that the coefficients Pi depend only on the Lagrangian parameters; choosing

those, we can determine A numerically.

Finally, we solve the remaining D-terms and determine c2 and e4 from

0 = DI = 2|e3|2 − |e4|2 − 2|f3|2 + |f4|2, (3.42)

0 = DII = |c2|2 − |d2|2 + 2|e1|2 − 2|f1|2. (3.43)
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Note that v and w are determined, once A is fixed. We can therefore see that

f4 ∝ 1/e4, e3 ∝ f2
4 ∝ 1/e24 and f3 ∝ e24. Therefore DI can be written as a quartic

polynomial in |e4|2; the constant term has a positive coefficient (the e3 term), while

the highest order term in |e4|2 has a negative coefficient, a solution for a real e4 > 0

will always exist. Similarly, d2 ∝ 1/c2, e1 ∝ c2/d2 ∝ c22 and f1 ∝ d2/c2 ∝ 1/c22, D
II is

a quartic polynomial in c2 independent of e4; the constant coefficient will be negative

(the f1 term), while the highest order coefficient in |c2|2 is positive (the e1 term),

which again guarantees a real solution c2 > 0.

The initial Lagrangian parameters constitute of the 3 masses m27, m351′ , m78 and 8

massless parameters λi, i = 1, . . . , 8. The simplest order in which to compute the given

vacuum solution with these parameters is given below:

1. Take the ansatz for some of the VEVs (symmetric under conjugation symmetry [11])

c1 = 0, d1 = 0,

e2 = 0, f2 = 0,

e5 = 0, f5 = 0,

u1 = 0, u2 = 0,

y = 0. (3.44)

2. A is determined through the polynomial, and then the VEVs v and w are deter-

mined by

v =

√
10A2λ2

7λ8 − 8
√
5λ7A(m351′λ7 + 2m27λ8) + 24

√
10m27(2m351′λ7 +m27λ8)

768
√
3m78λ3λ4

,

(3.45)

w = A+
5

768m78λ3λ4

(

−24
√
2m27(2m351′λ7 +m27λ8)

+λ7A(8m351′λ7 + 16m27λ8 −
√
2Aλ7λ8)

)

. (3.46)

3. e4 and c2 are determined through DI and DII , respectively, using eqs. (3.47)–(3.52).

4. The remaining nonvanishing VEVs are d2, e1, f1, e3, f3, f4, and they can be computed

in terms of A,w, c2, e4:

d2 =
1

144λ3λ4c2

(

6
√
2m27 − λ7A

)(

6
√
2m351′ − λ8A

)

, (3.47)

e1 =
12λ3c2

2

√
2Aλ8 − 12m351′

, (3.48)

f1 =

√
2Aλ7 − 12m27

3456λ2
3λ4c22

(

6
√
2m27 − λ7A

)(

6
√
2m351′ − λ8A

)

, (3.49)

e3 =

(

3
√
2m351′ − 2λ8w

) (

3
√
2m351′ + λ8w

)2

5832
√
2e42λ2

1λ2

, (3.50)
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f3 = − 9e4
2λ1

3m351′ −
√
2wλ8

, (3.51)

f4 =
1

324e4λ1λ2

(

3
√
2m351′ − 2λ8w

)(

3
√
2m351′ + λ8w

)

. (3.52)

The solution above does indeed break E6 into the Standard Model group. This can be

checked by explicitly computing the gauge boson masses, found in table 5 of appendix A.

It is possible to further illuminate this result by considering that under the standard em-

beddings of the E6 subgroups from table 1, the SU(5) breaking in our solution is solely due

to non-vanishing VEVs e4 and f4.

4 Doublet-triplet splitting

We tackle now the issue of doublet-triplet splitting. We denote the doublets and anti-

doublets by D ∼ (1, 2,+1/2) and D ∼ (1, 2,−1/2), while the triplets and antitriplets are

denoted by T ∼ (3, 1,−1/3) and T ∼ (3̄, 1,+1/3). The detailed labels of these states are

given in table 6 of appendix B.

In the Higgs sector of our model, there are 12 doublet-antidoublet pairs and 13 triplet-

antitriplet pairs. This is one extra pair of each compared to the renormalizable model with

the Higgs sector 351′ + 351′ + 27 + 27, in which doublet-triplet splitting surprisingly fails

(see [11] for details). The extra states come from the added 78, and are labeled by the

index 0, i.e. D0, D0, T0, T 0. We shall see that this extra row and column, together with a

new vacuum compared to the model without 78 now enable doublet-triplet splitting in the

usual way (by fine-tuning). Note that all the doublets and triplets are located in a 5 or 45

(or their conjugates) of SU(5), except for one extra triplet in the 50 of SU(5).

The mass terms for the doublets and triplets are written as

(

D0 · · · D11

)

Mdoublets







D1

...

D11






+
(

T0 · · · T12

)

Mtriplets







T 1

...

T 12






. (4.1)

The matrices Mdoublets and Mtriplets are similar; we can compactly write a 13 × 13

matrix M with block form

M =

(

M11 M12

M21 M22

)

, (4.2)

with the diagonal blocks defined by

M11=





























m78 0 λ7d2
2
√
3

0 0 0

0 m27+
λ7(

√
3v+

√
5w)

3
√
10

αλ3f4√
15

6λ5c2 0 0
λ7c2
2
√
3

αλ4e4√
15

m27+
λ7(

√
5w−

√
3v)

3
√
10

0 0 0

0 6λ6d2 0 m27+
λ7(3

√
3v−

√
5w)

6
√
10

0 −λ4d2√
10

0 0 0 0 m351′+
λ8v

2
√
30

− λ8w

6
√
2

√

3
5
αλ1e4

0 0 0 −λ3c2√
10

√

3
5
αλ2f4 m351′− λ8v

2
√
30

− λ8w

6
√
2





























,

(4.3)
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M22 =

























m351′+
√

3

4
√
10
λ8v− 5λ8w

12
√
2

0 0 1
2

√
3αλ2f4

0 m351′− λ8v

2
√
30

− λ8w

6
√
2

√
5βλ2f4 0

0
√
5βλ1e4 m351′+

λ8v

2
√
30

− λ8w

6
√

2
0

1
2

√
3αλ1e4 0 0 m351′−

√
3

4
√
10
λ8v+

λ8w

12
√
2

0 0 0 0
1
2

√
15βλ1e4 0 0 0

0 0 2
√
10λ2f4 0

, (4.4)

0 1
2

√
15βλ2f4 0

0 0 0

0 0 2
√
10λ1e4

0 0 0

m351′− 7λ8v

4
√
30

+ λ8w

12
√
2

0 0

0 m351′−
√
3

4
√
10
λ8v+

λ8w

12
√
2

0

0 0 m351′− λ8v

2
√
30

− λ8w

6
√

2

























and the off-diagonal blocks defined by

M12 =

























−λ8f3
2
√
6

0 0 αλ8e4
24

√
2

−λ8f1
2
√
6

√
5βλ8e4
24

√
2

0

0 0 0 2
√

2
5
λ3c2 0 0 0

0 0 0 0 −
√
2λ4d2 0 0

0 −
√

3
2
λ4d2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

























, (4.5)

M21 =





























−λ8e3
2
√
6

0 0 0 0 0

0 0 0 −
√

3
2
λ3c2 0 0

0 0 0 0 0 0
αλ8f4
24

√
2

2
√

2
5
λ4d2 0 0 0 0

−λ8e1
2
√
6

0 −
√
2λ3c2 0 0 0

√
5βλ8f4
24

√
2

0 0 0 0 0

0 0 0 0 0 0





























. (4.6)

The separation of the matrix M into 4 blocks is arbitrary and is used above merely

as a simple way of presenting a large matrix. The matrix Mdoublets is obtained out of M
by removing the last row and column, and taking α = −3, β = −

√
3, while the matrix

Mtriplets is obtained by taking α = β = 2. Note that the matrices were already simplified

by taking the vacuum ansatz of vanishing VEVs

c1 = d1 = e2 = f2 = e5 = f5 = u1 = u2 = y = 0, (4.7)

while the rest of the vacuum solution was not plugged-in. Notice also that the coefficients

α and β are located as factors in front of e4 or f4; this is expected, since e4 and f4 are

the SU(5)-breaking VEVs, so they control the difference between the doublets and triplets.

