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1 Introduction

The subject of p-forms over superspace manifolds (“super p-forms”) had its beginnings

in 1977 when a number of authors [1–5] led by J. Wess noted that within the context

of supergravity and supersymmetric gauge theories, the usual notion of 1-forms could

possess extensions in superspace. The first two works considered the formal structure and

definitions of super p-forms for only the p = 1 case. There was no guidance provided on

the extension of super p-forms to p > 1. In that same year, the problem of establishing an

integration theory for super p-forms was begun [4, 5]. In this early, more general discussion

of super p-forms with p > 1 there appears to have been little, if any, attention paid to the

role of constraints.

This situation changed in 1980 when it was shown [6] how to construct an entire

N = 1 four-dimensional super-de Rham complex of super p-forms (with 0 < p < 4) over

a supermanifold. Furthermore, for the first time a set of constraints required for the

irreducibility of the supermultiplets for each value of p was established.

– 1 –



J
H
E
P
0
5
(
2
0
1
5
)
0
4
9

During this period some authors turned their attention to the problem of establishing

a theory of integration for super p-forms on supermanifolds and significant formal progress

was made [7–11]. However, in 1997 one of the authors (SJG) put forth the “Ectoplasmic

Integration Theory (EIT)” [12–15] that stressed the role of super p-form constraints in

integration theory.

The basis for the EIT approach is an assertion about topology. It is suggested that

the integration theory over a supermanifold requires that the entire supermanifold is, at

the level of topology, essentially indistinguishable from its bosonic submanifold. This is

referred to as “the ethereal conjecture” and immediately leads to an integration theory that

necessarily includes elements of cohomology. As super p-forms are inextricably linked to

cohomological calculations, the EIT approach demands an integration theory where super

p-forms play a prominent role.

The EIT approach is more than just a formal statement of the properties of super

p-forms and their theory of integration. In its initial presentations, it was shown to solve

a problem related to superspace density measures that had been stated by Zumino. This

was done on the basis of the ethereal conjecture and led to a superspace analog of Stokes’

Theorem, modified appropriately to hold for both rigid and local supermanifolds. By now,

the EIT approach has led to a number of practical results that include:

(1) a highly efficient derivation of supergravity density measures [16–19],

(2) a superspace formulation for 4D, N = 8 supergravity counterterms [20],

(3) a covariant formulation of 4D, N = 4 supergravity anomalies/divergences [21, 22],

(4) complete formulations of integration on supermanifolds with boundaries [23],

(5) a supergravity derivation of a minimal unitary representation of the string effective

action [24, 25], and

(6) establishing the relationship between superspace integration theory and the picture-

changing formalism of superstring theory [26].

We believe these all speak powerfully to the motivations behind efforts to understand as

fully as possible the structure of super-de Rham complexes in general.

We begin this article with a review of superforms in four-dimensional, N = 1 super-

space in section 2. In section 3, we work out the cocycles of the de Rham complex of

five-dimensional, N = 1 superspace. This is done sequentially by obstructing the closure

conditions on a p-cocycle to get a (p + 1)-coboundary. In the process, we generate the

supersymmetric version of closed de Rham p-forms for all values of p except for p = 3

where we find a 3-cocycle that can be interpreted as a multiplet of superconformal gauge

parameters instead.

In section 4 these cocycles are related to those in the corresponding six-dimensional

complex via dimensional reduction. In this reduction, we find a second type of cocycle in

the relative cohomology arising from the embedding of the five-dimensional superspace in

the six-dimensional one. The missing 3-form can then be interpreted as the 3-cocycle of this
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p p-form

0 ϕ

1 Aa

2 tab
3 Xabc

4 Yabcd

Table 1. 4D, N = 0 p-form complex.

p Field-Strength Gauge Variation Function

0 ∂aϕ c0

1 ∂aAb − ∂bAa ∂aλ

2 ∂atbc + ∂btca + ∂ctab ∂aλb − ∂bλa

3 ∂aXbcd − ∂bXcda + ∂cXdab − ∂dXabc ∂aλbc + ∂bλca + ∂cλab

4 0 ∂aλbcd − ∂bλcda + ∂cλdab − ∂dλabc

Table 2. 4D, N = 0 field strengths & gauge variations.

Degree Field-Strength Gauge Variation Function

p 1
p!∂[a1|P|a2...ap+1]

1
(p−1)!∂[a1|λ|a2...ap−1]

Table 3. 4D, N = 0 field strengths & gauge variations.

relative complex. Finally, in section 5 we examine the component fields of the multiplets

defined by p-form field-strengths for p = 2, 3, 4. The 2-form and 4-form are the well-known

vector and linear multiplets, respectively and are in the super-de Rham complex, whereas

the 3-form as found in the relative complex is an on-shell tensor multiplet. Our conventions

and some useful identities for this superspace are provided in appendix A.

2 A retrospective & prospective perspective

There exists a well-known hierarchy of p-forms in four-dimensional spacetime where for

each value of p there exists a field, respectively denoted in table 1 by ϕ, Aa, tab, Xabc, and

Yabcd. Each such field component is completely antisymmetric on the exchange of its vector

indices and describes a gauge field with field-strength and gauge transformation shown in

table 2.

It is seen that all the field-strengths and gauge variations can be collectively written

in the forms given in table 3, but in the special case of p = 0, the gauge variation is not a

local function. Instead the quantity c0 is a modulus parameter implying the absence of a

potential function for the scalar field ϕ.

The results first given in [6] established the existence of a complex among constrained

super p-form superfields as an extension of the non-supersymmetric structures above and
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p p-form Superfield

0 Γ

1 ΓA

2 ΓAB

3 ΓABC

4 ΓABCD

Table 4. 4D, N = 1 p-form complex.

p Prepotential Field Strength SF Gauge Variation SF

0 Φ i12(Φ− Φ) c0

1 V iD
2
Dα V i 1

2(Λ − Λ)

2 Vα
1
2(DαVα + D

α̇
V α̇) iD

2
Dα Λ

3 V ′ D2V ′ 1
2(DαΛα + D

α̇
Λα̇)

4 Φ′ 0 D2Λ

Table 5. 4D, N = 1 de Rham complex.

are summarized in the following table. Super p-forms in general possess “super vector”

indices that take on bosonic and fermionic values as in A = (a, α, α̇). The analogous fields

are displayed in table 4, where each of the quantities denoted by Γ is now a superfield.

