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Abstract: Neutrinoless double beta decay allows to constrain lepton number violating

extensions of the standard model. If neutrinos are Majorana particles, the mass mecha-

nism will always contribute to the decay rate, however, it is not a priori guaranteed to be

the dominant contribution in all models. Here, we discuss whether the mass mechanism

dominates or not from the theory point of view. We classify all possible (scalar-mediated)

short-range contributions to the decay rate according to the loop level, at which the corre-

sponding models will generate Majorana neutrino masses, and discuss the expected relative

size of the different contributions to the decay rate in each class. Our discussion is general

for models based on the SM group but does not cover models with an extended gauge. We

also work out the phenomenology of one concrete 2-loop model in which both, mass mech-

anism and short-range diagram, might lead to competitive contributions, in some detail.
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1 Introduction

Experimental limits on half-lives of neutrinoless double beta decay (0νββ) give stringent

bounds on many Lepton Number Violating (LNV) extensions of the Standard Model (SM);

for a recent review see, for example [1]. Recent experimental results give limits for 76Ge [2]

and 136Xe [3–5] in excess of 1025 ys, which place an upper limit on the effective Majorana

mass 〈mν〉1 of the order of roughly 〈mν〉 <∼ (0.2 − 0.4) eV, depending on calculations of

nuclear matrix element [6–8].

However, from the theoretical point of view it is not a priori clear, whether the mass

mechanism gives indeed the dominant contribution to the double beta decay rate, and

many models have been discussed in the literature where this might not be the case. The

classical example appears in left-right (LR) symmetric extensions of the SM [9, 10] and

also in R-parity violating (RP/ ) supersymmetric theories with both trilinear RP/ [11, 12] and

bilinear RP/ [13, 14] terms. Furthermore, leptoquark models [15] and more recently models

with colour octet scalars [16] or colour sextet diquarks [17–19] have been discussed.

1〈mν〉 is defined as 〈mν〉 =
∑
j U

2
ejmj , where the sum runs over all light neutrinos. This is equivalent to

the (e, e) entry of the Majorana neutrino mass matrix in the basis where the charged lepton mass matrix

is diagonal.
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Given that there is such a large list of possible lepton number violating models, is

it possible to determine which contribution to the 0νββ decay rate is the dominant one?

— Perhaps, if double beta decay were to be observed in the next round of experiments

and either KATRIN [20] or cosmological data [21–23] also find hints for a neutrino mass

scale of the order of, say, somewhat larger than O(0.1) eV, one could claim on the basis of

minimality that the mass mechanism 〈mν〉 gives (at least) the most important contribution

to the total decay rate. However, once upper limits on the total neutrino mass (
∑
mν)

placed from cosmology drop below the level of O(0.1) eV, the question becomes exceedingly

difficult to answer.

In that case, from the experimental point of view, there remain only a few possibilities

to make progress. For example, measurements of the angular correlation between the

two electrons from 0νββ [10, 24, 25] or measuring double beta plus decays [26] offer the

possibility to identify the Lorentz structure (equivalently the chiralities of the emitted

electrons) of the LNV processes. However, realistically the SuperNEMO proposal [25]

could only accumulate the necessary statistics to identify the Lorentz structure, if the

half-live of 82Se is below 1026 ys, while there yet exists no experimental proposal with a

sufficient sensitivity for 0νβ+/EC decays to make use of the ideas discussed in [26].

From the theoretical point of view, as discussed in [27, 28], the amplitude of 0νββ

decay can be divided into a long-range and a short-range part. Here, short-range means

that all particles appearing in the diagrams for double-beta decay are heavier than the

nuclear Fermi scale, i.e. O(0.1) GeV. Current limits from 0νββ decay then correspond to

lower limits on the effective scale ΛLNV of lepton number violation,

ΛLNV ≡
(
m4
SmF

g4
eff

)1/5

>∼ (1− 3) TeV, (1.1)

where geff is some mean of the couplings appearing in the diagram and mS and mF are

the masses of the fields that mediate the 0νββ process, see the next section for details.

This mass scale is testable, at least in principle, at the LHC, and the combination of future

LHC limits (or a possible discovery, to express it in a more optimistic way) and double

beta decay data might allow to test many, but maybe not all, of the possible short-range

diagrams that contribute to the decay rate [29, 30].

In this paper we take a different approach and study the question, whether the mass

mechanism is dominant or not, from a purely theoretical point of view. As described above,

current and next generation 0νββ decay experiments will test LNV interactions at the TeV

scale. Such TeV-scale LNV interactions, on the other hand, appear also in the context of

radiative neutrino mass models. In other words, a new physics (short-range) contribution

to 0νββ decay will always also produce a non-zero neutrino mass. In this paper we discuss

the relation between possible models for short-range contribution to 0νββ decay and the

neutrino mass-generation mechanism. Our study is based on the complete list of possible

decompositions of the d = 9 (short-range) double beta decay operator given in [31]. The

general decomposition list given in [31] is equivalent, in principle, to defining all models

which can give a contribution to double beta decay, and the black box theorem, see below,

guarantees that all these models will produce Majorana neutrino masses at or below four-
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Figure 1. Schematic explanation of the black box theorem: the theorem guarantees that, once

0νββ decay has been observed, Majorana neutrino masses will be generated, independent of the

underlying model, at the latest at the four-loop level. By itself, this theorem does not guarantee

that the mass mechanism is the dominant contribution to 0νββ decay.

loop order. Our approach therefore basically consists in classifying all the possible models

contributing to 0νββ decay with respect to the loop level at which they will generate

Majorana neutrino masses. We can then discuss the expected size of the two contributions

to 0νββ: (1) the d = 9 short-range contribution Od=9 and (2) the contribution from the

neutrino mass mechanism 〈mν〉 which is radiatively induced in the corresponding models

and conclude model-by-model, which one of the two is expected to dominate. Given that

the list of [31] is tree-level complete, our discussion is quite general and covers actually

models of neutrino mass from tree-level models to 4-loop models.

Before entering into the details of our work, let us briefly comment on the well-known

relation between short-range 0νββ contributions and neutrino masses, i.e., the black box

theorem [32].2 The theorem guarantees that, once 0νββ decay has been observed, neu-

trinos are Majorana particles, see figure 1. However, the black box theorem does not

demonstrate that the mass mechanism dominates 0νββ, since it only guarantees neutrino

masses at the level of four-loop. Obviously, a four-loop diagram, additionally suppressed

by m2
um

2
dm

2
e/Λ

5
LNV, can produce only tiny neutrino masses, which are many orders of mag-

nitude below of what is required to explain oscillation data [34]. Nevertheless, the black

box theorem, together with the general decomposition of the d = 9 double beta decay op-

erator published in [31], defines the basic idea of our current paper. Indeed we find that all

“models” listed in [31] produce neutrino masses at or below the 4-loop order as demanded

by the theorem.

We comment that our work has some overlap with [35, 36] and [37]. Babu & Leung [35]

have written down all SM invariant ∆L = 2 operators from dimension-5 (d = 5, the well-

known Weinberg operator [38]) to d = 11 and showed the relation between the effective

operators and neutrino masses on the basis of black-box like loop diagrams. The authors

of [35, 36] discuss then possible ultra-violet completions for several example operators and

give estimates for the scales ΛLNV, for which those operators can explain current neutrino

2In [33] an extension of the black box mechanism with flavour violation has been constructed.
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data. The authors of [37] provide a systematic study of these operators, for one-loop and

two-loop neutrino mass models, and discuss also which of these could possibly be tested at

the LHC. However, our discussion differs from these papers in that we are mostly interested

in double beta decay and its relation to neutrino mass.

We mention also the work of [39], which pursues the link between the short-range

contribution to 0νββ and neutrino masses, but takes a different approach from ours. The

authors focus on three types of LNV effective interactions which consist only of leptons

and Higgs doublets, and list the models in which those LNV interactions simultaneously

drive both the new physics contribution to 0νββ and neutrino masses. The main difference

between [39] and our work is that it is assumed in [39] that new physics resides in the

leptonic sector only.

In our classification, we also rediscover several models discussed in the literature pre-

viously, like for example leptoquark models [15], which can give 1-loop neutrino masses as

discussed in [40] or 2-loop neutrino masses, as in the model of [19] or the one in [41]. We do

not cover, however, the possible contributions from light sterile neutrinos. There exists a

vast amount of papers on this subject in the literature already [42–54] and we have nothing

new to add on this particular subject.

Since neutrino mass models must not only produce the correct absolute values of neu-

trino mass, but also reproduce the observed flavour structure of the neutrino mass matrix,

one also has to pay attention to constraints from flavour physics observables. In [55] the

authors applied the hypothesis of “minimal flavour violation” (MFV) to effective opera-

tors that contribute to 0νββ and found that the MFV assumption constrains the effective

operators to be smaller than the detectable level. In this work, we do not adopt any such

theoretical assumption on the flavour structures of the parameters in the models. Instead

we simply consider bounds on lepton flavour violating observables as constraints on model

parameters. We believe this to be the correct approach since any of the “exotic” contribu-

tions to 0νββ decay requires the introduction of new scalars, not present in the SM, with

their own Yukawa interactions with SM fermions. Thus the whole concept of MFV is not

very well funded in any of the models of interest for 0νββ decay.

A few disclaimers might also be in order here. Our analysis concentrates on the true

d = 9 operator, i.e. it covers only the short range part of the 0νββ amplitude. Our results

thus do not cover, for example, the long-range diagrams of R-parity violating SUSY [56, 57]

or leptoquark models [15]. Also, we limit ourselves to scalar exchange, thus models with a

coupling between new scalars and the SM gauge bosons, such as [58, 59] are not considered.

Also, this restrictions implies that we do not cover models with an extended gauge group

either, especially we do not discuss models with left-right symmetry. And, finally, the list

of decompositions in [31] is complete only at tree-level. Thus, we do not consider cases in

which the neutrino mass is generated at some higher loop level, while the 0νββ amplitude

appears at one-loop order, as for example in the recent papers [60, 61].

The rest of this paper is organised as follows. At the beginning of section 2, as a

preparation, we will summarise the main results of [31] and discuss some generalities useful

for the latter parts of the paper. We will then discuss the classification of the different

possible models and estimate in each case the relative size of the contribution from the

– 4 –
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mass mechanism and the short range part of the amplitude. In section 3, we will discuss

one concrete two-loop model of neutrino mass in more detail. Section 4 summarises and

discusses our main findings. Tables with lists of the different models, classified as described

in section 2 are deferred to the appendix.

2 Setup and classification

In this section, we classify neutrino mass models based on the decomposition of the d = 9

0νββ effective operators, according to the number of loops in the resulting neutrino mass

diagrams. In each class, we will compare the size of the two contributions to the 0νββ: (i)

d = 9 operator itself, and (ii) the mass mechanism 〈mν〉 induced by the d = 9 operator.

This classification therefore allows to identify those models, for which one can expect non-

standard contributions (beyond the ordinary mass mechanism) to be important for 0νββ

decay. Note, that 〈mν〉, is equivalent to the e-e entry in the neutrino mass matrix, (Mν)ee,

in the basis where the charged lepton mass matrix is diagonal. Thus, in this section we

concentrate on the comparison of short-range contributions to the size of this entry in (Mν).

Of course, a complete fit to all neutrino data will need to take into account also all other

entries in (Mν). A specific example, how this can be done and the additional constraints

from both, oscillation data and lepton flavour violating decays, is discussed in section 3. In

the discussion in this section, we always keep generation indices in the unknown couplings

of the different models. Other indices could be constrained combining double beta decay

with, for example, oscillation data. A specific example for this is worked out in section 3.

2.1 Generalities

The short-range double beta decay operator

Od=9 ∝ ūū dd ēē (2.1)

can be generated at tree-level via only two topologies shown in figure 2. The bosons

(depicted with dashed lines in the diagrams) in these topologies could be either scalars

or vectors, but we will consider only scalar exchange here. Assigning the outer fermions

with either the left (“L”) or the right (“R”) chirality in all possible permutations allows to

derive the complete list of “decompositions” (or proto-models) that can contribute to the

0νββ decay amplitude at tree level [31]. The fermion propagator in topology-I contains

two terms,
p/ +mψ

p2 −m2
ψ

, (2.2)

but in the short-range part of the amplitude the first term is suppressed relative to the

second by a factor of p/ /mψ ' pF /mψ, where pF is the typical Fermi momentum in

the nucleus and the mass mψ is suppossed to be larger than O(100) GeV. Considering

then only decompositions which pick the mass term from the propagator results in a total

of 135 possible decompositions for Topology-I (T-I in the following), while there are 27

decompositions in Topology-II (T-II), if we limit ourselves to scalar exchange [31]. For

tables showing the different decompositions see the appendix.

– 5 –
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Figure 2. The two possible tree-level topologies contributing to the 0νββ decay rate. The outer

lines represent the six SM fermions, while for the virtual particles appearing in the inner lines we

consider only scalar-fermion-scalar (left, topology-I) and scalar-scalar-scalar (right, topology-II).