Also, the coefficients α are −3 and 2 for the doublets, respectively, which come from the

VEV 〈24〉 in the terms 5 · 〈24〉 · 5̄ of SU(5). The coefficients β are −
√
3 and 2 for the

– 11 –



J
H
E
P
0
5
(
2
0
1
5
)
1
0
8

doublets and triplets respectively, which are the Clebsch-Gordan coefficients coming from

the terms 5 · 〈24〉 · 45 or 5̄ · 〈24〉 · 45 of SU(5). One can check that this is indeed the case by

locating the position of α and β coefficients in M and checking, to which states in table 6

these matrix entries correspond to.

The procedure for fine-tuning is now similar to the one attempted in the 351′ +351′ +

27 + 27 case in [11]. Once the vacuum solution is plugged-in, the determinants of the two

matrices become zero:

det(Mdoublets)
∣

∣

∣

vacuum
= 0, (4.8)

det(Mtriplets)
∣

∣

∣

vacuum
= 0. (4.9)

The massless doublet-antidoublet and triplet-antitriplet pairs are simply the unphysical

would-be Goldstone bosons from the breaking of E6. They correspond to the broken

generators with the same quantum numbers, which can be found in SO(10) language in

the 16 and 16 parts of the adjoint 78. The doublet-triplet splitting condition then requires

another doublet-antidoublet pair to be massless, which imposes the following condition:

Cond(M) := pmin1M, (4.10)

where pmini denotes the i-th principal minor of rank 1 (the subdeterminant when the i-th

row and column are removed). In our specific case, we chose to remove the first row and

column, which correspond to the fields D0 and D0. We chose these due to simplicity, but

note that this choice is valid only if the Goldstone modes of the given vacuum have nonzero

D0 and D0 components. This can be checked later on via equations (4.18) and (4.19). The

logic behind the whole method is explained in appendix C.

Given the notation above, DT-splitting can be performed by a fine-tuning:

Cond(Mdoublets) = 0, (4.11)

Cond(Mtriplets) 6= 0. (4.12)

The above conditions can in principle be computed analytically, but they are too compli-

cated to be of any practical use. The viability of the splitting conditions can be shown

numerically though, as well as with some careful considerations. The most convenient way

to perform the DT splitting is to make use of the dimensionless parameters λ5 and λ6 from

the superpotential (see (3.4)). Since the invariants 273 and 27
3
have no all-singlet terms,

λ5 and λ6 are not involved in the computation of the vacuum. Moreover, the matrix M
contains only a single entry with the parameter λ5 and a single entry with the parameter

λ6. The condition in equations (4.11) and (4.12) can be written as

K1 −K2 λ5 λ6 = 0, (4.13)

K ′
1 −K ′

2 λ5 λ6 6= 0, (4.14)

where K1,K2,K
′
1,K

′
2 depend only on the other parameters in the Lagrangian (m351′ , m78,

m27, λ1, λ2, λ3, λ4, λ7, λ8) and the vacuum itself, all of which can be computed inde-

pendently from the parameters λ5 and λ6. The analytic forms of Ks are not very illu-

minating, but they can easily be evaluated numerically for any values of the parameters
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m351′ ,m78,m27, λ1, λ2, λ3, λ4, λ7, λ8. One can then take

λ5 =
K1

K2 λ6

, (4.15)

with λ6 arbitrary, and get an extra massless doublet mode. Substituting into condi-

tion (4.14), we can numerically check that indeed

K ′
1K2 6= K ′

2K1. (4.16)

We therefore conclude that the addition of the 78 in the Higgs sector, both with the

new vacuum and enlarged matrices Mdoublets and Mtriplets, now allows for a DT splitting

in the model. Without the 78, a similar attempt at fine-tuning is not possible, since in

that case we get K2 = K ′
2 = 0 after inserting the vacuum and fine-tuning in λ5 or λ6 is

not possible. Note that this tree-level fine-tuning is stable under quantum corrections due

to the non-renormalization theorem for the superpotential.

The linear combinations of Ds and D̄s, which correspond to the MSSM Higgses Hu and

Hd, can be found by computing the new left- and right- null-eigenvectors of the fine-tuned

matrix Mdoublets. In practice, the physical MSSM Higgses can most easily be extracted by

computing the (left and right) null-eigenspace of the fine-tuned matrix Mdoublets, which is

2-dimensional. Given any basis of the null-eigenspace, the Higgs will always be orthogonal

to the would-be Goldstone boson. The would-be Goldstone itself can be easily identified

by the fact that it has no component in the directions Di (or Di) for i = 1, 3, 4, 5, 7, 8.

This absence of some doublets in the Goldstone can be deduced from the mass matrix in

equation (4.2), but we also confirmed this by noting that the Goldstone components φi

are the ones which have couplings of their derivatives to the the gauge field through the

following type of expression (originating from the kinetic terms of scalar fields):

−ig Aa
µ (∂µφ†

i ) (t̂
a〈φ〉)i. (4.17)

Choosing a to be the doublet/antidoublet broken generators and using our vacuum, we

identify the doublet components in φ†
i to which there is no coupling as indeed those listed

above. Explicit computation identifies that the prevailing cause of some components not

being present in the would-be Goldstone mode is our ansatz of vanishing VEVs. More

precisely, without the vacuum ansatz, the terms in expression (4.17) can be schematically

written as

∂D∗
G ∝ +

3
√
5v + 5

√
3w −

√
30y

10
√
2

∂D∗
0 −

d2
2

∂D∗
2 −

d1
2

∂D∗
3 +

e5
4

√

3

2
∂D∗

4

+

√
5f2
4

∂D∗
5 +

f3√
2
∂D∗

6 +

√
3f2
4

∂D∗
7 +

e5
4

√

5

2
∂D∗

8

− e4
4

√

3

2
∂D∗

9 +
f1√
2
∂D∗

10 −
e4
4

√

5

2
∂D∗

11, (4.18)
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∂DG
∗ ∝ −3

√
5v + 5

√
3w −

√
30y

10
√
2

∂D
∗
0 +

c2
2

∂D
∗
2 +

c1
2
∂D

∗
3 −

f5
4

√

3

2
∂D

∗
4

−
√
5e2
4

∂D
∗
5 −

e3√
2
∂D

∗
6 −

√
3e2
4

∂D
∗
7 −

f5
4

√

5

2
∂D

∗
8

+
f4
4

√

3

2
∂D

∗
9 −

e1√
2
∂D

∗
10 +

f4
4

√

5

2
∂D

∗
11. (4.19)

We see that the absence of components Di and Di for i = 3, 4, 5, 7, 8 are directly related

to the vacuum ansatz with vanishing VEVs. D1 and D1, however, are absent.4

The ratios of the various components of the Higgs, and hence the ratios of the EW

VEVs of these component, are computed from the null-eigenspaces, while the magnitudes

of the VEVs are given by the VEVs vu = 〈Hu〉 and vd = 〈Hd〉. We have

v2u =
11
∑

i=0

|vi|2, (4.20)

v2d =
11
∑

i=0

|v̄i|2, (4.21)

where vi = 〈Di〉 and v̄i = 〈Di〉, and additionally the following MSSM relations hold:

v2u + v2d = (246GeV)2, (4.22)

vu/vd = tanβ. (4.23)

5 Yukawa sector

The Yukawa sector comes from the Yukawa part of the superpotential after inserting the

vacuum solution:

WYukawa = 27iF 27jF
(

Y ij
27 〈27〉+ Y ij

351′
〈351′〉

)

. (5.1)

In addition to the GUT scale VEVs in the representations 351′ and 27, the EW Higgses

Hu and Hd also need to be present in both of these representations. The low-energy MSSM

Higgses Hu and Hd come from a linear combination of the doublets of type D ∼ (1, 2,+1/2)

and antidoublets of the type D ∼ (1, 2,−1/2), respectively. These states are identified in

table 6, and their EW VEVs are labeled by vi := 〈Di〉 and v̄i := 〈Di〉, where i = 0, 1, . . . , 11.

As discussed in section 4, we generically expect vi 6= 0 and v̄i 6= 0.