In the work of [6] a complete listing of all the irreducible Lorentz representations for each

of the super p-forms can be found. Each super p-form possesses a Bianchi identity, field-

strength superfield and a corresponding gauge variation that are N = 1 extensions of the

results in table 3. These take the forms given in equations (2.7) through (2.9) of [6].

The major discovery in [6] was to identify a complex of 4D, N = 1 prepotentials for the

p-forms, shown in table 5. These prepotentials had been known in both super Yang-Mills

(the familiar V ) and supergravity (the familiar Ha) for some time. Thus, the result was

established that gauge 4D, N = 1 p-form superfields also have prepotentials and themselves

form a complex without reference to the p-forms in table 4.

These prepotentials appear in the geometrical p-form superfields via the following

equations

• p = 1

Γα = iDα V , V = V ,

Γa =
1

4
σαβ̇a

[
Dα , Dβ̇

]
V ,

• p = 2

Γαβ = Γαβ̇ = 0 ,

Γα b = i σb αγ̇V
γ̇
, DaV β̇ = 0

Γa b = i
1

4

[
(σa b)

γ δDγVδ + (σa b)
γ̇ δ̇D γ̇V δ̇

]
.
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p Prepotential Field-Strength SF Gauge Variation SF

0 χα (i j)
k Dαkχ

α (j k)
i + Dk

α̇χ
α̇ j

(i k) −−

1 V i
j D

(4)
D

(2)
i j C

ikVk
j Dαkχ

α (j k)
i + Dk

α̇χ
α̇ j

(i k)

2 Φ i(CjkD(2)
i k Φ − CikD

(2)j k Φ) D
(4)
D

(2)
i j C

ikVk
j

Table 6. Known partial 4D, N = 2 complex.

• p = 3

Γαβγ = Γαβ c = Γαβν̇ = 0 ,

Γαβ̇ c = i σc αβ̇ V
′ , V ′ = V

′
,

Γa b c = − i 1

2
(σb c)αδ̇D

δ̇V ′ ,

Γa b c =
1

4
εa b c d σ

d β γ̇
[
Dβ , Dγ̇

]
V ′ ,

• p = 4

Γαβγδ = Γαβγ̇δ = Γαβγ d = Γαβγ̇ d = Γαβ̇ c d = Dα Φ′ = 0 ,

Γαβ c d = i
1

2
(σc d)αβΦ′ , Γβ d e f = − 1

4
εd e f gσ

g
βγ̇D

γ̇ Φ′ ,

Γa b c d = iεa b c d(D
2 Φ′ − D

2
Φ′) ,

A major unfinished task in supersymmetric field theory is to construct this complex of

prepotentials for all dimensions and all degrees of extension.

There is a close relation between the 4D, N = 2 and 5D, N = 1 superspaces. Thus, the

works of [27] and [28] are closely related to our present considerations. As the formulation

of [27] involves harmonics and as we will not venture in that direction in this work, we

restrict our review to the portion of the work of [28] that is relevant here.

The work of [28] gave an incomplete presentation of the obstruction complex. It

explicitly treated the cases of p = 1 and p = 2 and made an implication for the case of p

= 0, but the higher values of p were not treated. These results are summarized in table 6.

Given the superfields that appear in this table, there are several points to note. The

superfield χα (i j)
k is a spinorial prepotential that is symmetric on the i and j indices. At the

time this partial complex was presented, it was not known how to use χα (i j)
k to construct

a supermultiplet of propagating fields. This is to be contrasted with the case of N = 1

where the superfield that appears in the p = 1 obstruction superfield transformation can

be used to describe N = 1 supermatter. However, in the work of [29] it was shown that

such a superfield is capable of describing a type of N = 2 hypermultiplet in analogy with

superfield N = 1, p = 1 gauge parameter. The superfield Vi
j is often called the “Mezinçescu

prepotential” as it first appeared in the work of [30]. It is a hermitian traceless matrix

– 5 –
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on its isospin indices i and j. Finally, the superfield Φ in table 6 is chiral Di
α̇Φ = 0 with

respect to 4D, N = 2 supersymmetry.

With the story and background of four-dimensional superforms firmly in mind, we

now move towards the complex of forms in five-dimensional, N = 1 superspace. Although

the logical conclusion of this line of investigation is the construction of the complex at the

level of prepotentials, the first step in the process is the construction of the complex at

the level of field-strength superfields. As such, we will content ourselves in this work with

the derivation of the constraints on the superfields to which the would-be prepotentials

are the unconstrained solutions. Already at this level, we will encounter some unexpected

complications and elucidate some features of the five-dimensional super-de Rham complex.

As mentioned previously, these include branching in the the complex (section 3.2), the

existence of a second “relative cohomology” complex (section 4.1), and even p-cocycles

that are not the supersymmetrization of p-forms (section 5.4). As will become apparent,

these features are expected to manifest generically in superspaces with D > 4.

3 Closed five-dimensional superforms

In this section, we work out the super-de Rham cocycles arising by identifying suitable

constraints and obstructing them, starting with the closed 1-form in section 3.1. The

components of the pth cocycle are related by the superspace Bianchi identities [31–33]

0 =
1

p!
D[A1

ωA2...Ap+1] +
1

2!(p− 1)!
T[A1A2|

CωC|A3...Ap+1]. (3.1)

This collection is graded by increasing engineering dimension with the component

ωα1...αra1...as having dimension r
2 +s. This allows the determination of the higher-dimension

components of the cocycle in terms of the lowest non-vanishing one(s). This lowest non-

vanishing component will be a superfield, possibly in a non-trivial (iso-)spin representation.

In addition to determining the components of the cocycle in terms of this defining

superfield, the Bianchi identities generally impose a series of constraints on it, again or-

ganized by engineering dimension. As we will see, the highest of these can be obstructed,

thereby defining a cocycle of degree 1 higher in the complex. The complex can branch if

it happens that there is more than one constraint on the defining superfield in the highest

dimension (as we will see explicitly when passing from the 1-cocycle to the 2-cocycle) and

we work out the components of each of the resulting cocycles.