Babu & Leung [35] have listed ∆L = 2 operators from d = 5 to d = 11. Among the

d = 9 operators in their list, the following five are relevant for double beta decay:

O11 = L̄L̄Q̄dRQ̄dR, O12 = L̄L̄uRQuRQ, O14 = L̄L̄uRQQ̄dR, (2.3)

O19 = L̄eRQ̄dRuRdR, O20 = L̄eR uRQuRdR.

Here, we have suppressed the indices of generation, SU(3)c, SU(2)L, and Lorentz spinor,

which are contracted appropriately. In the list of decompositions shown in [31], there

appears also one operator not given in [35], which is3

O− = eR eR uRdRuRdR. (2.4)

As the black box theorem demonstrates, one can obtain the Weinberg operator by con-

necting the quark legs in these effective operators with the SM Yukawa interactions. From

the effective operator point of view it seems that neutrino masses are generated at 2-loop

level from O11, O12 and O14. The operators O19 and O20 need an additional SM Yukawa

interaction with a charged lepton to generate a neutrino mass term, thus they end up

with 3-loop diagrams. The operator O− leads to neutrino masses only at the 4-loop level,

which is equivalent to the original black box diagram. However, the classification of the

neutrino mass models with respect to the number of loops, which we discussed in the intro-

duction, is modified from this naive expectation, once the decomposition of the operators

are specified. In fact, as shown below, many decompositions of the operators in eq. (2.3)

contain automatically the particle content (and interactions) such that neutrino masses are

generated at lower order, i.e., both tree-level and 1-loop neutrino mass models are found.

And, surprisingly, also the opposite case exists: if we restrict ourselves to decomposing

the operators only with scalar and fermion mediators, none of the decompositions of the

operator O14 generates a genuine neutrino mass diagram at the 2-loop level. We will come

back to this important point later in more detail. Genuineness is one of the key concepts

in our classification method. The term, genuine n-loop neutrino mass model, is defined as

3As discussed below, this operator induces neutrino mass only at the four-loop level. Probably for that

reason it was neglected in [35].
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dR

L(eL)

dR

Q(uL)

L(eL)

S1,2,1/2 S1,2,−1/2ψ1,1,0

Q(uL)

〈S1,2,1/2〉 〈S1,2,1/2〉

L(νL) L(νL)

ψ1,1,0

Figure 3. To the left: diagram for 0νββ decay via charged scalar exchange for Babu-Leung

operator O11 (BL#11). To the right: tree-level neutrino mass generated via seesaw type-I, using

the same vertices as in the diagram on the left. Here and in all Feynman diagrams below, arrows

on fermion lines indicate the flow of particle number, not the chirality of the fermion.

the model in which the neutrino mass term is generated at the n-loop level and for which,

simultaneously, diagrams with loop level lower than n are guaranteed to be absent, see [62]

for more details.

2.2 Tree-level neutrino mass models

Let us start with a rather trivial example, illustrated in figure 3, in which the d = 9

contribution to 0νββ is related to the Majorana neutrino mass at the tree level. Here, as

everywhere else in this paper, subscripts on fields denote their transformation properties (or

charge in case of U(1)Y ) under the SM group, SU(3)c×SU(2)L×U(1)Y . A new scalar field

is denoted by the symbol S, and a fermion field, which is understood as either a vector-like

fermion or Majorana fermion, is denoted as ψ. Thus, ψ1,1,0 has the same quantum numbers

as a right-handed neutrino, while S1,2,1/2 is equivalent to a (copy of) the SM Higgs doublet.

The Lagrangian producing the left diagram of figure 3 necessarily contains the follow-

ing terms:

L = (YSQd)ij Qi · S1,2,1/2dR,j + (YSνψ)i Li · S†1,2,1/2ψ1,1,0 +mψ(ψ1,1,0)cψ1,1,0 + H.c. . (2.5)

Here, the singlet fermion field ψ1,1,0 is allowed to have a Majorana mass mψ. The dot (·)
denotes the anti-symmetric tensor (iτ2) for SU(2)L. This Lagrangian generates an effective

operator for a short-range contribution to 0νββ,

Ld=9 =
((YSQd)11(YSνψ)e)

2

m4
S1,2,1/2

mψ

(
QdR

)
· LLc ·

(
QdR

)
+ H.c. , (2.6)

which corresponds to OSR1 in the notation of [28]. (Here we use the notation OSRi for the

five relevant short-range operators, defined in [28], to distinguish them from the lepton

number violating operators Oj , j = 11, 12, 14, 19, 20 and “−”.) mS1,2,1/2
is the mass of

S1,2,1/2. Following the method adopted in [1, 31] and using the experimental bound [3–5]

T 0νββ
1/2 (136Xe) > 1.6 · 1025 [ys] (2.7)

one finds the bound on the coefficient of the d = 9 operator as

1

8

((YSQd)11(YSνψ)e)
2

m4
S1,2,1/2

mψ
=

G2
F

2mP
ε
{RR}R
1 .

G2
F

2mP
2.6 · 10−7, (2.8)
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which can be interpreted as a constraint on the Yukawa coupling:(
Y 2
Sνψ

)
e
<∼ 1.5 · 10−6

(
1.0

Y 2
SQd

)(
mS1,2,1/2

100 [GeV]

)4( mψ

100 [GeV]

)
. (2.9)

If the scalar mediator S1,2,1/2 acquires a vacuum expectation value (vev), the right diagram

in figure 3, which has the same topology as the type-I seesaw mechanism, will contribute

to neutrino mass(es):

〈mν〉 =

(
Y 2
Sνψ

)
e
〈S〉2

mψ
(2.10)

The experimental bound on the effective neutrino mass 〈mν〉 . 0.3 eV, which is found from

eq. (2.7) under the assumption of the mass mechanism being dominant, gives(
Y 2
Sνψ

)
e
<∼ 1.0 · 10−12

(
mψ

100 [GeV]

)(
vSM

〈S〉

)2( 〈mν〉
0.3 [eV]

)
, (2.11)

where we have used vSM ' 174 GeV. If S1,2,1/2 is identified as the SM Higgs doublet H, as

in the ordinary type-I seesaw, the constraint on YSνψ shown in eq. (2.11) is obviously much

stronger than eq. (2.9).4 In other words: the mass mechanism dominates the contribution

to 0νββ decay by far, if we consider SM Higgs exchange.

However, S1,2,1/2 is not necessarily the SM Higgs, it could be an additional new state,

such as appear, for example, in multi-Higgs doublet models. In this case, neutrino masses

would still be generated through the type-I seesaw mechanism, with the vev 〈S〉 of the scalar

S1,2,1/2 independent of the SM vev vSM, such as occurs, for example, in the neutrinophilic

neutrino mass model of [63–66]. For this case one finds that if the relaxed constraint

〈S〉 <∼ 0.14 [GeV]

(
(YSQd)11

1.0

)2(100 [GeV]

mS

)2

(2.12)

holds, eq. (2.9) becomes more stringent than eq. (2.11), i.e., the short-range diagram will

be the dominant contribution to the 0νββ decay amplitude in this case.

If S1,2,1/2 has exactly zero vev, in the literature often called the “inert doublet”, we can

no longer directly relate the the relative size of the d = 9 operator with the mass mechanism.

The only conclusion one can derive in this particular case is the trivial constraint that the

standard model Higgs coupling with L and ψ1,1,0 must obey eq. (2.11).

As is well-known, there are only three types of tree-level mass generation mechanisms

(seesaw mechanisms) called type-I [67–70], type-II [9, 71–75] and type-III [76]. These are

mediated by the singlet Majorana fermion ψ1,1,0 (type-I), the triplet scalar S1,3,1 (type-II),

and the triplet Majorana fermion ψ1,3,0 (type-III). From the complete list of decompositions

given in [31], one can find that T-I-1-i, 2-i-b, 2-ii-b, 2-iii-a, 4-i, and 5-i contain the relevant

fermion mediators, and T-I-1-ii-a, 1-ii-b, 3-ii, 3-iii, T-II-1, and T-II-3 do contain the scalar

mediator. From the discussion above, we can conclude that for all of these the short-range

contribution will be much less important than the neutrino mass mechanism, unless the

vev of the new scalars S1,2,1/2 or S1,3,1 are heavily suppressed compared to vSM.

4If S1,2,1/2 is the SM Higgs doublet, the coupling YSQd is identified as the down quark Yukawa coupling,

Yd ∼ 3×10−5, and the constraint shown in eq. (2.9) actually becomes less stringent than even the ordinary

perturbativity bound.

– 8 –
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L H

H L

Tν1-ii L L

H H

Tν1-iii L L

H H

Tν-3

Figure 4. Three different 1-loop diagrams for neutrino mass [77], which can appear in one of the

0νββ decay decompositions. For a discussion see text.

2.3 1-loop models

As shown in [77] (see also [78]), there exist a total of four genuine 1-loop diagrams, which can

contribute to the d = 5 Weinberg operator at the renormalizable level.5 Three diagrams,

shown in figure 4, can be related to 0νββ decay decompositions.6 Here, we have added a

“ν” to the naming conventions of [77], in order not to confuse the 1-loop neutrino mass

diagrams with the double beta decay topologies.

Let us discuss the relation between the neutrino mass diagram Tν-1-ii, which is shown

as the left-most diagram in figure 4, and the decomposition of the d = 9 0νββ diagram

(uLdR)(eLdR)(uL eL), which is classified with the ID number T-II-2 O11 in [31], as an

example of this class of models. The decomposition leads to a Lagrangian, which contains

the following terms:

L = (YLdS)ijLi ·
(
S3,2,1/6

)†
dR,j+(YLQS)ijQj · LciS3,1,−1/3 (2.13)

+(YQdS)ijQiS1,2,1/2dR,j + µSSS
(
S3,1,−1/3

)†
S3,2,1/6S

†
1,2,1/2 + H.c.

+m2
S3,2,1/6

(
S3,2,1/6

)†
S3,2,1/6+m2

S3,1,−1/3

(
S3,1,−1/3

)†
S3,1,−1/3.+m

2
S1,2,1/2

(
S1,2,1/2

)†
S1,2,1/2.

The lepton number violation can then be assigned to be due to the presence of the coupling

µSSS . With this Lagrangian, eq. (2.13), the effective d = 9 Lagrangian that contributes to

0νββ process as short-range effects is given as:

Ld=9 =
(YLdS)e1(YQdS)11(YLQS)1eµSSS
m2
S3,2,1/6

m2
S3,1,−1/3

m2
S1,2,1/2

(
LdR

)
·
(
QdR

) (
Q · Lc

)
+ H.c.

⊃− (YLdS)e1(YQdS)11(YLQS)1eµSSS
m2
S3,2,1/6

m2
S3,1,−1/3

m2
S1,2,1/2

1

16

(
OSR1

)
{RR}R (2.14)

The experimental bound, see eq. (2.7), on 0νββ decay can then be interpreted again as an

upper limit on the new leptonic Yukawa interactions as:

(YLdS)e1(YLQS)1e < 0.15

(
m2
S3,2,1/6

m2
S3,1,−1/3

m2
S1,2,1/2

1.0[TeV6]

)(
1.0[TeV]

µSSS

)(
1.0

(YQdS)11

)
. (2.15)

5There are also three more non-genuine diagrams, discussed in [77], which can be understood as one-loop

generated vertices for one of the three tree-level seesaws.
6The remaining diagram Tν-1-i can be understood as opening-up of the quartic scalar vertex in Tν-3,

by inserting an additional scalar.
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With the interactions shown in eq. (2.13), neutrinos acquire Majorana masses through

the diagram Tν-1-ii. This neutrino mass generation mechanism through the leptoquark-

Higgs coupling was first proposed in [79] and discussed in detail in [40, 80].

Assuming the coupling µSSS is smaller than the average of the leptoquark quark masses

mLQ = (mS3,2,1/6
+mS3,1,−1/3

)/2, we can roughly estimate the neutrino mass as

(mν)αβ '
1

16π2

mdkµSSS
m2

LQ

〈S1/2〉
[(
Y †LQS

)
βk

(
Y †LdS

)
kα

+ (β ↔ α)

]
, (2.16)

where mdk is the mass of the down-type quark (of generation k), which enters this esti-

mation as the vertex at the left-upper corner of Tν-1-ii of figure 4. Applying the bound

on the effective Majorana mass 〈mν〉 < 0.3 eV (which is obtained from eq. (2.7) with the

assumption of the mass mechanism dominance) to eq. (2.16), we have

(YLdS)ek(YLQS)ek < 0.034

(
4.0[GeV]

mdk

)(
mLQ

1.0[TeV]

)2(1.0[MeV]

µSSS

)(
174[GeV]

〈S1/2〉

)( 〈mν〉
0.3[eV]

)
.

(2.17)

Assuming that the flavour structure of the new Yukawa interactions in eq. (2.13) is not

strongly hierarchical, one concludes that third generation quarks give the largest contribu-

tion to the neutrino mass. If the vev 〈S1/2〉 is as large as the SM Higgs vev, this constraint

is more than six (three) orders of magnitude more stringent than eq. (2.15) for k = 3

(k = 1). Note again that if the vev 〈S1/2〉 vanishes then, as in the tree-level case, the d = 9

contribution to 0νββ and the mass mechanism in this class of models are independent of

each other.