Each generation of fermions is found in a fundamental representation 27 of E6. The

matter content of each generation, subdivided into SO(10) representations, is the following:

• The 16 of SO(10) contains the SM particles5 and the right-handed neutrino νc.

4The 27 contains 2 singlets, but 3 doublets, so the singlets cannot be pushed to all the doublets with

a ta generator, and thus one doublet component is missing. The representation 351′ has 5 singlets and 8

doublets, but the projection relation dijk 351
′jk = 0 reshuffles the definitions of singlets and doublets, so

there is no loss of doublet components.
5We use the standard notation Q, L, uc, dc and ec for the representations (3, 2,+1/6), (1, 2,−1/2),

(3̄,1,−2/3),(3̄,1,1/3) and(1, 1, 1), respectively. The lepton doublet contains the electron e and the neutrino ν.
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• The 10 of SO(10) contains a vector-like pair of down-type quarks (3, 1,−1/3) +

(3̄, 1,+1/3), as well as a vector-like pair of lepton doublets (1, 2,−1/2) + (1, 2, 1/2).

These exotic are labeled d′, d′c, L′ and L′c, respectively.

• The SO(10) singlet 1 is denoted by s is sterile, and has a role analogous to the

right-handed neutrino.

Suppressing generation indices, the mass terms are computed to be

uT
(

−v1Y27 +
1

2
√
10

v5Y351′ −
1

2
√
6
v7Y351′

)

uc

+
(

dcT d′cT
)

(

v̄2Y27 +
1

2
√
10
v̄4Y351′ +

1

2
√
6
v̄8Y351′ c2Y27 +

1√
15
f5Y351′

−v̄3Y27 − 1

2
√
10
v̄9Y351′ − 1

2
√
6
v̄11Y351′ −c1Y27 +

1√
15
f4Y351′

)(

d

d′

)

+
(

eT e′T
)





−v̄2Y27 − 1

2
√
10
v̄4Y351′ +

√

3
8
v̄8Y351′ c2Y27 − 3

2
1√
15
f5Y351′

v̄3Y27 +
1

2
√
10
v̄9Y351′ −

√

3
8
v̄11Y351′ −c1Y27 − 3

2
1√
15
f4Y351′





(

ec

e′c

)

+
(

νT ν ′T
)





v1Y27− 1

2
√
10
v5Y351′−

√

3
8
v7Y351′ − 1√

2
v6Y351′ c2Y27− 3

2
1√
15
f5Y351′

− 1√
2
v10Y351′ −v1Y27−

√

2
5
v5Y351′ −c1Y27− 3

2
1√
15
f4Y351′











νc

s

ν ′c







+
1

2

(

νcT sT ν ′cT
)











f1Y351′
1√
2
f2Y351′ −v̄3Y27 +

√

2
5
v̄9Y351′

1√
2
f2Y351′ f3Y351′ v̄2Y27 −

√

2
5
v̄4Y351′

−v̄3Y27 +
√

2
5
v̄9Y351′ v̄2Y27 −

√

2
5
v̄4Y351′ 0

















νc

s

ν ′c







+
1

2

(

νT ν ′T
)

(

∆1Y351′
1√
2
∆2Y351′

1√
2
∆2Y351′ ∆3Y351′

)(

ν

ν ′

)

. (5.2)

Notice the different Clebsch-Gordan coefficients in front of v̄i (i = 2, 3, 4, 9) that come

from the couplings with the 5̄ of SU(5) and in front of v̄8,11 that come from the 45, while

c1,2 originate from a SU(5) singlet and f4,5 from a SU(5) adjoint 24.

The ∆i correspond to VEVs induced in the electrically neutral component of weak

triplets of type (1, 3,+1), while ∆i correspond to VEVs induced in weak triplets (1, 3,−1).

The ∆i and ∆i are found only in the representations 351′ and 351′, as shown in the

definitions of table 7. The mass matrix M∆ has contributions from the terms 351′ · 351′
and 351′ · 〈78〉 · 351′. Its explicit form is computed to be

M∆ = (5.3)






















m351′−λ8

(

w

6
√
2
− 1

2

√

3
10
v+ y

2
√
5

)

u1λ8

2
√
3

0 6λ1e1

λ8

2
√
3
u2 m351′+λ8

(

w

12
√
2
+ v

4
√
30

− y

2
√
5

)

λ8

2
√
3
u1 −6λ1e2

0 λ8

2
√
3
u2 m351′+λ8

(

w

3
√
2
− v√

30
− y

2
√
5

)

6λ1e3

6λ2f1 −6λ2f2 6λ2f3 m351′+λ8

(

w

3
√
2
+ v√

30
+ y

2
√
5

)























.
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Integrating out the heavy weak triplets and inserting the F -term ansatz of vanishing VEVs,

we get











∆1

∆2

∆3

∆4











=

















m351′−λ8

(

w

6
√
2
− 1

2

√

3
10
v
)

0 0 6λ1e1

0 m351′+λ8

(

w

12
√
2
+ v

4
√
30

)

0 0

0 0 m351′+λ8

(

w

3
√
2
− v√

30

)

6λ1e3

6λ2f1 0 6λ2f3 m351′+λ8

(

w

3
√
2
+ v√

30

)

















−1

×











λ4v3
2

λ4

√
2v2v3

λ4v2
2

λ3v1
2











. (5.4)

After integrating out the heavy vector-like states from equation (5.2), and using the

ansatz c1 = f5 = 0, we get the matrices for the low energy states:

MU = −v1Y27 +

(

1

2
√
10

v5 −
1

2
√
6
v7

)

Y
351′

, (5.5)

MT
D =

(

1 + (9/4)XX†
)−1/2

(

(

v̄2 −
3

2
v̄3X

)

Y27

+

(

1

2
√
10

(v̄4 −
3

2
v̄9X) +

1

2
√
6
(v̄8 −

3

2
v̄11X)

)

Y351′

)

, (5.6)

ME =
(

1+XX†
)−1/2

(

(−v̄2 − v̄3X)Y27+

(

− 1

2
√
10

(v̄4 + v̄9X) +

√

3

8
(v̄8 + v̄11X)

)

Y
351′

)

,

(5.7)

MN = −
(

1 +XX†
)−1/2

(

(

− 1√
10

v1v5
f1

−
√

3

2

v1v7
f1

+
1√
3

v5v10
f1

c2
f4

+
√
5
v7v10
f1

c2
f4

+
4√
3

v5v6
f3

c2
f4

− 2

√

10

3
∆2

c2
f4

)

Y27

+

(

1

40

v5
2

f1
+

√

3

80

v7v5
f1

+
3

8

v7
2

f1
+

1

2

v6
2

f3
−∆1

)

Y
351′

+

(

v1
2

f1
− 2

√

10

3

v1v10
f1

c2
f4

+
10

3

v10
2

f1

c2
2

f42
+ 2

√

10

3

v1v6
f3

c2
f4

+
8

3

v5
2

f3

c2
2

f42
− 20

3
∆3

c2
2

f42

)

Y27Y
−1

351′
Y27

+

(

8
√
10

3

v1v5
f3

c2
2

f42

)

Y27Y
−1

351′
Y27Y

−1

351′
Y27

+

(

20

3

v1
2

f3

c2
2

f42

)

Y27Y
−1

351′
Y27Y

−1

351′
Y27Y

−1

351′
Y27

)

(

1 +X∗XT
)−1/2

, (5.8)
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where

X = −2

√

5

3

c2
f4

Y27 Y
−1

351′
. (5.9)

Notice that the main factor in the expressions is a linear combination of the following

matrices:

Y27, Y
351′

, Y27Y
−1

351′
Y27, Y27Y

−1

351′
Y27Y

−1

351′
Y27, Y27Y

−1

351′
Y27Y

−1

351′
Y27Y

−1

351′
Y27, (5.10)

which are all symmetric, since Y27 and Y
351′

are symmetric, as are MU and MN . The

matrices MD and ME are not symmetric, though, due to the projection factor onto the

light families.

As usual with vector-like states, the expressions for the low energy masses in equa-

tions (5.5)–(5.8) are nonlinear, which complicates the analysis of the masses. We comment

more on the low-energy part of the Yukawa sector in section 6, in which we also do a

numeric fit in the 2-generation case.