3.1 The five-dimensional 1-form

We begin the construction on the de Rham complex with the 1-form ωA = AA. Closure of

A is equivalent to the Bianchi identity

0 = 2D[AAB] + TAB
CAC . (3.2)

The closure condition with the lowest engineering dimension has AB = α̂iβ̂j :

0 = Dα̂iAβ̂j +Dβ̂jAα̂i − 2iεij(Γ
â)α̂β̂Aâ. (3.3)

– 6 –
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Since it is symmetric on composite spinor indices, (anti-)symmetrizing on the (iso-)spin

indices gives three irreducible parts corresponding to the scalar, anti-symmetric tensor,

and vector representations. The first two give the constraints

Dα̂iAα̂i = 0 and D(α̂(iAβ̂)j) = 0, (3.4)

while the third determines the vector component of A in terms of its spinor component

Aψ = − i
8
DiΓψAi. (3.5)

If we attempt to partially solve these constraints as Aα̂i = Dα̂iU + Dj
α̂Uij , then they

demand that D2
âb̂
Uij = 0 and D2

ijU
ij = 0, respectively, while U remains unconstrained.1

The components are then given as

Aα̂i = Dα̂iU +Dj
α̂Uij and Aâ = ∂âU −

i

4
D2
âijU

ij . (3.6)

The dimension-32 Bianchi identity is solved identically through use of the dimension-1

constraints. The dimension-2 Bianchi identity already holds as well, since

∂[âAb̂] = − i
4
∂[âD

2
b̂]ij
U ij =

1

16
[D2

ij , D
2
âb̂

]U ij = 0. (3.7)

Thus, the components (3.6) and constraints (3.4) together give a closed 1-form field-

strength in five dimensions.

3.2 The five-dimensional 2-form

The closed 2-form F = dA is the exterior derivative of a gauge 1-form A and can be

interpreted, therefore, as the obstruction to the 1-form’s closure. By setting the lowest

component of F to be the obstruction to the scalar constaint in (3.4), we have

Fα̂iβ̂j = (dA)α̂iβ̂j =: 2iεijεα̂β̂W, (3.8)

for some dimension-1 field-strength W. Now that we have the lowest component of F , the

remaining components and any constraints on W follow uniquely from (3.1). For purposes

of exposition, we will give a fairly in-depth look at the calculations that go into this analysis

in this section, but we will suppress the analogous steps in the following sections.

To begin, consider the dimension- 32 condition

0 = Dα̂iFβ̂jγ̂k + 2iεij(Γ
â)α̂β̂Fγ̂kâ + (αβγ). (3.9)

Here α ≡ α̂i and the notation ( · ) denotes the remaining cyclic permutations of the enclosed

composite indices. Plugging in Fα̂iβ̂j , we find that Fα̂iâ is fixed to be

Fα̂iâ = −(Γâ)α̂
β̂Dβ̂iW. (3.10)

1These constraints can be solved in terms of unconstrained prepotentials (cf. e.g. ref. [30]), but we will

not need their solution here.
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The dimension-2 condition, upon plugging in the known components and expanding the

DD terms with (A.6), becomes

0 =

[
− iεij(ΓâΓb̂)β̂α̂∂b̂ −

1

2
εij(ΓâΣ

b̂ĉ)β̂α̂D
2
b̂ĉ

+
1

2
(ΓâΓ

b̂)β̂α̂D
2
b̂ij

− 1

2
(Γâ)β̂α̂D

2
ij + (αβ)

]
W− 2iεijεα̂β̂∂âW + 2iεij(Γ

b̂)α̂β̂Fb̂â. (3.11)

The (αβ) symmetry kills the final term in the DD expansion and allows the ∂W terms to

cancel. Additionally, it restricts the irreducibles in the remaining two terms of the DD

expansion, leaving behind the relation

0 = [−εij(Γb̂)β̂α̂D
2
âb̂
− 2(Σâ

b̂)α̂β̂D
2
b̂ij

]W + 2iεij(Γ
b̂)α̂β̂Fb̂â. (3.12)

Because of the (anti-)symmetry in the ij indices, this is actually two separate conditions

with one defining the component Fâb̂ and the other putting a restriction on W. The

former yields

Fâb̂ = − i
2
D2
âb̂
W, (3.13)

while the latter requires

D2
âijW = 0. (3.14)

From (A.6), this is equivalent to

D
(i
α̂D

j)

β̂
W =

1

4
εα̂β̂D

γ̂(iD
j)
γ̂ W. (3.15)

Continuing with the dimension- 52 condition, we substitute the components of F to find

Dα̂iD
k
(β̂
Dγ̂)kW = 4i/∂ δ̂(β̂εγ̂)α̂D

δ̂
iW− 4i/∂α̂(β̂Dγ̂)iW. (3.16)

Through a bit of Γ-matrix algebra this can be shown to come directly from (3.14) by

expanding and simplifying

(Γâ)α̂β̂(Γb̂)γ̂δ̂(Σ
âb̂)ρ̂τ̂D

β̂iDγ̂
(iD

δ̂
j)W = 0. (3.17)

The dimension-3 closure condition, like the dimension- 52 condition (3.16), holds identi-

cally since

εâb̂
ĉd̂ê∂ĉFd̂ê = − i

2
εâb̂

ĉd̂ê∂ĉD
2
d̂ê
W =

1

12
[D2

âij , D
2ij

b̂
]W = 0. (3.18)

Thus, the only constraint on W is (3.14) which, as we review in section 5.1, identifies it as

the field-strength of the off-shell vector multiplet in five dimensions.

3.2.1 An alternative 2-cocycle

Instead of obstructing the first constraint in (3.4), we may define

F̃αβ = (Σâb̂)α̂β̂Câb̂ij (3.19)

– 8 –
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and proceed with this as our lowest component. Repeating the previous analysis, the

remaining components are found to be

F̃αâ =
i

12
εψ

âb̂ĉd̂(Σâb̂)α̂
β̂Dj

β̂
Cĉd̂ij and F̃âb̂ = − 1

48
εâb̂

ĉd̂êD2
ĉijC

ij

d̂ê
. (3.20)

The dimension-1 field-strength Câb̂ij is constrained by the dimension- 32 Bianchi identity

to satisfy

(Σâb̂)(α̂β̂Dγ̂)(iC
âb̂
jk) = 0 (3.21)

and by the dimension-2 Bianchi identity to satisfy

6i∂ b̂Câb̂ij +D2b̂k
(i Cj)kâb̂ − 2D2

âb̂ĉ
C b̂ĉij = 0. (3.22)

The first of these, (3.21), can be re-cast in the form

Π ĉd̂β̂

âb̂α̂
Dβ̂(iCĉd̂jk) = 0, (3.23)

where

Π ĉd̂β̂

âb̂α̂
:= δĉ[âδ

d̂
b̂]
δβ̂α̂ +

1

5
(Σâb̂Σ

ĉd̂)α̂
β̂ (3.24)

is the projection operator onto the Σ-traceless subspace of the (2-form)⊗(spinor) represen-

tation space. With these constraints in place, the top two Bianchi identities (at dimensions
5
2 and 3) do not imply any new conditions on Câb̂ij .