If the leptoquark mass is set to O(1) TeV and Yukawa couplings are taken to be

O(0.1), the trilinear coupling µSSS must beO(100) keV to reproduceO(0.05) eV of neutrino

masses, which is the minimum value necessary to reproduce data on atmospheric neutrino

oscillations. Such a small value of the coupling µSSS can (obviously) be probed only in a

0νββ process dominated by the mass mechanism, since there is no other LNV process, for

which experiments have even remotely comparable sensitivity.

To finish this discussion of the one-loop neutrino mass case, recall the possible two-loop

contributions to neutrino masses in this model. As shown in the next subsection (and the

list in the appendix), the model described with eq. (2.13) generates neutrino masses at the

two-loop level, even if the value of 〈S1/2〉 is identical with zero. However, the one-loop

contribution discussed in this subsection can easily (even with a value of 〈S1/2〉 smaller

than MeV) dominate over the two-loop diagrams, as can be seen from eqs. (2.16)–(2.17).

Therefore, we classify this type of the models separately from the genuine two-loop models,

which will be defined and explained in detail in the next subsection.

Very similar arguments can be applied to the other two topologies, Tν-1-iii and Tν-3,

shown in figure 4. Such one-loop neutrino mass models appear in quite a large number of

decompositions. We give the complete list of this class of models in table 2 in the appendix,

together with the additional interaction that is required (and is allowed by the SM gauge

symmetries) to generate the corresponding one-loop diagram.
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2.4 2-loop models

The effective operators O11, O12, and O14 contain two lepton doublets, and thus naively

one expects them to generate neutrino masses at 2-loop level,7 when their quark legs are

connected with the SM Yukawa interactions. However, this naive picture has to be modified,

once the possible decompositions of the effective operators are taken into account.

In this subsection, we will first demonstrate why some of the decompositions of the

operators O11, O12, and O14 do not generate neutrino masses genuinely at the 2-loop level.

Here, we use the terminology genuine 2-loop diagrams, following [62], to imply that the

corresponding model (or decomposition in our case) generates neutrino masses at 2-loop

order and that no lower order diagram exists.

Let us first discuss the decomposition of O14. This operator contains:

Lȧ, Lȧ, uR
a, Qa, Qȧ, dR

ȧ. (2.18)

Here we explicitly wrote the 2-component spinor indices for the fermions: dotted for a

right-handed field (complex conjugate of left-handed field), undotted for a left-handed

field. As everywhere else in this paper, we restrict the discussion to fermions and scalars

as mediators. For O14 this implies that the spinor indices on Q and uR must be contracted

for the effective operator being a Lorentz scalar. There are only two choices to assign these

two quarks to the outer legs of a d = 9 tree diagram: (i) They form a Yukawa interaction

with a scalar mediator, i.e., (uRQ · S). This is shown as the upper diagram of figure 5.

Or: (ii) Each of these quarks forms a Yukawa interaction with a fermion mediator ψ and

one of the scalar mediators, i.e., (uRψS)(ψQS′). This is shown as the lower diagram of

figure 5. When the loops are closed, as shown on the right of figure 5, via the SM Yukawa

interaction yu(Q ·H∗uR), the resulting quark loop is divergent. In other words, these loops

are infinite corrections for (i) a mass term mixing the scalar mediator and the SM Higgs

doublet m2
SHSH

∗, or (ii) a corresponding term mixing two scalar mediators m2
SS′SS

′.
Therefore, the original tree-level Lagrangian generating these operators must contain these

scalar mass terms as counter terms for the infinities, and the quark loop appearing in

neutrino mass diagrams must be substituted with those scalar mass terms.

This simple argument actually holds for any decomposition of O14. In short, one

cannot construct a genuine (irreducible) 2-loop diagram for neutrino masses from the

decomposition of O14, if the mediators are restricted to scalars and fermions. For this

reason, in the appendix the decompositions of O14 are instead either listed under “tree-

level” or “1-loop”, depending on the additional interaction necessary.

The next question we must address is: can all the decompositions of O11(b) and O12(a)

genuinely generate neutrino masses at 2-loop level? The answer is no, and the argument for

those cases is very similar to the one presented above for O14. Two concrete examples are

shown in figure 6. Consider first the diagram on the left, based on decomposition T-I-1-i

7When the two lepton doublets are anti-symmetric in SU(2)L, an additional loop is necessary to obtain

a neutrino mass term, i.e., the resulting neutrino mass diagram contains three loops, which correspond to

O11a, O12b and O14a in the list of [36]. In 0νββ decay only the operators O11b, O12a and O14b, which contain

symmetric pieces in SU(2)L, can appear. These are called O11, O12 and O14 for brevity here and in [31].

– 11 –



J
H
E
P
0
5
(
2
0
1
5
)
0
9
2

Q

uR

S
-

Q

uR

S
〈H〉yu

Q uR

SψS ′ - Q uR

S′ ψ S

yu

〈H〉

Figure 5. Decompositions of the Babu-Leung operator #14, O14 ∝ L L QdRuRQ, with two scalar

(S and S′) and one fermion (ψ) mediators. For a neutrino mass diagram the quark legs uR and

Q must be connected via the SM Yukawa interaction yu. The resulting loops (shown on the right)

are infinite one-loop corrections to the scalar mass terms, that therefore must be contained in the

tree-level Lagrangians of the corresponding models.

O12. The inner loop in these classes of neutrino mass diagrams actually corresponds to an

infinite (1-loop) correction to the scalar quartic interaction λSS′HHSS
′HH. In the diagram

on the right, the “inner” loop involving S generates a Yukawa interaction yQψH ψ̄Q · H.

Again, this correction is infinite, thus requiring a tree-level counter term which must be

contained in the original Lagrangian. Given these additional (but required) interactions,

the models contain neutrino mass diagrams at 1-loop order. Note that, the left diagram in

figure 6 corresponds to Diagram (A) of figure 14 in [37] (with appropriate Higgs insertions)

and also Diagram (c) of figure 5 in [81]. The right diagram is Diagram (B) in [37] and

(d) in [81]. Quite a number of possible decompositions of O11 and O12 follow this pattern

and are thus listed in the tables in the appendix as 1-loop models, together with the

additional-but-necessary interactions.

After filtering out all decompositions that result in non-genuine 2-loop neutrino mass

diagrams, we have found that for all remaining decompositions there are only three types of

genuine 2-loop diagrams, all of them based on O11. These are shown in figure 7. The nam-

ing scheme in this figure follows [62]. In the appendix, we present the complete list of the

genuine 2-loop neutrino mass models and specify the class of neutrino mass diagrams, into

which each model falls. In table 4, two of the decompositions based on the BL operator O19

are also listed. These appear in the table for two-loop models due to the fact that the inter-

mediate fermion is of Majorana type, i.e., for these decompositions, the “asymmetric” op-
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L L

uR Q

Q uR

〈H〉

〈H〉
S ′S

ψ

yu

yu L L

〈H〉 〈H〉

dR

Q dR

Q

ψ

S

S ′

yd yd

Figure 6. Examples of non-genuine 2-loop neutrino mass diagrams, based on the decompositions

of T-I-1-i O12 (left) and T-I-2-ii-a O11 (right). For a discussion see text.

L L

〈H〉〈H〉

L 〈H〉

〈H〉 L

L

〈H〉

〈H〉

L

Figure 7. Genuine 2-loop neutrino mass diagrams based on decomposition of the Babu-Leung

operator O11. From left to right the diagrams are identified as CLBZ-1, PTBM-1 and PTBM-4,

following the classification of [62]. The left diagram (CLBZ-1) was discussed in the context of a

neutrino mass model in [19], and corresponds to the diagram in figure 10 in [37] and (e) in [81].

The diagram (PTBM-1) in the middle was discussed in [82], and corresponds to Diagram (D2) in

figure 14 in [37] and (f) in figure 5 in [81]. The diagram on the right corresponds to Diagram (C)

in [37] and (f) in figure 5 [81]. A model based on this diagram will be discussed in section 3.

erator O19 ∝ L̄eR is always accompanied by the “symmetric” operator O11 ∝ L̄L̄, and the

associated operator generates neutrino masses at the two-loop level. The catalogue of the

effective operators appearing with their associated operators is given in the tables of [31].

Among these three genuine diagrams, neutrino mass models based on the CLBZ-1 and

the PTBM-1 diagrams have already been studied in the context of the decomposition of

the d = 9 operators [19, 82]. Therefore, we will discuss a 2-loop neutrino mass model

that is associated with the remaining possibility, i.e., the PTBM-4 diagram. Here, as

in the previous subsections, we compare the d = 9 contribution to 0νββ with the mass

mechanism contribution and postpone the detailed discussion on phenomenology of this

model till section 3.

The example we choose is based on T-I-4-ii-b, O11. The Lagrangian for this decompo-

sition contains the terms

L = (YQQS)ij
(
Qi~τ ·Qcj

)
~̂S6,3,1/3 + (YLψS)α

(
Lα~τψ6,2,1/6

)
~S†6,3,1/3 (2.19)

+(YψdS)i

(
ψ̂6,2,1/6dR,i

)
S3,2,1/6 + (YLdS)αi

(
LαdR,i

)
· S†3,2,1/6.

We use the notation ~̂S6,3,1/3 = (~S6,3,1/3)X(T6̄)XIJ and ψ̂6,2,1/6 = (ψ6,2,1/6)X(T6̄)XIJ . The

tensors T6 and T6̄ in the SU(3)c are given in [31]. Here, ~τ is the Pauli matrix vector

for a triplet of SU(2)L. The effective d = 9 operator resulting from this Lagrangian can
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be written with the following linear combination of the basis operators OSRi∈{1-5} of the

short-range contributions to 0νββ decay as:

Leff =− (YQQS)11(YLψS)e(YψdS)1(YLdS)e1

m2
S6,3,1/3

m2
S3,2,1/6

mψ

[(
Q1T6̄τ

a ·Qc1
)(
Leτ

a
)

(dRT6) · (LecdR)
]

+ H.c.

⊃(YQQS)11(YLψS)e(YψdS)1(YLdS)e1

m2
S6,3,1/3

m2
S3,2,1/6

mψ

[
1

16

(
OSR1

)
{RR}R −

1

64

(
OSR2

)
{RR}R

]
(2.20)

and the experimental bound eq. (2.7) constrains a combination of the coefficients

(YQQS)11(YLψS)e(YψdS)1(YLdS)e1 < 6.3 · 10−3

(
m2
S3,2,1/6

m2
S6,3,1/3

mψ

1.0[TeV5]

)
. (2.21)

On the other hand, the neutrino mass generated from the 2-loop diagram based on the

effective operator eq. (2.20) also contributes to 0νββ through the mass mechanism. The

size of 2-loop neutrino mass diagram can be roughly estimated as [35–37, 62]

(mν)αβ '
Nc

(16π2)2

m2
b

ΛLNV
[(YQQS)33(YLψS)α(YψdS)3(YLdS)β3 + (β ↔ α)] . (2.22)

Applying the experimental bound from 0νββ to eq. (2.22) and substituting Nc = 6 because

of the colour sextet combination in the loop, we can place the bound on the couplings of

the third generation quarks:

(YQQS)33(YLψS)e(YψdS)3(YLdS)e3 < 7.2 · 10−5

(
4.18[GeV]

mb

)2( ΛLNV

1.0[TeV]

)( 〈mν〉
0.3[eV]

)
.

(2.23)

As this rough estimation shows, the mass mechanism and the short-range part of the

amplitude give similar contributions to 0νββ decay. Note that assuming flavour democratic

Yukawa couplings, the constraints eq. (2.21) and eq. (2.23) become equally strong if the

mass scale of the new particles is taken to be roughly ∼ 300 GeV. For larger mass values,

the short range contribution can dominate only if Yukawas with index “3” are smaller

than those with index “1”, otherwise the mass mechanism dominates. A more detailed

discussion using the full expression for the two-loop neutrino mass integral will be presented

in section 3.

2.5 3-loop models

From the point-of-view of effective operators, the Babu-Leung operators O19 and O20

require three SM Yukawa interactions to generate neutrino masses: two quark Yukawa

interactions and one charged-lepton Yukawa interaction, to convert eR in the effective

operators to L for a neutrino mass. This fact leads us to three-loop neutrino mass models.