6 Numeric fit of the Yukawa sector

The presented model has 3 masses and 8 dimensionless parameters λi in the breaking

sector, as well as two symmetric 3 × 3 Yukawa matrices in the Yukawa sector, which is

easily seen from the superpotential in equation (2.1). Note also that the product λ5λ6 is

fixed by the fine-tuning of the EW Higgs mass. Also, a rotation in family-space can bring

one of the Yukawa matrices to be diagonal. We shall limit ourselves to the case where all

parameters of the Lagrangian are real. The independent number of real parameters in the

breaking sector is thus 3 + 8− 1 = 10, while the 3-family Yukawa sector has 6 + 3 = 9 real

parameters. Since the number of independent real parameters is 19, while there are only

17 real numbers to be measured (3 masses in the up, down, charged lepton sector each, the

two differences of masses-squared in the neutrino sector, as well as 3 angles in each of the

CKM and PMNS matrices; we neglect the CP-phases), the general expectation is that a

fit is possible to perform. There may exist, however, non-obvious mass relations concealed

due to the complexity of the low energy expressions in equations (5.5)–(5.8), which are

not respected by the experimental values; these fears can be alleviated by finding points in

parameter space, which give a good fit for to the masses and mixing angles.

In this section, we perform a fit in the simplified case of 2 families. Here, there are

again 10 real parameters in the breaking sector, while the Yukawa sector has 3+2 = 5 real

parameters. The fit is performed for the results of the quark masses mt, mc, mb, ms, the

charged lepton masses mτ and mµ, the difference of the squared neutrino masses m2
ν3−m2

ν2 ,

and the mixing angles θcb and θ23 in the CKM and PMNS matrices, respectively.

The most convenient way to perform the fit is to take some of the GUT scale VEVs

as the parameters in the fit, instead of the initial parameters in the Lagrangian. This

is advantageous since the equations of motion are linear in the Lagrangian parameters.

Taking the ansatz c1 = d1 = e2 = f2 = e5 = f5 = u1 = u2 = y = 0, we need 12 parameters;
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only 10 are independent, while 2 are determined through the D-terms. It is convenient,

for example, to take the following quantities as independent parameters:

m351′ , c2, d2, f1, f3, f4, e4, v, w, λ5. (6.1)

We can then use the equations of motion to determine the remaining initial parameters

and VEVs. The D-terms are solved by taking

e1 = ±
√

|d2|2 − |c2|2 + 2|f1|2/
√
2, (6.2)

e3 = ±
√

|e4|2 − |f4|2 + 2|f3|2/
√
2. (6.3)

Since we want e1 and e3 to be real numbers, the arguments in the square root need to be

positive, which limits the space of parameters in equation (6.1). Alternatively, we could also

take the 6 independent parameters, for example,6 to be the VEVs d2, f1, e3, f4 (now with

no restriction) and two angles θ1, θ2 ∈ (0, 2π), with the remaining quantities computed as

f1 = sin θ1
√

|c2|2 + 2|e1|2/
√
2, (6.4)

d2 = cos θ1
√

|c2|2 + 2|e1|2, (6.5)

f3 = sin θ2
√

|f4|2 + 2|e3|2/
√
2, (6.6)

e4 = cos θ2
√

|f4|2 + 2|e3|2. (6.7)

The F -terms then yield

m27 =
m351′

2w
(√

15w − v
)

c2d2 (4e3f3 + e4f4)

(

2v(w +
√
15v) (e4f4 − 2e3f3)

2

+e1f1(v −
√
15w)

(

2e3f3(3
√
15v − 5w)− e4f4(3

√
15v + 7w)

))

, (6.8)

m78 =

√
15m351′ (e4f4 − 2e3f3)

2

2w
(√

15w − v
)

(4e3f3 + e4f4)
, (6.9)

λ1 = − f3f4m351′

e4(e4f4 + 4e3f3)
, (6.10)

λ2 = − e3e4m351′

f4(e4f4 + 4e3f3)
, (6.11)

λ3 = −e1m351′
(√

15v (e4f4 − 2e3f3) + 3w (2e3f3 + e4f4)
)

2wc22 (4e3f3 + e4f4)
, (6.12)

λ4 = −f1m351′
(√

15v (e4f4 − 2e3f3) + 3w (2e3f3 + e4f4)
)

2wd22 (4e3f3 + e4f4)
, (6.13)

λ7 =
3
√
2m351′ (2e3f3 − e4f4)

((

v −
√
15w

)

e1f1 + 2v (2e3f3 − e4f4)
)

w
(√

15w − v
)

c2d2 (4e3f3 + e4f4)
, (6.14)

λ8 =
3
√
2m351′ (2e3f3 − e4f4)

w (e4f4 + 4e3f3)
. (6.15)

6In both parametrizations of encoding the D-terms, we wrote them so that we retained control to make

f1 and f3 potentially small; this will be important for the neutrino sector, as described later in this section.
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Using these values, λ6 can then be determined by fine-tuning in the doublet mass

matrix (see section 4), from which also the EW VEVs vi and v̄i are computed. One can

then use these to compute the mass matrices from equations (5.5)–(5.8), and ultimately

the masses and the mixing angles. For our numeric fit, we assume:

• the simplified case of second and third generation only;

• all parameters real;

• all errors in measured quantities at the 10% level; we believe that at the present stage

such a choice is a good compromise between the realistic case and the simplicity of

the analysis;

• the values for the masses and mixing angles at the GUT scale ∼ 1016GeV as shown

in table 4 [26], valid for tanβ = 10;

• positive signs in eqs. (6.2)–(6.3).

We performed the fit by minimizing the chi-squared function

χ2 :=
∑

i

(fi(x)− yi)

σ2
i

, (6.16)

with respect to the initial parameters x. The experimental values are denoted by yi, the

values computed using our model are fi(x), and σi are the 1-sigma deviations from the

values yi. For our fit, we have 9 different measured quantities, thus i = 1, . . . , 9. The errors

are taken to be σi = 0.1 yi, giving

χ2 = 100
∑

i

(

fi(x)− yi
yi

)2

. (6.17)

We define the convenient measure χ̂2 = χ2/9, which tells us the average σ2 deviation per

measured value. Also, we define the pulls χi = (fi(x) − yi)/σi, which tell us how many

sigma a certain quantity deviates from the measured one.

Due to the large number of parameters, the χ2 function will have many local minima in

the parameter space. We give below two such points in the parameter space, corresponding

to the best fits that were found and which we deem sufficiently good (with χ̂2 . 1). The

results are given in tables 2, 3, 4; the points in the parameter space are given in terms of

the independent parameters best suited to a numeric search (as discussed in this section) in

table 2 and in terms of the original Lagrangian parameters in table 3, while table 4 shows

the obtained results for the masses and mixing angles.

Notice from tables 2 and 3 that of the two Yukawa matrices Y27 and Y
351′

, Y
351′

was

chosen to be the diagonal one. Furthermore, the original Lagrangian parameters in table 3

are given so that it can be checked they roughly fall into the perturbative regime. A

possible exception could be the value λ8 of the first solution.

Note that the given two points are merely the best ones we found. Due to the high

dimensionality of the parameter space, we suspect there are likely many more points which
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parameter point 1 point 2

m351′ [GeV] 1.17× 1016 −4.17× 1015

c2 [GeV] 6.68× 1015 3.98× 1015

d2 [GeV] −6.78× 1015 −4.90× 1015

f1 [GeV] 4.12× 1011 −5.52× 1012

f3 [GeV] −1.84× 1016 1.38× 1016

f4 [GeV] 1.61× 1016 1.49× 1016

e4 [GeV] 5.27× 1015 −1.69× 1016

v [GeV] −7.07× 1013 8.44× 1014

w [GeV] 6.13× 1015 −1.78× 1016

λ5 −1.58× 10−3 1.50× 10−1

(Y27)11 −0.723 1.93

(Y27)12 0.703 −1.19

(Y27)22 −0.676 0.730

(Y
351′

)11 −0.371 0.733

(Y
351′

)22 0.363 −0.287

Table 2. Two example points in the parameter space, written in terms of the independent param-

eters suitable for a search.

give a comparable or a better fit. There are a number of observations that can be made

about these points in general, however, by deducing them from the formulae, comparing

the two parameter points given in the tables and through experience obtained by perform-

ing the fit:

• The parameter points are not necessarily close to each other, which also holds true

for any specific single parameter. We can see in table 2 that it is not necessary for

any parameter to be at a very specific value to obtain a good fit. The suitable areas

of parameter space thus form many disconnected regions, and no specific value can

be claimed for any parameter. In this sense, the mass formulae of the theory are not

very predictive of the original parameters.