3.3 The five-dimensional 3-cocycle

We have obstructed the closure of the 1-form potential in two independent ways and found

that each of these is obstructed in turn. The new constraints (3.14) and (3.22) are both

dimension-2, vector-valued, isotriplet superfields. To generate the 3-form, we obstruct the

closure of the 2-form as H = dF in either incarnation. The components of H are then

uniquely determined to be

Hαβγ = 0, Hαβâ = (Σâb̂)α̂β̂H
b̂
ij ,

Hαâb̂ =
i

12
εâb̂

ĉd̂ê(Σĉd̂)α̂
β̂Dj

β̂
Hêij , Hâb̂ĉ =

1

48
εâb̂ĉ

d̂êD2
d̂ij
H ij
ê , (3.25)

where the dimension-2 field Hâij satisfies the condition

(Σâb̂)(α̂β̂Dγ̂)(iH
b̂
jk) = 0 (3.26)

at dimension 5
2 and

D2
âk(iH

âk
j) + 6i∂âH

â
ij = 0 (3.27)

at dimension 3.

The way in which the constraints “fit together” here is fairly interesting. At dimension
5
2 , it is not difficult to see that (3.26) is equivalent to

Π b̂β̂
âα̂ Dβ̂(iHb̂jk) = 0, (3.28)

– 9 –



J
H
E
P
0
5
(
2
0
1
5
)
0
4
9

where

Π b̂β̂
âα̂ := δb̂âδ

β̂
α̂ +

1

5
(ΓâΓ

b̂)α̂
β̂ (3.29)

is a projection operator, this time onto the Γ-traceless subspace of the (vector)⊗(spinor)

representation. The question, then, is: what part of the dimension-3 Bianchi identity does

this already imply, and what part is an independent constraint? If we look at the dimension-

3 closure condition more carefully, we find three independent conditions: equation (3.27)

and the following two “constraints”

0 = D2
(âk(iH

k
b̂)j)
− 4i∂(âHb̂)ij − trace, (3.30)

0 = D2
[âk(iH

k
b̂]j)
− 4i∂[âHb̂]ij −

1

6
εâb̂ĉd̂êD

ξ̂k(Σĉd̂)ξ̂
γ̂Dγ̂kH

ê
ij . (3.31)

However, these two conditions follow from (3.28) in the form

Dk
ξ̂
(Γĉ)

ξ̂α̂Π b̂γ̂
âα̂Dγ̂(kHb̂ij) = 0 (3.32)

by taking the appropriate index (anti-)symmetrizations. Since the Π-projector only spits

out parts that are symmetric-traceless and anti-symmetric, it leaves (3.27) untouched and

we find it as an independent constraint at dimension 3.

3.4 The five-dimensional 4- and 5-forms

Having found that the constraint (3.27) on the 3-form at dimension 3 is independent of the

lower-dimensional conditions (3.26), we can obstruct the closure of that form by introducing

a Lorentz-singlet, iso-spin triplet superfield Gij of dimension 3. In terms this superfield,

the closed 4-form G has components

Gαβγδ = 0, Gαβγâ = 0,

Gαβâb̂ = (Σâb̂)α̂β̂Gij , Gαâb̂ĉ =
i

12
εâb̂ĉ

d̂ê(Σd̂ê)α̂
β̂Dj

β̂
Gij , (3.33)

Gâb̂ĉd̂ = − 1

48
εâb̂ĉd̂

êD2
êijG

ij ,

in agreement with reference [23]. At dimension 7
2 , the condition

Dα̂(iGjk) = 0 (3.34)

is imposed. All remaining Bianchi identities are then satisfied, with the dimension-5 con-

dition coming from

∂â(?G)â = ∂âD2
âijG

ij =
3i

16
D3α̂
ijkD

k
α̂G

ij = 0, (3.35)

where ?G stands for the bosonic Hodge dual of the 4-form components Gâb̂ĉd̂.

To complete the complex, we proceed in the established way by obstructing the 4-

form’s defining condition as K = dG. Note that this is slightly different than the previous

obstructions since now the lowest component K stays at the same level as that of G. This

– 10 –
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Figure 1. The general “obstruction structure” of the five-dimensional super-de Rham complex as

constructed in this article.

is required for the lowest Bianchi identity to be satisfied. We then have a closed 5-form K

with components

Kαβγδσ = 0, Kαβγδâ = 0, Kαβγâb̂ = (Σâb̂)α̂β̂Kγ̂ijk,

Kαβâb̂ĉ = − i

48
εâb̂ĉ

d̂ê(Σd̂ê)α̂
γ̂(3Dk

γ̂Kβ̂ijk −D
k
β̂
Kγ̂ijk),

Kαâb̂ĉd̂ = − 1

192
εâb̂ĉd̂

ê(2D2jk
ê Kα̂ijk + (Σêf̂ )α̂

β̂D2f̂ jkKβ̂ijk),

Kâb̂ĉd̂ê =
i

768
εâb̂ĉd̂êD

3
α̂ijkK

α̂ijk, (3.36)

where the dimension- 52 field Kα̂ijk satisfies the condition

D(α̂(iKβ̂)jkl) = 0 (3.37)

through which all the other Bianchi identities are satisfied.

With this, we have found the structure of all the cocycles in super-de Rham complex of

the five-dimensional, N = 1 superspace. In the process, we found that the sequence splits,

giving rise to two 2-cocycles due to the existence of two independent constraints (3.4)

on the components of the 1-cocycle. These 2-cocycles each have a constraint on their

components at dimension 2 that that are isomorphic as superfield representations: both

equations (3.14) and (3.22) are iso-spin triplets of vectors. Because of this, the 3-cocycle

resulting from obstructing these equations is unique and the branching fuses. Its dimension-

3 constraint (3.27) is unique as a superfield representation and can be sourced to uniquely

define the iso-spin triplet field-strength Gij of the 4-cocycle. This uniqueness persists to

the 5-cocycle. We summarize this structure of the five-dimensional, N = 1 super-de Rham

complex in figure 1.