However, some of the possible decompositions of O19 and O20 contain the ingredients

to generate neutrino masses at a level lower than three-loop. In such a case, the lower

loop contributions can easily dominate neutrino masses and make the contribution from

a three-loop diagram sub-dominant. This can happen for two reasons. First, there are
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uR

Q(dL)

dR

uR

eR

S6,1,4/3 S3̄,2,−1/6ψ3,2,7/6

L(eL)

uR

eR

dR

uR

Q(dL)

S6,1,4/3 S3̄,2,−1/6ψ6,1,1/3

L(eL)

Figure 8. The Feynman diagrams for the decompositions T-I-4-ii-a (left) and T-I-4-ii-b (right) for

BL operator O20. The former leads to 2-loop d = 7 neutrino masses, while the latter is an example

of a 3-loop neutrino mass model, see text.

uR

eR

dR

uR

Q(uL)

S6,1,4/3 S3̄,2,−1/6ψ3,2,7/6

〈H〉

〈H〉

〈H〉

〈H〉

uL

dL

eL

νL

L(νL)

W

uR

eR

dR

uR

Q(uL)

S6,1,4/3 S3̄,2,−1/6ψ6,1,1/3

〈H〉

〈H〉

〈H〉

〈H〉

uL

dL

eL

νL

L(νL)

W

Figure 9. Examples of 3-loop diagrams for the decompositions T-I-4-ii-a (left) and T-I-4-ii-b (right)

for BL operator O20, see figure 8. The diagram to the right corresponds to a genuine 3-loop model,

while the one to the left is not. See text.

decompositions based on O19 or O20, in which O11 necessarily also appears. We call this

“associated” operators and classify those decompositions in the class corresponding to those

lower loop levels, which usually will dominate over the 3-loop contribution. Decompositions

T-I-2-iii-a and T-I-5-i of O19 with the Majorana fermion ψ8,1,0, which are listed in the

table of two-loop models (table 4), are categorised in this class. And, second, there are

decompositions for O19 or O20, in which the 3-loop diagrams are not genuine in the sense

that one of the sub-diagrams corresponds to the 1-loop generation of a certain vertex. We

will discuss this case in a bit more detail.

Take the examples of the decompositions T-I-4-ii-a and T-I-4-ii-b, both O20. The

Feynman diagrams are given in figure 8, and show T-I-4-ii-a → (uR uR)(dL)(eR)(eLdR)

and T-I-4-ii-b → (uR uR)(eR)(dL)(eLdR) graphically. As we will see, despite the similarity

between these two cases, T-I-4-ii-b will lead to a genuine 3-loop model, while T-I-4-ii-a

will not. Consider the examples of 3-loop diagrams for these two decompositions shown in

figure 9. First of all, note that the loop diagrams shown in figure 9 should be understood
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eR

dR

uR

S3̄,2,−1/6ψ3,2,7/6

〈H〉

〈H〉

〈H〉

〈H〉

uL

dL

eL

νL

νL

W

Figure 10. Example of a 2-loop d = 7 diagram for the decomposition T-I-4-ii-a. This diagram

corresponds to Diagram (a) in figure 18.

as examples only, because there might be more than one diagram contributing to the full

neutrino mass matrix for each decomposition. In the diagram for T-I-4-ii-a (left), one sees

that the innermost loop effectively generates the vertex uRψ3,2,7/6H
† at 1-loop order. This

one-loop sub-diagram is infinite and, therefore, a tree-level counter term is necessarily to

be included in the Lagrangian to absorb the infinity. In fact, the quantum numbers of

the particles involved in the loop are such that the necessary vertex actually cannot be

forbidden at tree-level by the SM gauge symmetry. This tree-level coupling has a value

that is not fixed by the 0νββ decay amplitude, but the 2-loop (d = 7) diagram that results

from this coupling, see figure 10, can easily dominate over the 3-loop diagram.8 We have

classified therefore all these cases of O19 and O20, where such a tree-level vertex is allowed,

as “2-loop d = 7” (table 5) in appendix. The loop diagram based on the decomposition

T-I-4-ii-b, which is shown as the right diagram of figure 9, does not contain such an inner

loop and, thus, such a construction is not possible for this decomposition. Decompositions

of this type are therefore classified as genuine 3-loop models in the appendix.

We give here a rough estimate of the size of the neutrino mass generated by the 3-loop

diagram based on T-I-4-ii-b in order to present some general arguments on the relative size

of the d = 9 contributions and the mass mechanism contributions to 0νββ in this class of

models. This example, in which the d = 9 is mediated by a di-quark, S6,1,4/3, a leptoquark,

S3,2,1/6, and an exotic colour-sextet fermion, ψ6,1,1/3, leads to a Lagrangian that contains

the terms:

L = (YuuS)ij uR,i Ŝ6,1,4/3 uR,j
c + (YeψS)i ψ6,1,1/3 eR,i S6,1,4/3

+(YQψS)i Qi ψ̂6,1,1/3 · (S3,2,1/6)† + (YLdS)ij dR,j Li · S3,2,1/6 + H.c.. (2.24)

8Naively, the 2-loop d = 7 contribution becomes more important than the 3-loop contribution, when the

tree-level coupling YuψH of the necessary interaction uRψ3,2,7/6H
† is larger than YuuSYQψS/(16π2)×(some

logarithmic factor).

– 16 –



J
H
E
P
0
5
(
2
0
1
5
)
0
9
2

As above, we use the notation Ŝ6,1,4/3 = (S6,1,4/3)X(T6̄)XIJ and ψ̂6,1,1/3 = (ψ6,1,1/3)X(T6̄)XIJ .

Together, the YeψS , YQψS , and YLdS terms necessarily violate lepton number by two units.

All generation indices in the couplings in eq. (2.24) have been suppressed for simplicity.

The contribution to the neutrino mass matrix can be roughly estimated as

(mν)αβ '
Nc

(16π2)3

[
m2
tmbmeα

Λ3
LNV

(YuuS)33(YeψS)α(YQψS)3(YLdS)3β + (α↔ β)

]
, (2.25)

where ΛLNV ' mS6,1,4/3
' mS3,2,1/6

' mψ is the mass scale of the heavy states, which is

typically taken to be TeV. Nc is a colour factor. Here, we assumed that all the SM fermion

masses are much smaller than ΛLNV. Putting all the Yukawa couplings in eq. (2.25) equal

to unity and ΛLNV = 1 TeV and Nc = 6 (for a colour sextet combination), one finds9

(mν)ee ∼ 1× 10−5 eV, (mν)µµ ∼ 2× 10−2 eV, (mν)ττ ∼ 0.3 eV. (2.26)

This implies that the mass mechanism contribution to 0νββ is guaranteed to be sub-

dominant in this class of models. Also, eq. (2.26) shows that 3-loop models can potentially

explain neutrino oscillation data only if all of the involved Yukawa couplings are set to be

O(1). Thus, we expect such models to be quite constrained from upper limits on flavour

violating decays of charged leptons. We will not discuss this class of models in more detail

here, since their detailed phenomenology is outside the scope of this paper.

The effective d = 9 operator resulting from the Lagrangian eq. (2.24) can be written

with the following linear combination of the basis operators OSRi∈{1-5} of the short-range

contributions to 0νββ decay as:

Leff =
(YuuS)11(YeψS)e(YQψS)1(YLdS)e1

m2
S1/3

m2
S1/6

mψ

[
1

16i

(
OSR4

)
{RR}R −

1

16
(O5)SR{RR}R

]
(2.27)

and the experimental bound eq. (2.7) constrains a combination of the coefficients to be:

(YuuS)11(YeψS)e(YQψS)1(YLdS)e1 < 1.5 · 10−2

(
m2
S1/6

m2
S1/3

mψ

1.0[TeV5]

)
. (2.28)

The difference in the short-range bounds, eq. (2.21) and eq. (2.28), is due to the different

values of nuclear matrix elements entering the transition operator. All other three-loop

models will have constraints similar to the ones discussed here. They are listed in table 6

in the appendix.

2.6 4-loop models

Finally, all operators O− = eR eR uRdRuRdR, with exception of decomposition T-I-5-i

(see table 1 in the appendix), will lead to four-loop neutrino mass models. The simplest

9Using 〈mν〉 ≤ 0.3 eV, we can formally write the constraint on the Yukawa couplings in the form of:

(YuuS)33(YeψS)e(YQψS)3(YLdS)e3 < 3 · 103

(
Λ3

LNV

1.0[TeV3]

)
,

which is much worse than even the trivial constraint derived from perturbativity.
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〈H〉

〈H〉

〈H〉

〈H〉

〈H〉 〈H〉

W W

νL νLeL eL

dL dL

uL uL

Figure 11. An example of a four-loop neutrino mass model. To the left: 0νββ decay via the d = 9

operator (uR uR)(dR)(dR)(eR eR). To the right: four-loop d = 9 neutrino mass, see text.

possibility to construct a four-loop diagram for these operators is to use a SM charged

current interaction. We estimate that this gives the dominant contribution to the neutrino

mass. Here we show an example of the decompositions of the 0νββ decay operator O− in

figure 11, which is based on decomposition T-I-3-ii (uR uR)(dR)(dR)(eR eR). The four-loop

neutrino mass diagram based on this decomposition is also shown on the right. Taking the

limit mψ3,1,5/3
∼ mS6,1,4/3

∼ mS1,1,2 � mW ,mt one can estimate the order of magnitude of

this four-loop diagram, which is,

(mν)αβ ∼
g4

(16π2)4

meαmeβmuimujmdimdj

mψ3,1,5/3
m2
S6,1,4/3

m2
S1,1,2

(YψdS)i(YeeS)αβ(YuuS)ij(YψdS)j . (2.29)

The expression eq. (2.29) shows that this four-loop contribution would yield only (mν)ττ ∼
O(10−10) eV for mψ3,1,5/3

∼ mS6,1,4/3
∼ mS1,1,2 ∼ 1 TeV, even when choosing all SM fermion

masses to be third generation. Since this is obviously many orders of magnitude below the

values of neutrino masses required from oscillation experiments, models of this category

by themselves cannot be considered realistic. Of course, neutrinos could be quasi-Dirac

particles, explaining oscillation data by Dirac mass terms (using additionally introduced

right-handed neutrinos), while 0νββ decay is dominated by the short-range diagrams such

as the one shown in figure 11. However, constraints on Yukawa couplings will be similar

to those derived in the previous subsections in eq. (2.20) and eq. (2.27), with the exact

value depending on the decomposition under consideration. All four-loop cases are listed

in table 7 in the appendix.

3 A concrete 2-loop example

In this section we will discuss one concrete genuine 2-loop neutrino mass model in some

more detail. The example we choose is based on the decomposition T-I-4-ii-b of the Babu-

Leung operator O11, which has not been discussed in the literature before. However, all

0νββ decompositions that generate 2-loop neutrino masses behave quite similarly, in what

concerns fits for neutrino oscillation data and constraints from lepton flavour violation

searches. Thus, most of the discussion presented below can be applied qualitatively also

to all other 2-loop decompositions.
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H
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L

H
ψ dR

S6,3,1/3

Q

Q

dR

S3,2,1/6

yd

yd

Figure 12. Two loop diagram for neutrino masses generated by the Lagrangian in eq. (3.2).

Any model of neutrino mass must not only generate the correct neutrino mass scale,

but also be able to explain the observed neutrino mixing angles. For a recent update of

all oscillation data, see, for example, [83]. In addition, since the neutrino mass matrix has

a non-trivial flavour pattern, one also expects that low-energy models10 of neutrino mass

are constrained by charged lepton flavour violation (LFV) searches. Here we will discuss

only µ→ eγ, since the experimental upper limit on this process provides usually the most

stringent constraints in many models. We note that the authors of [82] present a 2-loop

model, which corresponds to the decomposition T-I-5-i and discuss also the constraints

from other LFV searches, which we expect are very similar in our example.

Below we will discuss two variations of the model based on T-I-4-ii-b. First (in sec-

tion 3.2), we introduce only one copy of the exotic fermion ψ6,2,−1/6 for simplicity. Next

(in section 3.3), we will allow to have three copies of these fermions, which allows to fit

also quasi-degenerate neutrinos.

3.1 General formulas for neutrino masses and µ→ eγ

The Yukawa part of the Lagrangian describing the interactions between the exotic diquark,

S6,3,1/3, the leptoquark, S3,2,1/6, and the coloured vector-like fermion, ψ6,2,−1/6 can be

written as:

L = (YQQS)ij

(
Qi~τ ·Qcj

)
~̂S6,3,1/3 + (YLψS)αk

(
Lα~τψk

)
~S†6,3,1/3 (3.1)

+(YψdS)ki

(
ψ̂kdR,i

)
S3,2,1/6 + (YLdS)αi

(
LαdR,i

)
· S†3,2,1/6

Here, i, j are generation indices for quarks, we use Greek indices for lepton generations and

k runs over the number of copies of ψ6,2,−1/6. This Lagrangian generates a 2-loop diagram

which corresponds to PTBM-4 according to classification by [62], see figure 12. Following

the general formulas from [62], the neutrino mass matrix can be expressed as:

(mν)αβ =
Ncmψk

(16π2)2

[
(YQQS)ij(YLψS)αk(YψdS)ki(YLdS)βj+(YQQS)ij(YLψS)βk(YψdS)ki(YLdS)αj

]
×F (mψk ,mS3,2,1/6

,mdi ,mS6,3,1/3
,mdj ) (3.2)

10By “low-energy” we mean TeV-scale, as in contrast to “high-scale” seesaw models.
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where Nc is a colour factor, with Nc = 6 for this model. Summation over all flavour indices

i, j, k is implied. F (mψk ,mS3,2,1/6
,mdi ,mS6,3,1/3

,mdj ) is a loop integral defined as:

F (mψk ,mS3,2,1/6
,mdi ,mS6,3,1/3

,mdj ) =
mdimdj

π4
(3.3)

×
∫
d4q

∫
d4k

1

(q2 −m2
ψk

)(q2 −m2
S3,2,1/6

)(k2 −m2
di

)(k2 −m2
S6,3,1/3

)((q + k)2 −m2
dj

)
.