• There is no specific mass or mixing angle, where one would consistently be getting

tension. As observed from table 4, while a specific solution might have most tension

with observation coming from a single mass or mixing angle, there are other points,

which also give a good fit and where this parameter is predicted better. In this sense

we cannot claim any tendencies in tensions of the observables.

• Imagine that in table 2 or 3 we rescale all the mass parameters with a common

factor. Such a rescaling would have no influence on the masses of the quarks and

charged leptons, which are controlled only by the EW VEVs, as can be seen from

equations (5.5)–(5.7) and equation (5.9). Rescaling would influence the neutrino

masses, however, due to the seesaw mechanism, confirmed by equation (5.8). In

principle, the rescaling factor can always be adjusted, so that the fit of the mass-

square difference of the neutrino masses m2
ν3 −m2

ν2 is exact (provided this does not
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parameter point 1 point 2

m351′ [GeV] 1.17× 1016 −4.17× 1015

m27 [GeV] −2.92× 1014 −1.64× 1015

m78 [GeV] −6.19× 1016 −5.04× 1015

λ1 −6.49× 10−1 −8.91× 10−2

λ2 5.66× 10−2 −1.24× 10−1

λ3 −1.5× 10−1 2.78× 10−1

λ4 −7.38× 10−5 −5.04× 10−4

λ5 −1.58× 10−3 1.50× 10−1

λ6 −7.59× 10−3 3.06× 10−2

λ7 −4.23× 10−1 9.55× 10−1

λ8 5.08 1.16

(Y27)11 −7.23× 10−1 1.87

(Y27)12 7.03× 10−1 −1.09

(Y27)22 −6.76× 10−1 6.30× 10−1

(Y
351′

)11 −3.71× 10−1 7.39× 10−1

(Y
351′

)12 0 0

(Y
351′

)22 3.63× 10−1 −2.58× 10−1

Table 3. Two example points in the parameter space presented in terms of the original parameters

in the superpotential.

spoil the GUT scale, or the upper bounds on neutrino masses). Thus only neutrinos

are actually sensitive to the GUT scale.

• The mass parameters are chosen to be at approximately the GUT scale, say at the

order of 1015−16GeV. If this is true for all the mass parameters, there might be

a problem with the neutrino masses. It is a well known fact that this GUT scale

is a few orders of magnitude too large compared to the seesaw scale for sufficiently

large mass differences in the neutrino sector. One can cure this problem by having

the spontaneous symmetry breaking occur in multiple stages, with a mass hierarchy

between different VEVs and the seesaw scale corresponding to one of the intermediate

stages. The gauge coupling unification in such a scenario could then be spoilt by the

particles appearing at these intermediate mass scales.

In our case, however, the number of different VEVs is large enough, so that having

one or two of the VEVs at a smaller scale does not disturb the breaking pattern. To

see this, note that to obtain sufficiently large neutrino masses, it is enough for one of

the terms in equation (5.8) to be of the proper scale, which can be achieved by simply

taking f1 or f3 to be several orders of magnitude smaller than the GUT scale (the

seesaw type I contributions). In the solutions given in table 2, we achieved sufficiently

high neutrino masses by taking the parameterf1 (and also v) to be a few orders of

magnitude below the GUT scale. As seen from the gauge boson masses in table 5,

small f1 and v do not spoil the one-stage breaking scenario; since the intermediate
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quantity experiment parameter point 1 parameter point 2

yi fi(x) χi fi(x) χi

mc 0.236 0.226 −0.432 0.205 −1.30

mt 92.2 94.0 +0.193 105 +1.38

θcb 0.0409 0.0358 −1.24 0.0378 −0.757

ms 0.013 0.0144 +1.06 0.146 +1.20

mb 0.79 0.79 +0.0021 0.781 −0.112

mµ 0.0599 0.0613 +0.241 0.0664 +1.08

mτ 1.02 0.867 −1.51 1.03 +0.056

mν3 0.135 0.0824

mν2 0.126 0.0659

(m2
ν3 −m2

ν2)10
3 2.32 2.45 +0.568 2.24 −0.325

sin2 θ23 0.386 0.343 −1.12 0.327 −1.52

χ̂2 0.76 1.03

Table 4. Table of predictions for two example point in parameter space. All charge fermion masses

are in units of GeV, while the neutrino masses are in units eV.

scales are not associated to an intermediate symmetry breaking at that scale, but are

instead purely accidental due to a carefully chosen parameter point, we do not expect

too many relevant states (apart from the singlets νc with f1 Majorana mass) to be

found at the scale f1. We noticed however the appearance of a lighter color triplet-

antitriplet pair, possibly due to the similarities between the doublet and triplet mass

matrices. Although this influences the running of the gauge couplings, we will neglect

it in view of the (presumably) large threshold uncertainties present anyway.

• A final comment on the neutrino masses: although only the difference of masses-

squared needs to be fitted, one still needs to check that the neutrino masses them-

selves are < 1 eV [27]. As seen in table 4, this condition holds true for both of our

parameter points.

7 Discussion

What we presented here is a model we believe is a good candidate for a minimal super-

symmetric renormalizable E6 GUT. Let’s see why this model can be considered as more

minimal than our previous candidate [11]. Although the total number of degrees of freedom

is now larger (78 > 27 + 27), what really counts are the number of multiplets and, even

more important, the total number of free parameters. The number of parameters in the

Higgs sector is now 11 complex minus 5 phases due to field redefinitions. Yukawa sector

adds another 3 real and 6 complex parameters. Together with one real gauge coupling we

have thus a total of 33 real parameters. This is 7 more than in the minimal SO(10) [13–15],

but still 16 less than even in the simplified truncated version of E6 in [11].
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Is there any possible low-energy signature of this model? It is often said that E6 could

have possible light extra generations, coming from remnants of the three copies of the

27F . Light vector-like fermions of the SM group could indeed emerge out of E6 if they

were associated with anomaly cancellation in a TeV-scale extra U(1). In such a setup, the

extra U(1) would be a linear combination of the two U(1)s present in the rank 6 group

E6. Phenomenology of such TeV scale E6 motivated models has been extensively studied,

see for eg. [28]. In the present setup, however, there are no intermediate U(1)s and any

light vector-like states would be accidental. In fact if we try to get such light states from

our solution, we find them hard to obtain. The question is, does the matrix for (as an

example) down quarks in eq. (5.2) allow 4 or more zero eigenvalues once we limit all v̄’s

to zero? This can in principle be obtained either by putting c2, f4 → 0 (remember that

our solution already has c1 = f5 = 0), or by imposing a vanishing determinant constraint

to Yukawa matrices. The first case points towards an SU(5) invariant vacuum,7 while the

second one constrains the Yukawa parameters and so a worse fit to data is expected. So

we conclude that such an extreme, albeit interesting situation is unlikely, at least in the

given vacuum solution. Although we cannot make the same conclusions in general, any

possibility of light states, if available, will occur due to fine-tuning in the superpotential

parameters.

Another possibility for having light states could be to have flat directions. We checked

by explicit computation that no such states are present in our solution. Although we

omit the details of this computation here, the interested reader can reconstruct the mass

matrix of the SM singlets via the all-singlet terms in the superpotential, which are given in

equations (3.5)–(3.15). If the vacuum solution is then plugged-in, one discovers 4 massless

singlet states, all of which are in fact would-be Goldstone bosons. Note that the adjoint 78

of E6 contains 5 SM singlets, while only 1 remains unbroken among the SM generators, so

the 4 massless singlet states are the would-be Goldstone bosons eaten up by the 4 broken

singlet generators. We thus conclude there are no physical massless singlet states. Other

vacua could in principle be possible: one of them is described in appendix D.

Proton decay is, as usual, quite hidden by details of superpartners’ spectra: it is hard

to disentangle the GUT and SUSY breaking information from it. Once however colliders

will (hopefully) tell us more about the low energy spectrum, this E6 theory as well as other

grand unified theories could be tested better. For the sake of completeness the forms of

the low-energy D = 5 operators are given in appendix E.