4 Dimensional reduction

For the computation of the 4- and 5-forms in the previous section, an alternative to the usual

procedure was employed that allowed us to determine the components and constraints on

the forms by reducing them from a higher-dimensional complex. The observation is that

the five-dimensional, N = 1 de Rham complex has a simple interpretation as a specific

part of the dimensional reduction of of the six-dimensional, N = (1, 0) de Rham complex

studied in [34, 35]. To see this, consider the generic form of a Bianchi identity for a closed
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p-form ω in flat 6D superspace. This identity is formally identical to (3.1) as the formula

makes no explicit reference to the dimension. Written in 5 + 1 dimensions this splits into

two equations:

0 =
1

p!
D[A1

ωA2...Ap+1] +
1

2!(p− 1)!
T[A1A2|

CωC|A3...Ap+1]

+
1

2!(p− 1)!
T[A1A2|

6ω6|A3...Ap+1], (4.1)

0 =
1

p!
∂6ω[A1...Ap] −

1

(p− 1)!
D[A1|ω6|A2...Ap] +

1

(p− 1)!
T6[A1|

CωC|A2...Ap]

− 1

2!(p− 2)!
T[A1A2|

Cω6C|A3...Ap]. (4.2)

Restricting the vector indices to five dimensions and setting ∂6 and T6A
B to zero suggests

the following definitions: the five-dimensional p-form

(αp)A1...Ap := ωA1...Ap (4.3)

and the five-dimensional (p− 1)-form

(βp−1)A1...Ap−1 = ω6A1...Ap−1 . (4.4)

The (5 + 1)-dimensional closure conditions then give, in an index-free notation,

dαp = c2 ∧ βp−1 and dβp−1 = 0, (4.5)

where cαβ = Tαβ
6 = εijεα̂β̂ is the only non-zero component of the constant 2-form c2.

The first thing to notice here is that although two forms come from this reduction, only

βp−1 is closed. Looking back to the complex worked out in section 3, the βp−1 forms—as

they came from six dimensions—are precisely those forms that we studied in section 3. For

ease of comparison, we have collected the schematic form of the five- and six-dimensional

cocycles in table 7. For clarity of presentation, we have suppressed real numerical factors

and are using ? to schematically denote factors of εa1...aD . The precise forms of the Π-

projectors are given in (3.24) and (3.29) for five dimensions and in [35] for six.

Note that the branching structure of the five-dimensional de Rham complex represented

by figure 1 descends from a similar branching in the six-dimensional complex where there

are two irreducible constraints for the closed 2-form.2

4.1 Relative cohomology

Returning to the remaining equation in the reduction (4.5), we note that it is possible

to construct another closed 5D p-form by solving the closure condition dβp−1 = 0 as

βp−1 = dθp−2 and using this to define the shifted superform

α′p := αp − c2 ∧ θp−2. (4.6)

The structure of these forms is illustrated in figure 3.

2The second 3-form presented in the table appeared only as a composite 3-form in reference [35].
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+
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=
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=
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=

i(
Γ
â
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=
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=
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=
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H

ê
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=
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=
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=
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=
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â
b̂
) α̂

β̂
G

ij

G
α
â
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ĉ
=
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ĉ
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=

⋆
D
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ij
G
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D
2 ij
U

ij
=

0

D
2 â
b̂
U
ij
=

0

D
2 â
ij
W

=
0

Π
ĉ
d̂
β̂

â
b̂
α̂
D

β̂
(i
C

ĉ
d̂
j
k
)
=

0

i∂
b̂
C

â
b̂
ij
+

D
2
b̂
k

(i
C

j
)k

â
b̂
+

D
2 â
b̂
ĉ
C

b̂
ĉ

ij
=

0

Π
b̂
β̂

â
α̂
D

β̂
(i
H

b̂
j
k
)
=

0

D
2 â
k
(i
H

â
k

j
)
+

i∂
â
H

â ij
=

0

D
α̂
(i
G

j
k
)
=

0

Table 7. The structure of the five- and six-dimensional de Rham cocycles.

Interestingly, we recognize this as the form that comes from the relative cohomology

construction of a closed 5-form in reference [23]. The fact that their L6 = c2 ∧G4 exhibits

Weil triviality as L6 = dK5 and L6 = c2 ∧ dh3 is then a direct consequence of the fact

that G4 and K5 come to 5D together as a relative cohomology pair from the dimensional

reduction of the 6D 5-form.
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Figure 2. The general “obstruction structure” of the six-dimensional super-de Rham complex as

constructed in reference [35].

· · · · · ·

· · · · · ·

αp

c2 ∧ θp−2

Figure 3. Filled nodes are the non-zero components of the indicated forms, with the struts in-

dicating which components of the αp are “corrected” by c2 ∧ θp−2 to allow the form α′p to close

without vanishing. Higher-dimensional components are on the left.

To illustrate this relative cohomology construction and its origin from dimensional

reduction, consider the case of the relative 3-form. It is obtained by reducing the six-

dimensional 3-form H → (H,F ) to a five-dimensional 3-form H and 2-form F . The

resulting closed 2-form F is solved in terms of its potential A, which is used to correct

the non-closed part H of the 3-form as expressed by equation (4.6). The closed 3-form H ′

arising from this construction has components

H ′αβγ = − ε(αβAγ), H ′αβâ = − εij(Γâ)α̂β̂Φ− εijεα̂β̂Aâ,

H ′
αâb̂

=
i

4
(Σâb̂)α̂

β̂Dβ̂iΦ, H ′
âb̂ĉ

=
3

8
D2
âb̂ĉ

Φ. (4.7)

The dimension-2 Bianchi identity fixes

Φ =
i

24
Dα̂iAα̂i and Aâ = − i

24
DiΓâAi, (4.8)

thus defining all of the components in terms of the spinor potential Aα̂i. The constraints

imposed by dH ′ = 0 on this potential can be presented as

D(α̂(iAβ̂)j) = 0, (4.9)

6(Γâ)α̂
β̂Dβ̂iΦ + 3(Σâb̂)α̂

β̂Dβ̂iA
b̂ − (Σâb̂)α̂

β̂∂ b̂Aβ̂i = 0, (4.10)

D2
ijΦ = 0. (4.11)

It is illuminating to see precisely how this procedure works. The 1-form A allows

the form to “get off the ground” by giving Hαβγ a piece to ensure that the lowest Bianchi

identity holds even with a scalar superfield sitting inside Hαβâ. However, this is not enough:
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if we were to continue the analysis with only Aα and not Aâ we would find that the

final component Hâb̂ĉ vanishes. Instead, the Aâ component avoids this so that the higher

components satisfy the higher Bianchi identities without trivializing.