Due to the strong hierarchy in down-type quark masses, the integral in eq. (3.3) is com-

pletely dominated by the contributions from bottom quarks, unless the couplings Y ij
QQS ,

Y ki
ψdS and Y βj

LdS follow an equally strong inverse hierarchy. We have thus taken into account

only the contributions from bottom quark exchange in our numerical evaluation. Since it

is convenient to rewrite eq. (3.3) in terms of dimensionless parameters, we define z, r and

tk as

z ≡
m2
S3,2,1/6

m2
b

, r ≡
m2
S6,3,1/3

m2
b

, and tk ≡
m2
ψk

m2
b

. (3.4)

Rescaling the loop momenta, the integral can then be written as:

Î(tk, z, 1, r) =
1

π4

∫
d4q

∫
d4k

1

(q2 − tk)(q2 − z)(k2 − 1)(k2 − r)((q + k)2 − 1)
. (3.5)

This integral has been analytically calculated several times in literature. We follow the

procedure outlined in [62], based on the calculations of [82]. We will fit the neutrino

mass calculated with eq. (3.2) to neutrino oscillation data. The discussion depends on the

number of copies of the fermion mediator ψ6,2,−1/6; as mentioned above we will discuss two

different scenarios in the following subsections.

The rate of the LFV process µ→ eγ has also been calculated several times in literature.

We adapt the general formulas shown in [84] for our particular case. The amplitude for

µ→ eγ decay is given by

M(µ→ eγ) = eσRε
∗
αqβū(pe)iσ

αβu(pµ), (3.6)

where e is the electric charge, εα is the photon polarization vector, qβ is the momentum

of photon, and σαβ ≡ (i/2)[γα, γβ ]. There are two contributions to the coefficient σR in

the model we are discussing; one is the one-loop diagram with the diquark and the exotic

fermion, the other is that with a bottom quark and the leptoquark. The total σR is given by

σR = i
mµ

16π2

[
18
∑
k

(YLψS)µk

(
Y †LψS

)
ke

F2(xk)

m2
S6,3,1/3

+ (YLdS)µ3

(
Y †LdS

)
3e

2F2(xS)− F1(xS)

m2
S3,2,1/6

]
,

(3.7)

where xk ≡
m2
ψk

m2
S6,3,1/3

and xS ≡ m2
b

m2
S3,2,1/6

. The functions F1(x) and F2(x) are defined as

F1(x) =
x2 − 5x− 2

12(x− 1)3
+

x lnx

2(x− 1)4
, (3.8)

F2(x) =
2x2 + 5x− 1

12(x− 1)3
− x2 lnx

2(x− 1)4
, (3.9)
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which are presented in eqs. (40) and (41) in [84]. The branching ratio for the µ → eγ

process, neglecting the electron mass, can then be expressed with the coefficient σR as

Br(µ→ eγ) ' 48π3α |σR|2
G2
Fm

2
µ

, (3.10)

where α is the fine-structure constant.

3.2 One generation of ψ6,2,1/6

The analysis presented in this section uses very similar methods to the one in ref. [16],

where double beta decay and LFV is discussed in a 1-loop neutrino mass model containing

colour octets. We will first consider a variant of the model, in which there is only one copy

of the fermion mediator ψ6,2,1/6. The expression for the neutrino mass matrix in this case

is given by suppressing the index for ψ in eq. (3.2), which gives

(mν)αβ = [(YLψS)α(YLdS)β3 + (YLψS)β(YLdS)α3]F , (3.11)

where

F =
Ncmψ

(16π2)2
(YQQS)33(YψdS)3Î(t, z, 1, r). (3.12)

Since det(mν) = 0 in this case, this version of the model can fit only to the hierarchical

neutrino mass spectra (both of the normal and the inverse type), but not to the degenerate

spectrum.11 The eigenvalues of eq. (3.11) can be easily found to be:

mν1(3)
= 0, mν2,3(1,2)

=

∑
α

(YLψS)α(YLdS)α3 ∓
√∑

α

|(YLψS)α|2
∑
α

|(YLdS)α3|2
F
(3.13)

for normal hierarchy (inverted hierarchy). In figure 13, we give typical values for the

common factor F , which are calculated with the assumption of a nearly degenerate spec-

trum of heavy particles with the mass scale Meff ≡ mψ ' mS3,2,1/6
' mS6,3,1/3

and

(YQQS)33 = (YψdS)3 = 1. From eq. (3.13) and figure 13, one can estimate the constraints

from neutrino masses on the size of the Yukawa couplings. In order to reproduce the

neutrino mass suggested by atmospheric neutrino oscillation (mν3 ∼ 0.05 eV), keeping the

common mass scale Meff at 1 TeV, the Yukawa couplings Y α
LψS and Y β

LdS must be set typ-

ically to O(10−2). Although the eigenvectors of eq. (3.11) can be calculated analytically,

numerical exercises might be more helpful to grasp phenomenological aspects of the model.

In the following, we will generate random sets of Yukawa couplings (YLψS)α and (YLdS)β3

under the condition that they reproduce the latest neutrino oscillation data [83] within 3

σ C.L. We will only show plots with the Yukawa couplings that fit the normal hierarchical

neutrino spectrum, because plots for the inverse hierarchical case look qualitatively similar.

Let us start the discussion with double beta decay. The half-life of 0νββ induced

by the Majorana mass of neutrino is proportional to the inverse-square of the effective

11However, we remind that this is true, only when contributions to neutrino masses from the first and

the second generation quarks are negligible.
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Figure 13. The prefactor F , defined in eq. (3.12), for (YQQS)33 = (YψdS)3 = 1 in units of keV as

a function of Meff in TeV. Here, Meff = mψ ' mS3,2,1/6
' mS6,3,1/3

.

neutrino mass:

T 0νββ
1/2 ∝

[
(mν)ee

]−2
(3.14)

For the normal hierarchy case, the effective mass is roughly given as (mν)ee ∼ s2
12

√
∆m2

21 ∼
3 × 10−3 eV, which results in half-lives of the order of T 0νββ

1/2 ∼ 1029 ys. For the inverse

hierarchy case, one finds (mν)ee ∼
√

∆m2
31 ∼ 5 × 10−2 eV, which leads to T 0νββ

1/2 ∼ 1027

ys. The current experimental limits to the half-life of 136Xe and 76Ge are of the order

of T 0νββ
1/2 ∼ (1 − 2) × 1025 ys [2, 3, 85], while the next round of experiments could reach

eventually T 0νββ
1/2 ∼ 1027 ys. Therefore, only the inverse hierarchical case can result in

measurable half-lifes.

The short range-contribution due to the d = 9 operator (cf. eq. (2.20)) is proportional

to the following combinations of the parameters:

T 0νββ
1/2 ∝

[
(YQQS)11(YLψS)e(YψdS)1(YLdS)e1

M5
eff

]−2

, (3.15)

i.e., while the neutrino mass matrix is dominated by Yukawa couplings of the third quark

generation, double beta decay is sensitive only to the Yukawa couplings that couple to the

first generation quarks. To discuss the relation between these two contributions to 0νββ,

we introduce a scaling factor

η31 ≡
[

(YQQS)11(YψdS)1(YLdS)e1
(YQQS)33(YψdS)3(YLdS)e3

]1/3

, (3.16)

i.e., η31 = 1 corresponds to quark flavour universality in the Yukawa couplings. In figure 14,

we calculate half-lives induced from the short-range contribution with randomly generated

Yukawa couplings, assuming different values of η31 ∈ {1, 5, 10, 50}. Taking η31 = 1, we

find quite long half-lives, too large to be measured in realistic experiments. On the other

hand, with η31 = 10, we find a lower limit on Meff, which is approximately Meff & 400 GeV.

This is still not competitive with leptoquark searches at the LHC, which places constraints

on the masses of leptoquarks at mS3,2,1/6
∼ (600 − 1000) GeV (depending on generation)
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Figure 14. Calculated half-lives for 0νββ decay of 136Xe, considering only the short range con-

tribution to the decay rate. The different colours correspond to (from left to right) η31 = 1, 5, 10

and 50. If the third and first generation couplings are of the same order, 0νββ decay will have an

immeasurably large half-life in the variant of the model with only one copy of ψ6,2,1/6.
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Figure 15. Branching ratio Br(µ→ eγ) as a function of Meff in GeV. Red (blue) points have been

calculated with (YQQS)33 = (YψdS)3 = 10−2 (10−1). The horizontal line is the experimental upper

limit from the MEG experiment [89].

already in the first run [86–88] Thus, it is reasonable to conclude that, as for the mass

mechanism contribution, the short-range contribution to the half-life is also expected to

be too long to be measured in the near future in this variant of the model, unless η31

is very large (i.e., for highly inverse hierarchical Yukawa couplings in terms of the quark

generations).

Finally, we discuss briefly the LFV process µ → eγ. While the neu-

trino mass matrix is proportional to the combination of the Yukawa couplings

(YLψS)α(YLdS)β3(YQQS)33(YψdS)3, the branching ratio of Br(µ → eγ) depends only on

|(YLψS)2(Y †LψS)1|2 and |(YLdS)23(Y †LdS)13|2. In figure 15, we show Br(µ → eγ) for two dif-

ferent choices of the set of (YQQS)33 and (YψdS)3, as a function of Meff, assuming again

that the mass spectra of heavy particles are nearly degenerate for simplicity. With the

choice (YQQS)33 = (YψdS)3 = 10−2 the LFV process can place a bound on Meff of roughly

Meff >∼ TeV. However, the bound depends strongly on the exact choice of the remaining

Yukawa couplings YLψS and YLdS . On the other hand, the LFV process can exclude only
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few parameter points in the case of (YQQS)33 = (YψdS)3 = 10−1, and no useful limit on

Meff can be derived.

As we have seen in this subsection, this variant of the model can reproduce oscillation

data without running into conflict with LFV searches. However, it is interesting to note

that the (YQQS)33 interaction with the size required for reproducing neutrino masses will

result in sizeable decay rates of the diquark into third generation quarks (both tops and

bottoms), which should be testable at the LHC.

3.3 Three generations of ψ6,2,1/6

Next, we examine the model with more than one copy of the fermion mediator ψ6,2,−1/6,

which can fit not only hierarchical neutrino mass spectra, but also a quasi-degenerate spec-

trum. Here, we introduce three copies of ψ6,2,−1/6, motivated by the observed generations

of SM fermions.

To simplify the following discussion, we adopt the following ansatz in the flavour

structure of the Yukawa couplings:12

(YLdS)α3(YψdS)k3 = y(YLψS)αk. (3.17)

With this ansatz, all the flavour structure relevant to phenomenology can be represented

with only one vector (apart from a possible normalization factor y). The neutrino mass

matrix can then be cast into the form:

(mν)αβ = (Λ)αkÎk(Λ
T )kβ , (3.18)

where the Λ is defined as

Λαk ≡ (YLψS)αk =
1

y
(YLdS)α3(YψdS)k3, (3.19)

and Î is given as

Îk =
2Ncmψk

(16π2)2
y(YQQS)33I(z, 1, tk, r) (3.20)

Comparing eq. (3.18) with the neutrino mass and mixing matrix, we can find the direct

relation between Λ and the measured neutrino data. Following the procedure originally

developed by Casas and Ibarra for seesaw type-I [90], we parametrize Λ as(
ΛT
)
kα

=
(√

Î−1
)
k
Rki

(√
m̂ν

)
i

(
U †ν
)
iα
. (3.21)

Here, m̂ν is the matrix of eigenvalues of mν , which is diagonalized with the neutrino mixing

matrix Uν via (
UTν
)
iα

(mν)αβ (Uν)βj ≡ m̂ν = diag
(
mν1 mν2 mν3

)
, (3.22)

12This ansatz can be justified by introducing a flavour symmetry with flavour-charged scalar

(flavon) fields.
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for which we use the following standard parametrization

Uν =

 c12c13 s12c13 s13e
iδ

−s12c23 − c12s23s13e
−iδ c12c23 − s12s23s13e

−iδ s23c13

s12s23 − c12c23s13e
−iδ −c12s23 − s12c23s13e

−iδ c23c13


 eiα1 0 0

0 eiα2 0

0 0 1

 (3.23)

cij = cos θij , sij = sin θij with the mixing angles θij , δ is the Dirac phase and α1, α2 are

Majorana phases. Finally, R is a complex orthogonal matrix which satisfies the condition

RTR = 1. We use the following parametrization for the R matrix in terms of three complex

angles θ1, θ2, and θ3 as

R =

 c2c3 −c1s3 − s1s2c3 s1s3 − c1s2c3

c2s3 c1c3 − s1s2s3 −s1c3 − c1s2s3

s2 s1c2 c1c2

 . (3.24)

After fitting the neutrino oscillation data with the parametrization shown above, there

remain y, (YQQS)33 and the masses mS6,3,1/3
, mS3,2,1/6

, mψk as free parameters. For the

calculation of the short-range contribution to the 0νββ decay, we also have the parameter

η31. For simplicity, we set y = 1 and assume again a nearly degenerate spectrum for

heavy particles, which is parameterized with Meff. We can then calculate half-lives T 0νββ
1/2

for both neutrino mass mechanism and the short-range contribution, as a function of mν1 ,

Meff and η31. In figure 16, we fixed the oscillation parameters s2
13, ∆m2

31 and ∆m2
21 at their

best-fit values, while s2
23 = 1/2 and s2

12 = 1/3 and set δ as well as the Majorana phases

to zero, just to sketch out some phenomenological aspects of this example. Each panel

shows the half-life of the short-range contribution for 0νββ decay of 136Xe as a function of

η31 (top panel), Meff (middle panel) and mν1 (bottom panel). In each panel, we examine

several choices for the remaining parameters, which are explained in the figure caption.