The model we presented here is the minimal known E6, although for a more convincing

proof we should satisfy three more checks.

• First, there is a possibility to redefine the charges under matter parity, so that the

27 + 27 parity is now transferred to the fermionic sector. This means that the fields

351′ + 351′ + 78 should alone break to the SM gauge group as well as allow for DT

splitting. The fermionic sector would now consists of 27aF , a = 1, . . . , 4 and 27F . The

7This can be easily seen from the expression for λ2 in (6.11): if f4 → 0, we need either e3 → 0 or e4 → 0;

both lead to an SU(5) invariant vacuum with e4, f4 → 0, see (6.3).
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Yukawa terms could be written schematically as

(

27aF
27F

)T (

Y ab
351′

〈351′〉 ma
27 + λa〈78〉

mb
27 + λb〈78〉 y351′〈351′〉

)(

27bF
27F

)

. (7.1)

The total number of parameters is now the following: 5 complex parameters come

from the Higgs superpotential, 3 phases of which can be rotated away by Higgs field

redefinitions; 4 real diagonal components are given by the only Yukawa matrix, and

8 complex and one real parameters are the off-diagonal terms; finally, 1 real gauge

coupling sums to a total of 29 real free parameters. This would be 4 real parameters

less than the model in this paper. Obviously there is no guarantee that such a model

is realistic. We plan to come back to this issue in the future.

• Second, we should study the complete three generation case, not only its two gen-

eration subsystem. Although the number of parameters seems naively large enough,

it is far from obvious that a successful fit is possible. In fact already in the two

generation case considered here we could not find a solution with vanishing χ2, in

spite of enough free parameters. However the (at least partially) successful fit of

the the minimal SO(10) analogous case [19, 20, 29–39] with 10 and 126 (instead of

27 and 351′) Yukawa couplings make us feel optimistic. Notice also that the usual

obstruction of the neutrino mass either too low or unification violated [16–19] is here

avoided as shown in section 6.

• Third, the theory is not asymptotically free and has a huge gauge coupling beta

function, more precisely 159. This means, similarly as in our previous E6 model, or

the minimal renormalizable supersymmetric SO(10), that a Landau pole is close to

the GUT scale and so the theory itself may be already in the non-perturbative regime.

An indication of problems being present already at the matching scale MGUT can be

found in the calculation of the threshold corrections [40, 41]. The general problem of

having large numbers of degrees of freedom (in our case through large representations)

and the associated non-perturbativity is a problem, which is far from easy to solve

and well beyond the purpose of this paper, although some progress has been made

recently [42, 43] based on previous works on Seiberg dualities. We hope to come back

to this very interesting issue soon.

But even in the case the model presented here is the minimal one, other vacua could

still be realistic with in principle different predictions.
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A Gauge boson masses

We compute in this appendix the expression for the gauge boson masses, so that we can

confirm that solutions really break into the SM group. We write the mass terms in the

Lagrangian as

Lmass = g2A a
µM

abAµ b, (A.1)

where g is the E6 coupling constant and the matrix Mab is computed via

Mab :=
∑

i

Tr
(

(

t̂a〈φi〉
)†

(

t̂b〈φi〉
))

. (A.2)

The sum is over all representations containing VEVs (contributions come from the repre-

sentations of the breaking sector), while t̂a denotes the action of the a-th generator on the

representation φi. The mass matrix becomes block diagonal if we choose an appropriate

basis (indices a, b), so that the basis gauge bosons have well defined transformation proper-

ties under the SM group (note that some of these states are complex). We omit the details

of this calculation and only give the results, collected in table 5.

B Particle identification

In this appendix, we write the definitions of various states needed in the paper. The SM

singlet VEVs were already defined in table 1. We supplement the list of definitions with

tables 6 and 7. In table 6 we define the doublets (1, 2,+1/2), antidoublets (1, 2,−1/2),

triplets (3, 1,−1/3) and antitriplets (3̄, 1,+1/3); these definitions are needed for DT split-

ting. In table 7, we define the weak triplets (1, 3,±1) relevant for type II seesaw. All the

states in the two-index 351′ can be specified by writing the basis states of this represen-

tation by using two labels of the fundamental 27. In this notation, both labels are SM

representation in the 27, assumed to have all the color and weak indices contracted in the

correct manner to obtain the desired SM state in the 351′. More details on this notation

can be found in [11].

C DT splitting and Goldstone modes

Analysis of the DT splitting in the group E6 is complicated by the fact that a vacuum

breaking to the SM group will automatically cause a doublet and a triplet mode to be

massless. These massless modes are would-be Goldstone bosons: E6 → SM causes the

breaking of 78− 12 = 66 generators, with a doublet-antidoublet and triplet-antitriplet pair

among them. One possible procedure to compute the condition for an extra massless mode

in a matrix M , for which detM = 0, is to take

limε→0

(

det(M − εI)/ε
)

〈e|f〉 = 0, (C.1)

where e and f are the already present left and right null-eigenvectors ofM , respectively. We

present below, however, a simplified procedure of computing the conditions of DT splitting
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SO(10) ⊃ SU(5) ⊃ SM ⊃ (mass)2/g2

45 24 (8, 1, 0) 0

45 24 (1, 3, 0) 0

45 24 (1, 1, 0) 0

45 24 (3, 2,+5
6
) 5

6

(

|e4|2 + |f4|2
)

(3, 2,−5
6
)

45 10 (3, 2,+1
6
) 4

15
|v|2 + 1

2
|c2|2 + 1

2
|d2|2

10 (3, 2,−1
6
) +|e1|2 + |f1|2 + 5

6
|e4|2 + 5

6
|f4|2

45 10 (3, 1,−2
3
) 4

15
|v|2 + 1

2
|c2|2 + 1

2
|d2|2 + |e1|2 + |f1|2

10 (3, 1,+2
3
)

45 10 (1, 1,+1) 4
15
|v|2 + 1

2
|c2|2 + 1

2
|d2|2 + |e1|2 + |f1|2

10 (1, 1,−1)

16 10 (3, 2,+1
6
) 1

60
|
√
15w−v|2+|e3|2+|f3|2+ 1

2
|e4|2+ 1

2
|f4|2

16 10 (3, 2,−1
6
)

16 10 (3, 1,−2
3
) 1

60
|
√
15w−v|2+|e3|2+|f3|2+ 1

2
|e4|2+ 1

2
|f4|2

16 10 (3, 1,+2
3
)

16 10 (1, 1,+1) 1
60
|
√
15w−v|2+|e3|2+|f3|2+ 1

2
|e4|2+ 1

2
|f4|2

16 10 (1, 1,−1)

16 5 (3, 1,+1
3
) 1

4
|w +

√

3/5 v|2 + 1
2
|c2|2 + 1

2
|d2|2 + |e1|2 +

|f1|2+
16 5 (3, 1,−1

3
) +|e3|2 + |f3|2 + 1

2
|e4|2 + 1

2
|f4|2

16 5 (1, 2,−1
2
) 1

4
|w +

√

3/5 v|2 + 1
2
|c2|2 + 1

2
|d2|2 + |e1|2 +

|f1|2+
16 5 (1, 2,+1

2
) +|e3|2 + |f3|2 + 1

2
|e4|2 + 1

2
|f4|2

45

1

1

1

(1, 1, 0)

(1, 1, 0)

They mix:

2

3

(

(A+B)±
√

(A+B)2 − 15

4
AB

)

,

A ≡ 4|e3|2 + 4|f3|2 + |e4|2 + |f4|2
B ≡ 4|e1|2 + 4|f1|2 + |c2|2 + |d2|2

16

16

1

1

(1, 1, 0)

(1, 1, 0)

They mix:

1

2

(

(C+D+|F |2)±
√

(C −D)2 + 16|E|2
)