An interesting feature of this construction is that, although we are attempting to

describe a closed 3-form field-strength, the lower components of this form are not gauge-

invariant under Aα̂i 7→ Aα̂i + Dα̂iΛ (for some gauge parameter Λ). Nevertheless, the field

Φ is invariant under this transformation so the top two components of H ′ are invariant (as

are the constraints). This is a generic feature of the relative cohomology construction that

comes from solving the closure condition on the form βp−1 and using its potential θp−2 in

the definition of the closed form α′p.

5 Field content in 5D

The utility of the superforms derived above (and in general) lies in their natural accom-

modation of gauge structure. If we let A be an abelian gauge (p − 1)-form, then its

field-strength F is simply defined as the p-form

F = dA. (5.1)

This field-strength is invariant under the gauge transformation δA = dλ for any (p − 2)-

form λ, and is itself identically closed. With the complex laid out in section 3, we now

turn to the field content of the gauge multiplets it defines.

5.1 The vector multiplet (p = 2)

The theory of a closed, five-dimensional 2-form has at its core a dimension-1 field-strength

W that satisfies the constraint (3.15), identifying it as the field-strength for the five-

dimensional vector multiplet of [36, 37], as we now review.

Before delving into components and counting degrees of freedom, there are two things

to note. The first is that by elementary computation,

D
(i
α̂D

j)

β̂
W =

1

4
εα̂β̂D

γ̂(iD
j)
γ̂ W ⇒ D

(i
α̂D

j

β̂
D
k)
γ̂ W = 0. (5.2)

This will be used later when we look at the degrees of freedom in this multiplet. The

second thing to note is that by acting on (3.15) with Dα̂
i , we obtain for the spinor λ in W,

/∂α̂
β̂λβ̂i = − i

2
D2
ijλ

j
α̂ 6= 0. (5.3)

Thus, this multiplet is off-shell. This may seem curious given that the six-dimensional

3-form field-strength theory from which this form reduces is on-shell, but note that the ob-

struction to the Dirac equation in (5.3) is an operator that does not exist in six dimensions.

Turning now to the field content, we write the θ-expansion of W as [37]

W = φ+ iθα̂iλα̂i +
i

2
θα̂iθjα̂Xij + iθα̂iθβ̂i Fα̂β̂ + O(θ3). (5.4)
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The degrees of freedom in W are, then,

fields φ λα̂i Xij F α̂β̂

on-shell 1 4 0 3

off-shell 1 8 3 4

(5.5)

since Fâb̂ = (Σâb̂)
α̂β̂Fα̂β̂ = − i

2D
2
âb̂
W and is the field-strength of a dynamical vector due

to the dimension-3 Bianchi identity (3.18). In order to determine the on-shell degrees of

freedom for the iso-triplet Xij , we first need to know whether there are any new fields at

higher order in θ. To do so, we use the dimension- 52 Bianchi identity (3.16) and consider

what components might live in DDDW. To wit, suppose DDD were totally anti-symmetric

in spinor indices. If not totally symmetric in isospin, the anti-symmetric spinor + anti-

symmetric isospin components would form partial derivatives. However, if it were totally

symmetric in isospin, then it would vanish by (5.2). Therefore the only possible remaining

source of new components is DDD with at least one symmetric pair of spinor indices. But

these are exactly the terms that (3.16) rules out. Thus, the fields laid out in (5.5) are

the only ones to be found and higher components are simply derivatives of the lower ones.

Then because supersymmetry is required to hold on-shell, Xij is relegated to the role of

auxiliary field and cannot carry any on-shell degrees of freedom. So with this information

about the component fields, the action takes the form

L =
1

2

(
−∂âφ∂âφ+ iλi/∂λi +

1

2
XijXij −

1

2
F âb̂Fâb̂ − λ

i[φ, λi]

)
. (5.6)

5.2 The tensor multiplet (p = 3)

In section 5.4 we will discuss the interpretation of the 3-cocycle H of section 3.3. Instead

we consider in this section the matter content of the relative cohomology 3-form H ′ of

section 4.1. Acting on the constraint (4.10) with Dα̂
(j , and using (4.9) we find that

D2
âijΦ = 0. (5.7)

This can be combined with the condition (4.11) to give the superfield constraint3

D
(i
α̂D

j)

β̂
Φ = 0. (5.8)

From this it is straightforward to check that the θ-expansion of Φ,

Φ = φ+ θα̂i χ
i
α̂ + θα̂iθβ̂i Tα̂β̂ + O(θ3), (5.9)

stops giving new fields beyond the θ2-level. Unfortunately, this means that the multiplet

is an on-shell tensor multiplet with the degrees of freedom

fields φ χα̂i T α̂β̂

on-shell 1 4 3
(5.10)

3In the dimensional reduction to D = 4, this gives the superspace description of the vector-tensor

multiplet as it is presented in [38].
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where Tα̂β̂ = 1
2(Σâb̂)α̂β̂Tâb̂ is dual to the 3-form field-strength Fâb̂ĉ of a 2-form gauge

field. (Alternatively, we may observe that (5.8) takes the form of the vector multiplet

constraint (3.14) combined with its equation of motion D2
ijW = 0 [37].) These component

fields imply that an action takes the form

L =
1

2

(
−∂âφ∂âφ+ iχi/∂χi +

1

6
F âb̂ĉFâb̂ĉ

)
. (5.11)

5.3 The linear multiplet (p = 4)

The supermultiplet content described by a closed, five-dimensional 4-form is contained

inside a superfield Gij subject to the analyticity constraint

Dα̂(iGjk) = 0. (5.12)

This is the five-dimensional, N = 1 linear multiplet, the four-dimensional N = 2 version

of which was discovered in [39].4 The θ-expansion is

Gij = ϕij + 2θ(iψj) + 2iθiΓ
âθjVâ + θiθjM + derivatives, (5.13)

where ϕij is an iso-triplet of scalars, ψiα̂ is a doublet of Weyl fermions, Vâ is a vector field-

strength, and M is a real auxiliary scalar. Additionally, the constraint (5.12) requires that