The corresponding half-lives induced from the mass mechanism are also indicated. As

shown in figure 16, half-lives can vary over many orders of magnitude with the choice of

parameters. The amplitudes induced from the mass mechanism becomes the same order

as that from the short-range, when η31 ∼ 2.7 (6.5) for Meff = 0.5 TeV (1 TeV). As in the

case with only one generation of ψ6,2,1/6, the mass mechanism dominates the 0νββ, if the

ratio η31 is taken to be unity and the heavy mass scale Meff is given at the typical LHC

search sensitivities. However, since the three-generation case can fit the quasi-degenerate

neutrino spectrum, 0νββ decay half-lives can be much shorter than in the one generation

case and can saturate the experimental bound.

We now turn to Br(µ → eγ). Again, as in the one generation case, the neutrino

mass matrix depends on Yukawa couplings, but is not directly related to Br(µ → eγ).

Therefore, we have always the freedom to adjust (YψdS)k3 and (YQQS)33 so as to fit the

neutrino masses. The other Yukawa couplings are then fixed by the neutrino data (and

the choice of Meff), and we can use them to calculate Br(µ → eγ). Figure 17 shows some

examples with a value of Meff = 1 TeV. The plots show that constraints from Br(µ→ eγ)

can be easily fulfilled. For this choice of Meff, only if both (YQQS)33 and (YψdS)13 are set to

order O(10−2) or lower, the predicted Br(µ→ eγ) can saturate the experimental bound.
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Figure 16. Calculated half-lives for 0νββ decay of 136Xe, considering only the short-range contri-

bution to the decay rate. The various plots show from top to bottom: T1/2 versus η31, Meff and

mν1 , for a fixed set of neutrino oscillation parameters and different choices of η31, Meff and mν1

as follows: in the top plots to the left (right) mν1 = 0.3 eV (0.05 eV), different lines show different

choices of Meff; from left to right: Meff = 0.2, 0.5, 1, 2 and 5 TeV. In the middle panel, to the

left (right) mν1 = 0.3 eV (0.05 eV), different lines show different choices of η31; from left to right:

η31 = 1, 2, 5, 10 and 20. In the lower panel, to the left (right): Meff = 0.5 TeV (1 TeV), different

lines are for different choices for η31; from top to bottom: η31 = 2, 3, 5, 8 and 10. For comparison

we also show the half-lives for the neutrino mass mechanism as horizontal lines in the top and

middle panel and as cyan lines in the lower panel. Oscillation parameters are s2
13, ∆m2

31 and ∆m2
21

at their best-fit values, while s2
23 = 1/2 and s2

12 = 1/3 for the case of normal hierarchy.

4 Conclusions and discussion

We have discussed the relation between the d = 9 short-range contributions to the 0νββ

decay amplitude with neutrino mass models. All contributions to 0νββ decay violate lep-

ton number and, therefore, generate also Majorana neutrino masses. We have classified
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Figure 17. Br(µ → eγ) versus YψdS ≡ (YψdS)13 (left) and YQQS ≡ (YQQS)33 (right), for a fixed

choice of Meff = 1 TeV, neutrino oscillation parameters as in figure 16 and mν1 = 0.05 eV (red lines)

and mν1 = 0.3 eV (blue lines). Full, dot-dashed and dashed lines are for YψdS (right) and YQQS
(left) equal to 1, 10−1 and 10−2 respectively. Br(µ → eγ) can saturate the experimental bound

only for small values of these couplings, since smaller values of YψdS and YQQS require larger values

for YLψS and YLdS , in order to fit neutrino data.

all possible (scalar-mediated) short-range contributions to the decay rate according to the

loop level, at which the corresponding models will generate Majorana neutrino masses.

Possibilities range from tree-level to 4-loop neutrino masses. For each case we have dis-

cussed one example briefly and given estimates of the typical constraints imposed by both

the short-range contribution and the mass mechanism. Generally, one expects that for

models with tree- or 1-loop neutrino masses, the short-range 0νββ decay amplitude will

be sub-dominant to the mass mechanism. For 2-loop models short-range 0νββ decay am-

plitude and mass mechanism can be comparable, while for 3-loop and 4-loop models the

short-range part of the amplitude will dominate.

We have also discussed one particular example of a 2-loop model in more detail. Here,

we have shown different parts of parameter space where mass mechanism or short-range

amplitude dominant can each be dominant. In the study, we have taken recent neutrino

oscillation data and constraints from LFV experiments into consideration.

In the appendix we give the full list of decompositions, classified according to our

scheme, in tabular form.
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A Summary tables

Here, we give tables in which all possible scalar short-range decompositions are classified

according to the loop level at which they will generate neutrino masses. The decompositions

which generate neutrino masses at tree, 1-loop, 2-loop, 3-loop and 4-loop level are listed

in tables 1 to 7. The identification number given to each decomposition is defined in [31].

The notation T-I and T-II refers to the two possible topologies of the decompositions of

d = 9 0νββ effective operators, and the BL number is the Babu-Leung classification of the

effective neutrino mass operator, given in [35]. The columns “Add. Int.” specify additional

interactions, with respect to those appearing in the decomposition. While they do not

appear directly in the 0νββ diagram, these additional interaction can not be forbidden

by any symmetry, without forbidding the corresponding 0νββ decay decomposition at the

same time. Once present, they generate a neutrino mass diagrams at the quoted loop level.

The columns “Diagram” specify the topology of the neutrino mass diagram, for example

“type-I” for seesaw type-I and so forth. The identification numbers for the 1-loop and 2-

loop neutrino mass diagrams are taken from the general topology classification given in [77]

and [62], respectively.

Here, we briefly comment on “associated operators”. As discussed in ref. [77], some

of the decompositions generate not only the original effective operator but also necessarily

generate other operators, when all possible contractions are carried out. We call this

associated operators. For example, the decomposition T-I-2-iii-a of the BL #19 operator

consists of the following fundamental interactions,

LT-I-2-iii-a =YLdS(LdR) · S3̄,2,−1/6 + YQψS

(
Q~λ~ψ

)
· S†

3̄,2,−1/6

+ YψdSS3̄,1,1/3

(
~ψ~λdR

)
+ YueS (uReR

c)S†
3̄,1,1/3

+ H.c., (A.1)

where ~λ is the Gell-Mann matrices. The first two interactions, together with the Majorana

mass of the fermion ψ8,1,0 result in the BL #11 operator (LdR)(Q)(Q)(LdR). In the same

way, the last two interactions lead to the d = 9 lepton number violating effective operator

(uReR)(dR)(dR)(uReR), which is O− in eq. (2.4). All the decompositions accompanied by

associated operators were listed in tables of ref. [77]. We take into account the associated

effective operators in our classification scheme. In short, if the associated operator generates

neutrino masses at a lower loop level than the original one, we classify the decomposition

with the loop level of the associated operator. The Lagrangian for a concrete example is

given in eq. (A.1). Here, although the original effective operator BL #19 gives neutrino

masses only at the 3-loop level, the decomposition T-I-2-iii-b of BL #19 also produces

BL #11, and it generates the 2-loop neutrino mass diagram with the help of the SM

Yukawa interactions. Therefore, we list the decomposition T-I-2-iii-b of BL #19 as a

2-loop neutrino mass model in table 4. More examples are given in the tables.
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T-I # Op. BL # S ψ S′ Diagram Add. Int.

1-i (ūd)(ē)(ē)(ūd) 11, 12, 14 (1, 2)+1/2 (1, 1)0 (1, 2)−1/2 type I L̄ψ110H
†

1-i (ūd)(ē)(ē)(ūd) 11, 12, 14 (1, 2)+1/2 (1, 3)0 (1, 2)−1/2 type III L̄ψ130H
†

1-ii-a (ūd)(ū)(d)(ēē) 11, 14 (1, 2)+1/2 (3, 3)+2/3 (1, 3)+1 type II S131H
†H†

1-ii-a (ūd)(ū)(d)(ēē) 11, 14 (8, 2)+1/2 (3, 3)+2/3 (1, 3)+1 type II S131H
†H†

1-ii-a (ūd)(ū)(d)(ēē) 12, 14 (1, 2)+1/2 (3, 2)+7/6 (1, 3)+1 type II S131H
†H†

1-ii-a (ūd)(ū)(d)(ēē) 12, 14 (8, 2)+1/2 (3, 2)+7/6 (1, 3)+1 type II S131H
†H†

1-ii-b (ūd)(d)(ū)(ēē) 12, 14 (1, 2)+1/2 (3̄, 3)+1/3 (1, 3)+1 type II S131H
†H†

1-ii-b (ūd)(d)(ū)(ēē) 12, 14 (8, 2)+1/2 (3̄, 3)+1/3 (1, 3)+1 type II S131H
†H†

1-ii-b (ūd)(d)(ū)(ēē) 11, 14 (1, 2)+1/2 (3̄, 2)+5/3 (1, 3)+1 type II S131H
†H†

1-ii-b (ūd)(d)(ū)(ēē) 11, 14 (8, 2)+1/2 (3̄, 2)+5/3 (1, 3)+1 type II S131H
†H†

2-i-b (ūd)(ē)(d)(ūē) 11, 19, 14, 20 (1, 2)+1/2 (1, 1)0 (3̄, 1)+1/3 type I L̄ψ110H
†

2-i-b (ūd)(ē)(d)(ūē) 11, 14 (1, 2)+1/2 (1, 3)0 (3̄, 3)+1/3 type III L̄ψ130H
†

2-ii-b (ūd)(ē)(ū)(dē) 11, 14 (1, 2)+1/2 (1, 1)0 (3, 2)+1/6 type I L̄ψ110H
†

2-ii-b (ūd)(ē)(ū)(dē) 11, 14 (1, 2)+1/2 (1, 3)0 (3, 2)+1/6 type III L̄ψ130H
†

2-iii-a (dē)(ū)(d)(ūē) 11, 19 (3̄, 2)−1/6 (1, 1)0 (3̄, 1)+1/3 type I L̄ψ110H
†

2-iii-a (dē)(ū)(d)(ūē) 11 (3̄, 2)−1/6 (1, 3)0 (3̄, 3)+1/3 type III L̄ψ130H
†

3-ii (ūū)(d)(d)(ēē) 11 (6, 3)+1/3 (3, 3)+2/3 (1, 3)+1 type II S131H
†H†

3-ii (ūū)(d)(d)(ēē) 12 (6, 1)+4/3 (3, 2)+7/6 (1, 3)+1 type II S131H
†H†

3-iii (dd)(ū)(ū)(ēē) 12 (6̄, 3)−1/3 (3̄, 3)+1/3 (1, 3)+1 type II S131H
†H†

3-iii (dd)(ū)(ū)(ēē) 11 (6̄, 1)+2/3 (3̄, 2)+5/6 (1, 3)+1 type II S131H
†H†

4-i (dē)(ū)(ū)(dē) 11 (3̄, 2)−1/6 (1, 1)0 (3, 2)+1/6 type I L̄ψ110H
†

4-i (dē)(ū)(ū)(dē) 11 (3̄, 2)−1/6 (1, 3)0 (3, 2)+1/6 type III L̄ψ130H
†

5-i (ūē)(d)(d)(ūē) 11, 19, - (3, 1)−1/3 (1, 1)0 (3̄, 1)+1/3 type I L̄ψ110H
†

5-i (ūē)(d)(d)(ūē) 11 (3, 3)−1/3 (1, 3)0 (3̄, 3)+1/3 type III L̄ψ130H
†

T-II # Op. BL # S S′ S′′ Diagram Add. Int.

1 (ūd)(ūd)(ēē) 11, 12, 14 (1, 2)+1/2 (1, 2)+1/2 (1, 3)−1 type II S13−1HH

1 (ūd)(ūd)(ēē) 11, 12, 14 (8, 2)+1/2 (8, 2)+1/2 (1, 3)−1 type II S13−1HH

3 (ūū)(dd)(ēē) 11 (6, 3)+1/3 (6̄, 1)+2/3 (1, 3)−1 type II S13−1HH

3 (ūū)(dd)(ēē) 12 (6, 1)+4/3 (6̄, 3)−1/3 (1, 3)−1 type II S13−1HH

Table 1. List of the decompositions that generate neutrino masses at tree level. The ID-numbers

with “T” are assigned as in ref. [31], and the decomposition is specified in the “Op.” column. We

also give the ID-numbers of lepton-number-violating effective operators, which are classified as in

Babu and Leung [35], in “BL#”. The SM charges of fields appearing in the decomposition are also

given. “Diagram” indicates the type of resulting tree-level neutrino mass diagrams: “type I” for

type I seesaw mechanism, and so on. In the column “Add. Int.”, we give the additional interaction

that is missing in the decomposition but is necessary to generate the neutrino mass diagram. For

the decompositions in this table, unless some severe fine-tuning of parameters is done, the mass

mechanism of double beta decay will dominate over the short-range contributions.
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T-I # Op. BL # S ψ S′ Diagram Add. Int.