,

C ≡ |c2|2 + 2|e1|2 + 2|f3|2 + |e4|2
D ≡ |d2|2 + 2|f1|2 + 2|e3|2 + |f4|2
E ≡ e1e3

∗ + f1
∗f3

F ≡
√

5
6
v −

√

1
2
w

Table 5. Masses-squared of gauge bosons in SM representations using the ansatz c1 = d1 = e2 =

f2 = e5 = f5 = u1 = u2 = y = 0.
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label E6 ⊇ SO(10) ⊇ SU(5) label E6 ⊇ SO(10) ⊇ SU(5) doublet

triplet

D0, T 0 78 ⊇ 16 ⊇ 5 D0, T0 78 ⊇ 16 ⊇ 5 1√
12
(t6

L
± i t7

L
)

1√
12
t̄α

31, 1√
12
tα31

D1, T1 27 ⊇ 10 ⊇ 5 D1, T 1 27 ⊇ 10 ⊇ 5 L′c

d′

D2, T 2 27 ⊇ 10 ⊇ 5 D2, T2 27 ⊇ 10 ⊇ 5 L′

d′c

D3, T 3 27 ⊇ 16 ⊇ 5 D3, T3 27 ⊇ 16 ⊇ 5 L

dc

D4, T4 351′ ⊇ 10 ⊇ 5 D4, T 4 351′ ⊇ 10 ⊇ 5 Qdc − Lec − 4L′cνc

QL− ucdc − 4d′s

D5, T 5 351′ ⊇ 10 ⊇ 5 D5, T5 351′ ⊇ 10 ⊇ 5 Quc − Lνc − 4L′s

ucec − dcνc +QQ− 4d′cs

D6, T 6 351′ ⊇ 16 ⊇ 5 D6, T6 351′ ⊇ 16 ⊇ 5 −Ls

−dcs

D7, T 7 351′ ⊇ 126 ⊇ 5 D7, T7 351′ ⊇ 126 ⊇ 5 −Quc − 3Lνc

−ucec − 3dcνc −QQ

D8, T8 351′ ⊇ 126 ⊇ 45 D8, T 8 351′ ⊇ 126 ⊇ 45 Qdc + 3Lec

QL+ ucdc

D9, T9 351′ ⊇ 144 ⊇ 5 D9, T 9 351′ ⊇ 144 ⊇ 5 −Qd′c + 4L′cνc + L′ec

−QL′ + ucd′c + 4d′νc

D10, T 10 351′ ⊇ 144 ⊇ 5 D10, T10 351′ ⊇ 144 ⊇ 5 −L′νc

−d′cνc

D11, T11 351′ ⊇ 144 ⊇ 45 D11, T 11 351′ ⊇ 144 ⊇ 45 −dd′c − 3e′ec

−QL′ − ucd′c

T 12 351′ ⊇ 126 ⊇ 50 T12 351′ ⊇ 126 ⊇ 50 /

2ucec −QQ

Table 6. Identification of doublets and triplets in the representations of the Higgs sector.

label E6 ⊇ SO(10) ⊇ SU(5) p.n. label E6 ⊇ SO(10) ⊇ SU(5) state

∆1 351′ ⊇ 126 ⊇ 15 L L ∆1 351′ ⊇ 126 ⊇ 15 L̄ L̄

∆2 351′ ⊇ 144 ⊇ 15 L L′ ∆2 351′ ⊇ 144 ⊇ 15 L̄ L̄′

∆3 351′ ⊇ 54 ⊇ 15 L′L′ ∆3 351′ ⊇ 54 ⊇ 15 L̄′L̄′

∆4 351′ ⊇ 54 ⊇ 15 L′cL′c ∆4 351′ ⊇ 54 ⊇ 15 L̄′cL̄′c

Table 7. Induced VEVs in weak triplet scalars (1, 3,±1) leading to seesaw type II.

in the presence of a Goldstone mode. Its advantages are that it is computationally less

intensive and that no issues with singularities, such as 〈e|f〉=0, arise in the procedure.

Suppose we use a generic label A for an n × n complex matrix. Although the true

scalar mass-squared matrix is in fact the hermitian and positive definite matrix A†A, it

is more efficient to work with A. A might not necessarily be diagonalizable, but it has a
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singular value decomposition. The presence of a zero eigenmode in A†A implies

detA = 0. (C.2)

We will rotate this matrix into a basis, where the left and right Goldstone modes corre-

spond to the first basis vector of the rows and columns, respectively. We first write A in

(1 + (n− 1))× (1 + (n− 1)) block form:

A =

(

m mR
†

mL M

)

, (C.3)

where boldface small letters denote n−1 column vectors, and boldface capital letters denote

matrices. Since A has a massless mode, there exist left and right null-eigenvectors ~e0 and
~f0, respectively:

A†~e0 = 0, A~f0 = 0. (C.4)

Providing we choose the phases such that the first components of ~e0 and ~f0 are positive,

we define (n− 1) column vectors e and f via

~e0
|~e0|

=:

(√
1− e†e

e

)

~f0

|~f0|
=:

(√
1− f †f

f

)

. (C.5)

Writing the null-eigenvector conditions in equations (C.4) in block form, we get 3 indepen-

dent equations (two (n− 1)-vector, 1 scalar):

√

1− e†e mR +M† e = 0, (C.6)
√

1− f †f mL +M f = 0, (C.7)

m
√

1− e†e
√

1− f †f − e†Mf = 0 (C.8)

These can for example be used to define m, mL and mR in terms of M, e and f . We now

define a n× n unitary matrix U(x), whose form will be useful for rotating the basis of A:

in block form, U is written as

U(x) :=

(√
1− x†x x†

−x Λ(x)

)

, (C.9)

where

Λ(x) := I − xx†

1 +
√
1− x†x

. (C.10)

– 28 –



J
H
E
P
0
5
(
2
0
1
5
)
1
0
8

It is possible to check explicitly that U is indeed unitary and that the following rela-

tions hold:

U(x)U(x)† = I, (C.11)

U(x)−1 = U(x)† = U(−x), (C.12)

Λ(x)† = Λ(x) = Λ(−x), (C.13)

Λ(x)−1 = I +
xx†

√
1− x†x (1 +

√
1− x†x)

, (C.14)

detΛ(x) = 1− x†x

1 +
√
1− x†x

. (C.15)

The properly rotated matrix A, denoted by A′, is then by explicit computation equal to

A′ := U(e)AU(f)−1 =

(

0 0†

0 Mrot

)

, (C.16)

where

Mrot = Λ(e)−1MΛ(f)−1. (C.17)

We have indeed rotated into a basis, where the first column and row correspond to the

zero eigenmodes. Crucially, the formula for the rotated (n− 1)× (n− 1) block has only

one term, where a simple biunitary rotation is performed on the original block M; another

zero-eigenmode can now be simply imposed by taking detMrot = 0. But since we now have

detM = detMrot det
(

Λ(e)Λ(f)
)

. (C.18)

it is sufficient to impose detM = 0. The only possible caveat is the possibility that either

detΛ(e) = 0 or detΛ(f) = 0; considering equation (C.15) and that e and f are parts of

normalized vectors, this can happen only if e†e = 1 or f †f = 1, which would imply that the

zero modes of A have a zero component in the direction of the first vector of the original

basis. But since the eigenvalues of A†A (the determinant of A†A − λI) do not change if

we rearrange the rows or the columns of A, we can always rearrange the original basis so

that we take the i-th row and the j-th column to be the preferred one for the left and right

null-eigenmodes, respectively.

The main result thus states the following: if an n × n complex matrix A has a zero

mode present, an additional zero mode is obtained by demanding the (i, j)-th minor of A to

vanish (the subdeterminant of A, when the i-th row and j-th column are removed), where

the indices i and j can be arbitrarily chosen, as long as the left and right null-eigenvectors

of A have respectively a nonzero i-th and j-th component.

D An alternative vacuum

The Yukawa fit presented in this paper is based on the vacuum computed in section 3. Since

we have not been able to obtain (yet) a full classification of all vacua in this E6 model,

we cannot conclude much about the broader possibilities of suitable vacua (especially the

Yukawa sector), but we were able to find one other alternative Standard Model vacuum.

– 29 –



J
H
E
P
0
5
(
2
0
1
5
)
1
0
8

We can obtain it by taking the following ansatz of vanishing VEVs:

c2 = d2 = e5 = f5 = e2 = f2 = u1 = u2 = y = 0. (D.1)

This ansatz is similar to the ansatz of the original vacuum, but the vanishing of e5, f5
is now paired up with the vanishing of c2, d2 instead of c1, d1. For the purposes of this

appendix, we omit the specific form of the solutions, as well as other details, such as the

check that the unbroken group is indeed that of the Standard Model.