∂âV
â = 0. This condition can be solved as

V â = εâb̂ĉd̂ê∂b̂Eĉd̂ê (5.14)

for a gauge 3-form E. The degrees of freedom carried by these fields are

fields ϕij ψiα̂ Eâb̂ĉ M

on-shell 3 4 1 0

off-shell 3 8 4 1

(5.15)

and so the supermultiplet is off-shell. Finally, the action for this multiplet is

L =
1

2

(
1

2
∂âϕ

ij∂âϕij − V âVâ + iψi/∂ψi +M2

)
. (5.16)

The component field content of this section also indicates a relation to the results of [28,

40]. When one reduces the component field content of the 3-form Eĉd̂ê to four dimensions,

one obtains a 2-form gauge field Ecd5 and a four-dimensional gauge 3-form Ecde. Then the

N = 1 supermultiplet content is seen to be (ϕ22, ψ2, Ecd5) and (ϕ11, ϕ12, ψ1, Ecde,M). The

first of these is a N = 1 tensor multiplet and the second is a variant formulation of a N = 1

chiral supermultiplet [41]. The latter of these contains one 0-form auxiliary field M and a

3-form auxiliary field Ecde.

4A five-dimensional formulation is given in [40] but they do not examine the field content before reducing

to a centrally-extended 4D, N = 2 superspace.

– 17 –



J
H
E
P
0
5
(
2
0
1
5
)
0
4
9

5.4 Reducible multiplets

We have found that the procedure of obstructing the Bianchi identities of an irreducible

supersymmetric multiplet describing a p-form generally fails to give an irreducible multiplet

describing a (p + 1)-form. To distinguish these cases, we will refer to the elements of

the super-de Rham complex as constructed here as “p-cocycles”. When these have an

interpretation as an irreducible supermulitplet containing a closed bosonic p-form, we will

call them closed (super-)p-forms.

Examples of cocycles that are not closed forms were found in section 3.2.1 for p = 2 and

in section 3.3 for p = 3. In the first case, there were two 2-cocycles, one of which is a closed

2-form. In the latter, however, there was no de Rham 3-cocycle that could be interpreted

as a 3-form. (For this, we had to pass to the 3-cocycle of the relative cohomology of

section 4.1.) From the four-dimensional perspective, this is a new phenomenon: at least in

the case of 4D, N = 1, every p-cocycle is a closed p-form.

What, then, is the interpretation of such cocycles? A clue is to be found by scrutinizing

the constraints on the field-strengths of cocycles that are closed forms. In very low degree,

the p-cocycles are guaranteed to be forms since we can always start with a scalar superfield

and take its derivative to get an exact 1-form. Similarly, in high degree, specifically co-

dimension 1, the (D − 1)-cocycle has the interpretation of a closed (D − 1)-form because

its analyticity implies that it contains a conserved vector field-strength, as described in

section 5.3. When D ≤ 4, the 2-form field-strength (guaranteed to exist as the Maxwell

field-strength), sits directly beneath the D − 1 = 3-form field-strength. However, when

D > 4 a gap opens up between p = 2 and p = D − 1 and it is in this gap that we find a

cocycle that is not guaranteed to have an interpretation as a closed form. In fact, both of

the non-form cocycles we have found are naturally associated to the co-dimension-1 form

of sections 3.4 and 5.3, as we can see from the progression of constraints

Π ĉd̂β̂

âb̂α̂
Dβ̂(iCĉd̂jk)

(3.23)
= 0 , Π b̂β̂

âα̂ Dβ̂(iHb̂jk)

(3.27)
= 0 , and Π β̂

α̂ Dβ̂(iGjk)
(3.34)

= 0 , (5.17)

where the Πs are the projectors (cf. eqs. (3.24)), (3.29), and taking Π β̂
α̂ := δβ̂α̂) onto the

anti-symmetric tensor, vector, and scalar representations, respectively.

Alternatively, it is not the expectation that there be a closed form interpretation of

the cocycle that fails insomuch as it is that the cocycle may be required to be a composite

closed form. Consider, for example, the 2-cocycle A ∧ A′ constructed by wedging two

different 1-forms. The lowest component of this product generally contains both the 2-form

part ∼ Aα̂iA′α̂i from section 3.2 and the 2′-cocycle part ∼ A(α̂(iA
′
β̂)j)

from section 3.2.1.

Therefore, the existence of the 2′-cocycle is required by the fact that differential forms form

a differential graded algebra with respect to the ∧-product.

We conclude with a related observation for which we do not yet have a complete

explanation: the 3-cocycle H of section 3.3 satisfies the constraints of one of the five-

dimensional, N = 1 conformal supergravity torsions worked out in reference [42]. Specifi-

cally, this superspace contains a dimension-1 torsion Câij constrained by the dimension- 32
Bianchi identities to satisfy equation (3.26). Under local superconformal transformations,

δCâij = σCâij − iD2
âijσ. The first term is the transformation of a superconformal primary
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field of weight 1 and the inhomogeneous term indicates that C is a connection for local

superconformal transformations. In this sense, the cocycle Hâij ∼ D2
âijσ describes the

gauge parameters of local superconformal transformations in five-dimensional superspace.5

6 Conclusions

In this article we have constructed the super-de Rham complex in five-dimensional, N = 1

superspace and related it to the complex of six-dimensional, N = (1, 0) superspace via

dimensional reduction. This turned out to be only one part of the reduced complex, with

the remaining part serving as an additional source of closed superforms coming from the

relative cohomology of the two superspaces. A surprising feature of the five-dimensional

complex is that the 3-form field-strength H does not describe an irreducible supermultiplet

serving as the supersymmetrization of a closed bosonic 3-form. Instead, the “missing”

tensor multiplet arises from the relative cohomology construction of section 4.1.

We concluded our excursion in 5D by investigating the field content described by the

p-form field-strengths for p = 2, 3, 4 which were, respectively, an off-shell vector multiplet,

an on-shell tensor multiplet, and an off-shell linear multiplet (with gauge 3-form). The

4-form field-strength also automatically solved a problem left open from the work of [28];

namely, by dimensional reduction of the results in section 5.3 we have found the 4D, N = 2

supermultiplet containing a component level 3-form gauge field.

In this paper we have taken steps to fill in our understanding of eight-supercharge

superspaces as we bracket our work with the extensive literature on R4|8 and the six-

dimensional complex of [35]. However, we have also uncovered questions that should

extend beyond specific superspaces and hint towards a more universal understanding of

superforms. In the associated works [43, 44] we study the problem noted in section 3.3 of

determining how constraints fit together inside Bianchi identities generically and examine

the dimensional reduction for embedded superspaces RD−1|n ↪→ RD|n.