1-i (ūd)(ē)(ē)(ūd) 11, 12, 14 (8, 2)+1/2 (8, 1)0 (8, 2)−1/2 Tν-3 S82 1
2
S82 1

2
H†H†

1-i (ūd)(ē)(ē)(ūd) 11, 12, 14 (8, 2)+1/2 (8, 3)0 (8, 2)−1/2 Tν-3 S82 1
2
S82 1

2
H†H†

2-i-a (ūd)(d)(ē)(ūē) 11, 14 (1, 2)+1/2 (3̄, 2)+5/6 (3̄, 1)+1/3 Tν-1-iii d̄cRψ3̄2 5
6
H†

2-i-a (ūd)(d)(ē)(ūē) 11, 14 (1, 2)+1/2 (3̄, 2)+5/6 (3̄, 3)+1/3 Tν-1-iii d̄cRψ3̄2 5
6
H†

2-i-a (ūd)(d)(ē)(ūē) 11, 14 (8, 2)+1/2 (3̄, 2)+5/6 (3̄, 1)+1/3 Tν-1-iii d̄cRψ3̄2 5
6
H†

2-i-a (ūd)(d)(ē)(ūē) 11, 14 (8, 2)+1/2 (3̄, 2)+5/6 (3̄, 3)+1/3 Tν-1-iii d̄cRψ3̄2 5
6
H†

2-i-b (ūd)(ē)(d)(ūē) 11, 14, 19, 20 (8, 2)+1/2 (8, 1)0 (3̄, 1)+1/3 Tν-3 S82 1
2
S82 1

2
H†H†

2-i-b (ūd)(ē)(d)(ūē) 11, 14 (8, 2)+1/2 (8, 3)0 (3̄, 3)+1/3 Tν-3 S82 1
2
S82 1

2
H†H†

2-ii-a (ūd)(ū)(ē)(dē) 11, 14 (1, 2)+1/2 (3, 3)+2/3 (3, 2)+1/6 Tν-1-iii Q̄ψ3̄3 2
3
H†

2-ii-a (ūd)(ū)(ē)(dē) 11, 14 (8, 2)+1/2 (3, 3)+2/3 (3, 2)+1/6 Tν-1-iii Q̄ψ3̄3 2
3
H†

2-ii-b (ūd)(ē)(ū)(dē) 11, 14 (8, 2)+1/2 (8, 1)0 (3, 2)+1/6 Tν-3 S82 1
2
S82 1

2
H†H†

2-ii-b (ūd)(ē)(ū)(dē) 11, 14 (8, 2)+1/2 (8, 3)0 (3, 2)+1/6 Tν-3 S82 1
2
S82 1

2
H†H†

2-iii-a (dē)(ū)(d)(ūē) 11 (3̄, 2)−1/6 (8, 1)0 (3̄, 1)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-a (dē)(ū)(d)(ūē) 11 (3̄, 2)−1/6 (8, 3)0 (3̄, 3)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄3 1
3
H†

2-iii-a (dē)(ū)(d)(ūē) 14 (3̄, 2)−1/6 (1, 2)+1/2 (3̄, 1)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-a (dē)(ū)(d)(ūē) 14 (3̄, 2)−1/6 (8, 2)+1/2 (3̄, 1)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-a (dē)(ū)(d)(ūē) 14 (3̄, 2)−1/6 (1, 2)+1/2 (3̄, 3)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄3 1
3
H†

2-iii-a (dē)(ū)(d)(ūē) 14 (3̄, 2)−1/6 (8, 2)+1/2 (3̄, 3)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄3 1
3
H†

2-iii-b (dē)(d)(ū)(ūē) 11 (3̄, 2)−1/6 (3, 2)+1/6 (3̄, 1)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-b (dē)(d)(ū)(ūē) 11 (3̄, 2)−1/6 (6̄, 2)+1/6 (3̄, 1)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-b (dē)(d)(ū)(ūē) 11 (3̄, 2)−1/6 (3, 2)+1/6 (3̄, 3)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄3 1
3
H†

2-iii-b (dē)(d)(ū)(ūē) 11 (3̄, 2)−1/6 (6̄, 2)+1/6 (3̄, 3)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄3 1
3
H†

2-iii-b (dē)(d)(ū)(ūē) 14 (3̄, 2)−1/6 (3, 1)−1/3 (3̄, 1)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-b (dē)(d)(ū)(ūē) 14 (3̄, 2)−1/6 (6̄, 1)−1/3 (3̄, 1)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-b (dē)(d)(ū)(ūē) 14 (3̄, 2)−1/6 (3, 3)−1/3 (3̄, 3)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄3 1
3
H†

2-iii-b (dē)(d)(ū)(ūē) 14 (3̄, 2)−1/6 (6̄, 3)−1/3 (3̄, 3)+1/3 Tν-1-ii S†
3̄2− 1

6

S3̄3 1
3
H†

3-i (ūū)(ē)(ē)(dd) 11 (6, 3)+1/3 (6, 2)−1/6 (6, 1)−2/3 Tν-3 S63 1
3
S†

61− 2
3

H†H†

3-i (ūū)(ē)(ē)(dd) 12 (6, 1)+4/3 (6, 2)+5/6 (6, 3)+1/3 Tν-3 S61 4
3
S†

63 1
3

H†H†

4-ii-a (ūū)(d)(ē)(dē) 11 (6, 3)+1/3 (3, 3)+2/3 (3, 2)+1/6 Tν-1-iii Q̄ψ33 2
3
H†

5-ii-b (ūē)(ē)(ū)(dd) 11 (3, 1)−1/3 (3, 2)−5/6 (6, 1)−2/3 Tν-1-iii d̄cRψ
c
32− 5

6
H†

5-ii-b (ūē)(ē)(ū)(dd) 11 (3, 3)−1/3 (3, 2)−5/6 (6, 1)−2/3 Tν-1-iii d̄cRψ
c
32− 5

6
H†

Table 2. Decompositions that generate neutrino masses at 1-loop. The naming convention of 1-

loop neutrino mass diagram, which is used in “Diagram” column, follows ref. [77] and is also shown

in figure (4). For the decompositions in this table, unless some severe fine-tuning of parameters is

done, the mass mechanism of double beta decay will dominate over the short-range contributions.
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T-II # Op. BL # S S′ S′′ Diagram Add. Int.

2 (ūd)(ūē)(dē) 11, 14 (1, 2)+1/2 (3, 1)−1/3 (3̄, 2)−1/6 Tν-1-ii S†
3̄2− 1

6

S†
31− 1

3

H†

2 (ūd)(ūē)(dē) 11, 14 (1, 2)+1/2 (3, 3)−1/3 (3̄, 2)−1/6 Tν-1-ii S†
3̄2− 1

6

S†
33− 1

3

H†

2 (ūd)(ūē)(dē) 11, 14 (8, 2)+1/2 (3, 1)−1/3 (3̄, 2)−1/6 Tν-1-ii S†
3̄2− 1

6

S†
31− 1

3

H†

2 (ūd)(ūē)(dē) 11, 14 (8, 2)+1/2 (3, 3)−1/3 (3̄, 2)−1/6 Tν-1-ii S†
3̄2− 1

6

S†
33− 1

3

H†

Table 3. Decompositions (T-II) that generate neutrino mass at 1-loop, which are continued from

table 2. For the decompositions in this table, unless some severe fine-tuning of parameters is done,

the mass mechanism of double beta decay will dominate over the short-range contributions.

T-I # Op. BL # S ψ S′ Diagram

2-iii-a (dē)(ū)(d)(ūē) 19 (3̄, 2)−1/6 (8, 1)0 (3̄, 1)+1/3 PTBM-1

4-i (dē)(ū)(ū)(dē) 11 (3̄, 2)−1/6 (8, 1)0 (3, 2)+1/6 PTBM-1

4-i (dē)(ū)(ū)(dē) 11 (3̄, 2)−1/6 (8, 3)0 (3, 2)+1/6 PTBM-1

4-ii-b (ūū)(ē)(d)(dē) 11 (6, 3)+1/3 (6, 2)−1/6 (3, 2)+1/6 PTBM-4

5-i (ūē)(d)(d)(ūē) 11, 19 (3, 1)−1/3 (8, 1)0 (3̄, 1)+1/3 PTBM-1

5-i (ūē)(d)(d)(ūē) 11 (3, 3)−1/3 (8, 3)0 (3̄, 3)+1/3 PTBM-1

5-ii-a (ūē)(ū)(ē)(dd) 11 (3, 1)−1/3 (6, 2)−1/6 (6, 1)−2/3 PTBM-4

5-ii-a (ūē)(ū)(ē)(dd) 11 (3, 3)−1/3 (6, 2)−1/6 (6, 1)−2/3 PTBM-4

T-II # Op. BL # S S′ S′′ Diagram

4 (ūū)(dē)(dē) 11 (6, 3)+1/3 (3̄, 2)−1/6 (3̄, 2)−1/6 CLBZ-1

5 (ūē)(ūē)(dd) 11 (3, 1)−1/3 (3, 1)−1/3 (6̄, 1)+2/3 CLBZ-1

5 (ūē)(ūē)(dd) 11 (3, 3)−1/3 (3, 3)−1/3 (6̄, 1)+2/3 CLBZ-1

Table 4. Decompositions that generate the d = 5 neutrino mass operator LLHH at 2-Loop. We

follow the naming convention used in [62]. Although the effective operator of BL #19 can generate

neutrino mass only at the 3-loop level [35, 36], the decompositions of BL #19 listed in this table

generate not only the BL #19 but also the “associated” BL #11 operator and thus are classified as

2-loop neutrino mass models. For the decompositions in this table, the mass mechanism of double

beta decay and the short-range contributions can be comparable.
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T-I # Op. BL # S ψ S′ Diagram Add. Int.

2-i-a (ūd)(d)(ē)(ūē) 19, 20 (1, 2)+1/2 (3̄, 2)+5/6 (3̄, 1)+1/3 (b) d̄cRψ3̄2 5
6
H†

2-i-a (ūd)(d)(ē)(ūē) 19, 20 (8, 2)+1/2 (3̄, 2)+5/6 (3̄, 1)+1/3 (b) d̄cRψ3̄2 5
6
H†

2-ii-a (ūd)(ū)(ē)(dē) 19, 20 (1, 2)+1/2 (3, 2)+7/6 (3, 2)+1/6 (a) ūRψ32 7
6
H†

2-ii-a (ūd)(ū)(ē)(dē) 19, 20 (8, 2)+1/2 (3, 2)+7/6 (3, 2)+1/6 (a) ūRψ32 7
6
H†

2-ii-b (ūd)(ē)(ū)(dē) 19, 20 (1, 2)+1/2 (1, 2)−1/2 (3, 2)+1/6 (c) ēRψ12− 1
2
H†

2-iii-a (dē)(ū)(d)(ūē) 19 (3̄, 2)−1/6 (8, 1)0 (3̄, 1)+1/3 (d) S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-a (dē)(ū)(d)(ūē) 20 (3̄, 2)−1/6 (1, 2)+1/2 (3̄, 1)+1/3 (d) S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-a (dē)(ū)(d)(ūē) 20 (3̄, 2)−1/6 (1, 2)+1/2 (3̄, 1)+1/3 (c) ēRψ
c
12 1

2

H†

2-iii-a (dē)(ū)(d)(ūē) 20 (3̄, 2)−1/6 (8, 2)+1/2 (3̄, 1)+1/3 (d) S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-b (dē)(d)(ū)(ūē) 19 (3̄, 2)−1/6 (3, 2)+1/6 (3̄, 1)+1/3 (d) S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-b (dē)(d)(ū)(ūē) 19 (3̄, 2)−1/6 (6̄, 2)+1/6 (3̄, 1)+1/3 (d) S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-b (dē)(d)(ū)(ūē) 20 (3̄, 2)−1/6 (3, 1)−1/3 (3̄, 1)+1/3 (d) S†
3̄2− 1

6

S3̄1 1
3
H†

2-iii-b (dē)(d)(ū)(ūē) 20 (3̄, 2)−1/6 (6̄, 1)−1/3 (3̄, 1)+1/3 (d) S†
3̄2− 1

6

S3̄1 1
3
H†

4-i (dē)(ū)(ū)(dē) 20 (3̄, 2)−7/6 (1, 2)−1/2 (3, 2)+1/6 (c) ēRψ12− 1
2
H†

4-ii-a (ūū)(d)(ē)(dē) 20 (6, 1)+4/3 (3, 2)+7/6 (3, 2)+1/6 (a) ūRψ32 7
6
H†

5-ii-b (ūē)(ē)(ū)(dd) 19 (3, 1)−1/3 (3, 2)−5/6 (6, 1)−2/3 (b) d̄cRψ
c
32− 5

6

H†

T-II # Op. BL # S S′ S′′ Diagram Add. Int.