Looking at the Yukawa terms in equation (5.2), we see that the alternative vacuum with

c2 = f5 = 0 decouples the 16F from the 10F of SO(10) (in leading order of mEW/MGUT).

The heavy vector-like exotics (in the down-quark sector and charged lepton sector) in

the fermionic 27F are thus purely in the 10F part. The low-energy mass matrices are thus

simply those for the 16F , the analysis of the Yukawa sector becomes linear, and numerically

one can make use of the fit for the minimal supersymmetric SO(10) model [19, 20, 29–39]

with the Higgs in the 10 and 126 coupling to fermion pairs in 162F .

The intriguing possibility of this alternative vacuum, which recovers the SO(10) limit,

is somewhat marred by issues in DT splitting. Given the ansatz in equation (D.1), the

doublet and triplet mass matrices become block diagonal with the following block form

(with the basis of the barred states rearranged in the same order as for unbarred):
[

D0 D3 D6 D9 D10 D11

]

,
[

D1 D2 D4 D5

]

,
[

D7 D8

]

, (D.2)
[

T0 T3 T6 T9 T10 T11

]

,
[

T1 T2 T4 T5

]

,
[

T7 T8 T12

]

. (D.3)

The Goldstone modes, for example, turn out to be in the first block. The problem now

is, however, that a fine-tuning is block specific: the light Higgs lives only in one of the

blocks. We see from equation (5.2) that the low-energy fermionic mass matrices MT
D and

ME are now controlled solely by the EW VEVs v̄2, v̄4 and v̄8. In the v̄8 = 0 case, we get

the unwanted mass relation MT
D = ME , but D8 is in a separate block compared to D2 and

D4. A realistic pattern of fermion masses would thus require a double fine-tuning: one in

the second block and one in the third block. Due to this feature, we consider this vacuum

to be of less interest: beside the aesthetically unpleasing extra fine-tuning, the additional

light Higgs pair H ′
u +H ′

d pair gives large threshold corrections in the running of the gauge

couplings, possibly spoiling unification. The model contains many heavy states though, so

the situation regarding the RGE is not clear-cut. For determining the feasibility of this

vacuum, further investigation would be necessary.

We conclude this section of the appendix with a brief elaboration on which kind of

ansatz is suitable for a good vacuum, i.e. we motivate equations (3.28)–(3.29) and (D.1).

The considerations will be very similar to the ones in the E6 breaking sector, where the 78

is omitted [11] and a full classification of vacua is known. Suppose we look for a specific

vacuum solution: we want it to be as simple as possible (it has as many vanishing VEVs

as possible), yet it needs to be able to break E6 to the SM group. Due to the D-terms

in SUSY, we assume a conjugate-symmetric ansatz, where a vanishing VEV in 27 or 351′

implies that the corresponding (conjugate) VEV in the 27 or 351′ also vanishes, and vice

versa. First, we identify the SU(5) breaking VEVs from table 1: e4, e5, f4, f5 and y. The
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Fy equation of motion automatically implies y = 0. Since SU(5) needs to be broken, either

the pair e4, f4 is non-vanishing, or the pair e5, f5. Considerations of alignment symmetry

in [11] imply that the choice is irrelevant, since these pairs are exchanged if one changes

the embedding of SO(10) in E6, such that the two 5̄s of SU(5) in the 27 are exchanged.

Therefore one pair needs to be necessarily non-zero, while we can try a vanishing ansatz

for the other pair. In the 27 + 27 part of the breaking sector, the pairs c1, d1 and c2, d2
also get exchanged under alignment symmetry; we assume one pair to be non-zero (such

that the 27+ 27 part does indeed contribute to the symmetry breaking), but we can again

try setting the other pair to vanish in the simple ansatz. The choice of the vanishing pair

now points to either the scenario of the main vacuum of this paper, or the the alternative

vacuum presented in this appendix. The remaining part of the ansatz, e2 = f2 = 0 (which

transforms into itself under alignment symmetry), is suggested from the solutions in the

model without the 78, while u1 = u2 = 0 then follows as a consequence of the F -terms.

We finish the ansatz discussion with the following points:

• The main vacuum solution of the paper follows from the ansatz, which is a direct

extension of the solution ansatz in the absence of the 78 [11]. There, the EOMs

were simpler, and this ansatz actually represented the most general SM solution once

gauge freedom and the F -term equations were accounted for. Note that only the

ansatz can be extended, the main solution itself is not merely an extension of the

solution when the 78 is omitted.

• The alternative ansatz leads to a SM vacuum only after the 78 was included; there

is no such option if the 78 is omitted.

• A complete classification would tell us, whether still other nonequivalent vacua exist,

where the VEVs are non-vanishing. If the 78 is omitted, such vacua did not exist, but

we expect this situation to change due to more terms and more VEVs in the EOM.

E Proton decay

For completeness let’s summarize the analysis of D = 5 proton decay in this model, similar

to the analysis done in [11], obtaining analogous results. The low-energy operators in the

superpotential, which are relevant for proton decay, are

W
∣

∣

proton
= −

[

(

C
inA
1 − C

′imA
1 (XT )m

n
)[

(1 +X∗XT )−1/2
]

n
j (M̂−1

T )AB CklB
1

]

QiL̂jQkQl

−
[

(

C
njA
2 +

2

3
C

′mjA
2 (XT )m

n
)[

(1 +
4

9
X∗XT )−1/2

]

n
i (M̂−1

T )AB CklB
2

]

d̂ciu
c
ju

c
ke

c
l ,

(E.1)

with the X defined in equation (5.9) and the mass matrix of MT as already defined in

equation (4.2) of section 4. Note that the MT has a zero eigenmode corresponding to the

would-be Goldstone, so its inverse cannot be directly computed; we instead write M̂−1
T =

limM→∞(MT +M efT )−1, with e and f being the left and right column-eigenvectors of

MT , respectively.
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The C coefficients are computed to be

2 CijA
1 = −Y ij

27 δ
A
1 +

1

2
√
10

Y ij

351′
δA5 −

1

2
√
6
Y ij

351′
δA7 −

1

2
√
3
Y ij

351′
δA12, (E.2)

2 CijA
2 = −Y ij

27 δ
A
1 +

1

2
√
10

Y ij

351′
δA5 −

1

2
√
6
Y ij

351′
δA7 +

2

2
√
3
Y ij

351′
δA12, (E.3)

2 C
ijA
1 = −Y ij

27 δ
A
2 +

1

2
√
10

Y ij

351′
δA4 +

1

2
√
2
Y ij

351′
δA8, (E.4)

2C
′ijA
1 = Y ij

27 δ
A
3 −

1

2
√
10

Y ij

351′
δA9 −

1

2
√
2
Y ij

351′
δA11, (E.5)

2 C
ijA
2 = −Y ij

27 δ
A
2 +

1

2
√
10

Y ij

351′
δA4 −

1

2
√
2
Y ij

351′
δA8, (E.6)

2C
′ijA
2 = Y ij

27 δ
A
3 −

1

2
√
10

Y ij

351′
δA9 +

1

2
√
2
Y ij

351′
δA11. (E.7)

We see that the C-coefficients are the same as the coefficients in [11], if we cross out

the contributions from the extra Yukawa term in that model. More specifically, notice that

there are no A = 0 contributions from triplets/antitriplets in the new representation 78,

since the 78 is not present in the Yukawa sector (it does not couple to two 27F ’s).

Once the model parameters are fit to the experimental values of the fermion masses

and mixings, the four-fermion amplitude mediating proton decay is fixed and thus poten-

tially dangerous, but it can always be suppressed by implementing a split supersymmetric

scenario without changing any other conclusion.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[30] B. Bajc, G. Senjanović and F. Vissani, How neutrino and charged fermion masses are

connected within minimal supersymmetric SO(10), PoS(HEP2001)198 [hep-ph/0110310]

[INSPIRE].

[31] T. Fukuyama and N. Okada, Neutrino oscillation data versus minimal supersymmetric

SO(10) model, JHEP 11 (2002) 011 [hep-ph/0205066] [INSPIRE].
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