Finally, we note that this work has introduced new curiosities about how superforms

may be used to discover superfield formulations of gauge supermultiplets. In higher di-

mensions it appears to now be an open question as to how certain gauge theories can be

constructed. The example we encountered in five dimensions is that the superform de-

scription of an off-shell tensor multiplet in ordinary 5D, N = 1 superspace (i.e. without

central charge and/or harmonics) remains unknown. If we try to obtain such a superform

by either of the dimensional reduction paths laid out in section 4, we obtain a multiplet

of superconformal gauge parameters or an on-shell tensor multiplet. If we instead start

in 4D, N = 2 superspace with the vector-tensor multiplet, this lifts to five dimensions by

becoming the on-shell tensor multiplet.

There are also other extensions to flat superspace that may be considered; 4D, N = 2

centrally-extended superspaces have been considered in [40, 45] and have a close relation-

ship with 5D, N = 1 given that the central charge can be considered a ∂5 term. Centrally-

extended 5D superspace was investigated in [46] where the central charge was gauged and

several superforms were constructed; their relationship to the forms presented here is also

5The analogous thing happens in six dimensions in terms of the 4-cocycle.
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of interest. Curved superspaces are another avenue for future study as we consider how

such spaces fit into the general discussion of superform constraints and dimensional re-

duction. Work on these topics is underway at the present time as we continue our march

towards understanding the geometry of superspace and its relationship to the structure of

gauge theories in arbitrary dimension with any number of superysmmetries.
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A Five-dimensional, N = 1 superspace

Our five-dimensional notation and conventions were first given in [37] and are designed to

reduce to those of [32] in 4D. Using the “mostly-plus” flat metric ηâb̂, for â, b̂ ∈ {0, 1, 2, 3; 5},
our Γ-matrices Γâ = (Γa,Γ5), with a ∈ {0, 1, 2, 3}, are chosen to satisfy the algebra

{Γâ,Γb̂} = −2ηâb̂1. (A.1)

In order to completely span the space of 4×4 matrices we introduce the symmetric matrices

Σâb̂ := −1
4 [Γâ,Γb̂] to complement the anti-symmetric spinor metric εα̂β̂ and anti-symmetric,

traceless Γ-matrices.

We also have the useful identities for Aij = A[ij]:

Aij =
1

2
εijA

k
k and Aij = −1

2
εijAkk, (A.2)

where εij is the isospinor metric. The algebra of 5D, N = 1 superspace is then

{Di
α̂, D

j

β̂
} = −2iεij /∂α̂β̂ , (A.3)

where, for reference, the Ds are explicitly defined as

Dα̂i := ∂α̂i − i/∂α̂β̂θ
β̂
i . (A.4)

The irreducible D2 operators in five dimensions are normalized as follows:

D2
ij :=

1

2
D(iDj), D2

âij :=
1

2
D(iΓâDj), and D2

âb̂
:=

1

2
DiΣâb̂Di. (A.5)

Note that here we use the contraction convention ψα̂iχα̂i = ψχ. With these operators, we

can expand a generic DD object as

Dα̂iDβ̂j = iεij /∂α̂β̂ −
1

2
εij(Σ

âb̂)α̂β̂D
2
âb̂

+
1

2
εα̂β̂D

2
ij +

1

2
(Γâ)α̂β̂D

2
âij . (A.6)
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We also define the shorthand

D2
âb̂ĉ

:= − 1

12
εâb̂ĉ

d̂êD2
d̂ê

(A.7)

so that

εâb̂
ĉd̂êD2

ĉd̂ê
= D2

âb̂
. (A.8)

Straightforward D-pushing with the algebra (A.3) yields the following commutators

[D2ij , D2
âij ] = 12i∂ b̂D2

âb̂
, (A.9)

[D2ij
â , D2

b̂ij
] = 72i∂ ĉD2

âb̂ĉ
, (A.10)

[D2
ij , D

2
âb̂

] = −4i∂[âD
2
b̂]ij

(A.11)

which are useful in the calculations of section 3.

It will also be helpful to note some elementary facts about D3 operators. As shown by

Koller [47], in six dimensions there are only two linearly independent D3s; namely, D3
αijk

and D̃3
aαi. In five dimensions the vector component of D̃3 splits, and so we have three:

D̃3
α̂i := {Dj

α̂, D
2
ij} , D̃3

âα̂i := {Dj
α̂, D

2
âij} , D3

α̂ijk := {Dα̂(i, D
2
jk)} = 2Dα̂(iD

2
jk). (A.12)

These definitions lead to the relations

{Dα̂i, D
2
jk} = D3

α̂ijk +
2

3
εi(jD̃

3
k)α̂,

{Dα̂i, D
2
âjk} = −(Γâ)α̂

β̂D3
β̂ijk

+
2

3
εi(jD̃

3
k)α̂â,

{Dα̂i, D
2
âb̂
} =

2

3
(Γ[â)α̂

β̂D̃3
b̂]β̂i

+
2

3
(Σâb̂)α̂

β̂D̃3
β̂i
, (A.13)

where we have used the fact that6

(Γâ)α̂
β̂D̃3

âβ̂i
= −D̃3

α̂i. (A.14)

We can now expand a generic DDD object by decomposing any two Ds using (A.6) and

then writing the DD2 terms as [D,D2] + {D,D2}.
Finally, we note the following Γ-matrix identities that follow directly from (A.1) as

worked out in [48]: the completeness relation

εα̂β̂γ̂δ̂ =
1

2
(Γâ)α̂β̂(Γâ)γ̂δ̂ +

1

2
εα̂β̂εγ̂δ̂, (A.15)

the trace identities

tr ΓâΓb̂ = −4ηâb̂ and tr Σâb̂Σĉd̂ = −2δ
[â
[ĉ δ

b̂]

d̂]
, (A.16)

and the expansions

(Γâ)α̂
γ̂(Γb̂)γ̂

β̂ = −ηâb̂δβ̂α̂ − 2(Σâb̂)α̂
β̂ ,

(Γâ)α̂
γ̂(Σb̂ĉ)γ̂

β̂ = −1

2
εâb̂ĉd̂ê(Σd̂ê)α̂

β̂ + ηâ[b̂(Γĉ])α̂
β̂ . (A.17)

6This is consistent with the 6D condition (γ̃a)αβD̃3
aβi = 0.
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