2 (ūd)(ūē)(dē) 19, 20 (1, 2)+1/2 (3, 1)−1/3 (3̄, 2)−1/6 (d) S†
3̄2− 1

6

S†
31− 1

3

H†

2 (ūd)(ūē)(dē) 19, 20 (8, 2)+1/2 (3, 1)−1/3 (3̄, 2)−1/6 (d) S†
3̄2− 1

6

S†
31− 1

3

H†

Table 5. Decompositions that generate d = 7 neutrino mass operator LLHHHH† at the 2 loop

level. The topologies of the neutrino mass diagrams in the column of “Diagram” are shown in

figure 18. For the decompositions in this table, unless some severe fine-tuning of parameters is

done, the short-range contributions will dominate over the mass mechanism of double beta decay.
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Figure 18. Dimension 7 (d = 7) neutrino mass diagrams generated by the decompositions listed

in table 5.

T-I # Op. BL # S ψ S′

2-ii-b (ūd)(ē)(ū)(dē) 19, 20 (8, 2)+1/2 (8, 2)−1/2 (3, 2)+1/6

4-i (dē)(ū)(ū)(dē) 20 (3̄, 2)−7/6 (8, 2)−1/2 (3, 2)+1/6

4-ii-a (ūū)(d)(ē)(dē) 20 (6, 1)+4/3 (3, 1)+5/3 (3, 2)+7/6

4-ii-b (ūū)(ē)(d)(dē) 20 (6, 1)+4/3 (6, 1)+1/3 (3, 2)+1/6

4-ii-b (ūū)(ē)(d)(dē) 20 (6, 1)+4/3 (6, 2)+5/6 (3, 2)+7/6

5-ii-a (ūē)(ū)(ē)(dd) 19 (3, 1)−1/3 (6, 1)+1/3 (6, 1)−2/3

5-ii-a (ūē)(ū)(ē)(dd) 19 (3, 1)−1/3 (6, 2)−1/6 (6, 1)−2/3

5-ii-b (ūē)(ē)(ū)(dd) 19 (3, 1)−1/3 (3, 1)−4/3 (6, 1)−2/3

T-II # Op. BL # S S′ S′′

4 (ūū)(dē)(dē) 20 (6, 1)+4/3 (3̄, 2)−7/6 (3̄, 2)−1/6

5 (ūē)(ūē)(dd) 19 (3, 1)−1/3 (3, 1)−1/3 (6̄, 1)+2/3

Table 6. Decompositions that generate neutrino masses at 3-loop. Some example diagrams are

given in the main text. For the decompositions in this table, unless some severe fine-tuning of

parameters is done, the short-range contributions will dominate over the mass mechanism of double

beta decay.
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T-I # Op. BL # S ψ S′

3-i (ūū)(ē)(ē)(dd) - (6, 1)+4/3 (6, 1)+1/3 (6, 1)−2/3

3-ii (ūū)(d)(d)(ēē) - (6, 1)+4/3 (3, 1)+5/3 (1, 1)+2

3-iii (dd)(ū)(ū)(ēē) - (6̄, 1)+2/3 (3̄, 1)+4/3 (1, 1)+2

5-i (ūē)(d)(d)(ūē) - (3, 1)−1/3 (8, 1)0 (3̄, 1)+1/3

5-ii-a (ūē)(ū)(ē)(dd) - (3, 1)−1/3 (6, 1)+1/3 (6, 1)−2/3

5-ii-b (ūē)(ē)(ū)(dd) - (3, 1)−1/3 (3, 1)−4/3 (6, 1)−2/3

T-II # Op. BL # S S′ S′′

3 (ūū)(dd)(ēē) - (6, 1)+4/3 (6̄, 1)+2/3 (1, 1)−2

5 (ūē)(ūē)(dd) - (3, 1)−1/3 (3, 1)−1/3 (6̄, 1)+2/3

Table 7. Decompositions that generate neutrino masses at 4-loop. For the decompositions in this

table, the short-range contributions will dominate over the mass mechanism of double beta decay.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] F.F. Deppisch, M. Hirsch and H. Päs, Neutrinoless Double Beta Decay and Physics Beyond

the Standard Model, J. Phys. G 39 (2012) 124007 [arXiv:1208.0727] [INSPIRE].

[2] GERDA collaboration, M. Agostini et al., Results on Neutrinoless Double-β Decay of 76Ge

from Phase I of the GERDA Experiment, Phys. Rev. Lett. 111 (2013) 122503

[arXiv:1307.4720] [INSPIRE].

[3] EXO-200 collaboration, J.B. Albert et al., Search for Majorana neutrinos with the first two

years of EXO-200 data, Nature 510 (2014) 229 [arXiv:1402.6956] [INSPIRE].

[4] KamLAND-Zen collaboration, I. Shimizu, Results from KamLAND-Zen, presented at

Neutrino 2014, Boston, U.S.A., June 2–7 2014.

[5] KamLAND-Zen collaboration, A. Gando et al., Limit on Neutrinoless ββ Decay of 136Xe

from the First Phase of KamLAND-Zen and Comparison with the Positive Claim in 76Ge,

Phys. Rev. Lett. 110 (2013) 062502 [arXiv:1211.3863] [INSPIRE].

[6] K. Muto, E. Bender and H.V. Klapdor, Nuclear Structure Effects on the Neutrinoless Double

Beta Decay, Z. Phys. A 334 (1989) 187 [INSPIRE].
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[13] A. Faessler, S.G. Kovalenko and F. Šimkovic, Bilinear R-parity violation in neutrinoless

double beta decay, Phys. Rev. D 58 (1998) 055004 [hep-ph/9712535] [INSPIRE].

[14] M. Hirsch and J.W.F. Valle, Neutrinoless double beta decay in supersymmetry with bilinear R

parity breaking, Nucl. Phys. B 557 (1999) 60 [hep-ph/9812463] [INSPIRE].

[15] M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, New leptoquark mechanism of

neutrinoless double beta decay, Phys. Rev. D 54 (1996) 4207 [hep-ph/9603213] [INSPIRE].

[16] S. Choubey, M. Duerr, M. Mitra and W. Rodejohann, Lepton number and lepton flavor

violation through color octet states, JHEP 05 (2012) 017 [arXiv:1201.3031] [INSPIRE].

[17] B. Brahmachari and E. Ma, Neutrinoless double beta decay with negligible neutrino mass,

Phys. Lett. B 536 (2002) 259 [hep-ph/0202262] [INSPIRE].

[18] P.-H. Gu, Significant neutrinoless double beta decay with quasi-Dirac neutrinos, Phys. Rev. D

85 (2012) 093016 [arXiv:1101.5106] [INSPIRE].

[19] M. Kohda, H. Sugiyama and K. Tsumura, Lepton number violation at the LHC with

leptoquark and diquark, Phys. Lett. B 718 (2013) 1436 [arXiv:1210.5622] [INSPIRE].

[20] N. Steinbrink et al., Neutrino mass sensitivity by MAC-E-Filter based time-of-flight

spectroscopy with the example of KATRIN, New J. Phys. 15 (2013) 113020

[arXiv:1308.0532] [INSPIRE].

[21] J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, Phys. Rept. 429 (2006) 307

[astro-ph/0603494] [INSPIRE].

[22] S. Hannestad, Neutrino physics from precision cosmology, Prog. Part. Nucl. Phys. 65 (2010)

185 [arXiv:1007.0658] [INSPIRE].

[23] Y.Y.Y. Wong, Neutrino mass in cosmology: status and prospects, Ann. Rev. Nucl. Part. Sci.

61 (2011) 69 [arXiv:1111.1436] [INSPIRE].

[24] A. Ali, A.V. Borisov and D.V. Zhuridov, Probing new physics in the neutrinoless double beta

decay using electron angular correlation, Phys. Rev. D 76 (2007) 093009 [arXiv:0706.4165]

[INSPIRE].

[25] SuperNEMO collaboration, R. Arnold et al., Probing new physics models of neutrinoless

double beta decay with SuperNEMO, Eur. Phys. J. C 70 (2010) 927 [arXiv:1005.1241]

[INSPIRE].

[26] M. Hirsch, K. Muto, T. Oda and H.V. Klapdor-Kleingrothaus, Nuclear structure calculations

of β+β+, β+/EC and EC/EC decay matrix elements, Z. Phys. A 347 (1994) 151 [INSPIRE].

[27] H. Päs, M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, Towards a

superformula for neutrinoless double beta decay, Phys. Lett. B 453 (1999) 194 [INSPIRE].

– 35 –

http://dx.doi.org/10.1103/PhysRevD.23.165
http://inspirehep.net/search?p=find+J+Phys.Rev.,D23,165
http://dx.doi.org/10.1143/PTPS.83.1
http://dx.doi.org/10.1143/PTPS.83.1
http://inspirehep.net/search?p=find+J+Prog.Theor.Phys.Suppl.,83,1
http://dx.doi.org/10.1103/PhysRevD.34.3457
http://inspirehep.net/search?p=find+J+Phys.Rev.,D34,3457
http://dx.doi.org/10.1103/PhysRevLett.75.17
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,75,17
http://dx.doi.org/10.1103/PhysRevD.58.055004
http://arxiv.org/abs/hep-ph/9712535
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9712535
http://dx.doi.org/10.1016/S0550-3213(99)00368-5
http://arxiv.org/abs/hep-ph/9812463
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9812463
http://dx.doi.org/10.1103/PhysRevD.54.R4207
http://arxiv.org/abs/hep-ph/9603213
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9603213
http://dx.doi.org/10.1007/JHEP05(2012)017
http://arxiv.org/abs/1201.3031
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.3031
http://dx.doi.org/10.1016/S0370-2693(02)01869-5
http://arxiv.org/abs/hep-ph/0202262
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0202262
http://dx.doi.org/10.1103/PhysRevD.85.093016
http://dx.doi.org/10.1103/PhysRevD.85.093016
http://arxiv.org/abs/1101.5106
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5106
http://dx.doi.org/10.1016/j.physletb.2012.12.048
http://arxiv.org/abs/1210.5622
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.5622
http://dx.doi.org/10.1088/1367-2630/15/11/113020
http://arxiv.org/abs/1308.0532
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.0532
http://dx.doi.org/10.1016/j.physrep.2006.04.001
http://arxiv.org/abs/astro-ph/0603494
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0603494
http://dx.doi.org/10.1016/j.ppnp.2010.07.001
http://dx.doi.org/10.1016/j.ppnp.2010.07.001
http://arxiv.org/abs/1007.0658
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0658
http://dx.doi.org/10.1146/annurev-nucl-102010-130252
http://dx.doi.org/10.1146/annurev-nucl-102010-130252
http://arxiv.org/abs/1111.1436
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1436
http://dx.doi.org/10.1103/PhysRevD.76.093009
http://arxiv.org/abs/0706.4165
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.4165
http://dx.doi.org/10.1140/epjc/s10052-010-1481-5
http://arxiv.org/abs/1005.1241
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.1241
http://dx.doi.org/10.1007/BF01292371
http://inspirehep.net/search?p=find+Z.Phys,A347,151
http://dx.doi.org/10.1016/S0370-2693(99)00330-5
http://inspirehep.net/search?p=find+J+Phys.Lett.,B453,194


J
H
E
P
0
5
(
2
0
1
5
)
0
9
2

[28] H. Päs, M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, A superformula for

neutrinoless double beta decay. 2. The short range part, Phys. Lett. B 498 (2001) 35

[hep-ph/0008182] [INSPIRE].

[29] J.C. Helo, M. Hirsch, S.G. Kovalenko and H. Päs, Neutrinoless double beta decay and lepton

number violation at the LHC, Phys. Rev. D 88 (2013) 011901 [arXiv:1303.0899] [INSPIRE].

[30] J.C. Helo, M. Hirsch, H. Päs and S.G. Kovalenko, Short-range mechanisms of neutrinoless

double beta decay at the LHC, Phys. Rev. D 88 (2013) 073011 [arXiv:1307.4849] [INSPIRE].

[31] F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic decomposition of the neutrinoless

double beta decay operator, JHEP 03 (2013) 055 [Erratum ibid. 04 (2014) 090]

[arXiv:1212.3045] [INSPIRE].

[32] J. Schechter and J.W.F. Valle, Neutrinoless double beta decay in SU(2)×U(1) theories,

Phys. Rev. D 25 (1982) 2951 [INSPIRE].

[33] M. Hirsch, S.G. Kovalenko and I. Schmidt, Extended black box theorem for lepton number

and flavor violating processes, Phys. Lett. B 642 (2006) 106 [hep-ph/0608207] [INSPIRE].

[34] M. Duerr, M. Lindner and A. Merle, On the quantitative impact of the Schechter-Valle

theorem, JHEP 06 (2011) 091 [arXiv:1105.0901] [INSPIRE].

[35] K.S. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys.

B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].
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